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Abstract 70 

A fundamental issue in evolutionary systems biology is understanding the relationship between 71 

the topological architecture of a biological network, such as a metabolic network, and the 72 

evolution of the network.  The rate at which an element in a metabolic network accumulates 73 

genetic variation via new mutations depends on both the size of the mutational target it presents 74 

and its robustness to mutational perturbation.  Quantifying the relationship between topological 75 

properties of network elements and the mutability of those elements will facilitate understanding 76 

the variation in and evolution of networks at the level of populations and higher taxa.     77 

We report an investigation into the relationship between two topological properties of 29 78 

metabolites in the C. elegans metabolic network and the sensitivity of those metabolites to the 79 

cumulative effects of spontaneous mutation.  The correlations between measures of network 80 

centrality and mutability are not statistically significant, but several trends point toward a weak 81 

positive association between network centrality and mutational sensitivity.  There is a small but 82 

significant negative association between the mutational correlation of a pair of metabolites  (rM) 83 

and the shortest path length between those metabolites. 84 

Positive association between the centrality of a metabolite and its mutational heritability 85 

is consistent with centrally-positioned metabolites presenting a larger mutational target than 86 

peripheral ones, and is inconsistent with centrality conferring mutational robustness, at least in 87 

toto.  The weakness of the correlation between rM and the shortest path length between pairs of 88 

metabolites suggests that network locality is an important but not overwhelming factor governing 89 

mutational pleiotropy.  These findings provide necessary background against which the effects of 90 

other evolutionary forces, most importantly natural selection, can be interpreted.  91 
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Introduction: 92 

The set of chemical reactions that constitute organismal metabolism is often represented 93 

as a network of interacting components, in which individual metabolites are the nodes in the 94 

network and the chemical reactions of metabolism are the edges linking the nodes (Jeong et al., 95 

2000).  Representation of a complex biological process such as metabolism as a network is 96 

conceptually powerful because it offers a convenient and familiar way of visualizing the system, 97 

as well as a well-developed mathematical framework for analysis.   98 

 If the representation of a biological system as a network is to be useful as more than a 99 

metaphor, it must have predictive power (Winterbach et al., 2013).  Metabolic networks have 100 

been investigated in the context of evolution, toward a variety of ends.  Many studies have 101 

compared empirical metabolic networks to various random networks, with the goal of inferring 102 

adaptive features of network architecture (e.g., Fell and Wagner, 2000;Jeong et al., 2000;Wagner 103 

and Fell, 2001;Siegal et al., 2007;Minnhagen and Bernhardsson, 2008;Papp et al., 104 

2009;Bernhardsson and Minnhagen, 2010).  Other studies have addressed the relationship 105 

between network-level properties of individual elements of the network (e.g., node degree, 106 

centrality) and properties such as rates of protein evolution (Vitkup et al., 2006;Greenberg et al., 107 

2008), within-species polymorphism (Hudson and Conant, 2011), and mutational robustness 108 

(Levy and Siegal, 2008).      109 

 One fundamental evolutionary process that remains essentially unexplored with respect to 110 

metabolic networks is mutation.  Mutation is the ultimate source of genetic variation, and as such 111 

provides the raw material for evolution: the greater the input of genetic variation by mutation, the 112 

greater the capacity for evolution.  However, in a well-adapted population, most mutations are at 113 

least slightly deleterious.  At equilibrium, the standing genetic variation in a population 114 
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represents a balance between the input of new mutations that increase genetic variation and 115 

reduce fitness, and natural selection, which removes deleterious variants and thereby increases 116 

fitness.  Because genetic variation is jointly governed by mutation and selection, understanding 117 

the evolution of any biological entity, such as a metabolic network, requires an independent 118 

accounting of the effects of mutation and selection.   119 

 The cumulative effects of spontaneous mutations can be assessed in the near absence of 120 

natural selection by means of a mutation accumulation (MA) experiment (Figure 1).  Selection 121 

becomes ineffective relative to random genetic drift in small populations, and mutations with 122 

effects on fitness smaller than about the reciprocal of the population size (technically, the genetic 123 

effective population size, Ne) will be essentially invisible to natural selection (Kimura, 1968).  124 

An MA experiment minimizes the efficacy of selection by minimizing Ne, thereby allowing all 125 

but the most strongly deleterious mutations to evolve as if they are invisible to selection 126 

(Halligan and Keightley, 2009).  127 

Our primary interest is in the relationship between the centrality of a metabolite in the 128 

network and the sensitivity of that metabolite to mutation.  Roughly speaking, the centrality of a 129 

node in a network quantifies some measure of the importance of the node in the network 130 

(Koschützki and Schreiber, 2008).  A generic property of empirical networks, including 131 

metabolic networks, is that they are (approximately) scale-free; scale-free networks are 132 

characterized by a topology with a few "hub" nodes (high centrality) and many peripheral nodes 133 

(low centrality; Jeong et al., 2000).  Scale-free networks are more robust to random perturbation 134 

than are randomly-connected networks (Albert et al., 2000).   135 

Mutation is an important source of perturbation to biological systems, and much effort 136 

has gone into theoretical and empirical characterization of the conditions under which mutational 137 
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robustness will evolve (Wagner et al., 1997;de Visser et al., 2003;Proulx et al., 2007).  138 

Mutational robustness can be assessed in two basic ways: top-down, in which a known element 139 

of the system is mutated and the downstream effects of the mutation quantified, or bottom-up, in 140 

which mutations are introduced at random, either spontaneously or by mutagenesis, and the 141 

downstream effects quantified.  Top-down experiments are straightforward to interpret: the 142 

greater the effects of the mutation (e.g., on a phenotype of interest), the less robust the system.  143 

However, the scope of inference is limited to the types of mutations introduced by the 144 

investigator (which in practice are almost always gene knockouts), and provide limited insight 145 

into natural variation in mutational robustness.          146 

Bottom-up approaches, in which mutations are allowed to accumulate at random, provide 147 

insight into the evolution of a system as it actually exists in nature: all else equal, a system, or 148 

element of a system ("trait"), that is robust to the effects of mutation will accumulate less genetic 149 

variance under MA conditions than one that is not robust (Figure 1b; Stearns et al., 1995).  150 

