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Abstract 
 
The study of fluctuations in time-resolved functional connectivity is a topic of 
substantial current interest. As the term “dynamic functional connectivity” implies, 
such fluctuations are believed to arise from dynamics in the neuronal systems 
generating these signals. While considerable activity currently attends to 
methodological and statistical issues regarding dynamic functional connectivity, less 
attention has been paid toward its candidate causes. Here, we review candidate 
scenarios for dynamic (functional) connectivity that arise in dynamical systems with 
two or more subsystems; generalized synchronization, itinerancy (a form of 
metastability), and multistability. Each of these scenarios arise under different 
configurations of local dynamics and inter-system coupling: We show how they 
generate time series data with nonlinear and/or non-stationary multivariate 
statistics. The key issue is that time series generated by coupled nonlinear systems 
contain a richer temporal structure than matched multivariate (linear) stochastic 
processes. In turn, this temporal structure yields many of the phenomena proposed 
as important to large-scale communication and computation in the brain, such as 
phase-amplitude coupling, complexity and flexibility. The code for simulating these 
dynamics is available in a freeware software platform, the “Brain Dynamics Toolbox”. 
 
Keywords: Dynamic Functional Connectivity, Nonlinear dynamics, Metastability, 
Multistability 
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Introduction 
 
The brain is a dynamic machine par excellence, tuned through the principles of self-
organization to anticipate the statistics and movement of the external milieu1,2. Its 
unceasing dynamics and cycle of prediction-action-perception mark it as distinct from 
even the most advanced deep learning platforms despite impressive advances in 
machine learning. Systems neuroscience is likewise incorporating dynamic 
algorithms into its core methodologies3,4, in the design of hierarchical models of 
perception and inference5; dynamic approaches to clinical disorders6; dynamical 
models of functional neuroimaging data7,8 and dynamic frameworks for the analysis 
of resting state fMRI data9. Dynamic models are at the heart of the distinction 
between functional connectivity and effective connectivity (see Box 1)10 and can help 
disambiguate correlated activity due to mutual interactions from that caused by 
input from a common source. 
 
Research into the dynamics of resting state fMRI data is currently very active, and 
takes its form largely through the study of non-stationarities in time-resolved 
functional connectivity11-13. However, the topic remains hotly disputed, with both 
positive12,14,15 and negative16 reports. In addition, fundamental statistical issues 
continue to be contested, including the utility of sliding-window analyses17-19 as well 
as core definitions of stationarity20. Another issue of substance pertains to the causes 
of putative non-stationarities (assuming they exist); in particular, whether non-
stationarities reflect subtle cognitive process (random episodic spontaneous thought, 
i.e. “rest”21); whether they are slower processes that nonetheless retain cognitive 
salience (such as drifts in attention and arousal22); or whether they are nuisance 
physiological and head motion covariates that have been inadequately removed from 
fMRI time series16. Regardless of these debates, the over-arching motivation of the 
field is that resting-state brain activity is endowed with functionally relevant complex 
neuronal dynamics – either as the substrate for ongoing “thought”, or to prime the 
cortex for perception and action23. So, the central question seems not whether such 
neuronal dynamics exist, but to what extent they can be detected in functional 
neuroimaging data. 
 
Dynamic models of large-scale brain activity can play a key role in this field by 
proposing the types of instabilities and dynamics that may be present24-28. The 
purpose of the present paper is to employ simple dynamic models to illustrate the 
basic processes (“primitives”) that can arise in neuronal ensembles and that might, 
under the right conditions, cause true nonlinearities and non-stationarities in 
empirical data. In doing so, we also aim to disambiguate some key terms in the field. 
First, the differences between non-stationarity and nonlinearity: Both can herald 
underlying dynamics, can cause rejection of common non-parametric nulls, and (as 
we will see) can occur individually or together. Second, the distinctions between key 
terms in dynamic systems theory, especially the catch-phrase terms of meta-stability 
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and multistability (which are often used interchangeably). Hopefully this is a 
constructive step toward a more definitive resolution of the uncertainties in the field. 
 
 

Box 1: Definitions 
 
Functional connectivity: The statistical correlation between remote 
neurophysiological recordings (fMRI voxels, EEG channels, reconstructed sources). 
May be symmetrical (e.g. Pearson’s correlation coefficient) or asymmetrical (e.g. 
partial correlation coefficient). 
 
Effective connectivity: The inferred influence of one neuronal population on another. 
Effective connectivity cannot be directly estimated from linear or nonlinear metrics of 
time series interdependence but rests upon estimation of a generative model of causal 
interactions10. 
 
Autonomous nonlinear system: A time dependent dynamical system with constant 
(time invariant) parameters.  
 
Stationarity: We adopt the simple notion of so-called weak-sense stationarity20, namely 
that the time-lagged auto-correlation and cross-correlation functions are invariant to 
time shifts. That is, if 𝑋" and if 𝑌" are random processes for t = 1,2, …, then for any 
arbitrary integers k, l, m and n, 
 

𝑘 − 𝑙 = 𝑚 − 𝑛	 → 	𝐶𝑜𝑣 𝑋/, 𝑌1	 = 𝐶𝑜𝑣 𝑋2, 𝑌3	 ,    
 
where 𝐶𝑜𝑣 𝑋4, 𝑌5	 = 𝐸 𝑋4 − 𝐸 𝑋4 𝑌5 − 𝐸 𝑌5  is the covariance function between 𝑋" 
and 𝑌".  
 
Nonlinearity: The behaviour of a system arises from a dynamic system with nonlinear 
feedback (such as a limit cycle or chaotic attractor) and cannot be closely 
approximated by a suitable linear reduction (as in noise-driven fluctuations near an 
equilibrium point). 

 
 
 
Methods 
 
1. Coupled dynamics systems 
 
To illustrate the breadth of synchronization dynamics, we study a system of coupled 
neural masses with nonlinear dynamics. This model has been previously employed to 
study whole brain dynamics12,27. The system is composed of local subsystems (or 
nodes) coupled together to form a larger ensemble (for review, see3). Each local node 
comprises a population of excitatory neurons and a slow variable incorporating the 
(simplified) response of a local inhibitory pool of neurons; Inhibitory activity is driven 
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by local excitatory activity, to which it feeds back via a slow inhibitory current. The 
dynamics of neural masses are determined by a conductance-based process, with fast 
(instantaneous) sodium membrane currents and slower potassium currents. The 
dynamics within each node takes the form of a low dimensional nonlinear differential 
equation, 
 

8𝐗
8"
= 𝑓; 𝐗 ,       (1) 

 
where X is a vector of the system’s states (cell membrane potentials, firing rates, 
membrane channel currents). The system has a number of physiologically-derived 
parameters a, such as synaptic connection strengths, membrane channel 
conductances and neural gain29. Depending upon the choice of these parameters, 
single node dynamics may range from a steady-state fixed point attractor, to fast 
periodic oscillations and chaotic dynamics (sustained aperiodic oscillations). Here we 
set local dynamics in the chaotic regime, which arise from a mixing of the time scales 
of the excitatory and inhibitory populations (see Appendix I).  
 
A mesoscopic neural ensemble is constructed by permitting two or more of such local 
neural masses 𝐗<, 𝐗=, …  to interact through a coupling function30. Inter-node 
coupling in this model is composed of excitatory-to-excitatory connectivity. These 
interactions are parameterized by the matrix of internode coupling 𝐂 = 𝑐45 , where i 
is the source node and j is the receiver node. Connections may be reciprocal but 
asymmetric (𝑐45 ≠ 𝑐54). Hence each node’s dynamics are governed by, 
 

8𝐗C
8"
= 𝑓; 𝐗4 + 𝐻FCG 𝐗5 ,      (2) 

 
where i indexes the node and the coupling function H embodies the nature of the 
internode influences amongst all nodes in the system, that is the model of effective 
connectivity. For simulations of large empirical networks, the matrix C can be 
derived from a structural connectome such as a compilation of tracer studies or 
human tractography. Due to technical limitations of current state-of-the-art, 
connectivity matrices derived from MR-based tractography are symmetric 𝑐45 = 𝑐54. 
 
