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Abstract

Pathogens are a driving force in evolution, giving rise to a diversity of host

immune defenses. In order for a pathogen to spread in a population a sufficient

number of its members must be susceptible to infection, as resistant individuals

can prevent the spread of a pathogen among susceptible hosts in a process known

as herd immunity. While herd immunity has been extensively studied in vertebrate

populations, little is known about its role, if any, in the dynamics between bacteria

and their phage pathogens. Here we explore the dynamics of T7 phage epidemics

in structured and unstructured Escherichia coli populations consisting of differing

mixtures of susceptible and resistant individuals harboring CRISPR immunity to

the phage. Using both experiments and mathematical modelling we describe the

conditions under which herd immunity arises in bacterial populations. Notably,

the effects of herd immunity depend strongly on the presence of spatial structure

in the population, the bacterial growth rate, and phage replication rate. The

results of our model can apply to other host–pathogen systems to determine the

herd immunity threshold from the relative speed of an epidemic wave in partially

resistant populations. In addition, our findings suggest that herd immunity plays

an important role in bacterial communities, as seen in other host–pathogen

systems, allowing for stable coexistence of bacteria and their phages and the

maintenance of polymorphism in bacterial immunity.
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Introduction 1

“Herd immunity” has been used in a variety of ways by different authors (see [1]). Here, 2

we define it as a phenomenon where a fraction of resistant individuals in a population 3

reduces the probability of transmission of a pathogen among the susceptible individuals. 4

Furthermore, if the fraction of resistant individuals in a population is sufficiently large 5

the spread of a pathogen is suppressed. Experimental research into the phenomenon has 6

focused mostly on mammals [2, 3], birds [4, 5], and invertebrates [6, 7]. In human 7

populations the principles of herd immunity were employed to limit epidemics of 8

pathogens through vaccination programs [1], which in the case of smallpox lead to its 9

eradication between 1959 and 1977 [8]. 10

Alongside advances in vaccination programs, the formalization of a general theory of 11

herd immunity was developed. The theory is based on a central parameter, R0, which 12

describes the fitness of the pathogen, as measured by the number of subsequent cases 13

that arise from one infected individual in a population (for a historical review of R0 14

see [9]). Thus, R0 indicates the epidemic spreading potential in a population. Given R0 15

the herd immunity threshold is defined as, 16

H =
R0 − 1

R0
, (1)

which determines the required minimum fraction of resistant individuals needed to halt 17

the spread of an epidemic and is effected by the specific details of transmission and the 18

contact rate among individuals [10]. Many theoretical studies have addressed the 19

influence of some of these details, in particular maternal immunity [11], age at 20

vaccination [12,13], age related or seasonal differences in contact rates [14–16], social 21

structure [17], geographic heterogeneity [18–20], and the underlying contact network of 22

individuals [21]. 23

Interestingly, little work has focused on the potential role of herd immunity in 24

microbial systems which contain a number of immune defense systems and have an 25

abundance of phage pathogens. These defenses vary in their potential to provide herd 26

immunity as they target various stages of the phage life cycle, from adsorption to 27

replication and lysis. Early defense mechanisms include the prevention of phage 28
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adsorption by blocking of phage receptors [22], production of an extracellular 29

matrix [23,24], or the excretion of competitive inhibitors [25]. Alongside these bacteria 30

have evolved innate immune systems that target phage genomes for destruction. These 31

include host restriction-modification systems (RMS) [26], argonaute-based RNAi-like 32

systems [27], and bacteriophage-exclusion (BREX) systems [28]. In addition to innate 33

systems, bacteria have evolved an adaptive immune system called CRISPR-Cas 34

(clustered regularly interspaced short palindromic repeat) [29]. In order for any of these 35

immune systems to provide herd immunity, they must prevent further spread of the 36

pathogen, i.e., provide a ‘sink’ for the infectious particles reducing the average number 37

of successful additional infections below one. Unlike the early defense mechanisms that 38

may simply prevent an infection but not the further reproduction of infectious particles, 39

the RMS, BREX, argonaute-based RNAi-like, and the CRISPR-Cas systems degrade 40

foreign phage DNA after it is injected into the cell, and thus continue to remove phage 41

particles from the environment, which increases their potential to provide herd 42

immunity. Among these the CRISPR-Cas system is unique in that it is adaptive 43

allowing cells to acquire immunity upon infection (see Fig. 1A, B, and C), which can 44

lead to polymorphism in immunity and give rise to herd immunity. 45

Fig 1. Mechanism of CRISPR/Cas type II immunity. The CRISPR/Cas
system provides immunity to phages and its main features can be described by three
distinct stages. (A) Acquisition. When a cell gets infected by a phage, a protospacer on
the invading phage DNA (indicated as a red bar) is recognized by Cas1 and Cas2. The
protospacer is cleaved out and ligated to the leader end (proximal to the Cas genes) of
the CRISPR array as a newly acquired spacer (red diamond). (B) Processing. The
CRISPR array is transcribed as a Pre-crRNA and processed by Cas9 (assisted by
RNaseIII and trans–activating RNA, not shown) into mature crRNAs. (C) Interference.
Mature crRNAs associate with Cas9 proteins to form interference complexes which are
guided by sequence complementarity between the crRNAs and protospacers to cleave
invading DNA of phages whose protospacers have been previously incorporated into the
CRISPR array. (D) A truncated version of the CRISPR system on a low copy plasmid,
which was used in this study lacks cas1 and cas2 genes and was engineered to target a
protospacer on the T7 phage chromosome to provide Escherichia coli cells with
immunity to the phage. The susceptible strain contains the same plasmid except the
spacer does not target the T7 phage chromosome.

In addition to immune system-specific factors, the reproductive rate of phage 46

depends strongly on the physiology of the host bacterium [30], and the underlying 47

effective contact network which may vary greatly in bacterial populations depending on 48

the details of their habitat. Thus, herd immunity will be influenced by the physiological 49
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state of the bacteria and the mobility of the phage in the environment through passive 50

diffusion and movement of infected individuals. Taken together these details call into 51

question the applicability of the traditional models of herd immunity from vertebrates to 52

phage-bacterial systems. Thus, experimental investigation and further development of 53

extended models that take into account the specifics of microbial systems are required. 54

To investigate under which conditions herd immunity may arise in bacterial 55

populations, we constructed an experimental system consisting of T7 phage and 56

bacterial strains susceptible and resistant to it. Our experimental system can be 57

characterized by the following features. First, we used two strains of Escherichia coli, 58

one with an engineered CRISPR-based immunity to the T7 phage, and the other 59

lacking it (Fig. 1D). Second, we examined the dynamics of the phage spread in different 60

environments – spatially structured and without structure. Furthermore, we developed 61

and analyzed a spatially explicit model of our experimental system to determine the 62

biologically relevant parameters necessary for bacterial populations to exhibit herd 63

immunity. 64

Results 65

Properties of resistant individuals 66

We engineered a resistant E. coli strain by introducing the CRISPR-Cas Type II system 67

from Streptococcus pyogenes with a spacer targeting the T7 phage genome (see Material 68

and Methods). We further characterized the ability of the system to confer resistance to 69

the phage. We find a significant level of resistance as measured by the probability of cell 70

burst when exposed to T7 (Fig. 2A). However, resistance is not fully penetrant as 71

approximately 1 in 1000 resistant cells succumb to infection. In addition, we observe 72

that as phage load increases (multiplicity of infection, MOI) the probability that a cell 73

bursts increases (Fig. 2A). In order to determine the herd immunity threshold in our 74

experimental system, we constructed the resistant strain such that upon infection the 75

cell growth is halted, yet the cell still adsorbs and degrades phages (Fig. 2B,C). This 76

feature is important as it prevents the action of frequency dependent selection which in 77

naturally growing populations will favour the resistant strain until its frequency reaches 78
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the herd immunity threshold. Thus, in our system if the frequency of the resistant strain 79

is below the herd immunity threshold, the resistant cells remain below the threshold 80

and are unable to stop the epidemic and the whole population collapses. In contrast, if 81

the frequency of resistant individuals in the population is above the herd immunity 82

threshold, the resistant individuals provide complete herd immunity and the population 83

survives. These properties allow us to quantify the expanding epidemic in both liquid 84

media and on bacterial lawns (without and with spatial structure, respectively) using 85

high throughput techniques. Specifically, it allows us to control for the complex 86

dynamics of the system arising from frequency dependent selection and simultaneous 87

changes in the physiological states of the cells (growth rates depending on the nutrient 88

concentrations) and phage (burst size, latent period depending on the cells’ physiology). 89