However, the inference is not straightforward, because all else may not be equal: different 151 

systems or traits may present different mutational targets (roughly speaking, the number of sites 152 

in the genome that potentially affect a trait; Houle (1998)).          153 

Ultimately, disentangling the evolutionary relationship between network architecture, 154 

mutational robustness, and mutational target is an empirical enterprise, specific to the system of 155 

interest.  As a first step, it is necessary to establish the relationship between network architecture 156 

(e.g., topology) and the rate of accumulation of genetic variance under MA conditions.  If a 157 

general relationship emerges, targeted top-down experiments can then be employed to dissect the 158 

relationship in more mechanistic detail.   159 
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In addition to the relationship between metabolite centrality and mutational variance, we 160 

are also interested in the relationship between network topology and the mutational correlation 161 

(rM) between pairs of metabolites (Figure 1c).  In principle, mutational correlations reflect 162 

pleiotropic relationships between genes underlying pairs of traits (but see below for caveats; 163 

Estes et al., 2005).  Genetic networks are often modular (Newman, 2006), consisting of groups of 164 

genes (modules) within which pleiotropy is strong and between which pleiotropy is weak 165 

(Wagner et al., 2007).  Genetic modularity implies that mutational correlations will be negatively 166 

correlated with the length of the shortest path between network elements.  However, it is possible 167 

that the network of gene interactions underlying metabolic regulation is not tightly correlated 168 

with the metabolic network itself, e.g., if trans acting regulation predominates.  169 

Here we report results from a long-term MA experiment in the nematode Caenorhabditis 170 

elegans, in which replicate MA lines derived from a genetically homogeneous common ancestor 171 

(G0) were allowed to evolve under minimally effective selection (Ne≈1) for approximately 250 172 

generations (Figure 1a).  We previously reported estimates from these MA lines of two key 173 

quantitative genetic parameters by which the cumulative effects of mutation can be quantified: 174 

the per-generation change in the trait mean (the mutational bias, ΔM) and the per-generation 175 

increase in genetic variation (the mutational variance, VM) for the standing pools of 29 176 

metabolites (Davies et al., 2016); Supplementary Table S1.  In this report, we interpret those 177 

results, and new estimates of mutational correlations (rM), in the context of the topology of the C. 178 

elegans metabolic network.   179 

          180 

Methods and Materials: 181 
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I. Metabolic Network.  The metabolic network of C. elegans was constructed following the 182 

criteria of Ma and Zeng (2003b), from two reaction databases (i) from Ma and Zeng (2003b); 183 

updated at http://www.ibiodesign.net/kneva/; we refer to this database as MZ, and (ii) from 184 

Yilmaz and Walhout (2016); http://wormflux.umassmed.edu/; we refer to this database as YW.  185 

Subnetworks that do not contain at least one of the 29 metabolites were excluded from 186 

downstream analyses.  The method  includes several ad hoc criteria for retaining or omitting 187 

specific metabolites from the analysis (criteria are listed on p. 272 of Ma and Zeng (2003b)).  188 

The set of reactions in the MZ and YW databases are approximately 99% congruent; in the few 189 

cases in which there is a discrepancy (listed in Supplementary Table S2), we chose to use the MZ 190 

database because we used the MZ criteria for categorizing currency metabolites (defined below).  191 

To begin, the 29 metabolites of interest were identified and used as starting sites for the 192 

network. Next, all forward and reverse reactions stemming from the 29 metabolites were 193 

incorporated into the subnetwork until all reactions either looped back to the starting point or 194 

reached an endpoint. Currency metabolites were removed following the MZ criteria; a currency 195 

metabolite is roughly defined as a molecule such as water, proton, ATP, NADH, etc., that 196 

appears in a large fraction of metabolic reactions but is not itself an intermediate in an enzymatic 197 

pathway.  Metabolic networks in which currency metabolites are included have much shorter 198 

paths than networks in which they are excluded.  When currency metabolites are included in the 199 

network reported here, all shortest paths are reduced to no more than three steps, and most of the 200 

shortest paths consist of one or two steps.  The biological relevance of path length when currency 201 

metabolites are included in the network is unclear (Ma and Zeng, 2003b).         202 

A graphical representation of the network was constructed with the Pajek software 203 

package (http://mrvar.fdv.uni-lj.si/pajek/) and imported into the networkX Python package 204 
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(Hagberg et al., 2008).  Proper importation from Pajek to networkX was verified by visual 205 

inspection. 206 

II. Network Parameters.  Properties of networks can be quantified in many ways, and different 207 

measures of network centrality capture different features of network importance (Table 1).  We 208 

did not have strong prior hypotheses about which specific measure(s) of centrality associated 209 

with a given metabolite would prove most informative in terms of a relationship with the 210 

mutational properties of that metabolite (i.e., ΔM and/or VM).  Therefore, we assessed the 211 

relationship between the mutational properties of a metabolite and several measures of its 212 

network centrality: betweenness, closeness, and degree centrality, in- and out-degree, and core 213 

number (depicted in Figure 3).  These network parameters are all positively correlated.  214 

Definitions of the parameters are given in Table 1; correlations between the parameters are 215 

included in Table 2.  Calculation of network parameters was done using built-in functions in 216 

NetworkX. 217 

III. Mutation Accumulation Lines.  A full description of the construction and propagation of the 218 

mutation accumulation (MA) lines is given in Baer et al. (2005). Briefly, 100 replicate MA lines 219 

were initiated from a nearly-isogenic population of N2-strain C. elegans and propagated by 220 

single-hermaphrodite descent at four-day (one generation) intervals for approximately 250 221 

generations.  The long-term Ne of the MA lines is very close to one, which means that mutations 222 

with a selective effect less than about 25% are effectively neutral (Keightley and Caballero, 223 

1997).  The common ancestor of the MA lines ("G0") was cryopreserved at the outset of the 224 

experiment; MA lines were cryopreserved upon completion of the MA phase of the experiment.  225 

Based on extensive whole-genome sequencing (Denver et al., 2012; Saxena et al., submitted), we 226 

estimate that each MA line carries approximately 70 mutant alleles in the homozygous state.   227 