Although we employ a particular model to illustrate synchronization dynamics, many 
of the underlying principles hold for any local system with chaotic dynamics31. 
Periodic dynamics permit a narrower range of dynamic scenarios. For most of our 
simulations, we focus on dyads (pairs) of coupled nodes. Complex dynamics on motifs 
with three or more nodes derive from the principles of two nodes, but add an 
additional layer of complexity, depending on their connectivity as well as the nature 
of axonal time delays25,32-34. We return to these issues below. 
 
All simulations in this paper are performed using the Brain Dynamics Toolbox 
(https://bdtoolbox.blogspot.com.au/) an open-source MatLab-based toolbox for 
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interactive simulations of neuronal dynamics (as described in Appendix II). The Brain 
Dynamics Toolbox allows scaling up to simulate large ensembles, the employment of 
other local node dynamics, the introduction of local stochastic influences and the 
treatment of inter-node time delays. Readers may also wish to explore The Virtual 
Brain35,36, an open source Python-based toolbox specifically for simulating whole 
brain dynamics according to the principles explored here. 
 
2. Dynamic metrics and surrogate algorithms 
 
We employ two metrics of inter-node interactions – the traditional Pearson's 
correlation coefficient, and a measure of nonlinear interdependence based upon time 
series forecasting methods37,38. These are sensitive to stationary linear correlations 
(traditional time-averaged functional connectivity) and stationary nonlinear 
interdependence, respectively. The latter estimates a (normalized) prediction error 
based upon forward projections of each system’s dynamic trajectory: it approaches 
zero for highly structured, completely predictable nonlinear time series and diverges 
quickly toward a maximum error of one when the time series have no structure. 
Crucially, the measure is sensitive to nonlinearities in the time series, possessing 
higher values for nonlinear time series than for random time series with the same 
(cross and auto-correlation) linear properties. There are two versions: self-predictions 
are sensitive to nonlinearities within a time-series whereas cross predictions are 
sensitive to nonlinear interdependences between subsystems.  
 
Estimates of dynamic, instantaneous interactions are obtained by examining the 
behaviour of a phase differences. The Hilbert transform is first applied to each 
system’s time series, allowing an estimate of the instantaneous phase (and 
amplitude) of a signal39. The Hilbert transform of a time series x(t) is given by, 
 

𝑌 𝑡 = <
I

J K
"LK

𝑑𝜏,        (3) 
 
that can be used to compose the analytic signal, 
 

Λ 𝑡 = 𝑥 𝑡 + 𝑖𝑌 𝑡 = 𝐴 𝑡 𝑒4T " ,      (4) 
 
which uniquely defines the instantaneous amplitude A(t) and phase f(t) of the signal 
x(t). Phase dynamics between two signals xi(t) and xj(t) are then given by, 
 

𝜑 𝑡 = 𝜙4 𝑡 − 𝜙5 𝑡 mod	2𝜋.      (5) 
 
In finite length, auto-correlated time series, measures of (linear and nonlinear) 
sample correlations are generally not zero, even for uncoupled, independent systems. 
Measures of correlation taken from large numbers of samples do centre at zero, but 
the variance across individual samples can be substantial. To perform statistical 
inference on the typically modest number of data available, it is thus necessary to 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 28, 2017. ; https://doi.org/10.1101/181313doi: bioRxiv preprint 

https://doi.org/10.1101/181313


	 6	

compare empirical measures of coupling to a null distribution derived from ensembles 
of surrogate data: These are pseudo-time series derived from empirical data by 
resampling methods that preserve the time series length, auto-correlation structure 
and amplitude distribution but have had the property of interest (nonstationarity, 
nonlinearity) destroyed. If the empirical measure falls outside of the null distribution 
then the data can be inferred to contain that property of interest.  
 
For the present study, we employ a non-parametric phase-randomization method40. 
Briefly, multivariate data are mapped into the frequency domain by application of 
the Fourier transform. The phase of each frequency is then independently rotated by 
a random increment between 0 and 2p. The data are then transformed back to the 
time domain. By leaving the amplitude of each frequency untouched, this process 
preserves the power spectrum of the time series and hence the linear auto-
correlations. By rotating the phases of different time series (in a multivariate stream) 
by the same random increment, the cross-correlations are also preserved41. An 
additional step restores the amplitude distribution of the original time series, which 
are otherwise rendered Gaussian42. This resampling approach can be adapted for 
complex three-dimensional data enclosed within a bounded spatial domain, such as 
whole brain fMRI, by using the wavelet transform43. 
 
Phase randomization works because smooth dynamic trajectories generated in a low 
dimensional phase space (such as by equation 1) generate time series with highly 
structured phase relationships across frequencies. To establish the presence of 
nonlinearities and/or non-stationarities, we thus perform the following pipeline of 
randomization. To test for significant linear cross-correlations, we simply rotate the 
time series relative to one another (thus preserving auto- but destroying cross-
correlations) and test the original against the correlations from the time rotated 
surrogate data. To test for nonlinearities within a single time series, we perform 
phase randomization and compare the nonlinear self-prediction errors of the original 
time series to the ensuing surrogate distribution. Finally, to establish nonlinear 
interdependence, we apply a multivariate phase randomization and compare the 
nonlinear cross predictions of original and surrogate ensemble.  
 
Results 
 
We first explore the emergence of dynamic synchrony between two interacting neural 
masses, each with three dynamical variables 𝐗 𝑡 = 𝑉,𝑊, 𝑍 	exhibiting local chaotic 
dynamics. We plot and analyse the time series corresponding to the average 
membrane potential of each system, V1 and V2. In later sections, we consider the 
principles underlying larger ensembles and the translation of these dynamics into 
the setting of noisy experimental data. 
 
1. Uncoupled systems 
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In the absence of coupling 𝑐45 = 𝑐54 = 0, the two coupled neural subsystems evolve 
independently (Figure 1A): Due to their intrinsic aperiodic dynamics, the two systems 
evolve in and out of phase even if their parameters are identical. Plotting the time 
series of one system V1 directly against the other V2 reveals the lack of any underlying 
synchronization structure (Figure 1B). As a result, the difference between the two 
systems’ phase (modulus 2𝜋) unwinds (Figure 1C). It is, however, important to note 
that due to the auto-correlations within each time series, the linear correlation 
coefficient is often not close to zero for any particular finite length sample: The 
correlation coefficient for the time series shown in Figure 1A is 0.08. However, the 
distribution of the linear correlation coefficient from an ensemble of repeated 
realizations of the time series is centred at zero (Figure 1D). This is a reminder that 
anecdotal observations of non-zero correlations can easily be misinterpreted as 
functional connectivity in the data, where there is none. 
 
Surrogate data generated from the time series in Figure 1A by (multivariate) phase 
randomization are shown in Figure 1E. The distribution of linear correlations 
between time series generated by repeated application of phase randomization are 
shown in Figure 1F: It can be seen that the empirical correlation (0.08) falls within 
the surrogate distribution. This observation confirms that the ensemble of surrogate 
data does adequately represent the null distribution of trivial linear correlations that 
arise due to the finite sample length. 
 
Do these data contain further (i.e. nonlinear) structure? This can be tested by 
studying the nonlinear prediction errors, specifically how forward projections of one 
system’s orbits predict the actual evolution of either that same system (nonlinear self-
prediction error) or the other system (nonlinear cross prediction error37,38). Because 
this approach is based upon a low-dimensional phase space reconstruction, it is 
sensitive to nonlinear, as well as linear correlations within the data. Here we see that 
such forward predictions (of one system predicting itself, Figure 1G, and of one 
system predicting the other, Figure 1H) are less than their theoretical maximal value 
of one (black lines). The nonlinear (self-) prediction errors fall well below the forward 
predictions arising from surrogate data (red lines), because the original time series 
have internal nonlinear structure, arising from the local chaotic dynamics. However, 
the nonlinear cross prediction errors fall within the null distribution, because there 
is no coupling and thus no nonlinear interdependence.  
 