Fig 2. Efficiency of bacterial resistance. (A) The probability that a resistant cell
bursts, relative to a susceptible cell, at three different initial multiplicities of infection
(MOI). The probability that a resistant cell bursts at MOI 1000 is significantly higher
than at MOI 10 (p = 0.019, t4,0.05 = 3.031) or at MOI 100 (p = 0.022, t5,0.05 = 2.674).
The error bars show the standard deviations from the mean. Note that this measure is
not a widely used ’efficiency of plating’ but it determines the probability of burst of
single resistant cells (see Materials and Methods for details). (B) The number of colony
forming units (CFUs) post phage challenge (see Materials and Methods). The mean
number of CFUs after the bacterial cultures were exposed to the phage is not
significantly different between susceptible and resistant strains at MOI 10 (p = 0.239,
t22,0.05 = 0.721) and (C) at MOI 100 (p = 0.27, t30,0.05 = 1.124), indicating that the
resistant cells’ growth is halted after the cells are infected by a phage. The error bars
show the standard deviations from the mean. There were no detectable CFUs in either
susceptible or resistant cell cultures at MOI 1000. It should be noted that the indicated
MOI values do not correspond to the average number of phages that adsorb to cells in
the experiments. For MOI 10 we estimated the mean number of phages per cell as 0.229
and for MOI 100 as 0.988 (see Materials and Methods for details). It was impossible to
determine the mean for MOI 1000 as there were no detectable CFUs under such
conditions.

Herd immunity in populations without spatial structure 90

To understand the influence of spatial population structure, or lack thereof, we first 91

measured the probability of population survival (i.e., whether the cultures are cleared or 92

not) in well mixed liquid environments (no spatial structure) consisting of differing 93

proportions of resistant to susceptible individuals and T7 phage. When the percentage 94

of resistant individuals is in excess of 99.6% all 16 replicate populations survive a phage 95

epidemic (i.e., show no detectable difference in growth profiles to the phage free 96
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controls; Fig. 3). Populations with 99.2% and 98.4% resistant individuals show 97

intermediate probabilities of survival – 10 out of 16 replicate populations and 4 out of 98

16 replicate populations survive, respectively (Fig. 3). The likely explanation as to why 99

some populations survive and others collapse is due to the stochastic nature of phage 100

adsorption after inoculation: If the population composition is close to the herd 101

immunity threshold a stochastic excess of phage particles adsorbing to susceptible cells 102

may trigger an epidemic, whereas if chance increases the number of phages adsorbing to 103

resistant individuals, the epidemic is supressed. However, when populations have fewer 104

than 96.9% resistant individuals all 16 replicate populations fail to survive and collapse 105

under the epidemic (Fig. 3). 106

Fig 3. Fraction of surviving populations at 18h post phage infection.
Bacterial populations consisting of various fractions of resistant to susceptible
individuals infected with ≈ 50 phages, corresponding to a multiplicity of infection
(MOI) of ≈ 10−4, to resemble an epidemic initiated by the burst size from one infected
individual (see Table 2 for burst size estimates). Each population phage challenge is
replicated 16 times. The solid dark green line shows the model prediction, Eqn. (4), for
the herd immunity threshold (H), given latent period (λ), bacterial growth rate (α),
and phage burst size (β). Shaded area indicates ±1 standard deviation.

As mentioned in the introduction, phage and bacterial physiology may affect the 107

herd immunity threshold. To test this we altered bacterial growth by reducing the 108

concentration of nutrients in the medium (Fig. S1) which concurrently alters the T7 109

phage’s latent period and burst size (Fig. 4A,B and Table 2). Indeed, we observe as 110

bacterial growth rates decline the fraction of resistant individuals necessary for 111

population survival decreases (Fig. 4C). When the populations are grown in a 50% 112

diluted growth medium, the fraction of resistant individuals required for a 100% 113

probability of survival is 99.2%; when the fraction of resistant individuals is 75% or less 114

populations go extinct. In a 20% growth medium the fraction of resistant individuals 115

required for survival decreases to 96.9%, while the fraction when all replicates collapse 116

to 50%. 117

From the experimental observations of the herd immunity threshold values we infer 118

the phage R0 using Eqn. 1. In an undiluted growth medium the phage R0 falls between 119

32 and 256 and decreases to between 4 and 128 in 50% and between 2 and 32 in 20% 120

nutrient medium. These data indicate that bacterial populations can exhibit herd 121

immunity in homogeneous liquid environments. However, bacteria typically live in 122
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Fig 4. Herd immunity threshold in liquid culture as a function of bacterial
growth. (A) Phage burst size (β) change as a function of nutrient concentrations.
Brown dashed line shows a numerical quadratic fit to the observed values of β. (B)
Latent period (λ) increase across the range of nutrient concentrations. Values for β and
λ are given in Table 2. (C) Population survival analysis upon phage challenge as a
function of the fraction of resistant cells and the intrinsic growth rate (nutrient
availability, N). The empty circles, circled dots, and filled circles represent the
outcomes of 18 replicates done in 3 independent batches, as indicated in the legend.
The green line shows the model predicted herd immunity threshold given by Eqn. (5),
using a quadratic fit for β/λ and inverting the Monod kinetics of bacterial growth (see
Fig. S1B) numerically. Light green error-bars are estimates from Eqn. (5) using actual
experimental results for growth parameters.

spatially structured environments such as surfaces, biofilms or micro-colonies, therefore 123

we extended our experiments to consider the potential impact of spatially structured 124

populations. 125

Herd immunity in spatially structured populations 126

In order to discern the role, if any, spatial structure plays in herd immunity we 127

conducted a set of experiments in spatially structured bacterial lawns on agar plates. 128

Spatially structured bacterial populations provide a more fine grained measure of herd 129

immunity, compared to the population survival assays done in liquid culture. On 130

bacterial lawns, phages spread radially from a single infectious phage particle and the 131

radius of plaque growth on different proportions of resistant to susceptible individuals 132

can be easily quantified. In addition, these data allow for estimating the speed of the 133

epidemic wave front in these different regimes using real-time imaging (Fig. 5A). 134

Fig 5. Properties of expanding phage epidemics on bacterial lawns. (A)
Example of plaque morphology and size change over 48 hours for populations with 50%
resistant cells (top) and a control with 100% susceptible cells (bottom). (B) Mean
plaque size area through time. Colors indicate the different fraction of resistant
individuals (color coding as in panel C). Note the distinct two phases of plaque growth –
initially, phage grow fast with exponentially growing bacteria but slow once the
nutrients are depleted (≈ 10 hours). The plaque radius is reduced, relative to 100%
susceptible population, even when only a small fraction of resistant individuals are in
the population. (C) Final plaque radius at 48 hpi. Green line shows the prediction from
the model for the plaque radius r. Grey numbers indicate the number of plaques
measured. Error bars indicate the standard deviations.

We observe a decline in the number of plaque forming units (data not shown) and a 135

significant decrease in final plaque sizes as the proportion of resistant individuals in the 136

populations increases (Fig. 5B,C). A reduction in the final plaque size compared to a 137
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fully susceptible population was statistically significant with as few as 10% resistant 138

individuals in a population (p = 0.004, t53,0.05 = 2.744). In order to determine the effect 139

of resistant individuals during the earlier phase of bacterial growth (until the bacterial 140

density on the agar plate reaches saturation; Fig. S1A), we analyze the velocities of 141

plaque growth between 0 and 24 hours post inoculation (hpi). We find that the speed is 142

significantly reduced after 11hpi when the population consists of as few as 10% of 143

resistant individuals (p = 0.0317, t32,0.05 = 1.923). As the fraction of resistant 144

individuals further increases, the speed declines significantly at earlier and earlier time 145

points: 6hpi with 20% (p = 0.0392, t62,0.05 = 1.79), and 5.67hpi with 30% (p = 0.0286, 146

t53,0.05 = 1.943). In fact, when the fraction of resistant individuals exceeds 40%, the 147

reduction in the speed of the spread is statistically significant immediately after the 148

plaques are visually detectable (Fig. 6). It should be noted that all populations with 149

such low percentages of resistant individuals in liquid environment collapsed, indicating 150

that spatial structure significantly facilitates herd immunity. 151

Fig 6. Speed of phage epidemic expansion on bacterial lawns. (A) Speed of
expanding phage epidemics for all population compositions is initially high, before it
drops once nutrients are depleted at around 10hpi (hours post infection). (B) Plaque
speed significance. Comparing velocities of plaque spread with the 100% susceptible
control. Linear regression of a sliding window spanning 4 hours of the radius sizes was
calculated for all individual plaques and all compositions of the populations between t0
and t24. Slopes of the linear regressions for all compositions of the populations were
compared using a two-sided heteroscedastic t-test against the 100% susceptible dataset.