In review

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 28, 2018. ; https://doi.org/10.1101/181511doi: bioRxiv preprint 

https://doi.org/10.1101/181511
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 
 

At the time the metabolomics experiments reported in Davies et al. (2016) were initiated, 228 

approximately 70 of the 100 MA lines remained extant, of which 43 ultimately provided 229 

sufficient material for Gas Chromatography/Mass Spectrometry (GC-MS).  Each MA line was 230 

initially replicated five-fold, although not all replicates provided data of sufficient quality to 231 

include in subsequent analyses; the mean number of replicates included per MA line is 3.9 (range 232 

= 2 to 5).  The G0 ancestor was replicated nine times.  However, the G0 ancestor was not 233 

subdivided into "pseudolines" (Teotónio et al., 2017), which means that inferences about 234 

mutational variances and covariances are necessarily predicated on the assumption that the 235 

among-line (co)variance of the ancestor is zero.  236 

Each replicate consisted of stage-synchronized young adult worms taken from a single 10 237 

cm agar plate.  Cultures were stage-synchronized by treatment with hypochlorite ("bleaching") 238 

following Stiernagle (2006); details of the synchronization are given in Davies et al. (2016).  239 

Following synchronization, worms were incubated at 20°C until young adulthood, defined as the 240 

point at which some eggs were seen on plates but no second generation worms had hatched. At 241 

this point, worms were washed from plates and collected for metabolomics.  Each sample 242 

contained tens of thousands of worms, and although the samples were stage-synchronized, there 243 

was almost certainly some variation among samples in both the relative frequency of eggs on the 244 

plate and the (small) proportion of worms that had yet to reach adulthood.  245 

Recently, whole-genome sequencing revealed that two MA lines, MA563 and MA564, 246 

share approximately 2/3 of their accumulated mutations; the simplest explanation is that the two 247 

lines were cross-contaminated around generation 150-175 of the MA protocol.  However, 248 

averaged over all metabolites, the between-line standard deviation of those two lines is >3X that 249 

of either within-line SD, which suggests that the ~1/3 of the mutations in each genome that are 250 
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unique to each line contribute meaningfully to the differences between those two lines.  251 

Accordingly, we chose to include both lines.  Further, since only 21 (out of 33) lines that we 252 

sequenced are represented in the metabolome dataset, the possibility of further unidentified 253 

cross-contamination cannot be ruled out.  Comparisons between metabolites will not be biased 254 

by shared mutations, although the sampling (co)variance will increase by a factor k ≤ 𝑁𝑁
𝑁𝑁−𝑥𝑥+1

, 255 

where N is the total number of lines and x is the number of lines that share mutations; k = 𝑁𝑁
𝑁𝑁−𝑥𝑥+1

 256 

if all lines that share mutations share all their mutations. 257 

IV. Metabolomics.  Details of the extraction and quantification of metabolites are given in 258 

Davies et al. (2016). Briefly, samples were analyzed using an Agilent 5975c quadrupole mass 259 

spectrometer with a 7890 gas chromatograph.   Metabolites were identified by comparison of 260 

GC-MS features to the Fiehn Library (Kind et al., 2009 ) using the AMDIS deconvolution 261 

software (Halket et al., 1999), followed by reintegration of peaks using the GAVIN Matlab script 262 

(Behrends et al., 2011).  Metabolites were quantified and normalized relative to an external 263 

quantitation standard.  34 metabolites were identified, of which 29 were ultimately included in 264 

the analyses.  Normalized metabolite data are archived in Dryad 265 

(http://dx.doi.org/10.5061/dryad.2dn09). 266 

V. Mutational Parameters.  In what follows, a "trait" is the (normalized) concentration of a 267 

metabolite.  There are three mutational parameters of interest: (i) the per-generation proportional 268 

change in the trait mean, referred to as the mutational bias, ΔM; (ii) the per-generation increase 269 

in the genetic variance, referred to as the mutational variance, VM; and (iii) the genetic 270 

correlation between the cumulative effects of mutations affecting pairs of traits, the mutational 271 

correlation, rM.  Details of the calculations of ΔM and VM are reported in Davies et al. (2016); we 272 

reprise the basic calculations here.   273 
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(i) Mutational bias (ΔM) – The mutational bias is the change in the trait mean due to the 274 

cumulative effects of all mutations accrued over one generation.  ΔMz=µGαz, where µG is the per-275 

genome mutation rate and αz is the average effect of a mutation on trait z, and is calculated as 276 

∆𝑀𝑀𝑧𝑧 = �̅�𝑧𝑀𝑀𝑀𝑀−�̅�𝑧0
𝑡𝑡�̅�𝑧0

, where 𝑧𝑧�̅�𝑀𝑀𝑀 and 𝑧𝑧0̅represent the MA and ancestral (G0) trait means and t is the 277 

number of generations of MA.  However, the ΔM was not normally distributed among the 29 278 

metabolites, so for downstream analyses we transformed ΔM as ΔM* =log2�𝑀𝑀𝑀𝑀𝐺𝐺0�, where MA and 279 

G0 represent the trait values of the MA lines and the G0 ancestor, respectively; ΔM=2ΔM*-1.   280 

 (ii) Mutational variance (VM) - The mutational variance is the increase in the genetic variance 281 

due to the cumulative effects of all mutations accrued over one generation.  VM=µG𝛼𝛼𝑧𝑧2 and is 282 

calculated as 𝑉𝑉𝑀𝑀 = ∆𝑉𝑉𝐿𝐿 = 𝑉𝑉𝐿𝐿,𝑀𝑀𝑀𝑀−𝑉𝑉𝐿𝐿,𝐺𝐺0
2𝑡𝑡

, where 𝑉𝑉𝐿𝐿,𝑀𝑀𝑀𝑀 is the variance among MA lines, 𝑉𝑉𝐿𝐿,𝐺𝐺0 is the 283 

among-line variance in the G0 ancestor, and t is the number of generations of MA (Lynch and 284 

Walsh, 1998, p. 330).  In this study, we must assume that VL,G0 = 0.  285 

Comparisons of variation among traits or groups require that the variance be measured on 286 

a common scale.  VM is commonly scaled either relative to the trait mean, in which case VM is 287 

the squared coefficient of variation and is often designated IM, or relative to the residual variance, 288 