In sum, uncoupled chaotic neuronal dynamics give rise to auto-correlated time series 
with trivial linear cross-correlations that distribute around zero. Nonlinear self-
prediction errors lie outside the null distribution, confirming that each time series 
contains nonlinear (chaotic) structure. However nonlinear cross-prediction errors fall 
within the null distribution generated by surrogate data that contain the same linear 
correlations. That is, these data arise from independent (uncoupled) stationary 
nonlinear processes. 
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Figure	1.	Uncoupled	systems	(A)	Time	series	for	two	uncoupled	neural	masses	(V1	is	black,	V2	is	grey)	in	the	
chaotic	regime.	(B)	The	same	time	series	with	V1	plotted	against	V2.	Transients	(t<100)	have	been	omitted.	(C)	
Hilbert	phase	of	V1	relative	to	V2.	Plotted	in	cylindrical	coordinates	with	unit	radius.	(D)	Distribution	of	linear	
correlations	between	V1	and	V2	for	multiple	simulation	runs	with	random	initial	conditions.	 (E)	Amplitude-
adjusted	surrogates	for	the	time	series	from	panel	A.	(F)	Distribution	of	linear	correlations	between	surrogate	
data	drawn	from	the	same	instances	of	V1	and	V2	(ie	one	simulation	run,	multiple	shuffles	of	the	surrogate	
data).	 (G)	Non-linear	self-prediction	of	V1	from	 itself	 (black)	and	from	surrogate	data	 (red).	Note	that	both	
errors	 grow	 toward	 one	 with	 longer	 prediction	 horizons,	 but	 the	 original	 data	 falls	 well	 below	 the	 null	
distribution.	 (H)	Non-linear	 cross-prediction	of	V1	 from	V2	 (black)	and	 from	surrogate	data	 (red).	Here	 the	
empirical	data	falls	within	the	surrogate	distribution,	reflecting	the	absence	of	inter-system	coupling.	
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2. Generalised synchronization 
 
In the presence of strong unidirectional coupling, e.g. 𝑐<= = 0.6, 𝑐=< = 0,	two neural 
subsystems with identical parameters exhibit a rapid convergence to complete 
synchrony: That is, the second (slave) system rapidly adjusts its dynamics to match 
those of the first (master) system (Figure 2A). Thereafter the two systems pursue 
identical orbits – that is, they exhibit identical synchronization, evidenced by their 
rapid convergence to perfect phase synchrony (Figure 2C) and their states approach 
the hyper-diagonal in phase space, V1=V2, W1=W2, Z1=Z2. For simplicity, we plot a 
two-dimensional cross section through the full dimensional phase space spanned by 
V1 and V2 (Figure 2C). It can be seen that the initial transient (grey line) rapidly 
converges onto the hyperdiagonal (black line). 
 
The onset of identical synchrony occurs for much weaker inter-node coupling if it is 
bidirectional, 𝑐<= = 0.05, 𝑐=< = 0.05. This is because both systems are able to 
simultaneously adjust their internal dynamics according to the state of the other 
system, leading to a more stable, integrated system. 
 
Biological systems are obviously not composed of identical subsystems because some 
degree of asymmetry is inevitable. However, two neural masses with modestly 
mismatching parameters continue to exhibit strong, rapid and stable synchrony if the 
inter-node coupling is sufficiently strong (Figure 2B). These dynamics are 
accompanied by stable 1:1 phase locking between the two systems (Figure 2D). That 
is, following an initial transient of phase unwinding (until t=~150ms), the phase 
difference remains close to zero, although it shows brief, bounded excursions. Rather 
than contracting onto the (hyper-) diagonal linear subspace, the orbits of this system 
converge toward a smooth manifold that lies just off the diagonal (Figure 2F). This 
phenomenon, known as generalised synchronization, arises in a broad variety of 
coupled asymmetric chaotic systems44-47. The smooth surface onto which the orbits 
converge is known as the synchronization manifold.  
 
The time series generated in this scenario embody several instructive properties. The 
presence of synchrony gives rise to linear correlations that are close to unity. After a 
brief transient of less than 150 ms, the correlation coefficient is above 0.99 for all 
successive time windows. That is, the system has stationary linear cross-correlations. 
In the presence of static measurement noise, such a system would give rise to 
stationary functional connectivity (that is the ensemble linear statistics are 
stationary over successive time windows). However, these time series also contain 
deeper structure than multivariate surrogate data that possess the same linear (auto- 
and cross-) correlations. That is, the nonlinear prediction error (Figure 2G) and 
nonlinear cross prediction (Figure 2H) of the original data both lie outside of the 
corresponding linear null distributions. This arises because the system traverses 
phase space on the highly structured and smooth synchronization manifold. 
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 Figure	2.	Generalised	synchrony	(A)	Time	series	for	two	coupled	identical	neural	masses	(V1	is	black,	V2	is	
grey)	exhibiting	identical	synchronization.	(B)	Time	series	for	two	coupled	non-identical	neural	masses	(V1	is	
black,	V2	is	grey)	exhibiting	generalized	synchronization.	(C)	Hilbert	phase	of	V1	relative	to	V2	for	the	case	of	
identical	 synchronization.	Note	 the	 rapid	 approach	 to	 stable	 1:1	 phase	 synchrony.	 (D)	Hilbert	 phase	 of	 V1	
relative	to	V2	for	the	case	of	generalised	synchronization.	Brief,	but	incomplete	phase	slips	continue	to	occur	
following	 the	 transient.	 (E)	 V1	 plotted	 against	 V2	 for	 the	 cases	 of	 identical	 synchronization.	 After	 a	 brief	
transient,	 the	 system	 approaches	 the	 diagonal.	 (F)	 V1	 plotted	 against	 V2	 for	 the	 cases	 of	 generalized	
synchronization.	Transients	have	been	omitted.	(G)	Non-linear	self-prediction	of	V1	from	itself	(black)	and	from	
surrogate	data	(red).	(H)	Non-linear	cross-prediction	of	V1	from	V2	(black)	and	from	surrogate	data	(red).	 
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In addition to the presence of stationary linear statistics, these data thus contain 
nonlinear correlations previously termed “dynamic connectivity”48. This property of 
the data permits rejection of the null hypothesis represented by the multivariate 
surrogate data, namely that the time series are generated by a stationary 
multivariate linear process. Since trivial analysis of the stable and very high linear 
correlations shows that the linear statistics are stationary, then the preceding 
analyses points to the (true) alternative hypothesis that the data are generated by a 
stationary multivariate nonlinear process. 
 
3. Metastability 
 
We next study the development of generalized synchrony in the presence of 
increasingly strong unidirectional coupling 𝑐<= > 0, 𝑐=< = 0 - that is, as the second 
system gradually adjusts its dynamics to those of the first. Increasing coupling 𝑐<= 
from zero leads to a monotonic increase in the time averaged correlation coefficient  
until the onset of stable generalized synchronization. However, the accompanying 
dynamic behaviour is quite complex49. When the coupling is not sufficiently strong, 
the two systems show instances of desynchronization, evident as a separation of the 
states of each system (see example in Figure 3A) and a complete unwinding of the 
relative phase. For weak levels of unidirectional coupling (e.g.	𝑐<= = 0.1), brief periods 
of generalized synchrony (and corresponding phase locking) appear amongst longer 
intervals of phase unwinding (Figure 3B). If the coupling is increased, the duration 
of synchronous epochs lengthens, and the instances of phase unwinding become 
confined to brief, erratic bursts (Figure 3C). Even in the presence of reasonably strong 
coupling (e.g. 𝑐<= = 0.5)	such bursts continue to (infrequently) appear if one waits for 
a sufficiently long period of time (e.g. a single burst over a 20 second duration, Figure 
3D). Meanwhile, as the coupling increases, the synchronization manifold contracts 
toward the hyper-diagonal, with asynchronous bursts corresponding to brief, 
disorganised, large amplitude excursions (Figure 3E). 
 