The results presented in this and the previous section would allow us to use Eq. (1) 152

to infer a value for R0 from the observed threshold between surviving and collapsing 153

bacterial populations, Figs. 3 and 4. We also observe that herd immunity is strongly 154

influenced by spatial organization of the population, Fig. 5. How the exact value of H 155

(and subsequently the “classical” epidemiological parameter R0) is affected by various 156

factors such as bacterial growth rate, phage burst size and latent period is, however, 157

difficult to resolve experimentally. Similarly, quantification of the effect of spatial 158

structure is hardly achievable solely by experimental investigation. In order to 159

disentangle the roles of all the factors mentioned above, we proceed with development 160

and analysis of a mathematical model of the experimental system. 161
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Modelling bacterial herd immunity 162

We developed a model of phage growth that takes several physiological processes into 163

account: bacterial growth during the experiment, bacterial mortality due to phage 164

infection, and phage mortality due to bacterial immunity. Furthermore, we use the 165

previously reported observation that phage burst size β and latent period λ depend 166

strongly on the bacterial growth rate α (see Table 1). 167

The main processes in our model system can be defined by the following set of 168

reactions, 169

Bs + Y N
α−→ 2Bs , (2a)

Br + Y N
α−→ 2Br , (2b)

Bs + P
A−→

(
BsP

) 1/λ−→ β P , (2c)

Br + P
A−→

(
BrP

)
fast−→ Br ,

slow
99K β P .

(2d)

Susceptible (Bs) and resistant (Br) cells grow at a rate α (no significant difference in 170

growth rate between strains, p = 0.066, t70,0.05 = 1.867), (2a) and (2b), by using an 171

amount Y of the nutrients N . Phage infection first involves adsorption to host cells, 172

(2c) and (2d), with the adsorption term A specified below. Infected susceptible bacteria 173

produce on average β phage with a rate inversely proportional to the average latency λ. 174

In contrast, resistant bacteria either survive by restricting phage DNA via their 175

CRISPR-Cas immune system or – less likely – succumb to the phage infection. However, 176

when the MOI is large even resistant cells become susceptible to lysis resulting in the 177

release of phage progeny (see Fig. 2) [31,32]. 178

In our system, bacteria eventually deplete the available nutrients, N(t > Tdepl) = 0, 179

resulting in the cessation of growth. This decline in bacterial growth affects phage 180

growth – latency increases and burst size decreases, such that phage reproduction 181

declines dramatically (see Table 2). We define the critical time point at which cells 182

transition from exponential growth to stationary phase as, 183

Tdepl ≈
1

α
log

(
B∞
B0

)
. (3)
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Here, B0 and B∞ are the initial and final bacterial densities, respectively. In the initial 184

exponential growth phase, our estimates from experimental data for growth parameters 185

are α = 0.63h−1, β = 85.6 phages/cell and λ = 0.60h, for bacteria and phages, 186

respectively (Table 1 and Table 2). After time Tdepl, bacterial growth rate is set to zero 187

(α = 0) and phage growth is reduced to βdepl = 3.0 phages/cell and λdepl = 1.69h. Such 188

a two state model – constant growth rate while nutrients are present and no growth 189

after depletion – describes the observed population trajectories in experiments quite 190

well (see Fig. S1). 191

Modelling herd immunity in populations without structure 192

An important parameter for estimating herd immunity is the fraction S of susceptible 193

bacteria in the population. As a first estimate, a phage infection spreads in well mixed 194

bacterial cultures if βS > 1 for a continuous chain of infections: the product of burst 195

size β of phage particles and the probability S of infecting a susceptible host has to be 196

larger than one. As a first approximation, one could identify R0 with the burst size β, 197

which is compatible with the observed herd immunity thresholds when inverting Eq. (1). 198

However, the growing bacterial population could outgrow the phage population, if 199

the former reproduces faster, which introduces deviations from the simple relation 200

between R0 and H as shown in (1). We capture this dynamical effect in a correction to 201

the previous estimate as βS > 1 + λα (see Materials and Methods): more phages have 202

to be produced for the chain of infections to persist in growing populations. The 203

correction λ
1/α is the ratio of generation times of phages over bacteria – usually, such a 204

correction is very small for non-microbial hosts and can be neglected. Ultimately, herd 205

immunity is achieved if the threshold defined by H = 1− Sc is exceeded, with Sc the 206

critical value in the inequality above. Rearranging, we obtain an expression for the herd 207

immunity threshold 208

H =
β − 1− λα

β
. (4)

This estimate of H coincides to a very good extent with the population compositions of 209

susceptible and resistant bacteria where we observe the transition from surviving and 210

collapsed populations in experiments (see Fig. 3). Simulations presented in the 211

Supplementary Information (section Simulation of recovery rate) show a range in the 212

PLOS 10/40

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 28, 2017. ; https://doi.org/10.1101/181487doi: bioRxiv preprint 

https://doi.org/10.1101/181487


bacterial population composition with non-monotonic trajectories for Bs and Br (see 213

Fig. S2B), which is comparable to the range in composition we find both outcomes, i.e., 214

some surviving and some collapsing populations in experiments. For such parameter 215

choices, stochastic effects could then decide the observed fates of bacteria. 216

As presented above, the herd immunity threshold changes when the bacterial 217

cultures grow in a diluted growth medium. In a set of independent experiments we 218

measured bacterial growth rate α, phage burst size β and phage latent period λ under 219

such conditions (see Fig. S1B and Table 2). From these data we estimated the 220

dependence of the phage burst size on the bacterial growth rate, β(α), using a 221

numerical quadratic fit (Fig. 4A). Similarly, we estimated the dependence of the phage 222

latent period on the bacterial growth rate, λ(α) (Fig. 4B). Using these estimates we 223

calculated the expected growth rate–dependent herd immunity threshold 224

H(α) =
β(α)− 1− λ(α)α

β(α)
, (5)

which gives a very good prediction of the shift in the herd immunity threshold to lower 225

values for slower growing populations (green line in Fig. 4C). This verification of our 226

model shows that it correctly captures the dependence of the herd immunity threshold 227

on bacterial and phage growth parameters. 228

Modelling herd immunity in spatially structured populations 229

The dynamics of phage spread differ between growth in unstructured (e.g., liquid) and 230

structured (e.g., plates) populations. In order to quantify the effect of spatial structure 231

in a population, we extend our model to include a spatial dimension. In structured 232

populations growth is a radial expansion of phages defined by the plaque radius r and 233

the expansion speed v, for which several authors have previously derived 234

predictions [33–39]. 235

We assume phage movement can be captured by a diffusion process characterized 236

with a diffusion constant D, which we estimate in independent experiments as 237

D = 1.17 (± 0.26) · 10−2 mm2/h (see Materials and Methods, Fig. S3). However, we 238

assume that only phages disperse and bacteria are immobile as the rate of bacterial 239

diffusion does not influence the expanding plaque on timescales relevant in the 240
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experiment. Adsorption of phages on bacteria is modeled with a adsorption constant δ?. 241

The spreading infection will sweep across the bacterial lawn with the following speed 242

v = 2
√
Dδ?

