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Abstract 

 

Importin4 transports histone H3/H4 in complex with Asf1a to the nucleus for chromatin assembly. 

Importin4 recognizes the nuclear localization sequence located at the N-terminal tail of histones. Here, 

we analyzed the structures and interactions of human Importin4, histones and Asf1a by cross-linking 

mass spectrometry, X-ray crystallography, negative-stain electron microscopy, small-angle X-ray 

scattering and integrative modeling. The XL-MS data showed that the C-terminal region of Importin4 

interacts extensively with the histone H3 tail. We determined the crystal structure of the C-terminal 

region of Importin4 bound to the histone H3 peptide, thus revealing that the acidic path in Importin4 

accommodates the histone H3 tail and that histone H3 Lys14 is the primary residue interacting with 

Importin4. Furthermore, the molecular architecture of the Importin4_histone H3/H4_Asf1a complex 

was produced through an integrative modeling approach. Overall, this work provides structural 

insights into how Importin4 recognizes histones and their chaperone complex.  
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Introduction 

The nucleosome is the basic unit of chromatin and consists of approximately 146 bp of DNA wrapped 

around a histone octamer [1]. The dynamic structure of chromatin and its regulations play critical roles 

in various cellular processes such as DNA replication, transcription and repairs [2]. During DNA 

replication, nucleosomes are actively assembled into duplicated DNA to maintain the integrity of the 

chromatin structure. To support this process, a large number of histones need to be synthesized and 

transported into the nucleus. Previous studies have described the processes by which the newly 

synthesized histones H3 and H4 are deposited onto DNA [3-5]. Newly synthesized histone H3/H4 

dimers are escorted by several histone chaperones including Nuclear Autoantigenic Sperm Protein 

(NASP), Histone Acetyltransferase 1 (HAT1), RbAp48 and Anti-silencing factor 1a (Asf1a), Chromatin 

Assembly Factor-1 (CAF-1) and Regulator of Ty1 Transposition (Rtt106) . Asf1a, the major histone 

H3/H4 chaperone, binds to the tetramer interface between histone H3/H4 dimers, thereby preventing 

these dimers from binding to other proteins inappropriately and blocking tetramer formation before 

nucleosome assembly. The histone H3/H4_Asf1a complex is then transported by Importin4 to other 

histone chaperones, such as the CAF-1 complex, in the nucleus [3, 4, 6-8]. H2A and H2B have their 

own histone chaperones such as Nucleosome assembly protein 1 (Nap1) [9]. In addition, Kap114p in 

yeast is responsible for delivering the histones H2A/H2B into the nucleus [10].  
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Importin4 is a major histone H3/H4 nuclear import protein in humans and is a member of the 

Karyopherin-β superfamily. The proteins in this family have low sequence homology to one another 

(below 20%) and consist of tandemly arrayed HEAT repeats which promote flexibility and elongated 

conformations of the structures [11-13]. These features allow one protein to accommodate several 

different cargoes in addition to directly recognizing the nuclear localization sequences (NLSs) of the 

cargoes. Importin4 is also responsible for transporting other cargoes in addition to histone H3/H4, 

including the ribosomal protein S3a, the vitamin D receptor, hypoxia inducible factor-α and human 

epididymis protein 4 [14-16]. Several previous studies showed that other nuclear importins are also 

able to transport histone H3 [4, 17-22], and recent biochemical and structural studies have shown that 

other nuclear importins are also able to transport histone H3 [23, 24]. However, Importin4 is the bona 

fide nuclear importin for histone H3 and H4 [3, 4]. In yeast, Kap123 is a homolog of human Importin4 

and recognizes the NLSs residing in the N-terminal tails of both histone H3 and H4. Previous studies 

have defined the minimal NLSs of histones H3 and H4 as amino acid (a.a.) residue 1-28 of histone H3 

and 1-21 a.a. of histone H4 for yeast Kap123, and have shown that these NLSs are also critical for 

the interaction with human Importin4 [10, 19]. In addition, recent biochemical study mapped the 

regions in histone H3 and H4 tails important for Importin4 binding [23]. Although Importin4 plays a 

major role in delivering new histone H3/H4_Asf1a complexes to the nucleus in humans, little is known 

about the molecular architecture of the Importin4_histone H3/H4_Asf1a complex and the mechanism 

by which Importin4 interacts with the histone NLS. 

In this study, we investigated the structure and molecular interactions of the 

Importin4_histone H3/H4_Asf1a complex through an integrative modeling approach relying on 

multiple structural and proteomic data sources, including cross-linking mass-spectrometry (XL-MS), X-

ray crystallography, small angle X-ray scattering (SAXS), and negative-stain single-particle electron 

microscopy (EM). The resulting integrative model of the complex together with the experimental data 

enables us to understand the mechanism by which Importin4 recognizes the histone H3/H4_Asf1a 

complex. 
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Result 

 

Cross-linking Mass Spectrometry Analysis of the Importin4_histone H3/H4-

Asf1 Complex 

Importin4 is the major nuclear importin for newly synthesized histone H3/H4 complexed with the 

histone chaperone Asf1a. To investigate the interactions among these proteins, we performed XL-MS 

on the Importin4_histone H3/H4_Asf1a complex. The highly purified complex was cross-linked with 

disuccinimidyl suberate [25] and the homogeneity of the cross-linked sample was analyzed by native 

PAGE (Fig. 1a). The cross-linked sample was then subjected to XL-MS analysis (Supplementary 

Table). To investigate the interactions among Importin4, histone H3/H4 and Asf1a, we mapped the 

cross-linked residues on the crystal structure of the histone H3/H4_Asf1a complex (PDB ID: 2IO5). 

Most of the cross-linked residues in the histones are located on the DNA binding surface, thus 

revealing that Importin4 probably recognizes the DNA binding surface of histone H3/H4 (Fig. 1c and 

d). 

It is notable that we also observed cross-links between Asf1a and Importin4, thus suggesting that 

Asf1a might contribute to the Importin4 binding. 

 

Furthermore, our XL-MS data showed that the N-terminal tail of histone H3 interacts extensively with 

the C-terminal region of Importin4, whereas there is little cross-linking between Importin4 and the N-

terminal tail of histone H4, despite of the presence of several lysine residues in the histone H4 tail (Fig. 

1b). Almost all of the lysines (K4, K9, K14, K18, K23, K27) in the histone H3 tail are extensively cross-

linked with the region from Lys715 to Lys1035 of Importin4, thus indicating that this region 

accommodates the N-terminal tail of histone H3. In the case of histone H4, the lysines K31, K59 and 

K77 located at the DNA binding surface in the nucleosome structure were cross-linked with Importin4. 

We also observed that Importin4 is crosslinked with the histone fold of the H3/H4 dimer and Asf1a, 

suggesting that not only the tail, but also the histone fold as well as Asf1a might contribute to the 

Importin4 binding. Consistent with this, the previous work by Soniat et al also reached similar 
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conclusion by biochemical analysis [23]. These data delineate the interactions among Importin4, 

histone H3/H4 and Asf1a, showing that the N-terminal tail of histone H3 predominantly interacts with 

the C-terminal region of Importin4 and that Importin4 masks the DNA binding surface of histone 

H3/H4. 

 

Importin4 interacts with the N-terminal tail of histone H3 

It was shown that the NLSs located at the N-terminal tails of histone H3/H4 play critical roles in 

translocation of the histone to the nucleus [10, 19]. XL-MS data indicates that the N-terminal tail of 

histone H3 was extensively crosslinked with Importin4. Therefore, we hypothesized that Importin4 

directly interact with the N-terminal tail of histone H3 in the Importin4_histone H3/H4_Asf1 complex. 