The occurrence of such bursts corresponds to a dynamical phenomenon known as 
metastability. In brief, for strong coupling, the system possesses a single, low 
dimensional chaotic attractor that is embedded within the synchronization manifold: 
Although the dynamics of this chaotic attractor are reasonably complex (Appendix I), 
both systems converge onto the same manifold, corresponding to stable (and 
stationary) generalized synchronization50. The dynamics considered within the full (6 
dimensional) space spanned by both systems becomes relatively simple. However, if 
the coupling is slowly weakened from this scenario, there appears a critical value 
𝑐/	below which instabilities appear within the synchronization manifold and the 
system “blows-out” into the full phase space for brief instances (this is formally called 
a blowout bifurcation51,52). In the vicinity of this blowout bifurcation 𝑐<= ≈ 𝑐/, the 
intervals between asynchronous bursts can be very long, following a heavy-tailed 
process52.  
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Figure	3.	Metastability	(A)	Time	series	for	two	weakly	coupled	neural	masses	(V1	is	black,	V2	is	grey)	showing	
a	single	 instance	of	desynchronization.	 (B)	Hilbert	phase	of	V1	relative	to	V2	with	relatively	weak	coupling.	
Periods	of	generalized	synchronization	are	interspersed	by	erratic	desynchronization.	The	grey	shaded	region	
(bottom	of	panel)	shows	the	point-wise	correlations	between	V1(t)	and	V2(t)	smoothed	over	a	1	sec	moving	
window	(C)	Hilbert	phase	of	V1	relative	to	V2	with	medium	coupling.	The	instances	of	desynchronization	have	
become	relatively	infrequent	and	briefer.	(D)	With	strong	coupling,	instances	desynchronization	are	relatively	
rare.	(E)	Plot	of	V1	versus	V2	for	the	case	of	strong	coupling.	The	desynchronization	is	seen	as	a	brief,	erratic	
excursion	from	the	synchronization	manifold.	(F)	Non-linear	self-predictions	of	V1	from	itself	(black),	and	(G)	
Non-linear	cross-predictions	of	V1	from	V2	(black).		Predictions	of	V1	from	surrogate	versions	of	V2	are	shown	
in	red.	The	time	series	retain	nonlinear	structure	despite	the	instances	of	desynchronization.	
 
 
Metastability is perhaps better known when there are multiple competing states53-55. 
Such a system cycles between such states, exhibiting a broad variety of synchronous 
behaviours (such as a variety of cluster solutions56. In the present setting, there is 
only one such unstable state and the system hence jumps away, then returns back 
toward the same synchronous state. This specific type of behaviour is known in the 
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literature as itinerancy57-59. In more technical parlance, it is an example of homoclinic 
itinerancy (“homo” referring to a single system that is both attracting and repelling). 
 
Itinerancy endows the time series with highly non-stationary properties: The 
unstable bursts yield a loss of phase synchrony and a corresponding local decrease in 
the linear correlation coefficient, both of which return to high values during the 
longer periods of generalized synchronization. As a result, fluctuations in time-
dependent linear correlations from the original time series are greater than those 
arising from multivariate (stationary) surrogate data. Nonlinear prediction errors 
and cross prediction errors both remain outside the null distributions (from 
multivariate surrogate data) even if these are obtained from long windows that 
contain several of the bursts (Figure 3F,G). 
 
A final summary description of these data is therefore quite nuanced. Recall that they 
are generated by a coupled nonlinear dynamic system whose parameters are all 
constant and, in particular, do not depend upon time. These data are hence generated 
by an autonomous, multivariate nonlinear process. They yield data whose nonlinear 
properties (for example, phase locking) are highly dynamic. The linear properties of 
these dynamics are also highly non-stationary – that is, they possess fluctuating time-
resolved functional connectivity. Moreover, because the itineracy has long-tailed (non-
Poisson) statistics, these properties cannot be captured by a classic finite state 
Markov model and hence they can be considered to violate formal definitions of weak-
sense stationarity [cite]. 
 
The term “dynamic functional connectivity” is arguably a poor term to summarise 
these properties and to disambiguate metastability from the stationary but nonlinear 
properties that arise in the setting of generalised synchronization, both of which 
permit rejection of the stationary, linear null: We return to this issue in the 
Discussion. 
 
4. Multistability 
 
We consider one further dynamical scenario that yields non-trivial, dynamics 
interdependence between two or more systems, namely multistability. In a 
multistable system there exist two or more stable attractors: That is, there are 
dynamical regimes that, in the absence of noise, trap the behaviour of a system 
indefinitely. Multistability then arises when there is noise 𝜁 added dynamically to 
the states, 
 

8𝐗C
8"
= 𝑓; 𝐗4 + 𝐻FCG 𝐗5 + 𝑏. 𝜁4,     (6) 

 
where 𝜁4 is a stationary zero mean stochastic process scaled in amplitude by the 
parameter b. When the noise is of sufficient amplitude, a multi-stable system is able 
to escape the basin of each attractor, and jump from one to the other. This is a subtle, 
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albeit important difference between multistability and metastability: A metastable 
system is composed of only unstable nodes, and the evolution of the system cycles 
from one to the other (or back to itself) even if there is no noise 𝜁 = 0. In contrast, a 
multistable will settle onto one stable attractor unless external noise is injected 𝜁 >
0. The difference may seem subtle but the mechanisms, emergent system behaviour 
and resulting statistics are quite distinct (for review, see53). 
 
In an array of coupled systems such as we are considering, multistability can arise 
when each individual node has multiple attractors. It can also emerge when the 
individual nodes are monostable, but the inter-node interactions introduce multiple 
types of synchronization dynamics56. In the system considered above, there is only 
one (chaotic) attractor per node but the coupled ensemble can exhibit multistable 
attractors, for example when there are three or more nodes and their interactions 
have axonal time delays32.  
 
The emergence of multistability through the interactions of monostable elements is 
very interesting, but also rather complex. For reasons of relative simplicity, we will 
thus illustrate a system of coupled nodes where each single node has two attractors; 
a fixed point and a co-occurring periodic limit cycle. That is, each individual node can 
exhibit either steady state or oscillatory behaviour, depending on the state to which 
it is initially closest. A simple – or “canonical” – form of this system has been used to 
model the human alpha system60, and is a mathematical approximation to a complex 
neural field model61. The equation for the amplitude dynamics of a single node 
according to this simplified model are given by, 
 

8d
8"
= −𝑟f + 𝜆𝑟h + 𝛽𝑟 + 𝑏<. 𝜁< + 𝑏=. 𝜁=𝑥,    (7) 

 
where r is the amplitude, 𝜆 and 𝛽are parameters that control the size and depth of 
the fixed point and limit cycle attractor basins. The parameters 𝑏< and 𝑏= control the 
influence of the additive 𝜁<	and multiplicative noise 𝜁=𝑥, respectively (see Appendix 
III for full details).  
 
When the attractor basins of each system are large (i.e. the basin boundaries are 
distant from the attractors) and the noise has low amplitude, the two coupled systems 
exhibit either noise driven low-amplitude fluctuations (Figure 4A) or high amplitude 
oscillations (Figure 4B).  When the noise is of sufficient strength or the attractor 
basins are shallow, the dynamics at each node jump from one attractor to the other. 
In the absence of inter-node coupling, these transitions occur independently (Figure 
4C). The introduction of inter-system coupling increases the coincidence in the timing 
of the state transitions (figure 4D). However, due to the presence of system noise, 
these do not always co-occur, even for relatively strong coupling. 
 
To illustrate the corresponding interactions between two coupled multistable nodes, 
we focus on their amplitude fluctuations and ignore their phases. In the absence of 
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coupling (𝑐45 = 𝑐54 = 0), linear correlations between the amplitude fluctuations 
converge toward zero for sufficiently long samples. However, linear correlations 
taken from brief samples do fluctuate considerably. Locally, the noise driven 
amplitude fluctuations are highly incoherent because the noisy inputs are 
independent (i.e.	𝜁4 ≠ 𝜁5 ). However, if the two systems do transition, by chance at 
similar times, then the local linear correlations are driven by these large amplitude 
changes in the variance, giving rise to large (but spurious) correlations (both positive 
and negative). Over time, these fluctuations centre on zero (Figure 4E), although they 
have high variance (SD=0.22) as a consequence of coincidental state switches. 
Moreover, the distribution of sample correlations (taken from short time windows) is 
not substantially influenced if one of the time series is randomly shifted in time 
compared to the other: The distribution of values is thus a reflection of the stochastic 
timing of the erratic amplitude jumps within each system, and whether both systems 
happen to switch within the same time window. 
 