√
βS − 1− λα , (6)

which is computed in more details in the Materials and Methods. This expression (6) 243

indicates that the population composition crucially influences the spreading speed at 244

much lower fractions of resistant bacteria than the herd immunity threshold (4), where 245

phage expansion stops completely. Consequently, the resulting plaque radius r decays 246

with increasing fractions of resistants and reaches zero at H. A prediction for r can be 247

obtained by integrating (6) over time. Using the resulting expression we estimated the 248

adsorption constant δ? from the growth experiments as it is difficult in practice to 249

measure on plates. The green line in Fig. 5B is the best fit, yielding the value 250

δ? = 4.89(±0.19) · 10−2 bacteria/phageh for the adsorption constant. 251

Our results for spatially structured populations allows us to speculate on a general 252

epidemiological question: If an infection is not stopped by herd immunity in a partially 253

resistant population, by how much is its spread slowed down? By generalizing (6) we 254

can derive a relative expansion speed, compared to a fully susceptible population, 255

vrel =

√
1− 1− S

H
. (7)

This expression, (7), is devoid of any (explicit) environmental conditions, which are not 256

already contained in the herd immunity threshold H itself. Thus, it could apply to any 257

pathogen-host system. Ultimately, this relative speed approaches zero with a universal 258

exponent of 1/2, when the fraction of resistant individuals 1− S approaches the herd 259

immunity threshold H. However, a few caveats exist when using (7), as several 260

conditions have to be fulfilled: Obviously, a pathogen is expected not to spread in a 261

population exhibiting complete herd immunity – the relative speed should only hold for 262

populations below the herd immunity threshold. Moreover, if dispersal cannot be 263

described by diffusion, but rather dominated by large jumps [40], the diffusion approach 264

we used for traveling waves is not applicable, and thus also renders (7) inadequate. 265
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Discussion 266

The spread of a pathogen may be halted or slowed by resistant individuals in a 267

population and thus provide protection to susceptible individuals. This process, known 268

as herd immunity, has been extensively studied in a wide diversity of higher 269

organisms [2–7]. However, the role of this process has largely been ignored in microbial 270

communities. To delve into this we set out to determine under what conditions, if any, 271

herd immunity might arise during a phage epidemic in bacterial populations as it could 272

have profound implications for the ecology of bacterial communities. 273

We show that herd immunity can occur in phage-bacterial communities and that it 274

strongly depends on bacterial growth rates and spatial population structure. Average 275

growth rates of bacteria in the wild have been estimated as substantially slower than in 276

the laboratory (generation time is ≈ 6.5 fold longer [41]), a condition that we have 277

shown to facilitate herd immunity. Furthermore, bacterial populations in the wild are 278

also highly structured, as bacteria readily form micro-colonies or biofilms [42] and grow 279

in spatially heterogeneous environments such as soil or the vertebrate gut [43], a second 280

condition we have shown to facilitate herd immunity. These suggest that herd immunity 281

may be fairly prevalent in low nutrient communities such as soil and oligotrophic marine 282

environments. 283

In an evolutionary context, herd immunity may also impact the efficacy of selection 284

as the selective advantage of a resistance allele will diminish as the frequency of the 285

resistant allele in a population approaches the herd immunity threshold, H. This has 286

two important implications. First, while complete selective sweeps result in the 287

reduction of genetic diversity at linked loci, herd immunity may lead to only partial 288

selective sweeps in which some diversity is maintained. Second, herd immunity has a 289

potential to generate and maintain polymorphism at immunity loci, as has been shown 290

for genes coding for the major histocompatibility complex (MHC) [44]. Polymorphism 291

in CRISPR spacer contents have been demonstrated in various bacterial [45–47] and 292

Archaeal [48] populations and communities [49–51]. While these studies primarily 293

explain polymorphisms in CRISPR spacer content as a result of rapid simultaneous 294

independent acquisition of new spacers, we suggest that observed polymorphisms may 295

result from frequency-dependent selection on resistance loci arising from herd immunity. 296
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It has also been suggested that herd immunity might favor stable coexistence between 297

hosts and their pathogens [52–54]. 298

We also developed a mathematical model and show how the herd immunity 299

threshold H (Eqn. (4)) depends on the phage burst size β and latent period λ, and on 300

the bacterial growth rate α. This dependence arises as phages have to outgrow the 301

growing bacterial population, as host and pathogen have similar generation times in our 302

microbial setting. In addition to these parameters, we also describe how the speed v 303

(Eqn. (6)) of a phage epidemic in spatially structured populations depends on phage 304

diffusion constant D, phage adsorption rate δ?, and the fraction of resistant and 305

susceptible individuals in the population. All of which are likely to vary in natural 306

populations. We also derived the relative speed of spread for partially resistant 307

populations, as measured relative to a fully susceptible population, and show that it can 308

be parametrized solely with the herd immunity threshold H (Eqn. (7)). This relative 309

speed of the spread of an epidemic should be applicable to any spatially structured host 310

population where the spread of the pathogen can be approximated by diffusion. Both 311

our experiments and the modelling show that even when the fraction of resistant 312

individuals in the population is below the herd immunity threshold the expansion of an 313

epidemic can be substantially slowed, relative to a fully susceptible population. 314

In conclusion, we have presented an experimental model system and the connected 315

theory that can be usefully applied to both microbial and non-microbial systems. Our 316

theoretical framework can be useful for identifying critical parameters, such as H (and 317

to some extent R0), from the relative speed of an epidemic expansion in partially 318

resistant populations so long as the process of pathogen spread can be approximated by 319

diffusion. This approximation has been shown to be useful in such notable cases as 320

rabies in English foxes [55], potato late blight [56], foot and mouth disease in feral 321

pigs [57], and malaria in humans [58]. 322
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Materials and Methods 323

Experimental methods 324

Engineering resistance 325

Oligonucleotides AAACTTCGGGAAGCACTTGTGGAAG and 326

AAAACTTCCACAAGTGCTTCCCGAA were ordered from Sigma-Aldrich, annealed 327

and ligated into pCas9 plasmid (pCas9 was a gift from Luciano Marraffini, Addgene 328

plasmid #42876) carrying a Streptococcus pyogenes truncated CRISPR type II system. 329

For the detailed protocol see [59]. The oligonucleotides were chosen so that the CRISPR 330

system targets an overlap of phage T7 genes 4A and 4B. Therefore, the CRISPR system 331

allows the gene 0.7, coding for a protein which inhibits the RNA polymerase of the cell, 332

to be expressed before the T7 DNA gets cleaved [60]. The subsequent growth of the 333

cells is halted and phage replication is inhibited. The plasmid was electroporated into 334

Escherichia coli K12 MG1655 (F- lambda- ilvG- rfb-50 rph-1). The T7 wildtype phage 335

was used in all experiments. 336

Efficiency of the CRISPR-Cas system 337

Efficiency of the engineered CRISPR-Cas system was tested using the following 338

protocol: Overnight culture was diluted 1 in 10, cells were infected with the T7 phage 339

and incubated for 15 min in 30◦C. Cells were spun down for 2 min in room temperature 340

at 21130g. Supernatant was discarded and the cell pellet was resuspended in 950 µl of 341

1X Tris-HCl buffer containing 0.4% (≈ 227µM) ascorbic acid pre-warmed to 43◦C and 342

incubated in this temperature for 3 min to deactivate free phage particles [61]. Cultures 343

were serially diluted and plated using standard plaque assay protocol on a bacterial 344

lawn of susceptible cells to detect bursting infected cells. The supernatant was tested 345

for free phage particles, which were not detected. 346

Determining the mean number of phages per cell 347

The cultures that were plated using standard plaque assays in the “Efficiency of the 348

CRISPR-Cas system” experiment were also plated on LB agar plates containing 25 349

µg/ml chloramphenicol to determine the number of surviving CFUs. The numbers of 350
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bursting and surviving susceptible cells were subsequently used to determine the actual 351

mean number of adsorbed phages per cell. The fraction of susceptible cells surviving the 352

phage challenge experiment was assumed to correspond to the Poisson probability that 353

a cell does not encounter any phage, which was than used to determine the mean of the 354

Poisson distribution, which corresponds to the mean number of phages per cell. 355

Herd immunity in a liquid culture 356

Herd immunity in a liquid culture was tested in 200 µl of LB broth supplemented with 357

25 µg/ml chloramphenicol in Nunclon flat bottom 96 well plate in a Bio-Tek Synergy 358

H1 Plate reader. Bacterial cultures were diluted 1 in 1000 and mixed in the following 359

ratios of resistant to susceptible cells: 50:50, 75:25, 87.5:12.5, 93.75:6.25, 96.88:3.13, 360

98.44:1.56, 99.22:0.78, 99.61:0.39, 99.8:0.2, 99.9:0.1, 99.95:0.05, 100:0 %. T7 phage was 361

added at a multiplicity of infection (MOI) of ≈ 10−4 (≈ 50 plaque forming units (pfu) 362

per culture) to resemble an epidemic initiated by the burst size from one infected cell 363

and the cultures were monitored at an optical density 600 nm for 18 hours post 364

inoculation (hpi). 365

Time-lapse imaging of plaque growth 366

Soft LB agar (0.7%) containing 25 µg/ml chloramphenicol was melted and poured into 367

glass test tubes heated to 43◦C in a heating block. After the temperature equilibrated, 368

0.9 ml of a bacterial culture consisting of resistant and susceptible cells (ratios 10% – 369

100% of susceptible cells, 10% increments) were diluted 1 in 10 and added to the tubes. 370