We first performed a limited-proteolysis using trypsin on Importin4_histone H3/H4_Asf1 complex and 

histone H3/H4_Asf1 complex to examine whether the N-terminal tail of histone H3 is protected upon 

Importin binding to H3/H4_Asf1. In agreement with XL-MS data, our limited proteolysis experiments 

showed that the N-terminal tail of histone H3 but not histone H4 was protected from tryptic digestion 

in the presence of Importin4, thus further confirming that Importin4 primarily interacts with the N-

terminal tail of histone H3 (Fig. 2a). We then examined the direct binding with the N-terminal tail of 

histone H3 and the C-terminal region of Importin 4 (C-Importin4, 668 to 1081 a.a.) having the 

extensive crosslinking between histone H3 tail by Surface Plasmon Resonance (SPR). We 

immobilized C-Importin4 on the CM5 chip and measured the bindings between C-Imporin4 and 

several N-terminal regions of histone peptides (Fig. 2b, 2c and 2d). The SPR data show that the 

histone peptide (1-18 a.a.) binds to C-Importin4 whereas other peptides (1-11 a.a. and 1-6 a.a.) did 

not bind, suggesting that N-terminal histone H3 which contained 12GGKAPRK18 residues interacts 

with C-Importin4. 

 

The Crystal Structure of the C-terminal Region of Importin4 and Its H3 Peptide 

Complex  
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To understand in more detail how Importin4 recognizes the histone H3 tail, we determined the 

crystal structure of the C-Importin4, in which the histone tails are extensively cross-linked, by using a 

Se-Met single anomalous diffraction (SAD) method (Table 1). The structure shows that the C-

Importin4 consists of two layers of outer and inner antiparallel -helices, similarly to other known 

HEAT repeat protein structures (Fig. 3a and 3b) [24, 26-28]. Helix number was given based on 

helices of the model of full-length Importin4 (Fig. 5a). The electrostatic surface representation of C-

Importin4 shows a highly acidic patch between the H18B and H22B helices (Fig. 3c). This acidic 

patch might serve as a pocket for the highly positively charged NLS of histone H3. To further 

investigate the interaction between histone H3 and Importin4, we determined the crystal structure of 

C-Importin4 bound to a histone H3 peptide (1-18 a.a., 1ARTKQTARKSTGGKAPRK18) through a 

molecular replacement method using the C-Importin4 structure as a search model (Table 1 and Fig. 

2d). The structure of C-Importin4_histone H3 peptide is almost identical to that of C-Importin4 with 

0.49Å  RMSD indicating the histone peptide binding did not cause conformational change 

(Supplementary Fig. 1). Although clear extra density near the acidic patch was observed, we were 

able to place only four amino acids (12GGKA15) out of 18 in the electron density map (Supplementary 

Fig. 2). The complex structure shows that the histone H3 peptide is bound to the acidic patch located 

between the H18B and H22B helices of Importin4 (Fig. 3e and 3f). Specifically, the positively charged 

-amine in Lys14 of histone H3 interacts with the carboxyl groups of Importin4 Asp994 and Glu997 

side chains located at the H22B helix, and Importin4 Phe921 supports the hydrocarbon of H3 Lys14 

side chain, in a manner reminiscent of a histone methyltransferase binding the Lys residues of 

substrates. The carboxyl group of Importin4 Glu884 interacts with the carbonyl oxygen of H3 Gly13, 

and Importin4 Glu837 interacts with the carbonyl group of H3 Gly12. In addition, the side chain of 

Importin4 Asn918 supports the carbonyl oxygen of H3 Ala15 and the amine nitrogen of H3 Ala15. 

Furthermore, the Glu914 side chains interacts with the carbonyl oxygen of H3 Ala15 (Fig. 3f). Our 

structure reveals the molecular details on how Importin4 recognizes the NLS of histone H3.  

 

Binding Analysis of Importin4 and Histone H3  
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To more specifically define the interactions between the histone H3 tail and Importin4, we 

mutagenized the residues in Importin4 that interact with the histone H3 peptide, and measured their 

interaction with histone H3 by Surface Plasmon Resonance (SPR). First, to examine the binding 

between histone H3 and C-Importin4, we immobilized a C-terminal biotinylated histone H3 peptide (1-

35 a.a.) on a CM5 chip coated with streptavidin and measured the binding of C-Importin4 to the 

histone H3 peptide by injecting C-Importin4 at six different concentrations (0, 0.5, 1, 2, 4, 6, and 8 M) 

(Fig. 4a). Fig. 3a shows that C-Importin4 bound to histone H3 peptide with micromolar KD range 

(Supplementary Fig. 3). These data are consistent with the XL-MS data and the crystal structure in 

that the histone H3 tail interacts with the C-terminal region of Importin4. The crystal structure we 

determined was confined to the C-terminal region of Importin4 and it is possible that other regions of 

Importin4 besides the C-terminal region might interact with the histone H3 tail. To examine this 

possibility, we used full-length Importin4 for the following experiments. However, because full-length 

human Importin4 alone without Histone H3/H4_Asf1a was not stable, we used human Importin4 

orthologues from Tursiops truncatus (Dolphine, Tt_Importin4) for the SPR measurements. These 

proteins share more than 89% sequence identity with the human sequence (Fig. 3a and 

Supplementary Fig. 4). We analyzed the binding of full-length Tt_Importin4 (Tt_WT) to the 

immobilized histone H3 peptide by injecting full-length Tt_Importin4 at seven different concentrations 

(31, 62, 125, 250, 500, 1000, and 2000 nM), showing that Tt_Importin4 binds to the histone H3 

peptide with slower on and off rates compared with those of C-Importin4. These data indicate that the 

N-terminal region beyond the C-terminal region of Importin4 could also contribute to the binding to 

histone H3 although it might not directly bind (Fig. 4b). We then mutagenized the residues involved in 

histone binding in Tt_Importin4 based on the C-Importin4 structure (Supplementary Fig. 5). Owing to 

the instability of the immobilized surface and the proteins during the extended time period of SPR 

measurements, we measured the relative binding of the mutants compared with those of the wild-type 

Tt_Importin4. We injected the mutants at six different concentrations (31, 62, 125, 250, 500, and 1000 

nM) on the chip immobilized with histone H3 peptide (1-35 a.a.). To validate the surface stability, we 

injected the wild-type protein before and after each mutant measurement and used the binding of the 

wild-type to monitor the relative binding of the mutants to the wild-type. The crystal structure of the C-
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Importin4 bound histone H3 tail shows that Histone H3 Lys14 is coordinated by two carboxylate 

groups, Hs_D994 and Hs_D997 in human Importin4, and Tt_D991 and Tt_E994 in Tt_Importin4. To 

examine the contributions of these interactions, we mutagenized Tt_E994 (Hs_E997) to alanine in 

Tt_Importin4 and measured its binding to the histone H3 tail (Fig. 4c and 4f). 

 Removing the carboxylate from Tt_E994 (Hs_E997) abolished the binding of the histone H3 

tail, a result consistent with the crystal structure of the C-Importin4_histone H3 peptide complex. 

Although another carboxylate from Hs_D994 (Tt_D991) holds histone H3 K14, we were not able to 

examine the contribution of this residue to the binding due to insolubility of this mutant. We then 

mutated Tt_E881 (Hs_E884) and Tt_E834 (Hs_E837) to alanines and examined their binding (Fig. 4d, 

4e, 4f). These mutants also showed defects in histone H3 binding, thus suggesting that the histone 

binding pocket in Importin4 observed in the crystal structure is indeed important in histone binding. 

We were able to observe four amino acids (12GGKA15) out of 18 amino acids 

(1ARTKQTARKSTGGKAPRK18) used for crystallization, thereby indicating that histone H3 Lys14 

might be a major residue interacting with Importin4. Therefore, we examined the contribution of 

histone H3 Lys14 to the binding with Importin4. We immobilized full-length Tt_Importin4 on a CM5 

chip and used a wild-type (H3 Lys14, 1-27 a.a.) and a mutant (H3 Lys14Ala, 1-27 a.a.) histone H3 

peptide as analytes (Fig. 4g, 4h and 4i). We measured the relative binding of the mutant peptides 

compared with the H3 Lys14 wild-type peptide. Mutating Lys14 to alanine significantly decreased, but 

did not completely abolish the binding to Importin4, which is consistent with the previous work by 

Soniat et al. [23]. These data suggest that histone H3 Lys14 plays a major role in the binding process 

and that other regions of the histone H3 peptide beside Lys14 also contribute to the binding of 

Importin4. 