In the presence of coupling, the local fluctuations remain uncorrelated. This is due to 
the independence of the noise sources, 𝜁4 ≠ 𝜁5. Even though the function f is nonlinear, 
the system evolves in a largely linear fashion within each attractor, and the inter-
system coupling is overwhelmed by the independent noisy perturbations around each 
attractor. However, if one system jumps between basins, it then exerts a strong pull 
on the other system, until it too jumps to the corresponding attractor. The ensuing 
coincidence of such large-amplitude state changes then skews the sample linear 
correlation toward the right (i.e. positively) so that they centre at a value greater than 
zero (Figure 4F). Linear correlations from long time series converge to a positive value 
that is typically larger than the average of the sample correlations, because such long 
windows are increasingly dominated by the large-amplitude states changes. Notably, 
the average of the sample correlations and the long-term correlation coefficient 
converge toward zero if one time series is independently rotated in time with respects 
to the other, underscoring the effect of inter-system coupling on sample correlations.  
 
As raised above, the local (very short term) fluctuations are dominated by the 
independent noise sources, even in the presence of coupling. These data do not 
contain additional nonlinear structure (both the nonlinear prediction errors and cross 
prediction errors fall within the null). Between state transitions, the data resemble 
stationary stochastic fluctuations. Only when considered on lengthy time series data 
do the sample statistics reflect the presence of the underlying nonlinear multistable 
attractor landscape.  
 
The time series generated by a coupled (noise-driven) multistable system hence show 
multivariate statistics that are locally stochastic, independent and stable, but are 
globally highly correlated and fluctuate substantially. If the noise term is 
independent of the state of the system (as per equation (6)) then the switching 
between attractors is Poisson60. The statistics of the time series can then be closely 
approximated by a  finite state Markov  process, with a fixed likelihood Λ	of jumping  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 28, 2017. ; https://doi.org/10.1101/181313doi: bioRxiv preprint 

https://doi.org/10.1101/181313


	 16	

 

 
Figure	4.	Metastability	(A)	Time	series	of	the	noisy	subcritical	Hopf	model	with	one	node.	With	𝛽 = −10	the	
system	exhibits	a	stable	(noise	perturbed)	fixed	point	at	𝑟 = 0.	(B)	With	𝛽 = −6x	the	system	exhibits	a	stable	
limit	cycle	with	amplitude	𝑟 = 2.	Oscillations	are	shown	in	grey.	Black	represents	the	noise	driven	amplitude	
fluctuations,	with	 close-up	 shown	 in	panel	D.	 (C)	With	𝛽 = −7.5,	 the	 system	exhibits	bistability	with	noise	
driven	switching	between	the	fixed	point	and	limit	cycle.	For	simplicity,	the	(grey)	oscillations	are	not	shown.	
(E)	System	with	2	nodes	and	𝛽 = −7.5	but	zero	coupling	(𝑘 = 0).	The	systems	jump	between	the	fixed	point	
and	limit	cycles	independently.	(F)	Histogram	of	the	linear	correlations	between	the	time-series	generated	by	
the	two	nodes	from	panel	E.	The	simulation	was	repeated	for	N=200	trials	with	random	initial	conditions	for	
each	trial.	The	correlations	centre	at	zero	but	with	substantial	inter-trial	variability.	(G)	System	with	2	nodes	
and	𝛽 = −7.5	and	strong	coupling	(𝑘 = 1).	The	jumps	between	the	fixed	point	and	limit	cycles	occur	in	similar	
time	windows.	(F)	Histogram	of	the	linear	correlations	between	the	time-series	generated	by	the	two	nodes	
from	panel	E.	The	correlations	centre	well	above	zero	with	reduced	inter-trial	variability.	
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states at any time, thus generating Poisson statistics with an exponential 
distribution of dwell times. Despite the erratic nature of the state transitions, this 
result thoretically renders the statistics weak sense stationary (WSS) because the 
expected correlation and cross-correlations are independent of time20. 
 
However, there is one final nuance that is conceptually important. In many 
situations, the influence of the state noise 𝜁 is state dependent, in which case a more 
general differential equation pertains, 
 

8𝐗C
8"
= 𝑓; 𝐗4 + 𝐻FCG 𝐗 + 𝐺l 𝐗, 𝜁4 ,     (8) 

 
where the influence of the state noise 𝜁 is dependent on the states X via the function 
G. When the noise is state dependent, (e.g. 𝐺l 𝐗, 𝜁4 = 𝑏𝐗. 𝜁4, as in the case of Figure 
4), then the system typically gets trapped near each of the attractors in a non-
stationary manner60. More technically, in setting of purely additive noise, transitions 
probabilities are time invariant and follow a stationary Poisson process. But with 
multiplicative noise, the chance of a state transition decreases as the time since the 
last transition increases. This non-stationarity gives rise to a heavy-tailed (stretched 
exponential) distribution of dwell times60. Long dwell times are more likely than in 
the case of purely additive noise case. More crucially, the dwell time is dependent on 
the history of the system.  As a consequence, sample statistics cannot be well 
approximated by a standard finite state Markov process. This is a system for which 
the covariance between the two nodes is not time invariant and the process is thus 
not weak sense stationary. 
 
In sum, the system governed by equation (6) for cij>0 yields stochastic (linear) time 
series that fluctuate considerably. However, the statistics are only non-stationary in 
the strict sense if the noise is multiplicative (state dependent) so that systems gets 
trapped within each state and the ensuing statistics are non-Poisson. 
 
4. Complex dynamics in larger ensembles 
 
We have thus far restricted our analyses to coupled dyads in order to illustrate 
dynamic “primitives” – generalized synchronization, metastability and 
multistability. However, cognitive function inevitably involves exchanges between a 
substantial number of cortical regions – certainly more than two62-65. To what extent 
do dynamics in dyads inform our understanding of dynamics in larger ensembles, 
particularly as time delays (𝜏) between nodes become an indispensable part of 
modelling larger systems?  
 
In some circumstances, the complex dynamics that occur between two nodes are 
inherited “upwards” when a large array of nodes are coupled together using the same 
principles of coupling. Thus, a system expressing multistability during the 
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interaction between two nodes will often exhibit noise-driven multistable switching 
when more nodes are added. In this situation, nodes may cluster into “up” and “down” 
states – i.e. clusters of nodes occupying the same attractor may emerge, likewise 
segregated from other clusters which co-occupy a distinct state: In fact, in many 
coupled oscillator systems, such multistable clustering is quite generic66 and can 
theoretically encode complex perceptual information67. 
 
On the other hand, introducing more nodes can lead to additional complexities and 
dynamic patterns that are not possible with 2 nodes. A classic example is the nature 
of phase relationships between nodes in the presence of time delayed coupling: With 
two nodes, the time delays cause a phase lag between the coupled nodes’ oscillations. 
However, when three nodes are coupled in an open chain (or “V”) formation, then the 
outer nodes can exhibit stable zero-lag synchrony, with the middle node jumping 
erratically between leading and lagging the outer nodes68. Although first described in 
arrays of coupled lasers69 considerable work has since shown that such zero-lag 
configurations arise in small V-shaped motifs of coupled neural systems, including 
spiking neurons68 and neural mass models70 Importantly, stable zero-lag synchrony 
between the outer nodes of a V motif can survive immersion into larger arrays, where 
they increase the stability of the system as a whole28. Such observations support the 
notion that these coupled triplets underlie the emergence of zero-lag correlations that 
have been observed in diverse neurophysiological recordings71,72. However, closing 
the 3-node motif by adding a link between the outer nodes (hence turning the V into 
a cycle) destroys stable zero-lag synchrony, instead promoting “frustrated” 
metastable dynamics32. 
 
While considerable progress has been made in this area, the full armoury of complex 
dynamics in large systems of coupled neural subsystems is far from understood. For 
illustrative purposes, we consider a number of candidate scenarios that arise in larger 
arrays, specifically when simulating neural mass dynamics on a matrix of 47 cortical 
regions derived from CoCoMac73, a compilation of tracing studies from the Macaque 
brain that yields a sparse (22%) binary directed graph (available in the Brain 
Connectivity Toolbox74). We employ a coupling function 𝐻FCG that mimics a competitive 
(agonist) feedback between local self-excitation and input from distant regions such 
that as the influence of external nodes is scaled up by a coupling constant k, local 
recurrent feedback is correspondingly scaled down by (1-k). All inter-node influences 
occur through the coupling matrix Cij. 
 