Then, 100 µl of bacteriophage stock, diluted such that there would be ≈10 plaques per 371

plate, was added to the solution. Tubes were vortexed thoroughly and poured as an 372

overlay on LB agar plates containing 25 µg/ml chloramphenicol. The plates were placed 373

on scanners (Epson Perfection V600 Photo Scanner) and scanned every 20 minutes in 374

”Wide Transparency mode“ for 48 hours. A total of 3 scanners were employed with a 375

total of 12 plates, plus a no phage control plate and 100% resistant control outside the 376

scanners (see Fig. S4). Time-lapse images were used to calculate the increase of 377

individual plaque areas using image analysis software PerkinElmer Volocity v6.3. 378
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Bacterial growth on soft agar 379

Growth rate of susceptible bacteria in soft LB agar (0.7%) was measured by sampling 380

from a petri dish with a soft agar overlay with bacteria prepared in the same way as the 381

plaque assays except an absence of the phage. Sampling was performed in spatially 382

randomized quadruplicates at the beginning of the experiment and subsequently after 2, 383

4, 6, 8, 10, 12, 14, 16, 24, 32, 40, and 48 hours using sterile glass Pasteur pipettes 384

(Fisherbrand art.no.: FB50251). Samples were blown out from the Pasteur pipette using 385

an Accu-jet pro pipettor into 1 ml of M9 buffer pre-warmed to 43◦C, vortexed for 15 386

seconds and incubated for 10 minutes in 43◦C with two more vortexing steps after 5 387

and 10 minutes of incubation. Samples were serially diluted and plated on LB agar 388

plates containing 25 µg/ml chloramphenicol. How bacterial densities change over time, 389

measured as CFU/ml, is shown in Fig. S1A. 390

Bacterial growth rates in liquid culture 391

Estimate Units

αmax 0.720 (± 0.011)
[
h−1

]
Kc 0.257 (± 0.012) Dilution N of LB

[
0 . . . 1

]
Table 1. Estimated parameters for bacterial growth using Monod kinetics.
Undiluted LB medium (N = 1) is assumed to have 15mg/ml nutrients (10mg/ml
Tryptone, 5mg/ml yeast extract). The full dataset is shown in Fig. S1.

Nutrient-dependent growth rate of susceptible bacteria was measured in Nunclon flat 392

bottom 96 well plate in Bio-Tek Synergy H1 Plate reader in 30◦C. Overnight LB 393

cultures were diluted 1:200 in media consisting of LB broth mixed with 1X M9 salts in 394

ratios 10:90, 20:80, 30:70, 40:60, 50:50, 60:40, 70:30, 80:20, 90:10 and 100:0. Final 395

volume was 200 µl. Optical density at 600 nm was measured every 10 min. Natural 396

logarithm of the optical density values was calculated to determine the growth rate 397

using a maximal slope of a linear regression of a sliding window spanning 90 min. 398

The resulting growth rates for various nutrient concentrations fit well with Monod’s 399

growth kinetics, 400

α = αmax
N

Kc +N
. (8)

Results for the two fitting parameters, αmax and Kc, are listed in Table 1. The whole 401

dataset, including the fit, is displayed in Fig. S1B. 402
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Medium Dilution Latent period Burst size Burst size/hour
N λ [min] β β/λ [h−1]

LB 0 0.0 101.1 (± 10.9) 3.0 (± 1.9) 1.8 (± 1.1)
LB 20 0.2 43.4 (± 3.9) 12.0 (± 4.2) 16.6 (± 6.0)
LB 50 0.5 40.0 (± 3.0) 35.6 (± 16.4) 53.4 (± 24.9)
LB 100 1.0 36.1 (± 6.1) 85.6 (± 47.3) 142.1 (± 82.1)

Table 2. Estimated parameters for phage growth. See also Fig. 4A,B.

Test for a difference in growth rates of resistant and susceptible bacteria was done in 403

LB broth in the same manner as nutrient-dependent growth rate measurements. 404

Two-sample t-test was performed on acquired growth rate data. 405

All growth media used in growth rate measurements were supplemented with 25 406

µg/ml chloramphenicol. 407

Phage burst sizes 408

Phage burst sizes in bacteria growing at different growth rates were measured by 409

one-step phage growth experiments. The burst sizes were calculated as the ratio of 410

average number of plaque before burst to average number of plaques after burst. 411

Consecutive samplings before and after burst were used for the calculation if they were 412

not significantly different from each other (two sided t-test, p > 0.05). 413

Phage latent periods 414

Phage latent periods were determined as the time interval between the first and the last 415

significantly different consecutive samplings between those used for phage burst size 416

calculations. 417

Phage diffusion in soft agar 418

Soft M9 salts soft agar (0.5%) was supplemented with SYBR safe staining (final conc. 419

1%) and poured into glass cuvettes (VWR type 6040-OG) to fill ∼ 2 cm of the cuvette 420

height. After soft agar solidification, the same stained soft agar was supplemented with 421

T7 phage particles to a final concentration 1011 pfu/ml and poured on top of the agar 422

without phages. The cuvettes were monitored in 30◦C every hour for 40 hours at the 423

SYBR safe emission spectrum peak wave length 524nm illuminated with the SYBR safe 424

excitation spectrum peak wave length 509nm. The diffusion constant was estimated as 425
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the best fit parameter for the spread of fluorescent phages through the soft agar over 426

time. 427

First we computed the luminosity Li of fluorescence (a gray-scale value defined as 428

L = 0.2126R+ 0.7152G+ 0.0722B from the RGB image) as average over the width of 429

the cuvette for pixel row i, and corrected the profiles of luminosity Li by subtracting 430

the background value. This background value was estimated as a linear fit at the end of 431

the profile without phages, where only the gray value of the agar was measured. 432

Moreover, luminosity saturates at values above ∼ 0.4 where it does not have a simple 433

linear dependence on fluorescence: diffusion would lead to a decrease of the signal 434

behind the inflection point of the profile and increase after the inflection point, but 435

images only show increasing profiles – the bulk density does not decay. Thus, any 436

estimate should only take the part of the profile that is below the threshold value of 0.4 437

into account (see Fig. S3). 438

The diffusion constant D itself was estimated as the minimal value of the total 439

squared deviation of the convoluted profile L(t) (at time t) with a heat kernel K(D) 440

compared to the profile L(t+1) at time t+ 1, 441

D =

〈
min
D

∑
i

((∑
j

e−(i−j)2/4D
√

4πD
L

(t)
j

)
− L(t+1)

i

)2〉
. (9)

Such a convolution with the heat kernel Kij(D) = (4πD)−1/2 exp
(
−(i− j)2/4D

)
442

assumes that the only change in the profile is due to diffusion for a time span of length 443

1 with i and j indices of pixels. Thus, expression (9) estimates the diffusion constant in 444

units of pixel2/frame, where frame is the time difference between two images. Several 445

estimates are averaged over different snapshots in the whole experiment that spans 40h 446

in intervals of 1h each. 447

The final estimate in appropriate units is 448

D ≈ 1.17 (± 0.26) · 10−2 mm2/h , (10)

which is in agreement with previous measures of phage diffusion [62–64]. 449

PLOS 19/40

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 28, 2017. ; https://doi.org/10.1101/181487doi: bioRxiv preprint 

https://doi.org/10.1101/181487


Modelling 450

Phage growth 451

In the main text we stated that relevant processes for phages growing on bacteria are 452

given by the set of reactions (2). In the following, we will analyze an extended version 453

of our model, which takes all these processes into account. We try to justify our 454

approximations and explain the reasoning behind leaving parts of the full model out. 455

While reactions for single bacteria or phages are inherently stochastic in nature, we 456

assume that the involved numbers are large enough such that the dynamics can be 457

described with deterministic differential equations for the populations. Furthermore, 458

reaction rates are identified with the inverse of the average time scale of the process. 459

Thus, the full model is given by the coupled differential equations, 460

∂tBs = αBs −A[Bs, P |Bj ] , (11a)

∂tBr = αBr −A[Br, P |Bj ] + ρIr , (11b)

∂tIs = A[Bs, P |Bj ]− (1/λ)Is , (11c)

∂tIr = A[Br, P |Bj ]− (1/λ)Ir − ρIr , (11d)

∂tP = (β/λ)
(
Is + Ir

)
−
∑

i∈{s,r}

A[Bi, P |Bj ]−
∑

i∈{s,r}

A[Ii, P |Bj ] , (11e)

∂tN = −α/Y
(
Bs +Br

)
. (11f)

Both bacterial populations Bi grow with rate α and decay via adsorption of phages 461