 

Molecular architecture of the Importin4_Histone H3/H4_Asf1a complex through 

an integrative approach  

 

One of the key questions in the DNA replication dependent chromatin assembly is to understand the 

mechanism of Importin4_histone H3/H4_Asf1 complex. To get closer to correct answer, we approach 
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to visualize the 3D structure of whole complex using negative stained EM, SAXS and cross-linking 

mass spectrometry. Specifically, our XL-MS data on the inter-molecular interactions among full-length 

Importin4, histone H3, histone H4, or Asf1a, as well as the intra-molecular interactions within each 

protein provided the spatial proximity of the four protein components and their conformations (Fig. 1b, 

and Supplementary Table 1). In addition, the atomic structures of the C-Importin4 (668 to1,081 a.a.) 

from this study, as well as the structure of the histone H3/H4_Asf1a complex from other studies are 

available [7]. On the basis of these data, we computed the structural models of the full-length 

Importin4 bound to the histone H3/H4_Asf1a complex through an integrative modeling approach as 

implemented in the Integrative Modeling Platform (IMP) program [29] (Fig. 5a), combining all the data 

described above (see Methods for more details). The models of the complex relies on atomic 

structures determined by X-ray crystallography (C-Importin4668-1081 in this study and PDB ID: 2IO5 for 

histone H3/H4_Asf1a) [7], as well as comparative models of full-length Importin4 built with 

MODELLER 9.13 [30] (Material and Methods) based on the known structures (PDB ID: 3W3T) [28] 

detected by HHPred [31, 32] (Supplementary Fig. 6). While avoiding steric clashes and retaining 

sequence connectivity, 150,000 models of the complex were computed using Replica Exchange 

Gibbs sampling based on the Metropolis Monte Carlo algorithm. We only considered for further 

analysis an ensemble of the 500 best-scoring models (i.e., the ensemble), because there was 

effectively a single cluster of the 500 models, at the model precision of ~11 Å  (Supplementary Fig. 7b 

and Materials and Methods). The resulting ensemble of the 500 models was validated on the basis of 

several considerations, as follows. First, the ensemble of best-scoring models satisfies 64 of the 72 

cross-links within the Cα distance threshold of 35 Å  (Fig. 2 and 4c; Supplementary Fig. 8), thus 

suggesting that the integrative model of the complex is consistent with the XL-MS data as well as X-

ray crystallographic structures. Second, all models in the ensemble satisfy the excluded volume and 

sequence connectivity restraints used to compute the models. Third, we performed negative-stain 

single-particle EM analysis on the Importin4_histone H3/H4_Asf1a complex. We collected a total of 

12,725 particles from EM images, and further processed the data to generate 2D class-averages. We 

then compared each image of the class-averages with the best-matching projection computed from 

the models in the ensemble. The models of the complex also fit the EM class averages, revealing that 
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our complex model is consistent with the overall shape of the complex obtained by the negative-stain 

EM analysis (Fig. 5b). Finally, we collected a SAXS profile of the Importin4_histone H3/H4_Asf1a 

complex (Supplementary Fig. 9). The molecular weight of the SAXS sample was estimated to be 

162.1 kDa by using SAXS MOW [33], a value nearly identical to the expected molecular weight of 161 

kDa from the sequence (thus confirming the monomeric state of the SAXS sample). Additionally, the 

linearity in the Guinier plot confirms a high degree of compositional homogeneity of the complex in 

solution (Supplementary Fig. 9a). The radius of gyration (Rg) and the maximum particle size (Dmax) 

were determined as 41.9 ± 0.2 and 140.5 Å , respectively (Supplementary Fig.9a,c). Subsequently, the 

model of the complex shows that the entire HEAT repeats of Importin4 wrap histone H3/H4_Asf1a 

with extensive interactions with histone H3/H4. In agreement with this model, the C-terminal region of 

Importin4 alone cannot form a stable complex with histone H3/H4_Asf1a (unpublished data). Thus, 

we present the molecular architecture of the Importin4_Histone H3/H4_Asf1a complex produced 

through the integrative modeling approach, based on data from the X-ray crystallography, XL-MS, EM, 

and SAXS. 

 

Discussion 

Here, we provide structural insights into how Importin4 recognizes the histone H3 tail and the 

molecular architecture of the entire Importin4_histone H3/H4_Asf1a complex. During DNA duplication, 

many histones need to be synthesized, transported into the nucleus, and eventually assembled into 

nucleosomes. Histones are highly charged proteins and contain strongly-hydrophobic surfaces. 

Because of these properties, histones can bind to other proteins nonspecifically. Therefore, newly 

synthesized histones are escorted by several histone chaperones in the cytoplasm as well as the 

nucleus. Importin4 receives histone H3/H4 from the cytosol, transfers the histone into the nucleus, 

and eventually nuclear histone chaperones accept the histone H3/H4 for nucleosome [34-38]. During 

this nuclear import, the hydrophobic region of the histone H3/H4 dimer remains protected by the 

histone chaperone Asf1a [7, 8]. Our XL-MS data show that Importin4 interacts with the DNA binding 

surface of histone H3/H4 which is masked by other histone chaperones in the cytosol. Therefore, it 
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appears that Importin4 not only recognizes the NLS of the histone H3 for nuclear transport but also 

protects the highly-charged DNA binding surface with Asf1 during nuclear import. Notably, we have 

observed cross-links between Importin4 and the histone fold of H3/H4, and between Importin4 and 

Asf1a. These data suggest that Asf1a and the histone fold as well as histone tail might contribute to 

the binding to Importin4 together with histone H3/H4. Histone H3 and H4 form a dimer when they are 

transported into the nucleus [4, 7, 8, 39]. The NLS of histone H3 is located at the N-terminal tail and 

histone H3 Lys14 is shown to be important for the function of the histone H3 NLS in yeast [19]. 

Furthermore, recent studies have shown that histone H3 Lys14 is a major binding residue for several 

other importins including human Importin4 [23, 24]. Consistent with these previous data, our XL-MS 

data showed that Importin4 binds extensively to the N-terminal tail of histone H3. From our crystal 

structure, we were only able to resolve a four amino acid segment (12GGKA15) including the histone 

H3 Lys14 although we used the 18 a.a. histone H3 tail (1ARTKQTARKSTGGKAPRK18). This 

observation further supports that histone H3 Lys14 is a major binding residue in the histone H3 tail. 

The N-terminal tail of histone H4 also serves as a NLS signal in yeast [10, 19]. Therefore, the NLSs of 

histone H3 and H4 appear to be functionally redundant. However, it is unclear whether the same 

Importin is responsible for recognizing the NLSs of histone H3 and H4. Our limited proteolysis 

analysis showed that the N-terminal tail of histone H3 but not histone H4 is protected in presence of 

Importin4. Therefore, it seems that Importin4 predominantly recognizes the histone H3 tail as a NLS. 

Although our XL-MS data and the crystal structures shows that the C-terminal region of Importin4 is a 

major domain responsible for interacting with the histone H3/H4_Asf1a complex, it is unclear whether 

the N-terminal region of Importin4 is also involved in recognizing the NLS of histones or interacting 

with histone H3/H4_Asf1a. Because C-Importin4 was not able to form a stable complex with histone 

H3/H4_Asf1a in our hands (unpublished data), it is likely that the N-terminal region of Importin4 is also 

involved in recognizing the histone H3/H4_Asf1a complex.  

For the binding analysis, we used dolphin Importin4 (Tt_Importin4), because we were not 

able to obtain a stable full-length human Importin4 in the absence of histone H3/H4_Asf1a. Although 

humans and dolphins are evolutionarily distant, the sequence conservation between Importins is 

remarkably high, with 89% identity. Interestingly, when we compared the affinities of C-Importin4 and 
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full-length Tt_Importin4, we found that the full-length Tt_Importin4 shows much slower Kon and Koff for 

histone H3 binding. These data suggest that the N-terminal region of Importin4 might be involved in 

recognizing the histone H3 NLS as well as the histone H3/H4-Asf1 complex. It is unlikely that the 

different binding between full-length Tt_Importin4 and C-Importin4 could result from the species 

difference, because the sequence identity between the two is so high. However, it is unclear which 

region (if any) in the N-terminal of Importin4 might have a second binding site for histone H3.  