The neural mass model employed here possesses time two scales – a fast local field 
oscillation of approximately 100Hz nested within a slower time scale of 
approximately 10Hz (due to the slow inhibitory feedback, see Appendix I). When 
parameterised with strong inter-node coupling (e.g. k=0.75) and a time delay that 
approaches the period of the fast oscillations of the neural mass model (𝜏 = 6-10 ms), 
the ensemble dynamics break into a number of phase coupled clusters (Figure 5A,B).  
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Figure 5. Complex dynamics in larger ensembles (A) Stable partitioning of ensemble dynamics 
into 4 phase-coupled clusters with τ = 10ms and coupling k=0.75. (B) Partitioning of ensemble 
dynamics into 6 phase-coupled clusters with τ = 6ms and coupling k=0.75. There is slightly greater 
disorder in some of the clusters compared to those in panel A. (C, D) With weaker coupling and/or 
shorter time delays (τ = 5.5ms, k=0.45), there are brief phase slips, leading to a reorganization of the 
cluster configuration. With briefer time delays (τ = 5ms), clustering does not occur. Instead the system 
shows instances of global synchrony interspersed amongst spatiotemporal chaos. 
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Each cluster is constituted by phase entrainment to a common beat of the faster 
rhythm. The full array of cluster states then recur over the course of the slow 
oscillation. Note that the number of clusters may differ according to the time delay (4 
clusters for 𝜏 = 10ms, figure 5A and 6 clusters are apparent for 𝜏 = 6ms, figure 5B). 
In this scenario, the nodes within clusters show stable, stationary generalised 
synchronization. Nodes in different clusters also show generalised synchronization, 
albeit with a constant phase offset. This is an ensemble equivalent of stable 
generalized synchrony in coupled dyads. 
 
This example illustrates the self-organization of coupled neural systems into dynamic 
communities, an example of functional segregation. Of interest, if the coupling is 
weaker (e.g. k=0.45) or the time delay shorter (𝜏 < 6 ms), the ensemble dynamics show 
brief instances of desynchronization, such that the global coherence of regions into 
clusters decreases and nodes switch alliances between clusters (Figure 5C). Similar 
occasions of desynchronization can herald a reconfiguration from a poorly organised 
state to highly clustered dynamics (Figure 5D). In these settings, the ensemble shows 
some dynamic flexibility in addition to segregation. Such instances render the 
ensemble statistics non-stationary around the point of transition. 
 
If a shorter time delay (𝜏~5	ms) is incorporated into the model, then a clean 
demarcation into distinct phase coupled clusters does not arise. The ensemble rather 
shows instances of near global synchrony interspersed by longer periods of relatively 
dispersed dynamics (Figure 5E). During the epochs of high global synchrony, zero-lag 
synchrony emerges and as a result, the ensemble has highly ordered (low entropy) 
dynamics: Outside of these windows, the amount of order amongst the nodes is low. 
The ensemble statistics in this setting are both nonlinear and non-stationary.  
 
These scenarios illustrate the capacity of neuronal ensembles to exhibit a diversity of 
dynamic behaviours that yield nonlinear and nonstationary statistics. In some 
scenarios, dynamical primitives that characterize coupled pairs (generalized 
synchronization, metastability and multistability) dominate the ensemble dynamics, 
yielding their characteristic dynamic fingerprints. New phenomena also appear, 
including zero lag synchrony (despite the presence of time delays) and clustering. 
Typically, these new behaviours compliment the basic dynamics present in coupled 
dyads, hence metastable bursts yielding spontaneous reconfiguration of cluster 
states.  
 
Discussion 
 
The growth of interest in “dynamic” resting state functional connectivity motivates a 
deeper understanding of synchronization dynamics in neural systems. Our objective 
was to illustrate the breadth of synchronization dynamics that emerge in pairs and 
ensembles of coupled neural populations, and to propose these as putative causes of 
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empirical observations. To recap, coupled dyads exhibit several basic forms – dynamic 
‘primitives’ – that yield non-trivial statistics in the ensuing time series: Generalized 
synchronization yields stationary nonlinear time series; Metastable dynamics, which 
arise when the inter-system coupling is below a critical threshold, yield nonstationary 
and nonlinear statistics. Multistability yields a non-stationary process that is locally 
linear (i.e. on short time scales) but evidences strong nonlinear properties globally 
(over long time scales). When such pairs are integrated into a larger ensemble and 
the coupling is imbued with time delays, then these basic primitives combine with 
new phenomena, such as phase clustering, to cause complex dynamics that 
spontaneously switch between different network configurations. This yields time 
series whose statistics violate the assumptions of a stationary stochastic process and 
which hence yield non-trivial fluctuations in time resolved functional connectivity. 
The dynamics primitives of generalized synchronization, metastability or 
multistability may thus account for the spontaneous fluctuations observed in resting 
state fMRI data. 
 
It is also interesting to consider the computational potential of these synchronization 
dynamics. Neural mass models describe the local average of neural activity, namely 
local field potentials and average spike rates, not individual spikes. It has been 
proposed that coherent oscillations in the local field potentials of disparate brain 
regions promotes information transfer75 and spike time dependent plasticity76. 
Accordingly, the dynamics illustrated in this paper would allow such neuronal 
binding77 to occur across multiple time scales, and amongst dynamic cortical 
assemblies that form and dissolve through active, nonlinear processes21,78. Dynamic 
synchronization, and desynchronization, could also underlie the spontaneous shifts 
in attention the co-occur with changes in neuronal oscillations79,80 and in the absence 
of changes in task context22. The nesting of a fast oscillation in a slower one – as 
occurs for our neural mass model - yields phase-amplitude and phase-phase 
interactions, which have been proposed supporting cognitive processes requiring 
complex spatial and temporal coordination81-84.  More deeply, the presence of weak 
instabilities (such as brief desynchronizations) in cortical dynamics have been 
proposed as a means by which cortex can be primed to respond sensitively to sensory 
perturbations and thus to optimise perceptual performance85,53. Future work is 
required to elucidate the effects of exogenous stimulation and endogenous parameter 
modulation on neural dynamics, and thus to more directly address these issues86. 
 
There are several important caveats of the present study. Most notably, functional 
connectivity denotes correlations between neurophysiological recordings (see Box 1): 
We have interrogated the time series of simulated neuronal states X. Neural states 
are not directly evident in empirical functional imaging data, which rather arise from 
noisy and indirect observation processes. We can somewhat crudely represent this as, 
 

𝑌p 𝑡 = 𝑀 𝑋r 𝑡s + 𝜂p       (9) 
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Where 𝑌p is the empirical signal in channel/voxel 𝑣, M is a complex measurement 
process (a nonlinear convolution over a set of regions 𝑖 ∈ 𝐼 and time 𝜏 ∈ 𝑇) and 𝜂p is 
the added measurement noise. Functional connectivity is defined as 𝐶𝑜𝑣 𝑌p, 𝑌x  not 
𝐶𝑜𝑣 𝑋4, 𝑋5 . In the case of fMRI, the BOLD signal arises from the summed effect of 
neuronal activity signalling slow changes in blood flow, mediated by neurovascular 
coupling87. The nett effect of this hemodynamic response function (HRF) is a broad 
low pass filter88, which also includes some spatiotemporal mixing if sampled at 
sufficiently high spatial resolution89. Empirical functional connectivity in rs-fMRI 
experiments thus reflect slow changes (<0.1Hz) in synchronization dynamics plus the 
effect of local spatial mixing. Although we do not explicitly model the observation 
function, it is worth noting that both meta- and multistability yield fluctuations that 
are substantially slower than the time scales of the single node neural dynamics (see 
Fig 3B-D), clearly extending into the slow time scales of the HRF. Explicitly 
incorporating an observation function into a computational framework is crucial to 
any definitive resolution of fMRI fluctuations. However, the appearance of slow 
fluctuations in synchrony from fast dynamics lies at the core of the body of work using 
neural mass models to study fMRI12,27,28,90-92. 
 
In comparison, EEG and MEG directly detect field fluctuations and do not suffer the 
same temporal filtering as fMRI. Analyses of resting state EEG93-95 and MEG96 data 
using nonlinear time series techniques has shown that the human alpha rhythm is 
imbued with substantial nonlinear structure. Integrating these findings with use of 
biophysical models has shown that the alpha rhythm arises from multistable 
switching between a fixed point and periodic attractor in the presence of 
multiplicative noise60,61 – precisely the scenario illustrated in Figure 3. This process 
yields fluctuations in alpha power whose time scales clearly extend into those of the 
HRF97. Crucially, the presence of multiplicative noise in the model (and non-Poisson 
dwell times for each attractor) imply, as discussed above, that the system statistics 
are history dependent and are not (weak sense) stationary according to formal, quite 
restrictive definitions20. By this we can infer that the statistics of resting state cortex 
are non-stationary. 
 