A[Bi, P |Bj ], an expression that is specified below. Infected populations Ii gain numbers 462

by adsorption and decrease via bursting. Resistant bacteria also can recover from their 463

infected state with a recovery rate ρ. Phages grow by bursting cells, and lose numbers 464

by adsorption to the various bacterial populations. Moreover, explicit dynamics for 465

nutrients is considered, which are drained by each grown cell inversely proportional to 466

the yield Y , the conversion factor between nutrient concentration and cell numbers. 467

Essentially, this last equation acts as a timer, when we switch from abundant resources 468

to the depleted state: all growth parameters change significantly upon nutrient 469

depletion. Nevertheless, despite the possible deviations, we assume depletion time is 470

given by the simple estimate (3) and only treat the two possible states of abundant and 471
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depleted nutrients. 472

Adsorption of phages, given by the term A
[
Bi, P |Bj

]
, can be influenced by the whole 473

distribution of populations within the culture. In liquid medium, a common assumption 474

is that this term is proportional to the concentrations of both the phages and cells [65], 475

A
[
Bi, P |Bj

]
= δBiP , (12)

with an adsorption constant δ. This expression assumes constant mixing of the 476

population and relatively short contact times between phages and bacteria. In general, 477

this system of equations is akin to Lotka-Volterra dynamics, which has been analyzed in 478

great detail, eg. [66, 67]. 479

For our ensuing analysis, we neglect the population of infected resistant bacteria Ir. 480

Upon examining (11d) we find that most cells to leave their infected state by reducing 481

phage DNA via CRISPR/Cas instead of bursting if ρ� 1/λ. If furthermore ρ� δP , 482

which is true at least in the initial stages of the experiment, essentially all infected 483

resistant bacteria immediately recover from a phage infection. Consequently, with both 484

conditions, the resistant infected bacteria tend to vanish, Ir → 0, and their dynamics 485

can be neglected. Only in the Supplementary Information (section Simulation of 486

recovery rate) we release this assumption to explicitly cover the full dynamics of (11) in 487

simulations to estimate values for ρ. 488

Exponentially growing bacteria lead to double exponential phage growth 489

For convenience, we transform the populations to the total bacterial density 490

B = Bs +Br and introduce the fraction of susceptible cells S = Bs/B. The crucial 491

assumption for the remainder of this section is that phages burst immediately after 492

infection, λ = 0, such that we can ignore all infected populations. While not a very 493

biological condition, it allows to analyze the model in more detail. Using these 494

simplifications, we obtain 495

∂tB = (α− δSP )B , (13a)

∂tS = −S(1− S)δP , (13b)

∂tP = (βS − 1)δBP . (13c)
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If we assume that in initial stages of phage growth the number of phages is small, ie. 496

δP � α ∼ O(1h−1), the dynamics of bacteria and the fraction of susceptibles simplify 497

to ∂tB = αB and ∂tS = 0. Note that this term δP also occurs in the linear phage 498

dynamics, where it cannot be neglected. In this instance, we need to view δB as a 499

coefficient, which is likely much larger initially. This set of simplified equations can be 500

solved in closed form, 501

S(t) = S0 , (14a)

B(t) = B0 exp(αt) , (14b)

P (t) = P0 exp
(
(S0β − 1)δB0(exp(αt)− 1)/α

)
. (14c)

The structure of phage dynamics is particularly important here – it exhibits a 502

double-exponential dependence on time t, which is a very fast, almost explosive, growth. 503

Such double-exponential growth leads to very large population sizes within a short 504

amount of time (but after an extended initial delay). This general behavior of the 505

solution is independent of the actual growth rate of phages, which only has to be 506

positive. Thus, inspecting the exponent in (14c) yields the condition 507

βS0 > 1 (15)

for phage growth to be positive. Incidentally, relation (15) is the naive estimate for the 508

number of successful additional infections arising from a single burst. The double 509

exponential time-dependence is central for our arguing that the dynamics can be 510

descibed by threshold phenomena, given by conditions like (15): Usually, phages are 511

negligible in the dynamics until they grow fast enough to large enough size, such that it 512

is too late for the bacterial population to deal with the overwhelming phage population. 513

An important question in the context of these solutions is whether nutrients run out 514

before this double-exponential growth of phages occurs. Hence, we compute the time Tδ 515

defined as when phages reach a population of P (Tδ) = 1/δ assuming phages grow as 516

(14c) until then. After Tδ the assumptions that allowed to obtain (14c) are not valid 517
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anymore. Inverting (14c) for time leads to 518

Tδ =
1

α
log

(
1 +

α log(1/δP0)

(βS0 − 1)δB0

)
. (16)

Subsequently, we can compare this estimate Tδ to the depletion time 519

Tdepl = (1/α) log(B∞/B0). When rearranging the inequality Tdepl > Tδ in terms of the 520

(initial) fraction of susceptibles S0, we obtain 521

βS0 > 1 +
α log(1/δP0)

δ(B∞ −B0)
. (17)

This expression (17) is a condition for phages to reach “large” population sizes before 522

nutrients are depleted by bacteria. The final population density B∞ usually fulfills 523

δB∞ � 1, such that the correction given by the second term of (17) can be considered 524

small. Thus, if phages grow (βS0 > 1), they also grow very fast with a 525

double-exponential time-dependence and reach a considerably large population size 526

before bacteria stop multiplying (for almost all parameter values). 527

Extending analysis to finite burst times 528

The analysis above only treated the case λ→ 0. However, we reported that the latency 529

time λ increases significantly when bacterial growth rate α declines, see Table 2. 530

Considering finite latency times entails dealing with an infected bacterial population I. 531

(However, we identify I ≡ Is and set Ir = 0.) 532

To this end, note that we can rearrange (11a) to
(
1 + λ∂t

)
I = λδSBP using the 533

adsorption model in (12). Hence, we can use the differential operator (1 + λ∂t) and 534

apply it directly to (11e) to reduce the dependence on I in this equation at the cost of 535

introducing higher order derivatives. In particular, we obtain 536

λ∂2
t P +

(
1 + λδB

)
∂tP + δB(βS − 1− λα)P = 0 , (18)

where we also inserted ∂tB ≈ αB in the last term, as we aim again for a solution at 537

initial times where δP � α. The effects of the limit λ→ 0 are directly observable – no 538

terms are undefined in this limit. In particular, we find that equation (18) and λ = 0 539

lead directly to the dynamics of phages we just analyzed above, obtaining solution (14c). 540
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In principle, (18) is a hyperbolic reaction-diffusion-equation, which is known to occur 541

upon transformation (or approximation) of time-delayed differential equations [68]. For 542

initial times we can use the solutions B(t) = B0 exp(αt) and S(t) = S0. To proceed, we 543

introduce the auxiliary variable 544

z(t) = −δB0 exp(αt)/α , (19)

and assume P (z) as a function of this new variable z. We need to transform the 545

differential operators of time derivatives, and obtain ∂t = ∂z(t)
∂t ∂z = αz∂z and 546

∂2
t = (αz∂z)(αz∂z) = α2(z∂z + z2∂2

z ). Inserting these expressions in (18) and 547

multiplying the whole equation with (α2λz)−1 yields the dynamics for phages, 548

0 = z∂2
zP (z) + (b− z)∂zP (z)− aP (z) , (20)

where the two extant constants are a = 1− (βS0 − 1)/(λα) and b = 1 + 1/(λα). 549

Equation (20) is called “Kummers equation” with confluent hypergeometric functions 550

1F1 as solutions [69, pg. 504], 551

P (z) = A 1F1

(
a, b; z

)
+B z1−b

1F1

(
a− b+ 1, 2− b; z

)
. (21)

The two integration constants A and B can be determined via the initial conditions 552

P (t = 0) = P0 and (∂tP )(t = 0) = −δB0P0. Using these conditions, the shape of the 553

solution is again similar to before with λ = 0 (double exponential time-dependence), 554

although λ > 0 introduces some skew. The most important aspect of this solution (21) 555

is to compute the parameter combination where it switches from a decreasing to 556

increasing function over time. A careful analysis reveals that at the parameter value 557

a = 0 the behavior of the solution changes. Consequently, we find the condition for 558

growing phage populations, 559

βS0 > 1 + λα , (22)

which is a non-trivial extension including finite latency times λ. 560

Note, however, that this relation (22) does not indicate a correction to the general 561

epidemiological parameter R0, which can be identified with β in our model. Rather, it 562
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shows that a growing bacterial population requires the phage population to grow even 563

faster for a continuous chain of infections in an epidemic. The term λα denotes the 564

ratio of generation times of pathogen over host, which in most cases is small and 565

negligible compared to 1. For bacteria and phages, however, which have similar 566

generation times, such a correction is needed to describe the effects of growing host 567

population sizes. In contrast, many other epidemiological models assume the host 568

population size constant and only pathogens are increasing (or decreasing) in number. 569