In this study, we obtained four different types of experimental data for the Importin4_histone 

H3/H4_Asf1a complex, as described above; (1) 72 intra- and inter-molecular DSS cross-links were 

identified via mass spectrometry (Fig. 1), identifying the spatial proximities among the four protein 

components and their conformations (Fig. 4c); (2) an atomic structure of the Importin4 C-terminal 

domain (668 to1081 a.a.) (Fig. 2) was determined by X-ray crystallography, informing its 

representation; [40] 2D class average images of the Importin4_histone H3/H4_Asf1a complex were 

obtained by negative-stain EM, delineating the shape of the complex (Fig. 4b); (4) a SAXS profile was 

collected, outlining the shape and potential dynamics of the complex (Fig. 4d). By combining all of 

these data, we computed and validated the ensemble of structural models of the Importin4_histone 

H3/H4_Asf1a complex that satisfy all information. The EM and SAXS analysis showed that the 

resulting ensemble of the complex models reflects the molecular architecture of the complex in vitro, 

suggesting the potential interactions among Importin4, histones, and Asf1a.  

Importin4 is composed of HEAT repeats conferring conformational flexibility. Previously, X-ray 

crystallography and SAXS experiments showed that Importin-, another HEAT repeat protein, 

undergoes conformational change upon binding to its cargoes and binding partners [41]. Consistent 

with this, a plateau in the Kratky plot (q=0.15 - 0.25 Å
-1

, Supplementary Fig. 9b) suggests some 

flexibility in the complex and we were also able to observe an extended conformation of the complex 

in the 2D class averages obtained from negative-stain EM (Supplementary Fig. 10).  

In summary, our study delineates the interactions among Importin4, histone H3 and Asf1a providing 

mechanistic insights into how Importin4 recognizes the histone H3 NLS. In addition we provide the 
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molecular architecture of the Importin4_Histone H3/H4_Asf1a complex produced through the 

integrative modeling approach that combines X-ray crystallography, XL-MS, SAXS, and EM. 

 

Materials and methods 

 

Protein Expression and Purification 

A gene encoding the C-terminal region of human Importin4 (C-Importin4) (residues 668 to 1081 a.a.) 

was cloned into a modified pET28a vector with a TEV cleavage site after a His-tag. Cells expressing 

C-Importin4 were grown to an optical density of 0.8 at 600 nm, induced with 0.5 mM 

Isopropylthiogalactoside and grown at 18 °C for 16 hrs before being harvested. The cells were 

resuspended in a buffer A (50mM Tris-HCl pH 8.0, 500mM NaCl, 5% glycerol) and lysed by 

sonication. The cell lysate was centrifuged at 18,000 rpm for 40 min. The supernatant was then 

incubated with Ni-NTA resin (Qiagen). The resin was washed in a buffer B (50mM Tris-HCl pH 8.0, 

500mM NaCl, 5% glycerol and 20mM imidazole) and eluted in a buffer C (50mM Tris-HCl pH 8.0, 

500mM NaCl, 5% glycerol and 100mM Imidazole). The eluted protein was dialyzed overnight at 4 °C 

in the presence of TEV protease in a buffer D (50mM Tris-HCl pH 8.0, 100mM NaCl, 1mM EDTA, 

1mM DTT) to remove the N-terminal His tag. Uncleaved proteins were recaptured on the Ni-NTA resin, 

and the proteins were further purified by a Q column (GE Healthcare Life Sciences) by salt-gradient 

elution from 50mM NaCl to 1M NaCl, and by Superdex 200-26-60 (GE Healthcare Life Sciences) 

size-exclusion chromatography in a buffer E (50mM Tris-HCl pH 8.0, 500mM NaCl, 5mM DTT). 

Tt_Importin4 and mutant proteins were purified similarly and stored in a buffer (20mM HEPES pH 7.5, 

100mM NaCl and 2mM TCEP). Se-Met labeled proteins were also generated in the same way as the 

wild-type proteins. 

 

Cross-Linking Mass Spectrometry 

The Importin4_H3/H4_Asf1a complex (50 g, approx. 1 mg/ml) was mixed with 25 mM disuccinimidyl 

suberate [25]-d0/d12 (Creative Molecules) to a final concentration of 1 mM. The mixture was 

incubated for 30 min at 37 °C with mild shaking (700 rpm) on a thermomixer (Eppendorf). The cross-
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linking reaction was quenched by adding ammonium bicarbonate (Sigma-Aldrich) to a concentration 

of 50 mM. The cross-linked samples were denatured with 8M urea (Sigma-Aldrich) in the presence of 

2.5 mM tris(2-carboxyethyl) phosphine. The free cysteine thiols were blocked by adding 

iodoacetamide (Sigma-Aldrich) to 5 mM final concentration. The samples were then sequentially 

digested with Lys-C (3 hrs) and trypsin (overnight) proteases at 1:100 and 1:50 enzyme-to-substrate 

ratio, respectively. The cross-linked peptides were enriched by SEC (Superdex Peptide 3.2/30, GE 

Healthcare Life Sciences) as described previously [42] and analyzed on an Orbitrap Elite mass 

spectrometer (Thermo) XL mass spectrometer (Thermo). Data analysis was performed using xQuest 

[43], and a sequence database containing the four target proteins. A score cut-off of 16 was used and 

all spectral exceeding this threshold were manually evaluated. The estimated false discovery rate of 

the cross-links is 5%, as determined by xProphet (Walzthoeni et al., 2012). 

 

Limited Proteolysis  

Proteins (100 µg) in 50 mM Tris-HCl (pH 8.0) containing 100 mM NaCl were incubated with trypsin (2 

µg) at 37 °C for 60 mins. The reaction was terminated at several different time points by the addition 

of SDS-PAGE sample loading buffer. The proteins were resolved on a 15% SDS polyacrylamide gel 

and visualized by staining in Coomassie brilliant blue. The bands were identified with N-terminal 

sequencing. 

 

Structure Determination of the C-Importin4 Alone and the C-Importin4 Bound to the NLS of the 

Histone H3 

The crystals of C-Importin4 (residues 668 to 1081 a.a.) were grown with a hanging drop vapor 

diffusion method at 18 °C, by mixing 1µl of the protein with 1 µl reservoir solution containing 240mM 

sodium tartrate dibasic dehydrate and 20% PEG 3350. For the complex crystals, histone H3 peptide 

(residues 1 a.a to 18 a.a) (Anygen) and C-Importin4 (residues 668 to 1081 a.a) were mixed at a molar 

ratio of 1:5 and grown with a hanging drop vapor diffusion method at 18 °C, and the crystals were 

obtained in the same condition as for C-Importin4 alone. The crystals were soaked in a cryo-

protectant with additional 20% glycerol (v/v) added to the mother liquor condition, and frozen in liquid 
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nitrogen. X-ray diffraction data were collected at the NW12A beamline in the Photon Factory, Tsukuba 

Japan. The data were indexed, integrated, and scaled using HKL2000 [44]. The structures of C-

Importin4 alone and the peptide complex were determined by SAD using an Se anomalous signal, 

and molecular replacement with a search model of C-Importin4 respectively, using Phaser [45]. 

Refinement was performed using CNS [46] and Phaser, and the models were built with Coot [47] or O 

programs. The structure factors of C-Importin4 and the C-Importin4_histone H3 peptide complex were 

deposited in the PDB database with PDB ID 5XAH, and 5XBK respectively. 