VE; VM/VE is the mutational heritability, ℎ𝑀𝑀2 .  IM and ℎ𝑀𝑀2  have different statistical properties and 289 

evolutionary interpretations (Houle et al., 1996), so we report both.  For each metabolite, IM and 290 

IE are standardized relative to the mean of the MA lines.  Both ℎ𝑀𝑀2  and IM were natural-log 291 

transformed to meet assumptions of normality prior to downstream analyses.     292 

(iii) Mutational correlation, rM – Pairwise mutational correlations were calculated from the 293 

among-line components of (co)variance, which were estimated by REML as implemented in the 294 

in the MIXED procedure of SAS v. 9.4, following Fry (2004).  Statistical significance of 295 
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individual correlations was assessed by Z-test, with a global 5% significance criterion of 296 

approximately P<0.000167.  297 

 VI. Analysis of the relationship between mutational parameters and network centrality.  The six 298 

network parameters are all positively correlated, as are the four mutational parameters (Table 2).  299 

To assess the overall correlation structure between mutational and network parameters, we 300 

employed a hierarchical canonical correlation analysis (CCA), as implemented in the 301 

CANCORR procedure of SAS v. 9.4, with the network parameters as the "X" variables and the 302 

mutational parameters as the "Y" variables.  We initially included all four mutational parameters, 303 

resulting in four pairs of canonical variates and four canonical correlations.  We then repeated 304 

the analysis for each mutational parameter Yi individually with the full set of six network 305 

parameters, resulting in one pair of canonical variates and one canonical correlation for each of 306 

the four mutational parameters.  Finally, we calculated the pairwise correlation between all 307 

mutational parameters and all network parameters.  For all analyses except the first, significance 308 

was assessed using the False Discovery Rate (FDR) (Benjamini and Hochberg, 1995).        309 

IIV. Analysis of the relationship between mutational correlation (rM) and network architecture. 310 

(i) Correlation between mutational correlation (rM) and shortest path length.  Statistical 311 

assessment of the correlation between mutational correlation (rM) and shortest path length 312 

presents a problem of non-independence, for two reasons.  First, all correlations including the 313 

same variable (metabolite) are non-independent; each of the n elements of an n x n correlation 314 

matrix contributes to n(n-1)/2 correlations.  Second, even though the mutational correlation 315 

between metabolites i and j is the same as the mutational correlation between j and i, the shortest 316 

path lengths need not be the same, and moreover, the path from i to j may exist whereas the path 317 

from j to i may not (depicted in Supplementary Figure S1).  To account for non-independence of 318 
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the data, we devised a parametric bootstrap procedure.  Three metabolites (L-tryptophan, L-319 

lysine, and Pantothenate) lie outside of the great strong component of the network (Ma and Zeng, 320 

2003a) and are omitted from the analysis.  Each off-diagonal element of the 24x24 mutational 321 

correlation matrix (rij=rji) was associated with a random shortest path length sampled with 322 

probability equal to its frequency in the empirical distribution of shortest path lengths between 323 

all metabolites included in the analysis.  Next, we calculated the Spearman's correlation ρ 324 

between rM and the shortest path length.  The procedure was repeated 10,000 times to generate 325 

an empirical distribution of ρ, to which the observed ρ can be compared.  This comparison was 326 

done for the raw mutational correlation, rM, the absolute value, |rM|, and between rM and the 327 

shortest path length in the undirected network (i.e., the shorter of the two paths between 328 

metabolites i and j). 329 

 330 

Results and Discussion 331 

Representation of the Metabolic Network – The metabolic network of C. elegans was estimated 332 

using method of Ma and Zeng (2003b) from two independent but largely congruent databases 333 

(Ma and Zeng, 2003b;Yilmaz and Walhout, 2016).  Details of the network construction are given 334 

in section I of the Methods; data are presented in Supplementary Appendix A1.  For the set of 335 

metabolites included (see Methods), networks constructed from the MZ and YW databases give 336 

nearly identical results.  In the few cases in which there is a discrepancy (~1%; Supplementary 337 

Table S2), we use the MZ network, for reasons we explain in the Methods.  The resulting 338 

network is a directed graph including 646 metabolites, with 1203 reactions connecting nearly all 339 

metabolites (Figure 2).  340 
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Network centrality and sensitivity to mutation – Canonical correlation analysis did not identify 341 

significant correlation between mutational parameters and network parameters, either 342 

collectively (Figure 4; Supplementary Table S3) or individually.  Further, of the 24 pairwise 343 

correlations between mutational parameters and network parameters (Table 2, Supplementary 344 

Figure S2), only the correlation between mutational heritability (ℎ𝑀𝑀2 ) and core number 345 

approaches statistical significance (r=0.53, FDR < 0.1).  346 

On the face of it, it appears there is no association between network centrality and any 347 

measure of mutational sensitivity.  If so, there are various possible explanations.  For example, it 348 

may be that mutational target and mutational robustness effectively cancel each other out.  More 349 

worryingly, it may be that the representation of the C. elegans metabolic network used here 350 

misrepresents the network as it actually exists in vivo.  For example, the topology of the dynamic 351 

metabolic network of the bacterium E. coli varies depending on the environmental context 352 

(Koschützki et al., 2010), and it seems intuitive that the greater spatiotemporal complexity 353 

inherent to a multicellular organism would exacerbate that problem.  Or, most straightforwardly, 354 

it may be that there simply is no functional relationship between the centrality of a metabolite in 355 

a network and its sensitivity to mutation.   356 

However, several trends apparent in the results suggest the conservative interpretation 357 

may miss meaningful signal emerging from noisy data.  First, the point estimates of the 358 

canonical correlations are not small (> 0.45 in all five cases; e.g., the first canonical correlation 359 

in the full analysis is 0.69; Supplementary Table 3); it may simply be that the sampling variance 360 

associated with the relatively small number of mutations, MA lines and (especially) metabolites 361 

overwhelms the signal of a weak but consistently positive association.  Second, of the 24 362 

pairwise correlations among mutational and network parameters (Table 2), only five are 363 
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negative, significantly fewer than expected at random if the variables are uncorrelated 364 