While our result (22) suggest that it also should hold in the limit α→ 0, it might 570

not necessarily be so. This specific limit is actually quite important for the time when 571

nutrients are depleted in the experiments. However, at several instances in the 572

calculations above we implied a positive α > 0. The most important of these is the 573

transformation to z(t) = −δB(t)/α, which actually exhibits two problems: dividing by 574

α should not be allowed and B(t) is essentially constant and cannot serve as a variable 575

in a differential equation. We also neglected the second term in ∂tB = (α− δSP )B 576

throughout our calculation. For α = 0 this second term is dominant in bacterial 577

dynamics and would generate non-linear phage dynamics if inserted for ∂tB right before 578

stating (18). However, we expect that albeit the process will run very slow, and might 579

not be measurable in experiments, the simple condition βS0 > 1 could indicate phage 580

expansion and bacterial decay. 581

Growth of phages on plated bacterial lawn 582

Spatial modelling of phage expansion has produced several predictions for how plaque 583

radius r and expansion speed v are influenced by experimentally adjustable 584

parameters [33–39]. Here, we try to use a minimal model to estimate these two 585

observables, based on the considerations of previous sections. 586

One of the main complications arises from the fact that all densities in (11) have a 587

spatial dimension in addition to their time dependence, Bi = Bi(~x, t), i ∈ {s, r}. As 588

explained in the main text we only consider phage diffusion, heterogeneities in all other 589

densities are generated only by phage growth. The additional spatial dimension imposes 590

a particular contact network between phages and bacteria, which are not entirely 591

random encounters anymore: One can expect that the size of the bacterial 592

neighborhood B̂ phages are able to explore is only slightly determined by the actual 593
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density B, and can be assumed constant for most of the experiment, B̂(B) ≈ const. 594

Consequently, the adsorption term can be written in the following way, 595

A
[
Bi, P |Bj

]
= δ?

Bi∑
j Bj

P , (23)

which only depends on the relative frequencies of bacterial strains. The adsorption 596

constant δ? is both the rate of adsorption and inter-host transit time as determined by 597

the diffusion constant D. Thus, one can expect the formal dependence 598

δ? = δ?
(
D, B̂(B)

)
. For our particular experimental setup, however, δ? will be treated as 599

a constant. This adsorption term (23) leads to the dynamics of phages 600

∂tP = D∇2P +G[P, S] , (24)

where we collected all contributions to phage growth in G[P, S] and added the spatial 601

diffusion term D∇2P . For simplicity, we consider only expansion in a single dimension 602

(∇2 ≡ ∂2
x), which has been found to coincide well with the dynamics of plaque 603

growth [34]. The growth term for phages is then defined as, 604

G
[
P, S

]
= δ?

(
Sβ − 1− λα

)
P , (25)

where we also consider the correction λα obtained from the analysis in liquid culture. 605

Reaction-diffusion equations similar to (24) have been first analyzed almost 80 years 606

ago [70, 71] and since then treated extensively, e.g. [72, 73]. They admit a traveling wave 607

solution – here, this corresponds to phages sweeping over an uninfected bacterial lawn. 608

In general, the asymptotic expansion speed for the traveling wave solutions is given by 609

the following expression, 610

v = 2
√
D(∂PG)

[
0, S

]
= 2

√
Dδ?

√
Sβ − 1− λα . (26)

Only the linearized growth rate of phages at very low densities is relevant for the 611

expansion speed, ∂PG
[
P = 0, S

]
. Thus, the fraction of susceptible individuals S should 612

be unchanged from its initial value S0. It should be noted, that only for S0β > 1 + λα 613
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does Eqn. (26) remain valid, otherwise we have v = 0. Such a scenario is relevant when 614

nutrients are depleted and phage growth parameters changes to βdepl and λdepl. 615

The expression for the expansion speed also shows the need for the spatial 616

adsorption model in (23), in contrast to the liquid case (12). If adsorption would 617

directly depend on the bacterial density B, the additional linear dependence on B in 618

(25) would lead to an exponentially increasing speed during the experiment. This is in 619

clear contradiction to experimental observations. 620

The density of phages behind the expanding front is large and as previously noted at 621

large MOIs the CRISPR-Cas system fails to provide effective immunity (see 622

section Efficiency of the CRISPR-Cas system and SI Infection load and efficiency of the 623

CRISPR/Cas system). However, in comparison to an un-structured environment (e.g., 624

liquid) the structured environment effectively limits transit of phage from within a 625

plaque to the expanding front: The combined effect of growth and diffusion usually 626

generates a much faster expansion of phages during plaque formation, than diffusion 627

alone. Only when nutrients are depleted, can pure diffusion processes explain the slow 628

decrease in speed observed in experiments (see Fig. 6A). Our model assumes a sharp 629

drop to v = 0 at Tdepl for small S. 630

In order to derive an expression for the plaque radius r, we integrate the expansion 631

speed (6) over time, r(t) =
∫ t

0
dt′v(t′). Employing the simplification that only two 632

values of phage growth are necessary to describe the dynamics – before Tdepl phages 633

grow normally with β and λ, after Tdepl phage growth changes to βdepl and λdepl – we 634

can evaluate the integral for the radius directly, arriving at, 635

r(t) =

 2t
√
Dδ?
√
Sβ − 1− λα , 0 < t < Tdepl ,

2
√
Dδ?

(
Tdepl

√
Sβ − 1− λα+

(
t− Tdepl

)√
Sβdepl − 1

)
, Tdepl < t .

(27)

Using this expression we estimated the adsorption constant δ? from the growth 636

experiments as it difficult to measure in practice. This estimate is done for radii exactly 637

at the time of nutrient depletion Tdepl, and excluding the control experiment with only 638

susceptible cells. 639

Predictions of our model show a discrepancy from experimental results on plates. We 640

independently estimated βdepl = 3.0, which results in Hdepl =
(
βdepl − 1

)
/βdepl ≈ 0.67. 641
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Thus, all experiments with S > 0.33 should exhibit expanding plaques after nutrients 642

are depleted. In the experimental setup plaques stop expanding in all mixtures of 643

resistant to susceptible cells (S ≤ 0.9), which would correspond to βdepl < 1.1. This 644

value is, however, still within experimental accuracy of our estimates of βdepl. 645
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Supporting information 657

Simulation of recovery rate 658

Throughout the main text we assumed that resistant bacteria are completely immune to 659

phage infection as their CRISPR/Cas system immediately kills adsorbed phages. 660

However, experimental observation suggest that for fractions close to what we predicted 661

as herd immunity threshold, all bacteria eventually die. Thus, in the following section 662

we use numerical simulations to investigate the full set of equations (11), with a 663

particular focus on the question why the whole bacterial population goes extinct. As it 664

turns out, this requires using finite values for the recovery rate ρ (instead of the ρ→∞ 665

approximation employed previously). 666

A major difficulty in analyzing the full model (11) is finding appropriate parameter 667

values. In particular, we need values for the adsorption constant δ, the recovery rate ρ 668

and the yield coefficient Y . Undiluted LB medium is known to support a population of 669

5 · 109 cells/ml. Thus one can easily estimate Y as the inverse of this number, when 670

nutrients are measured in units of dilutions, which we already used throughout this 671

publication (undiluted medium corresponds to N = 1). Parameter scans in simulations 672

reveal that the actual value of the adsorption constant δ does usually not influence the 673

actual outcome (collapsed or surviving bacterial population), it only adjusts time scales. 674

However, deviations in time scales are insignificant, even when δ is changed by orders of 675

magnitude, δ ∼ O
(
10−6 . . . 10−8

)
. They are roughly an hour or less, which is small 676

compared to the expected duration of the experiment that lasts a few hours. For 677

definiteness, we use the value of δ = 10−7 h−1 for our simulations. That the value of the 678

adsorption constant has only a minor impact on phage growth on bacterial cultures, is 679

also in line with previous findings [39]. 680

The most elusive parameter is the recovery rate ρ. A first indication of the value of 681

ρ can be drawn from our experiments on bursting resistant cells, summarized in Fig. 2. 682