 

Affinity Measurement Using Surface Plasmon Resonance  

Surface Plasmon Resonance (SPR) experiments were performed using a Biacore T200 instrument 

(GE Healthcare Life Sciences) at 7 °C. C-terminal biotinylated histone H3 peptides (1-35 a.a.) were 

synthesized at Anygen, Korea, and coupled on a CM5 chip coated with streptavidin. The wild-type 

and mutant proteins were injected at a flow rate of 30 l/min using the binding buffer (10 mM HEPES, 

150 mM NaCl) and the binding was measured at various concentrations at 7 °C. The CM5 chip was 

regenerated at a flow rate of 30 l/min using a regeneration buffer (1M NaCl and 20 mM NaOH in 

binding buffer) after each injection. For the binding analysis with wild-type and mutant histone 

peptides, Tt_Importin4 was immobilized on a CM5 chip and the histone H3 peptides were injected at a 

flow rate of 30 µl/min. The binding was measured at various concentrations at 7 °C. The chip was 

regenerated at a flow rate of 30 µl/min using the regeneration buffer (1M NaCl and 20 mM NaOH in 

binding buffer). To compare the relative bindings, RU values at four different concentrations (125, 250, 

500, 1000 nM) of the wild-type and the mutants were collected. The ratios between the RU values of 

the mutants and the wild-type at each concentration were calculated. The error bars were generated 

from the four ratios calculated from four different concentrations for each mutant. For the histone H3 

deletion peptides, the peptide of H31-18: 1 to 18 a.a, H31-11: 1 to 11 a.a. and H31-6: 1 to 6 a.a. were 

synthesized at Anygen, Korea. C-Importin4 was immobilized on a CM5 chip and the histone H3 

deletion peptides were injected at a flow rate of 30 µl/min. The binding was measured at various 
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concentrations (0, 0.5, 1, 2, 4, 6 and 8 uM) at 7 °C. The chip was regenerated at a flow rate of 30 

µl/min using the regeneration buffer (500 mM NaCl in binding buffer).  

 

Negative-stain Electron Microscopy 

The purified Importin4_H3/H4_Asf1a complex was applied to ultracentrifugation at 74,329 xg for 16 hr 

with a 5-20% sucrose and 0-0.2% glutaraldehyde gradient. The fractionated complex was negatively-

stained with 2% (w/v) uranyl acetate for 1 minute on 400 mesh carbon-coated Cu grids. Images were 

recorded at 50,000x magnification with a defocus value of 0.8 - 2.3 m on a 4x4K TVIPS (Tietz Video 

and Imaging Processing System) CCD camera, attached to a Jeol 2100F field emission gun 

transmission electron microscope at 200 kV. The data set was further processed using the EMAN2 

program software package [48]. A total of 13,398 particles were boxed by e2box.py from 52 

micrographs and then subjected to reference-free 2D classification. The ensemble of the complex 

models was projected to 210 images by e2proc3d.py to compare with the EM 2D class averages. The 

similarity comparison between the set of 2D class averages and projections was computed by 

e2simmx.py. Then, best matching values were searched from the similarity matrix and presented by 

e2classify.py. The best 16 matches were selected, and projections were then aligned to their partner 

classes in the same direction by e2align2d.py.  

 

Integrative Structure Modeling of the Importin4_H3/H4_Asf1 Complex  

Integrative structure modeling of the Importin4_H3/H4_Asf1a complex proceeded through four stages 

[29, 49-51]: (1) gathering data, (2) representing subunits and translating the data into spatial restraints, 

[40] configurational sampling to produce an ensemble of structural models that satisfies the restraints, 

and (4) analyzing and validating the ensemble models and data. The modeling protocol (i.e., stages 2, 

3, and 4) was scripted using the Python Modeling Interface (PMI) package, version 4d97507, a library 

for modeling macromolecular complexes on the basis of the open-source Integrative Modeling 

Platform (IMP) package, version 2.6 (http://integrativemodeling.org) [29]. 

 

Stage 1: Gathering data 
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During this study, we obtained four different types of experimental data for the 

Importin4_H3/H4_Asf1a complex, as described above; (1) 72 intra- and inter-molecular DSS cross-

links were identified via mass spectrometry (Fig. 1), identifying the spatial proximities among the 4 

protein components and their conformations (Fig. 4c); (2) an atomic structure of the Importin4668-1081 

CTD domain (Fig. 2) was determined by X-ray crystallography, informing its representation; [40] 2D 

class average images of the Importin4_H3/H4_Asf1a complex were obtained by negative-stain EM, 

delineating the shape of the complex (Fig. 4b); and (4) a SAXS profile was collected, outlining the 

shape and potential dynamics of the complex (Fig. 4d). 

 

Stage 2: Representing subunits and translating data into spatial restraints 

Representations of the complex relied on atomic structures determined by X-ray crystallography 

(Importin4668-1081 in this study and PDB ID: 2IO5) [7] as well as comparative models built with 

MODELLER 9.13 [30] based on the known structures detected by HHPred [31, 32]; HHPred detected 

a template structure of Saccharomyces cerevisiae karyopherin Kap121p (PDB ID: 3W3T) [28] as a 

best-matching template structure (Probability=100.00, E-value=4.2x10
-92

, Score=910.68, Sequence 

Identities=19%, and Sequence Similarity=0.243; Supplementary Fig. 6). We then used the template 

structure for comparative modeling of Importin4
1-667

, using MODELLER 9.13 [30]; 100 models were 

created and a structural model that minimized the DOPE score (DOPE=-125084.10938) [52] was 

selected subsequently for the integrative modeling of the Importin4_H3/H4_Asf1a complex. 

 

The components of the Importin4_H3/H4_Asf1a complex were coarse-grained using beads 

representing either a rigid body or a flexible string, based on the available X-ray structures and 

comparative models, as follows. 

(1) Rigid bodies: A rigid body was defined for each X-ray structure and comparative model. Rigid 

bodies were coarse-grained using two resolutions, where beads represented either individual 

residues or segments of 10 residues. For the one-residue bead representation, the coordinates of a 

bead were those of the corresponding Cα atoms. For the 10-residue bead representation, the 

coordinates of a bead were the center of mass of all atoms in the corresponding consecutive residues. 
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In a rigid body, the beads have their relative distances constrained during configurational sampling 

[50].  

It has been known that the N-terminal and C-terminal regions in the importin family undergo 

conformational changes relative to each other in various conditions [53, 54]. Therefore, we 

represented each of the N-terminal (residues 1-531) and the C-terminal (residues 532-1081) regions 

of Importin4 as a separate rigid body to allow their relative motions during sampling, based on normal 

mode analysis using HingeProt [55]. It is also supported by our investigation that the N-terminal and 

C-terminal regions hold nearly identical conformations of helices on their own, despite of apparent 

variability in their relative orientations among PDB structures of the related importin family. 

(2) Flexible strings of beads: The remaining regions without an atomic model (i.e., the predicted 

disordered regions) were coarse-grained by flexible strings of beads representing up to 10 residues. 

In a flexible string, the beads are restrained by the sequence connectivity and excluded volume 

restraints [50]. 

 

After obtaining this representation, we next encoded the spatial restraints into a scoring function 

based on the information gathered in Stage 1, as follows. 

(1) Cross-link restraints: The 72 DSS cross-links were used to restrain the distances spanned by the 

cross-linked residues [50, 56]. The cross-link restraints were applied to the corresponding residue 

pairs. Each cross-link restraint functions effectively as an upper-bound harmonic restraint of ~17 Å  on 

the distance between the cross-linked residues. 

(2) Excluded volume restraints: The protein excluded volume restraints were applied to each 10-

residue bead, using the statistical relationship between the volume and the number of residues that it 

covered [49, 52, 56]. 

[40] Sequence connectivity restraints: We applied sequence connectivity restraints, using a harmonic 

upper distance bound on the distance between consecutive beads in a subunit, with a threshold 

distance equal to the sum of the radii of the two connected beads. The bead radius was calculated 

from the excluded volume of the corresponding bead, assuming standard protein density [49, 50, 56]. 
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Stage 3: Configurational sampling to produce an ensemble of structural models satisfying the 

restraints 

The search for good-scoring models relied on Replica Exchange Gibbs sampling, based on the 

Metropolis Monte Carlo algorithm [50, 51]. The Monte Carlo moves included random translation and 

rotation of rigid bodies (up to 2 Å  and 0.04 radians, respectively), and random translation of individual 

beads in the flexible segments (up to 3 Å ). Up to 8 replicas were used, with temperatures ranging 

between 1.0 and 2.5. Twenty independent sampling calculations were performed, each one starting 

with a random initial configuration. A model was saved every 10 Gibbs sampling steps, each 

consisting of a cycle of Monte Carlo steps that moved every rigid body and flexible bead once. The 

sampling produced a total of 100,000 models in 20 independent runs. We only considered for further 

analysis an ensemble of 500 best-scoring models with a score better than 295 (this threshold ensured 

satisfaction of the restraints used to compute the models; see below). 