Despite their superior temporal fidelity, EEG and MEG sensor data involve 
substantial spatial summation of source activity. Although “off the shelf”98,99 source 
reconstruction methods are now available, they inevitably incorporate assumptions 
about the covariance structure of the sources and the measurement noise100. As such, 
and despite post-hoc unmixing steps (orthogonalization101), there does not yet exist a 
definitive account of the contribution of synchronization dynamics to source-level 
M/EEG activity. Given recent accounts of complex multi-network switching in such 
data102, substantial steps toward this end seem within reach. 
 
In addition to spatial and temporal filtering, empirical data are also corrupted by 
extraneous “noise”, including physiological effects (EMG, respiratory confounds) and 
measurement noise (thermal fluctuations etc). These external (nuisance) noise 
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sources (𝜂 in Equation 9) are conceptually distinct from intrinsic system noise (𝜁 in 
Equation 7), which are an essential part of neuronal dynamics. While resolving the 
contribution of measurement noise to resting state fluctuations is largely a 
methodological and empirical issue16,103, computational modelling can also assist. As 
we have seen above, multistable and metastable processes yield specific heavy-tailed 
statistics. Most nuisance confounds either have a specific time scale (such as 
respiratory effects104), or have very short-range correlations (such as thermal effects). 
The hope here is to use the statistical fingerprints of synchronization dynamics to 
help disambiguate true from spurious fluctuations in observed data. Given the 
salience of brain-body interactions (as indexed by physiological and behavoural 
interdependences105), it should also be considered that some physiological correlates 
will index true neuronal dynamics106 and not simply artifacts. Computational models 
that incorporate somatic and physiological dynamics – which thus embody and not 
merely eschew these signals – may be required here107. 
 
Complex network dynamics are a topic of substantial interest108, particularly in 
computational and network neuroscience	109-112. Network fluctuations co-occur with a 
variety of fluctuating cognitive  processes within and across rs-fMRI sessions 113,114 
To understand how basic dynamics between pairs of coupled systems scale up, we 
simulated networks dynamics on a structural connectome using connectivity data 
from Cocomac. This bottom-up approach28,32 contrasts with typical to-down 
approaches in the field – namely of embracing emergent network dynamics without 
recourse to the dynamics amongst the basic elements 12,27,90-92. Our simulations 
showed how dynamical primitives mix with new ensemble phenomena to inform 
global dynamics, including the presence of clustering and global synchronization. We 
did not explore the specific role of the CoCoMac connectome network topology in 
shaping these dynamics, nor correlations between functional and structural 
connectivity, which has been the subject of substantial prior work115. However, 
modelling work in this field – mirroring empirical resting state research – has 
focussed on structural correlates of time-averaged functional connectivity. Future 
work is required to build upon the early forays in this direction28,92. 
 
Although it has intuitive appeal, the term “dynamic functional connectivity” is 
arguably a clumsy one as it suggests, perhaps naively, that dynamic processes exist 
within the stream of observable data. Dynamics occur in the underlying neuronal 
system. If they extend into the temporal and spatial aperture of a particular 
functional neuroimaging modality (in sufficient strength to survive corruption by 
measurement effects) then they cause non-trivial statistics in time resolved data 
samples. From this perspective, it would be preferable to use simple descriptive terms 
to capture the fluctuating properties of these time-resolved data and reserve the 
notion of dynamics to refer to their underlying causes. 
 
 
 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 28, 2017. ; https://doi.org/10.1101/181313doi: bioRxiv preprint 

https://doi.org/10.1101/181313


	 24	

Acknowledgements: 
 
This manuscript was supported by the National Health and Medical Research 
Council (118153, 10371296, 1095227) and the Australian Research Council 
(CE140100007). 
  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 28, 2017. ; https://doi.org/10.1101/181313doi: bioRxiv preprint 

https://doi.org/10.1101/181313


	 25	

Appendix I: Neural mass model 
 
Full details of this model can be found in Ref29. The version here is adapted from Ref6. 
 
This simple neural mass model has three state variables: mean membrane potential 
of local pyramidal cells 𝑉, mean membrane potential of inhibitory interneurons 𝑍, 
and the average number of open potassium ion channels 𝑊. Conceptually, as a 
conductance-based neural mass model, its formulation is similar to the Morris-Lecar 
single neuron above, but where the quantities are now population means, and with 
the addition of feedback from a passively enslaved local inhibitory population. The 
governing equations are, 
 
 𝑑𝑉

𝑑𝑡 = − 𝑔z; + 𝑟{|}~𝑎��𝑄� 𝑉 𝑚z; 𝑉 𝑉 − 𝑉z;
−	 𝑔{;𝑚{; 𝑉 + 𝑎��𝑄� 𝑉 𝑉 − 𝑉{; −	𝑔�𝑊 𝑉 − 𝑉�
− 𝑔� 𝑉 − 𝑉� + 𝑎4�𝑍𝑄� 𝑍 +𝑎2�𝐼�,	

𝑑𝑍
𝑑𝑡 = 𝑏 𝑎24𝐼� + 𝑎�4𝑉𝑄� 𝑉 , 
	
𝑑𝑊
𝑑𝑡 = 𝜙 𝑚� 𝑉 −𝑊 . 

 
(A1) 

 
(A2) 

 

(A3) 
 
These are in nondimensional units where capacitance C=1; time is thus also 
nondimensional but usually considered to be numerically equivalent to 
milliseconds29. Here 𝐼� and 𝐼� are nonspecific inputs to excitatory and inhibitory 
populations, respectively; in the absence of noise we set 𝐼� = 𝐼� = 𝐼�. The model 
distinguishes between AMPA and NMDA channels, where 𝑟���� denotes the ratio of 
NMDA receptors to AMPA receptors, and 𝑎J� terms parameterize the strength 
synaptic coupling from population 𝑥 (= 𝑒, 𝑖, 𝑛, where 𝑛 is a non-specific input) to 
population 𝑦 (= 𝑒, 𝑖) (note that this index ordering is the reverse of the physics 
convention). Parameters 𝑏 and 𝜙 are rate parameters (inverse time constants) that 
determine the time scales of 𝑍 and 𝑊, respectively. Setting b=0.1 means that the time 
scale of the inhibitory cells, Z are slow with respects to the pyramidal cells, V.  
 
As in the Morris-Lecar neuron, for the pyramidal neurons the 𝑔4�2 terms are 
conductances of the corresponding ion channels, and the 𝑚4�2(𝑉) functions describe 
the voltage-dependent gating of these ion channels, except that in this mean-field 
case they describe population-level fractions of open channels. They take the 
sigmoidal form, 
 
 𝑚4�2(𝑉) = 0.5 1 + tanh

𝑉 − 𝑇4�2
𝛿4�2

	 , (A4) 

 
where 𝑇4�2 is the threshold membrane potential for a given ion channel, and 𝛿4�2 is 
the corresponding standard deviation in this threshold. The self-feedback of the 
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pyramidal cells is split into a conventional voltage-dependent term for sodium 
channels 𝑎��𝑄� 𝑉 𝑉 − 𝑉{; , and a state-dependent NMDA term, 
𝑟{|}~𝑎��𝑄� 𝑉 𝑚z; 𝑉 𝑉 − 𝑉z; . This more complex term incorporates the state-
dependent nature of NMDA-gated calcium channels.  
 
The voltage-dependent functions 𝑄� and 𝑄� are the mean firing rates of the excitatory 
and  inhibitory populations, respectively, also given by sigmoidal forms 
 
 𝑄�(𝑉) = 0.5𝑄���� 1 + tanh

𝑉 − 𝑉s
𝛿�

	 ,	

𝑄�(𝑍) = 0.5𝑄���� 1 + tanh
𝑍 − 𝑍s
𝛿�

	 ,	 

(A5) 

(A6) 

 
where 𝑄���� and 𝑄���� are the maximum firing rates of the excitatory and inhibitory 
populations, respectively, and 𝑉s and 𝑍s are the corresponding thresholds for axon 
potential generation, and 𝛿�	and 𝛿� are the standard deviations in these thresholds. 
Figure A2 shows a representative plot of 𝑄�(𝑉). 
 