(cumulative binomial probability = 0.0033).  Third, the point estimates of the pairwise 365 

correlations are not random with respect to either network or mutational parameters.  For all four 366 

mutational parameters, the correlation is greatest with core number (exact probability ≈ 367 

0.00077).  Core number is a discrete interval variable, whereas the other measures of network 368 

centrality are continuous variables.  Quantifying centrality in terms of core number is analogous 369 

to categorizing a set of size measurements into "small" and "large": power is increased, at the 370 

cost of losing the ability to discriminate between subtler differences. 371 

Fourth, for five out of six network parameters, the correlation is greatest with ℎ𝑀𝑀2  (exact 372 

cumulative probability ≈ 0.00066).  VM is the numerator of both ℎ𝑀𝑀2  and IM; the difference is the 373 

denominator, with ℎ𝑀𝑀2  scaling VM by the residual variance, VE, and IM scaling VM by the square 374 

of the trait mean.  If VE was more strongly associated with network topology than was VM, ℎ𝑀𝑀2  375 

would presumably be more strongly correlated with network parameters than would IM, 376 

analogous to the well-documented VE-driven negative association between the narrow-sense 377 

heritability of a trait and the correlation of the trait with fitness (Houle, 1992).  However, IM and 378 

IE are nearly identically (un)correlated with network parameters (Table 2), so that scenario 379 

cannot explain the correlation. Coincidence seems as likely an explanation as any.  380 

The relationship between mutational correlation (rM) and shortest path length – In an MA 381 

experiment, the cumulative effects of mutations on a pair of traits i and j may covary for two, 382 

nonexclusive reasons (Estes et al., 2005).  More interestingly, individual mutations may have 383 

consistently pleiotropic effects, such that mutations that affect trait i also affect trait j in a 384 

consistent way.  Less interestingly, but unavoidably, individual MA lines will have accumulated 385 

different numbers of mutations, and if mutations have consistently directional effects, as would 386 
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be expected for traits correlated with fitness, lines with more mutations will have more extreme 387 

trait values than lines with fewer mutations, even in the absence of consistent pleiotropy.  Estes 388 

et al. (2005) simulated the sampling process in C. elegans MA lines with mutational properties 389 

derived from empirical estimates from a variety of traits and concluded that sampling is not 390 

likely to lead to large absolute mutational correlations in the absence of consistent pleiotropy 391 

(|rM| ≤ 0.25).  392 

 Ideally, we would like to estimate the full mutational (co)variance matrix, M, from the 393 

joint estimate of the among-line (co)variance matrix. However, with 25 traits, there are (25x26)/2 394 

= 325 covariances, and with only 43 MA lines, there is insufficient information to jointly 395 

estimate the restricted maximum likelihood of the full M matrix.  To proceed, we calculated 396 

mutational correlations from pairwise REML estimates of the among-line (co)variances, i.e., 397 

𝑟𝑟𝑀𝑀 = 𝐶𝐶𝐶𝐶𝑉𝑉𝐿𝐿(𝑋𝑋,𝑌𝑌)
�𝑉𝑉𝑀𝑀𝑉𝑉𝐿𝐿(𝑋𝑋)𝑉𝑉𝑀𝑀𝑉𝑉𝐿𝐿(𝑌𝑌)

 (Clark et al., 1995;Mezey and Houle, 2005).   Pairwise estimates of rM are 398 

shown in Supplementary Table S4.  To assess the extent to which the pairwise correlations are 399 

sensitive to the underlying covariance structure, we devised a heuristic bootstrap analysis.  For a 400 

random subset of 12 of the 300 pairs of traits, we randomly sampled six of the remaining 23 401 

traits without replacement and estimated rM between the two focal traits from the joint REML 402 

among-line (co)variance matrix.  For each of the 12 pairs of focal traits, we repeated the analysis 403 

100 times.   404 

There is a technical caveat to the preceding bootstrap analysis.  Resampling statistics are 405 

predicated on the assumption that the variables are exchangeable (Shaw, 1992), which 406 

metabolites are not.  For that reason, we do not present confidence intervals on the resampled 407 

correlations, only the distributions.  However, we believe that the analysis provides a meaningful 408 
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heuristic by which the sensitivity of the pairwise correlations to the underlying covariance 409 

structure can be assessed.   410 

Distributions of resampled correlations are shown in Supplementary Figure S3.  In every 411 

case the point estimate of rM falls on the mode of the distribution of resampled correlations, and 412 

in 11 of the 12 cases, the median of the resampled distribution is very close to the point estimate 413 

of rM.  However, in six of the 12 cases, some fraction of the resampled distribution falls outside 414 

two standard errors of the point estimate.  The most important point that the resampling analysis 415 

reveals is this: given that 29 metabolites encompass only a small fraction of the total metabolome 416 

of C. elegans (<5%), even had we been able to estimate the joint likelihood of the full 29x30/2 417 

M-matrix, the true covariance relationships among those 29 metabolites could conceivably be 418 

quite different from those estimated from the data.         419 

The simplest property that describes the relationship between two nodes in a network is 420 

the length of the shortest path between them (= number of edges).  In a directed network, such as 421 

a metabolic network, the shortest path from element i to element j is not necessarily the same as 422 

the shortest path from j to i.  For each pair of metabolites i and j, we calculated the shortest path 423 

length from i to j and from j to i, without repeated walks (Supplementary Table S5).  We then 424 

calculated Spearman's correlation ρ between the mutational correlation rM and the shortest path 425 

length.     426 

There is a weak, but significant, negative correlation between rM and the shortest path 427 

length between the two metabolites (ρ = -0.128, two-tailed P<0.03; Figure 5a), whereas |rM| is 428 

not significantly correlated with shortest path length (ρ = -0.0058, two-tailed P>0.45; 429 

Supplementary Figure 5b).  The correlation between rM and the shortest path in the undirected 430 
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network is similar to the correlation between rM and the shortest path in the directed network (ρ = 431 