 

Stage 4: Analysis and validation of the ensemble models and data 

Input information and output models need to be analyzed to estimate model precision and accuracy, 

detect inconsistent and missing information, and to suggest more informative future experiments. We 

used the analysis and validation protocol published earlier [49, 51]: Assessment began with a test of 

the thoroughness (convergence) of sampling, followed by clustering and variability in the ensemble of 

best-scoring models, quantification of the model fit to the input information, and assessment by data 

not used to compute the structural model. 

 

(1) Convergence of sampling 

First, we assessed the thoroughness of the configurational sampling by comparing a subset of 250 

best-scoring models from runs 1–10 to another subset of 250 best-scoring models from runs 11–20. 

Each subset of the best-scoring models was converted into a density map that specified how often 

grid points of the map were occupied by a given protein (the “localization probability density map”). 

Importantly, the two localization probability density maps were nearly identical to each other (cross-

correlation coefficient = 0.99; Supplementary Fig. 7a), demonstrating that the Monte Carlo algorithm 
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well sampled all models that satisfied the input restraints. Consistently, the TM-score [57], a measure 

of structural similarity, between representative (centroid) models of the two subsets is 0.951, 

indicating about the same fold. 

 

(2) Clustering and variability in the ensemble of best-scoring models 

K-means clustering [50] identified a single dominant cluster containing 397 similar models (79.4%) 

from the ensemble of 500 best-scoring models (Supplementary Fig. 7b, c). The largest root-mean-

square deviation (RMSD) between a pair of the 500 models was ~15 Å . However, the most of the 

RMSD values were less than ~11 Å  (Supplementary Fig. 7b); more specifically, the most of the RMSD 

values between the dominant (397 models, 79.4%) and minor clusters (103 models, 20.6%) were 

relatively low at less than ~11 Å, considering uncertainty of the data and the coarse-grained 

representation of some unstructured regions. The TM-score [57] between representative (centroid) 

models of the two clusters is 0.889, indicating about the same fold. The cross-correlation coefficient 

between the localization probability densities of the two clusters is 0.99 (Supplementary Fig. 7c). As a 

result, the localization of all protein components is nearly identical between the dominant and minor 

clusters. Therefore, we conclude that there is effectively a single cluster of the 500 best-scoring 

models, at the model precision of ~11 Å  (equal to the RMSD threshold above). 

For the remainder of our analysis, we used all of the 500 structural models. The localization 

probability density maps were computed from the ensemble of the 500 best-scoring models (Fig. 4a). 

The positional variability in the placement of H3/H4/Asf1b relative to Importin4 is relatively small within 

~10 Å , consistent with the localization probability density maps (Fig. 4a). The representative model in 

Fig. 4 and Supplementary Fig. 7-8 was chosen from the centroid model in the ensemble. 

 

[40] Fit to input information 

An accurate structural model needs to satisfy the input information used to compute it. The ensemble 

of models was assessed in terms of how well the models satisfied the information from which they 

were computed, including the chemical cross-links, excluded volume, and sequence connectivity 

restraints, as follows. 
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The ensemble of the 500 best-scoring models satisfied 89% of the DSS cross-links (Fig. 4c and 

Supplementary Table 1); a cross-link restraint was satisfied by the ensemble if the corresponding Cα-

Cα distance in any model in the ensemble was less than 35 Å . The 35 Å  distance threshold was used 

only for the assessment of the cross-links. The chosen cut-off for classifying the cross-links as 

compatible with the model was selected with a bin size of 5 Å , taking into account the expected 

accuracy of the model. The histogram (Fig. 4c) presents nearly ideal Gaussian distribution for the 

cross-links, supporting our cross-link restraints worked well during sampling. Most of the cross-link 

violations were small, and could be rationalized by local structural fluctuations and coarse-grained 

representations of some unstructured regions (Supplementary Fig. 8). In addition, there are some 

general limitations of the XL-MS method that can lead to 5~10% of the cross-links violating a structure 

or a model. This is due to two main reasons: First, interpretation of the mass spectrometry data 

(matching theoretical with experimental data) is associated with an error rate that can be relatively 

easily controlled [42, 43], although this is not trivial for smaller databases. The approximate error rate 

(i.e. false discovery rate) for the data sets used in this work is 5%. Additional, non-compliant cross-

links may be observed in case of sample heterogeneity; the complex under study may be present in 

different conformational states or may be partially dissociated into subcomplexes. Because XL-MS is 

an ensemble method, the cross-links may therefore represent several such states, potentially leading 

to additional 5% violation of the cross-links. Therefore, the ensemble of the 500 best-scoring models 

satisfies the chemical cross-linking data within its uncertainty.  

All best-scoring models in the ensemble satisfied the excluded volume and sequence connectivity 

restraints under the combined score threshold of 20. 

  

(4) Satisfaction of data that were not used to compute structural models 

The most direct test of a model is by comparing it with the data that were not used to compute the 

model (a generalization of cross-validation).  

First, best-matching projections of the representative model (the centroid in the ensemble) fit the 

negative-stain EM 2D class averages (Fig. 4b). The class averages provide overall shape and size 

information of the complex when viewed from various angles. Our integrative model of the complex 
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was validated by comparing each image of the EM 2D class averages with the best-matching 

projection that is computed from the model. As a result, the EM 2D analysis supports that the 

structural model is consistent with the overall shape and size of the complex obtained by the 

negative-stain EM analysis. 

Second, our models in the ensemble are in agreement with the SAXS profile and ab initio shape 

(envelope) of the complex (Fig. 4d and Supplementary Fig. 9; see the Results section). 

 

Accession numbers 

The structure factors for C-Importin4 and C-Importin4_Histone H3 peptide were deposited at PDB 

database (www.rcsb.org) as 5XAH and 5XBK respectively. The integrative model of the 

Importin4_H3/H4_Asf1a complex is available in PDB-Dev (https://pdb-dev.rcsb.rutgers.edu/). 
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Fig. 1. Cross-linking mass spectrometry analysis of the Importin4_histoneH3/H4_Asf1a complex 

 

(a) Purified Importin4_histone H3/H4_Asf1a complex analyzed by SDS-PAGE (left panel). The DSS cross-linked complex 

analyzed by native PAGE (right panel) shows the homogeneity of the samples. The cross-linked protein migrated faster than the 

uncross-linked protein due to its compactness on a native PAGE.  

 

(b) The cross-linked residues are linked with dotted lines on the primary structures of Importin4 (pale purple), histone H3 (cyan), 

histone H4 (green) and Asf1a (yellow). The list of the cross-linked residues is shown in Supplemental Table 1.  

 

(c) The residues of histone H3/H4_Asf1a (PDB ID: 2IO5) that were cross-linked with Importin4, are shown in space filling model 

in red in two different orientations, thus showing that Importin4 might bind the DNA binding surface of the histone H3/H4 dimer. 

The red dashed line indicates the disordered N-terminal tail of histone H3.   

 

(d) The nucleosome structure (PDB ID: 1AOI) with histone H3 in blue and histone H4 in green shows the DNA binding 
surface of histone H3/H4.  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 6, 2017. ; https://doi.org/10.1101/181321doi: bioRxiv preprint 

https://doi.org/10.1101/181321


Fig. 2. Limited proteolysis Analysis of the Importin4_histone H3/H4_Asf1 Complex 
 

(a) Limited proteolysis of Importin4_histone H3/H4_Asf1a and histone_H3/H4_Asf1a. Importin4_histone H3/H4_Asf1a (left panel) 

or histone H3/H4_Asf1a (right panel) were incubated with trypsin for 60 min at 37 °C. The reaction products were analyzed on a 
15% SDS-PAGE and stained with Coomassie brilliant blue staining. 