As the probability for bursting resistant cells is 3 orders of magnitude smaller than for 683

susceptible bacteria, we can use 1/λ ∼ O(1) to estimate ρ ∼ O
(
103
)
. However, our 684

results also indicate that recovery via the CRISPR/Cas system heavily depends on MOI, 685

implying that ρ depends on the actual densities of phages and bacteria. Nevertheless, as 686

experimental determination of recovery is complicated, even more so determining a 687
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functional dependence on dynamically changing densities B and P , we assume that ρ is 688

constant. 689

We ran parameter sweeps in simulations and compared the outcome – collapsed or 690

surviving bacterial populations – to the observed experimental results (see Fig. 3). The 691

best agreement of simulations and experiments was reached with ρ ∼ O
(
1
)
. Lower 692

values of ρ do not allow the resistant population to recover from phage infection, while 693

for larger values of ρ, phages are drained from the culture very fast. Such a small value 694

of ρ is most likely related to the recovery at very large MOI, when the densities involved 695

in the dynamics are large, which dominate the overall observed dynamics. At this time 696

phages repeatedly infect the same bacteria and their CRISPR/Cas immune system 697

cannot deal with such an infection load (or only too slow). Thus, we can argue that our 698

final choice ρ = 1.5 h−1 is the recovery rate when the CRISPR/Cas system is heavily 699

stressed, which is comparable to the actual burst rate 1/λ for phages. 700

In Fig. S2 we show three exemplary sets of trajectories for bacteria and phage. For a 701

tiny fraction of susceptibles, S = 10−3, which is well below the herd immunity threshold 702

(see Fig. 3), phages do not thrive on the limited number of favorable hosts and decay 703

fast after a slight increase initially. For intermediate fractions of susceptibles, S = 0.04, 704

we observe more complex, non-monotonic trajectories of bacterial populations. For such 705

values of S we also observe mixed outcomes in experiments, see Fig. 3. When S is 706

increased further (S = 0.06), enough susceptible bacteria exists to produce enough 707

phages and ultimately the whole bacterial population goes extinct. 708

The purpose of the extended model in this section was to justify the fact that phages 709

can wipe out the whole bacterial population, which was not possible in the simplified 710

model used in the main text. There, the resistant bacterial population was basically 711

unaffected by phages and just acted as “sink” for phages. However, also in this 712

extended model, we see a very similar behavior in terms of the threshold phenomena 713

reported earlier in the manuscript. 714

Infection load and efficiency of the CRISPR/Cas system 715

In the section Modelling we showed that positive phage growth leads eventually to a 716

very fast increase in the phage population, that occurs before nutrients are depleted (for 717
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Parameter Value Units Comment

Bacterial growth rate a 0.63 1/h Table 1, Fig. S1
Yield Y 2 · 10−1 1/cell measured in dilution of LB
Recovery rate ρ 1.5 1/h See SI text
Adsorption constant δ 10−7 1/(h cell) See SI text
Diffusion constant D 1.17 · 10−2 mm2/h Section Phage diffusion in soft agar
Burst size β 85.6 phages/cell Table 2, Fig. 4
Latency time λ 0.60 h Table 2, Fig. 4

Initial bacterial population B0 105 cells
Initial phage population P0 10 phages

Table 3. Parameters used in simulations shown in Fig. S2.

almost all realistic parameters). This behavior of the dynamics was also observed in the 718

extended simulation model presented in the last section. Moreover, as a condition we 719

used that the phage population reaches a size P ∼ 1/δ, which is after all arbitrary – it 720

only determines if we can employ useful simplifications and approximations to model 721

equations. However, simulation results presented in the last section indicate that the 722

bacterial population starts to decay soon after such a threshold P ∼ 1/δ is exceeded. 723

In order to proceed, we investigate the system at time Tδ further. We assume that 724

the phage population is large enough that it will not be degraded by the CRISPR/Cas 725

immune system. The threat to immediate phage extinction is low at this point. The 726

actual equations are hard to solve directly, hence we revert to simple balance equations, 727

ignoring the dynamical component. Specifically, we compare the number of (present and 728

eventually produced) phages to the number of infections needed to wipe out the whole 729

population. To incorporate the effects of the bacterial immune system in resistant 730

bacteria, we assume that they need M > 1 infections before they burst and produce 731

only κβ phages, which reduces the burst size by a (yet unspecified) factor 0 < κ < 1. 732

κ = 1 implies that resistant cells produce the same number of phages as susceptible 733

cells, while κ = 0 indicates only cell death. Combining these considerations yields 734

1/δ︸︷︷︸
phages present

+ βS0B(Tδ)︸ ︷︷ ︸
phage production Bs

+ κβ(1− S0)B(Tδ)︸ ︷︷ ︸
phage production Br

> S0B(Tδ)︸ ︷︷ ︸
infections Bs

+M(1− S0)B(Tδ)︸ ︷︷ ︸
infections Br

,

(28)

where the left side indicates the total number of phages, while the right side indicates 735

the number of necessary infections to kill all bacteria. The number of bacteria B(Tδ) 736

can be estimated by inserting the time Tδ from (17) into the exponential growth (14b). 737
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Subsequently, we can rearrange (28), obtaining a bound on M : 738

M <
1/δB(Tδ) + S0(β − 1)

1− S0
+ κβ . (29)

The first term 1/δB(Tδ) indicates the ratio of phages to bacteria at time Tδ, and can be 739

considered small for non-extremal parameters compared to the other terms. This fact 740

justifies our assumption that the actual value of δ is not crucial. This number M might 741

allow some insight into the effectiveness of the CRISPR/Cas immune system. For a 742

fraction of susceptibles S = 0.03, which corresponds to the minimal value where we 743

observe only collapsed bacterial populations in undiluted LB medium (see Figs. 3 and 744

4), we would obtain the relation M . 3 + 86κ. Thus, each resistant bacterial cell could 745

degrade up to O
(
101 . . . 102

)
phages before their CRISPR/Cas system cannot cope with 746

the infection load anymore. 747
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Fig S1. Measuring bacterial growth without phage. (A) Trajectory of
population size on agar plates over time. For modeling, we assume two states of growth
(green curve): first, the bacterial population grows exponential until the time Tdepl,
when nutrients are depleted. From this time on, growth rate is assumed to be zero and
the population saturates at a maximal size Bfinal. Experimental observations fit this
proposed growth curve to a very good extent. After all, half of all nutrients are used up
in the last generation – with generation times of less than one hour, this the switch
between growth and no-growth should be fast. (B) Growth rates of bacteria in diluted
medium follow closely Monod’s empirical law, given by expression (8). Fit parameters
are found to be αmax ≈ 0.720h−1 and Kc ≈ 0.257 (with the latter in dimensionless
units as dilution of LB medium), see also Table 1.

Fig S2. Simulated trajectories for all populations in liquid culture for the
extended model, including infected and recovering bacteria. Trajectories are
obtained by numerically integrating equations (11), using parameters listed in Table 3
and additionally N = 1, Y = 2 · 10−10 cells−1, δ = 10−7 h−1 and ρ = 1.5 h−1. (A) For
population compositions with a large majority of resistant cells (S = 10−3), phages get
wiped out fast. (B) For intermediate S (close to parameters where we observe both,
collapsed and surviving, populations, see Fig. 3), the populations exhibit a complex,
non-monotonic trajectory. After fast initial growth of phages, bacterial populations
decay but ultimately can recover. (C) If the fraction of susceptibles is too large
(S = 0.06), the whole bacterial population is infected and succumbs to the
overwhelming phage infection. See supporting text for more detailed information.

Fig S3. Estimating diffusion constant of phages. (A), (B) Phage are slowly
expanding on agar which can be observed via their fluorescence. Pictures are taken 5h
apart. (C) The diffusion constant D can be estimated as best-fit parameter in a heat
kernel K(D): K(D) propagates the fluorescence profile L(t) at time t forward (via a
convolution to “smear” out the signal) to the profile L(t+∆t) at the next measured time
point. The difference between the expected change and the actual profile is quantified
as total squared deviation, see Eqn. (9), which we minimize to obtain D. Consequently,
we can estimate the diffusion constant as D ≈ 1.17 · 10−2mm2/h. The green line uses
this estimated parameter D and shows the change between the profile at t = 10h
(orange line) and the profile at t = 15h (light brown line), assuming diffusive spread of
phages. See Materials and Methods for more information.

Fig S4. Image of the scanner system. Photograph of the scanner system used for
time-lapse imaging of phage spread in spatially structured bacterial populations. Three
scanners (Epson Perfection V600 Photo Scanner) simultaneously scanned 12 plates in
total every 20 minutes in 30◦C for 48 hours per experiment.
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