-0.105, two-tailed P>0.10; Supplementary Figure 5c).     432 

An intuitive possible cause of the weak negative association between shortest path length 433 

and mutational correlation would be if a mutation that perturbs a metabolic pathway toward the 434 

beginning of the pathway has effects that propagate downstream in the same pathway, but the 435 

effect of the perturbation attenuates.  The attenuation could be due either to random noise or to 436 

the effects of other inputs into the pathway downstream from the perturbation (or both).  The net 437 

effect would be a characteristic pathway length past which the mutational effects on two 438 

metabolites are uncorrelated, leading to an overall negative correlation between rM and path 439 

length.  The finding that the correlations between rM and the shortest path length in the directed 440 

and undirected network are very similar reinforces that conclusion.  The negative correlation 441 

between rM and shortest path length is reminiscent of a finding from Arabidopsis, in which sets 442 

of metabolites significantly altered by single random gene knockouts are closer in the global 443 

metabolic network than expected by chance (Kim et al., 2015).  444 

Conclusions and Future Directions 445 

The proximate goal of this study was to find out if there are topological properties of the C. 446 

elegans metabolic network (node centrality, shortest path length) that are correlated with a set of 447 

statistical descriptions of the cumulative effects of spontaneous mutations (ΔM, VM, rM).  448 

Ultimately, we hope that a deeper understanding of those mathematical relationships will shed 449 

light on the mechanistic biology of the organism.  Bearing in mind the statistical fragility of the 450 

results, we conclude: 451 

(i) Network centrality may be associated with mutational sensitivity (VM); it is not associated 452 

with mutational robustness (1/VM).  If in fact the apparently non-random features of the data 453 

In review

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 28, 2018. ; https://doi.org/10.1101/181511doi: bioRxiv preprint 

https://doi.org/10.1101/181511
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 
 

represent a hint of signal emerging from the noise, the most plausible explanation is that 454 

metabolites that are central in the network present a larger mutational target than do metabolites 455 

that peripherally located.  Somewhat analogously, Landry et al. (2007) investigated the 456 

mutational properties of transcription in a set of yeast MA lines and found that ℎ𝑀𝑀2  is positively 457 

correlated with both the number of genes with which a given gene interacts ("trans-mutational 458 

target") and the number of transcription factor binding sites in a gene's promoter ("cis-mutational 459 

target").  Those authors did not formally quantify the network properties of the set of transcripts, 460 

although is seems likely that mutational target size as they defined it is positively correlated with 461 

centrality in the transcriptional network.  It is important to note, however, although 1/VM is a 462 

meaningful measure of mutational robustness (Stearns and Kawecki, 1994), it does not 463 

necessarily follow that highly-connected metabolites are therefore more robust to the effects of 464 

individual mutations (Houle, 1998;Ho and Zhang, 2016).         465 

(ii) Pleiotropic effects of mutations affecting the metabolome are predominantly local, as 466 

evidenced by the significant negative correlation between the mutational correlation, rM, and the 467 

shortest path length between a pair of metabolites.  That result is not surprising in hindsight, but 468 

the weakness of the correlation suggests that there are other important factors that underlie 469 

pleiotropy beyond network proximity.    470 

(iii) Future Directions.  To advance understanding of the mutability of the C. elegans metabolic 471 

network, three things are needed.  First, it will be important to cover a larger fraction of the 472 

metabolic network.  Untargeted mass spectrometry of cultures of C. elegans reveals many 473 

thousands of features (Art Edison, personal communication); 29 metabolites are only the tip of a 474 

large iceberg.  For example, our intuition leads us to believe that the mutability of a metabolite 475 

will depend more on its in-degree (mathematically, the number of edges leading into a node in a 476 
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directed graph; biochemically, the number of reactions in which the metabolite is a product) than 477 

its out-degree.  For all four mutational parameters, the point-estimate of the pairwise correlation 478 

with in-degree is greater than that with out-degree (Table 2), although that result is not 479 

statistically significant (binomial probability = 0.0625).    480 

Second, to more precisely partition mutational (co)variance into within- and among-line 481 

components, more MA lines are needed.  We estimate that each MA line carries about 70 unique 482 

mutations (see Methods), thus the mutational (co)variance is the result of about 3000 total 483 

mutations, distributed among 43 MA lines.  The MA lines were a preexisting resource, and the 484 

sample size was predetermined.  It is encouraging that we were able to detect significant 485 

mutational variance for 25/29 metabolites (Supplementary Table S1), but only 14% (42/300) of 486 

pairwise mutational correlations are significantly different from zero at the experiment-wide 5% 487 

significance level, roughly corresponding to |rM|>0.5 (Supplementary Table S4); 18 of the 42 488 

significant mutational correlations are not significantly different from |rM| = 1.  It remains 489 

uncertain how sensitive estimates of mutational correlations are to the underlying covariance 490 

structure of the metabolome.  It also remains to be seen if the mutability of specific features of 491 

metabolic networks are genotype or species-specific, and the extent to which mutability depends 492 

on environmental context. 493 

Third, it will be important to quantify metabolites (static concentrations and fluxes) with 494 

more precision.  The metabolite data analyzed in this study were collected from large cultures 495 

(n>10,000 individuals) of approximately stage-synchronized worms, and were normalized 496 

relative to an external quantitation standard (Davies et al., 2016).  Ideally, one would like to 497 

characterize the metabolomes of single individuals, assayed at the identical stage of 498 

development.  Single-worm metabolomics is on the near horizon (M. Witting, personal 499 
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communication).  Minimizing the number of individuals in a sample is important for two 500 

reasons; (1) the smaller the sample, the easier it is to be certain the individuals are at the same 501 

developmental stage, and (2) knowing the exact number of individuals in a sample makes 502 

normalization relative to an external standard more interpretable.  Ideally, data would be 503 

normalized relative to both an external standard and an internal standard (e.g., total protein; 504 

Clark et al. (1995)). 505 

This study provides an initial assessment of the relationship between mutation and 506 

metabolic network architecture.  To begin to uncover the relationship between metabolic 507 

architecture and natural selection, the next step is to repeat these analyses with respect to the 508 

standing genetic variation (VG).  There is some reason to think that more centrally-positioned 509 

metabolites will be more evolutionarily constrained (i.e., under stronger purifying selection) than 510 

peripheral metabolites (Vitkup et al., 2006), in which case the ratio of the mutational variance to 511 

the standing genetic variance (VM/VG) will increase with increasing centrality.    512 
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Figure Legends 