  

(b-d) Interactions between C-Importin4 and deletion histone H3 peptides (H31-18: 1 to 18 a.a, H31-11: 1 to 11 a.a. and H31-6: 1 to 6 

a.a.). The C-Importin4 was immobilized with 6,000 response units (RU) on a CM5 chip. The peptides were injected as the 

analytes at different concentrations (0, 0.5, 1, 2, 4, 6 and 8 M). 
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Fig. 3. Crystal structures of the C-terminal region of Importin4 and its histone peptide complex   

 

(a) Sequence alignment of the C-terminal regions of human Importin4 (Homo sapiens, Hs_Importin4), dolphin Importin (Tursiops 

truncates, Tt_Importin4) and yeast Kap123 (Kluyveromyces lactis, Kl_Kap123). The secondary structures are shown above the 

sequences based on the crystal structure of C-Importin4. Conserved amino acids among three Importins are shown in pink and 

conserved residues between human and dolphin Importin4 are shown in pale pink. Amino acids involved in binding of the histone 

H4 tail are indicated by asterisks.  

(b) The crystal structure of the C-terminal region (668 to1081 a.a.) of Importin4 (C-Importin4). The outer helices are labelled H16A 

to H24A (pale purple) and the inner helices are labelled H16B to H24B (pale cyan). 

(c) The electrostatic surface representation of C-Importin4 showing an acidic patch between the H18B and H22B helices.  

(d) The crystal structure of C-Importin4 bound to the histone H3 peptide. The histone H3 peptide (GGKA, 12-15 a.a.) is shown as a 

stick model in yellow.   

(e) The histone peptide (GGKA, 12-15 a.a.) is shown on the acidic patch shown in an electrostatic surface representation.  

(f) Detailed view of the histone peptide at the histone binding pocket. Lys 14 of histone H3 interacts with the carboxyl groups from 

Hs_E997 (Tt_E994) and Hs_D994 (Tt_D991). Importin4 Hs_E884 (Tt_E881) interacts with the the carbonyl oxygen of H3 Gly13. 

The carboxyl side chain of Importin4 Hs_E837 (Tt_E834) interacts with the carbonyl oxygen of H3 Gly12. The side chain of 

Importin4 Hs_N918 (Tt_N915) interacts with the imine nitrongen and carbony oxygen of H3 A15, which is also coordinated by 

Importin4 Glu914. The interactions are shown as red dotted lines with distances in Å . The residues from human Importin4 are 

shown as Hs and dolphin Importin4 is shown as Tt.   
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Fig. 4. Analyzing interactions between Importin4 and NLS of histone H3 peptide by Surface Plasmon Resonance  

 

(a) Interactions between C-Importin4 and a histone H3 peptide (1 to 35 a.a). The C-terminal biotinylated histone H3 peptide (1 to 35 

a.a.) was immobilized with 120 response units (RU) on a CM5 chip coated with streptavidin. C-Importin4 was injected as the analyte 

at different concentrations (0, 0.5, 1, 2, 4, 6 and 8 M) of C-Importin4.  
(b) Interactions between full-length Tt_Importin4 (Tt_WT) with a histone H3 peptide (1 to 35 a.a). The C-terminal biotinylated histone 

H3 peptide (1 to 35 a.a.) was immobilized with 120 RU on a CM5 chip coated with streptavidin. Wild-type Tt_Importin4 (Tt_WT) was 

injected as the analyte at different concentrations (0, 31, 62, 125, 250, 500, 1000 and 2000 nM). 

(c)-(e) The binding to histone H3 (1 to 35 a.a.) was measured for each mutant. The C-terminal biotinylated histone H3 peptide (1 to 

35 a.a.) was immobilized with 120 RU on a CM5 chip coated with streptavidin. Mutants of Tt_Importin4 (C: Tt_E994A, D: Tt_E881A, 

and E:Tt_E834A) at different concentrations (0, 31, 62, 125, 250, 500 and 1000 nM) were injected, and the sensorgrams are shown 

in blue color. Tt_Importin4 (Tt_WT) at a concentration of 1,000 nM concentration was injected at before and after each injection of 

mutant and the sensorgrams are shown in red as controls. 

(f) The relative binding of mutants shown in (C)-(E) compared with the binding of Tt_WT is shown in a bar graph. The average of the 

ratios between the binding of the mutant to that of Tt_WT at four different concentrations are shown on the Y axis. The errors among 

the ratios were combined to generate the error bars.   

(g)-(h) The contribution of histone H3 K14 to the interaction with Importin4. Tt_Importin4 was immobilized on a CM5 chip with 7,600 

RU and the wild-type (H3) and mutant histone H3 (H3K14A) peptides were injected at different concentrations (0, 7, 15, 32, 65, 125, 

250 and 500nM). 

(i) The relative binding of H3 and H3K14A peptides toward Tt_Importin4 is shown in a bar graph. The average of the rations 

between the binding of the wild type peptide to that of the mutant peptide at each concentration are drawn in Y axis. The errors 

among the ratios were combined to generate the error bar.  
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Fig. 5. The molecular architecture of the Importin4_Histone H3/H4_Asf1a complex produced through an integrative 

modeling approach 

 

(a) Three views of the representative model (the centroid in the ensemble) of the Importin4_histone H3/H4_Asf1a complex are 

shown in ribbon representation. In all views, the components of the complex are colored in pale purple (Importin4), blue (histone H3), 

green (histone H4), and yellow (Asf1a). At a side, the localization probability density map is shown along with the representative 

model in it; the ensemble of the 500 best-scoring models was converted into the localization probability density map that specified 

how often grid points of the map were occupied by a given protein. 

  

(b) Correspondence of the negative-stain EM 2D class averages and the model projections. Each of the EM class averages is 

shown, along with its best-matching projection computed from the ensemble of the complex models. For each diagram, the projection 

is shown on the left side, and the corresponding EM class average is shown on the right side. 

  

(c) The ensemble of the complex models match well with the chemical cross-linking data. The chemical cross-links falling within the 

Cα-Cα distance threshold of 35 Å  (blue lines) or outside of that threshold (orange lines) are shown on the representative model of the 

complex (ribbon representation). Each of the cross-linked lysine residues is depicted as a red circle. The histogram shows the Cα-Cα 

distance distribution of all 72 DSS cross-links in the model, suggesting that the integrative model of the complex is consistent with the 

XL-MS data as well as X-ray crystallographic structures. 
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Supplementary Fig. 1. Superimposition of  C-Importin4 and C-Importin4_H3 complex 

C-Importin4 in magenta and C-Importin4_Histone H3 in cyan were superimposed with RMSD value is 0.49 Å . 
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Supplementary Fig. 2. Electron density map near histone H3 peptide 

 (a) Electron density maps near the histone H3 peptide binding pocket. A 2Fo-Fc map (1 level) generated in 

presence of the peptide (b) a Fo-Fc map (3  level) and (c)  a kicked omit map (3  level) generated in the 

absence of the peptide. 
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Supplementary Fig. 3. SPR analysis of C-Importin4 binding with histone H3 peptide 

The KD between C-Importin4 and histone H3 peptide was estimated by plotting the response units from Figure 

3A (Y-axis) versus the concentrations (0.5, 1, 2, 4, 6 and 8 M) of C-Importin4 (X-axis). The concentration at the 

half maximum of RU was estimated as 1.6 M.  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 6, 2017. ; https://doi.org/10.1101/181321doi: bioRxiv preprint 

https://doi.org/10.1101/181321


Supplementary Fig. 4. Sequence alignment between human Importin4 and dolphin Importin4.  

The upper lane indicates Homo sapiens (Hs) Importin4, and the lower lane indicates Tursiops truncatus (Tt) 

Importin4. 
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Supplementary Fig. 5. SDS-PAGE analysis of Tt_Importin4 proteins.  