 

Figure 1. (a) Schematic diagram of the mutation accumulation (MA) experiment.  An MA 

experiment is simply a pedigree.  The genetically homogeneous ancestral line (G0) was 

subdivided into 100 MA lines, of which 43 are included in this study.  Lines were allowed to 

accumulate mutations for t=250 generations.  At each generation, lines were propagated by a 

single randomly chosen hermaphrodite (N=1).  Mutations, represented as colored blocks within a 

homologous pair of chromosomes, arise initially as heterozygotes and are either lost or fixed 

over the course of the experiment.  At the culmination of the experiment, each line has 

accumulated its own unique set of mutations.  MA lines were compared to the cryopreserved G0 

ancestor, which is wild-type at all loci.  After Halligan and Keightley (2009). (b) Expected 

outcome of an MA experiment.  As mutations accumulate over time, relative fitness (solid dark 

blue line) declines from its initial value of 1 at rate ΔM per generation and the genetic 

component of variance (solid orange line) increases from its initial value of 0 at rate VM per 

generation.  Trait X (light blue dashed line) is positively correlated with fitness and declines with 

MA; trait Y (green dashed line) is negatively correlated with fitness and increases with MA.  

Trajectories are depicted as linear, but they need not be. (c) Accumulation of mutational 

covariance in an MA experiment.  Coordinate axes represent two traits, X and Y.  Concentric 

ellipses show the increase in genetic covariance with MA, beginning from the initial value of 

zero; the orientation of the ellipses (red arrow) represents the linear relationship between 

pleiotropic mutational effects on the two traits. 
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Figure 2. Graphical depiction of the metabolic network including all 29 metabolites.  Pink nodes 

represent included metabolites with core number = 1, red nodes represent included metabolites 

with core number = 2.  Gray nodes represent metabolites with which the included 29 metabolites 

directly interact.  Metabolite identification numbers are: 1, L-Serine; 2, Glycine; 3, Nicotinate; 4, 

Succinate; 5, Uracil; 6, Fumarate; 7, L-Methionine; 8, L-Alanine. 9, L-Aspartate; 10, L-3-

Amino-isobutanoate; 11, trans-4-Hydroxy-L-proline; 12, (S) – Malate; 13, 5-Oxoproline; 14, L-

Glutamate; 15, L-Phenylalanine; `6, L-Asparagine; 17, D-Ribose; 18, Putrescine; 19, Citrate; 20, 

Adenine; 21, L-Lysine; 22, L-Tyrosine; 23, Pantothenate; 24, Xanthine; 25, Hexadecanoic acid; 

26, Urate; 27, L-Tryptophan; 28, Adenosine; 29, Alpha;alpha-Trehalose. 

 

Figure 3. Schematic depiction of the k-cores of a graph.  The k-core of a graph is the largest 

subgraph that contains nodes of degree at least k.  The colored balls represent nodes in a network 

and the black lines represent connecting edges.  Each dark red ball in the white area has core 

number k=3; note that each node with k=3 is connected to at least three other nodes.  The 

depicted graph is undirected.  After Batagelj and Zaversnik (2011). 

 

Figure 4. Plot of first canonical variate pair; the network variate is plotted on the X-axis, the 

mutation variate is plotted on the Y-axis.  Each data point represents a metabolite; the numbers 

are the metabolite identifiers given in the legend to Figure 2.  Metabolites with core number = 1 

are in pink, metabolites with core number = 2 are in red. 

 

Figure 5.  Parametric bootstrap distributions of random correlations ρ between (a) rM and the 

shortest path length in the directed network, (b) |rM| and the shortest path length in the directed 
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network, (c) rM and shortest path length in the undirected network (i.e., the shorter of the two 

path lengths between metabolites i and j in the directed network).  Orange lines show the 

observed values of ρ, black lines show the 95% confidence interval of the distribution of the 

correlation between the mutational correlation and a random shortest path length drawn from the 

observed distribution of shortest path lengths.  See Methods for details. 
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Parameter Heuristic Definition Formal Definition 

In Degree (IN°), deg+( 𝑣𝑣) The number of incoming edges to node 𝑣𝑣 in a 

directed graph. 

self-explanatory 

Out Degree (OUT°), deg−( 𝑣𝑣) The number of outgoing edges from node 𝑣𝑣 in a 

directed graph. 

self-explanatory 

Shortest Path Length, 𝑑𝑑(𝑣𝑣,𝑢𝑢) Shortest distance from node 𝑣𝑣 to another node 𝑢𝑢 

with no repeated walks 

self-explanatory 

Betweenness Centrality (BET), 

cB(𝑣𝑣) 

Betweenness centrality of node 𝑣𝑣 is the sum of 

the fraction of all-pairs shortest paths that pass 

through 𝑣𝑣.  The greater cB(𝑣𝑣), the greater the 

fraction of shortest paths that pass through node 

𝑣𝑣.  

𝑐𝑐𝐵𝐵(𝑣𝑣)
(𝑛𝑛−1)(𝑛𝑛−2)

, where 𝑐𝑐𝐵𝐵(𝑣𝑣) = ∑ 𝜎𝜎(𝑠𝑠,𝑡𝑡|𝑣𝑣)
𝜎𝜎(𝑠𝑠,𝑡𝑡)𝑠𝑠,𝑡𝑡∈𝑉𝑉 , V is 

the set of nodes, 𝜎𝜎(𝑠𝑠, 𝑡𝑡) is the number of 

shortest paths from node s to node t, 𝜎𝜎(𝑠𝑠, 𝑡𝑡|𝑣𝑣) 

is the number of paths from s to t that pass 

through node 𝑣𝑣, and n is the number of nodes 

in the graph.  The denominator (n-1)(n-2) is 

the normalization factor for a directed graph 

that scales cB(𝑣𝑣) between 0 and 1. 
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Parameter Heuristic Definition Formal Definition 

Closeness Centrality (CLO), 

C(𝑣𝑣) 

Closeness centrality of node 𝑣𝑣 is the reciprocal of 

the sum of the shortest path lengths to all n-1 

other nodes, normalized by the sum of minimum 

possible distances n-1.  The greater C(𝑣𝑣), the 

closer 𝑣𝑣 is to other nodes. 

𝐶𝐶(𝑣𝑣) = 𝑛𝑛−1
∑ 𝑑𝑑(𝑢𝑢,𝑣𝑣)𝑛𝑛−1
𝑢𝑢=1

, where n is the number of 

nodes and 𝑑𝑑(𝑢𝑢, 𝑣𝑣) is the shortest path 

distance between 𝑢𝑢 and 𝑣𝑣. 

Degree Centrality (DEG), 

CD(𝑣𝑣) 

Degree centrality of node 𝑣𝑣 is the fraction of 

nodes in the network that node 𝑣𝑣 is connected to. 

𝐶𝐶𝐷𝐷(𝑣𝑣) = 𝑑𝑑𝑑𝑑𝑑𝑑+(𝑣𝑣)+𝑑𝑑𝑑𝑑𝑑𝑑−(𝑣𝑣)
𝑛𝑛−1

, where n is the 

number of nodes in the network. 

Core Number (CORE) A k-core is the largest subgraph that contains 

nodes of at least degree k.  The core number of 

node 𝑣𝑣 is the largest value k of a k-core 

containing node 𝑣𝑣.  

Calculated using the algorithm of Batagelj 

and Zaversnik (2011). 

Mutational Bias (ΔM) Per-generation rate of change of the trait mean in 

an MA experiment.  Equivalent to the product of 

the genome-wide mutation rate, µG, and the 

average effect of a mutation on the trait, α. 

∆𝑀𝑀𝑧𝑧 = �̅�𝑧𝑀𝑀𝑀𝑀−�̅�𝑧0
𝑡𝑡�̅�𝑧0

;  𝑧𝑧�̅�𝑀𝑀𝑀 and 𝑧𝑧0̅represent the MA 

and ancestral (G0) trait means and t is the 

number of generations of MA. 
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Parameter Heuristic Definition Formal Definition 

Mutational Variance (VM) Per-generation rate of increase in genetic variance 

for a trait in an MA experiment.  Equivalent to 

the product of the genome-wide mutation rate, 

µG, and the square of the average effect of a 

mutation on the trait, α2. 

𝑉𝑉𝑀𝑀 = ∆𝑉𝑉𝐿𝐿 = 𝑉𝑉𝐿𝐿,𝑀𝑀𝑀𝑀−𝑉𝑉𝐿𝐿,𝐺𝐺0
2𝑡𝑡

, where 𝑉𝑉𝐿𝐿,𝑀𝑀𝑀𝑀 is the 

variance among MA lines, 𝑉𝑉𝐿𝐿,𝐺𝐺0 is the 

among-line variance in the G0 ancestor, and t 

is the number of generations of MA 

Squared coefficient of variation 

(IM, IE) 

IM is the mutational variance (VM) scaled by the 

square of the trait mean, and provides a measure 

of the evolvability of a trait.  IE is the residual 

variance (VE) scaled in the same way.   

 

Mutational heritability (𝒉𝒉𝑴𝑴𝟐𝟐 ) Mutational variance (VM) scaled as a fraction of 

the residual variance (VE).  Provides a measure of 

the short-term response to selection on mutational 

variance. 

ℎ𝑀𝑀2 =
𝑉𝑉𝑀𝑀
𝑉𝑉𝐸𝐸
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Parameter Heuristic Definition Formal Definition 

Mutational correlation (rM) Genetic correlation between two traits in MA 

lines.  Provides an estimate of pleiotropic effects 

of new mutations. 

𝑟𝑟𝑀𝑀 = 𝐶𝐶𝐶𝐶𝑉𝑉𝑀𝑀(𝑋𝑋,𝑌𝑌)
�𝑉𝑉𝑀𝑀(𝑋𝑋)𝑉𝑉𝑀𝑀(𝑌𝑌)

, where COVM is the 

mutational covariance and VM is the 

mutational variance. 

 

Table 1. Definitions of network parameters, following the documentation of NetworkX, v.1.11 (Hagberg et al. 2008) and mutational 

parameters.  Abbreviations of the parameters used in Table 2 follow the parameter name in parentheses in bold type.
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 BTW CLO DEG IN° OUT° CORE ΔM |ΔM| 𝒉𝒉𝑴𝑴𝟐𝟐  IM IE 

BTW  0.43 0.49 0.52 0.39 0.48 -0.16  -0.14 0.03 -0.06 -0.10 

CLO   0.52 0.51 0.45 0.52 0.14 0.21 0.21 0.27 0.06 

DEG    0.90 0.93 0.79 0.09 0.06 0.25 0.15 0.16 

IN°     0.67 0.82 0.22 0.23 0.30 0.21 0.25 

OUT°      0.64 -0.04 -0.08 0.17 0.09 0.05 

CORE       0.33 0.28 0.53* 0.30 0.28 

ΔM        0.84 0.62 0.71 0.81 

|ΔM|         0.53 0.69 0.84 

𝒉𝒉𝑴𝑴𝟐𝟐           0.72 0.43 

IM           0.82 

IE            

 

Table 2.  Correlations between network parameters (Row/Column 1-5), between mutational 

parameters (Row/Column 6-9), between network and mutational parameters (shaded cells), and 

between residual variance (IE, Row/Column 10) and network and mutational parameters.  

Abbreviations of network parameters are: BTW, betweenness centrality; CLO, closeness 

centrality; DEG, degree centrality; IN°, in-degree, OUT°, out-degree; CORE, core number.    

Abbreviations of mutational parameters are: ΔM, per-generation change in the trait mean; |ΔM|, 

absolute value of ΔM; ℎ𝑀𝑀2 , mutational heritability; IM, squared mutational CV; IE, squared 

residual CV.  Network and mutational parameters are defined in Table 1.  See text and 

Supplementary Table S1 for details of mutational parameters.* FDR < 0.1 
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Figure 1.TIF
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Figure 2.TIF
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Figure 3.TIF
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Figure 5.TIF
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