A SDS-PAGE shows Wild-type Tt_Importin4 and three Tt_Importin4 mutants used for SPR analysis.  
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Supplementary Fig. 6. Sequence alignment between the human Importin4 N-terminal domain (NTD) and 

yeast Kap121p 

The sequence alignment between the modeled N-terminal region of the human Importin4 and the template structure 

of S.c. Kap121p is shown, along with the secondary structure assignment by HHPred. The positions of two long 

acidic loops in the NTD of the human Importin4 are indicated by green arrows. 
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Supplementary Fig. 7. Analysis of the ensemble of 500 best-scoring complex models 

(a) Comparison of a subset of 250 best-scoring models from runs 1–10 (left) to another subset of 250 best-

scoring models from runs 11–20 (right). Each subset of the best-scoring models was converted into a density 

map that specified how often grid points of the map were occupied by a given protein (the “localization 

probability density map”). The two localization probability density maps were nearly identical to each other 

(cross-correlation coefficient = 0.99). Consistently, the TM-score, a measure of structural similarity, between 

representative (centroid) models of the two subsets is 0.951, indicating about the same fold. 

(b) The root-mean-square deviation (RMSD) values between a pair of the 500 models is shown. The largest 

RMSD was ~15 Å . However, most of the RMSD values were less than ~11 Å .  

(c) Comparison of the two clusters identified by K-means clustering (Shi et al., 2014). The localization of all 

protein components is nearly identical between the dominant and minor clusters (cross-correlation coefficient 

= 0.99). The TM-score between representative (centroid) models of the two clusters is 0.889, indicating about 

the same fold. Therefore, there is effectively a single cluster of the 500 best-scoring models at the model 

precision of ~11 Å . 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 6, 2017. ; https://doi.org/10.1101/181321doi: bioRxiv preprint 

https://doi.org/10.1101/181321


Supplementary Fig. 8. Mapping of the inter-molecular DSS cross-links onto the integrative model of the 

Importin4_H3/H4_Asf1a complex 

Mapping of the inter-molecular cross-links onto the representative model is shown for different proteins. The 

chemical cross-links falling within the Cα-Cα distance threshold of 35 Å  (blue lines) or outside of that threshold 

(orange lines) are shown on the representative model of the complex (ribbon representation). Each of the cross-

linked lysine residues is depicted as a red circle. 
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Supplementary Fig. 9. SAXS analysis of Importin4_Histone H3/H4_Asf1a complex 

(a) The SAXS profile of the Importin4_histone H3/H4_Asf1a complex is shown in blue dots, along with the 

extrapolation curve (red). The molecular weight of the SAXS sample was estimated to be 162.1 kDa by using SAXS 

MOW, a value nearly identical to the expected molecular weight of 161 kDa from the sequence (thus confirming the 

monomer state of the SAXS sample). An inset presents the Guinier plot shown as a red line in the Guinier region 

(points 3 to 21). The linearity in the Guinier plot confirms a high degree of compositional homogeneity of the 

complex in solution. The radius of gyration (Rg) was determined as 41.9 ± 0.2 Å . (b) The Kratky plot is shown in 
blue dots, along with the extrapolation curve (red). A plateau in this plot (q=0.15 - 0.25 Å-1) suggests some 
flexibility in the complex. (c) The pair distribution function (P(r)) is shown. The maximum particle size (Dmax) 
was determined as 140.5 Å 
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Supplementary Fig. 10. Negative-stain EM 2D class-averages of Importin4_Histone H3/H4_Asf1a complex 

2D class-averages of Importin4_Histone H3/H4_Asf1a complex by negative-stain EM analysis. The extended 

conformations of the complex observed in the 2D class-average are boxed in red. 
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Tables 

Table 1. Data collection and refinement statistics. 

 

 C-Importin4        

(SAD) 

C-Importin4-H3 peptide 

(MR) 

Data collection   

Wavelength (Å ) 

Space group 

0.98002 

P21 

0.97950 

P21 

a, b, c (Å ) 64.92, 110.77, 126.82 65.02, 108.54 124.86  

α = β = γ (°) 90.00, 106.50, 90.00  90.00, 108.31, 90.00 

Resolution (Å ) 50-3.0 (3.05-3.00) *  50-3.20 (2.36-3.20) 

Rsym 0.10 (0.60) *  0.12 (0.85) * 

I / σ(I) 34.82 (3.52) *  24.35 (2.34) * 

Completeness (%) 99.2 (97.5) *  99.4 (100.0) * 

Redundancy 7.3  4.5 

   

Refinement   

Resolution (Å ) 50-3.0 50-3.22  

No. reflections 33,882 26,872  

Rwork / Rfree 0.226/0.280 0.218/0.281  

No. atoms   

Protein 11,283 11,165 

R.m.s.d. deviations   

Bond lengths (Å ) 0.003 0.004  

Bond angles (°) 0.739 0.672 

Ramachandran plot (%) 

Allowed/Generously allowed 

 

92.9 / 7.1 

 

92.1 / 7.9 

 
 
Rwork : Σ ||Fobs|-|Fcalc||/Σ|Fobs|  
Rfree: Σ ||Fobs|-|Fcalc||/Σ|Fobs| where 10% of randomly selected data were used. 
Rsym: Σ|Ihkl-<Ihkl>|/ΣIhkl, where <Ihkl> is the mean intensity of all reflections equivalent to refection hkl.  
* The values in parentheses are for highest-resolution shell. 
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Supplementary Table 1. List of the positions of the inter- and intra-molecular cross-

links 

Intermolecular cross-links 

Protein 1 Protein 2 Residue 1 Residue 2 
C-C 

Distance in 

the model (Å ) 
Importin4 Asf1a 867 159 15.9 
Importin4 Asf1a 801 129 58.5 
Importin4 H3 110 56 34.8 
Importin4 H3 370 27 33.0 
Importin4 H3 401 122 67.7 
Importin4 H3 497 27 27.7 
Importin4 H3 715 4 20.9 
Importin4 H3 715 9 20.1 
Importin4 H3 715 14 27.8 
Importin4 H3 715 18 21.9 
Importin4 H3 715 23 11.2 
Importin4 H3 715 27 21.4 
Importin4 H3 788 27 33.3 
Importin4 H3 788 56 28.3 
Importin4 H3 801 64 21.2 
Importin4 H3 788 36 22.8 
Importin4 H3 867 56 21.3 
Importin4 H3 867 79 27.2 
Importin4 H3 867 122 29.2 
Importin4 H3 1035 4 23.0 
Importin4 H3 1035 14 18.4 
Importin4 H3 1035 18 15.9 
Importin4 H4 81 31 25.9 
Importin4 H4 110 31 16.5 
Importin4 H4 401 31 60.5 
Importin4 H4 497 31 55.6 
Importin4 H4 788 77 26.3 
Importin4 H4 801 77 18.0 
Importin4 H4 788 59 36.6 
Importin4 H4 867 77 16.4 

Asf1a H3 159 79 29.0 
Asf1a H4 159 77 12.6 
Asf1a H4 129 31 30.0 

H4 H3 44 56 16.2 
H4 H3 31 56 20.3 
H4 H3 31 64 14.4 
H4 H3 31 79 29.1 
H4 H3 31 122 18.7 
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H4 H3 59 64 15.7 
H4 H3 59 79 16.7 
H4 H3 77 4 39.3 
H4 H3 77 64 24.2 
H4 H3 77 79 17.9 
H4 H3 79 79 23.4 
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Intramolecular cross-links 
Protein 1 Protein 2 Residue 1 Residue 2 Distance (Å ) 
Importin4 Importin4 715 788 15.3 
Importin4 Importin4 788 867 24.5 
Importin4 Importin4 801 788 8.5 
Importin4 Importin4 801 867 19.7 
Importin4 Importin4 940 867 21.8 

H3 H3 27 23 12.7 
H3 H3 27 56 21.6 
H3 H3 36 56 13.1 
H3 H3 36 64 11.7 
H3 H3 37 56 13.9 
H3 H3 37 64 9.6 
H3 H3 37 79 31.1 
H3 H3 56 4 10.6 
H3 H3 56 14 15.8 
H3 H3 56 18 22.8 
H3 H3 56 23 17.4 
H3 H3 56 64 20.1 
H3 H3 79 4 45.6 
H3 H3 79 56 39.5 
H3 H3 79 64 22.5 
H3 H3 122 64 28.2 
H3 H3 122 79 33.0 
H4 H4 31 44 15.5 
H4 H4 31 59 15.0 
H4 H4 31 77 34.9 
H4 H4 59 8 28.9 
H4 H4 77 8 12.3 
H4 H4 79 77 6.2 
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