Note that the inhibitory population Z does not possess conductance-based membrane 
dynamics, but rather is passively slaved to the pyramidal population: its membrane 
potential (and resulting firing rate) is driven by the firing rate of the output of the 
pyramidal cells, responding with the slow time scale parameterized by the factor b. 
The inhibitory population thus acts as a passive low-pass filter of the pyramidal cells. 
Even in the absence of a leaky current, the inhibitory neurons thus do not saturate, 
but rather oscillate with the slow time scale of the system (approximately 1/10th of 
the fast pyramidal cells for the parameters used here). It is this mixing of time scales 
that leads to the chaos evident in Figure 1. 
 
Parameters are given in Table A1. To introduce additive noisy input to the excitatory 
population, we set 𝐼� = 𝐼� + 𝜎𝜂(𝑡), where 𝜂 is zero-mean Gaussian white noise and 
unit variance, and 𝜎 is the standard deviation of this component. To introduce 
multiplicative noisy input to the excitatory population, we set 𝐼� = 𝐼� + 𝜎𝑉 𝑡 𝜂(𝑡).  

 
Figure	A1:	Sigmoidal	voltage-dependent	firing-rate	function	𝑄�(𝑉)	with	threshold	potential	𝑉s 	and	threshold	
standard	deviation	𝛿�.	
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Table A1: Parameters for neural mass model (in nondimensional units) 
Parameter Description Value 
𝑔z;  Maximal conductance of calcium ion channel 1.1 
𝑔{;  Maximal conductance of sodium ion channel 6.7 
𝑔�  Maximal conductance of potassium ion channel 2 
𝑔�  Conductance of passive leaky membrane 0.5 
𝑉z;  Equilibrium potential of calcium ion channel 1 
𝑉{;  Equilibrium potential of sodium ion channel 0.53 
𝑉�  Equilibrium potential of potassium ion channel -0.7 
𝑉�  Equilibrium potential of passive leaky membrane -0.5 
𝑇z;  Threshold for calcium ion channels -0.01 
𝑇{;  Threshold for sodium ion channels 0.3 
𝑇�  Threshold for potassium ion channels 0 
𝛿z;  Threshold standard deviation for calcium ion 

channels 
0.15 

𝛿{;  Threshold standard deviation for sodium ion channels 0.15 
𝛿�  Threshold standard deviation for potassium ion 

channels 
0.3 

𝑉s  Firing threshold potential for excitatory population 0 
𝑍s  Firing threshold potential for inhibitory population 0 
𝛿�  Firing threshold standard deviation for excitatory 

population 
0.7 

𝛿�  Firing threshold standard deviation for inhibitory 
population 

0.7 

𝑄����  Maximum firing rate for excitatory population 1 
𝑄����  Maximum firing rate for inhibitory population 1 
𝑏  Rate constant for inhibitory dynamics 0.1 
𝜙  Rate constant for potassium dynamics 0.7 
𝑟{|}~  Ratio of NMDA to AMPA receptors 0.25 
𝑎��  Synaptic strength from  excitatory to excitatory 0.36 
𝑎4�  Synaptic strength from  inhibitory to excitatory  2 
𝑎2�  Synaptic strength from  nonspecific to excitatory  1 
𝑎�4  Synaptic strength from  excitatory to inhibitory  2 
𝑎24  Synaptic strength from  nonspecific to inhibitory  0.4 
𝐼�  Mean nonspecific input strength 0.3 

 
  
Appendix II: The Brain Dynamics Toolbox. 
 
The Brain Dynamics Toolbox (https://bdtoolbox.blogspot.com.au/) is an open-source 
toolbox for simulating and exploring problems in dynamical systems using Matlab. It 
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includes a graphical user interface with which users can explore the behaviour of a 
dynamical system in real-time by manipulating system parameters. It supports the 
most common classes of differential equations used in computational neuroscience; 
namely Ordinary Differential Equations, Delay Differential Equations and 
Stochastic Differential Equations.  
 
The figures in the present paper were generated using version 2017c of the Brain 
Dynamics Toolbox. It can be downloaded from http://bdtoolbox.blogspot.com. 
 
The time-series in Figure 1 were generated using the BTF2003 model which 
simulates a network of recurrently connected neural masses as described by 
Breakspear, Terry and Friston29. The complete source-code for the model is shipped 
with the toolbox and can be run from the matlab command-line as follows: 
 
>> cd bdtoolkit     % bdtoolkit installation directory 
>> addpath models    % add the models to the matlab path 
>> Kij = [0 1; 1 0];     % a 2x2 network connectivity matrix 
>> sys = BTF2003(Kij);    % construct the BTF2003 model 
>> bdGUI(sys);     % run the model in the GUI 
 
The parameters and initial conditions of the model can be manipulated using the 
graphical controls on the right-hand side of the application window. For figure 1, all 
parameter values are the default with the exception of (𝐼 = 0.2;	𝛿� = 0.8, 𝑔z; = 0.9) 
which put the system in a “faster” regime (and hence more clearly illustrate 
subsystem independence). These are reset by changing the corresponding parameter 
values and rerunning the simulation 
 
>> sys.pardef(7).value(1,1)=0.9;  % calcium ion channel conductance 𝑔z; 
>> sys2.pardef(11).value=[0.8;0.8]; % std for inhibitory population 𝛿� 
>> sys.pardef(12)=0.2;   % Mean nonspecific input strength 𝐼� 
 
Panel A is replicated by the Time-Portrait panel of the graphical user interface. Panel 
C is replicated by the Hilbert Transform panel. Panel E is replicated by the Surrogate 
data panel available from the pull-down menus (New Panel - Surrogate Transform). 
 
The time-series in Figure 2 were likewise generated using the BTF2003 model but in 
this case, the coupling has been “turned on” (C=0.1) and the default settings 
(Appendix I, Table 1) are used for all parameters. The metric for computing the non-
linear prediction errors (panels F and G) are not included in the toolbox. 
 
The simulations in Figures 4A-D were conducted using the FRRB2012 model which 
reproduces the canonical model of multistability proposed by Freyer, Roberts, Ritter 
and Breakspear60. It too is shipped with the toolbox and can be run as follows: 
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>> n=1;      % number of neurons to simulate 
>> sys = FRRB2012(n);    % construct the FRRB2012 model 
>> bdGUI(sys);     % run the model in the GUI 
 
The parameter values for Figure 4A were rho=0.65, eta=1, beta=-3 and lambda=4. 
Figure 4B used the same values except that beta=-1. Likewise for Figure 4C which 
had beta=-2. Figures 4E,G were simulated using the FRRB2012b model which is a 
network variant of the FRRB2012 model that is also shipped with the toolbox. It can 
be replicated as follows: 
 
>> Kij = [-1 1; 1 -1];    % network connectivity matrix 
>> sys = FRRB2012b(Kij);   % construct the FRRB2012b model 
>> bdGUI(sys);     % run the model in the GUI 
 
Where the global coupling coefficient was k=0 and k=0.5 in Figures 4E and 4G 
respectively. All other parameters were lambda=4, beta=-2, eta=1, rho=0.65. 
 
The simulations in Figure 5 were conducted using the BTF2003DDE model which is 
a time-delayed variant of the BTF2003 model29. In this case it uses the 47x47 
macaque connectivity matrix from the Brain Connectivity Toolbox which can be 
loaded as follows: 
 
>> load macaque47.mat CIJ   % CIJ is a 47x47 connectivity matrix 
>> sys = BTF2003DDE(CIJ);   % construct the BTF2003DDE model 
>> bdGUI(sys);     % run the model in the GUI 
 
The coupling strength and time delay can be manipulated with the options in GUI. 
 
Appendix III: Bistable Hopf model 
 
Full details of this model can be found in Ref60. The version here is adapted from Ref6. 
 
This model is a type of normal form model that describes a generic limit cycle 
oscillator with bistability 60. Normal forms describe the dynamics near a bifurcation, 
and are useful because all instances of that bifurcation (whatever the system) can be 
reduced to essentially the same simple canonical form. Depending on the choices of 
its parameters, the bistable Hopf model describes a fixed point (stable or unstable) 
and 0, 1, or 2 limit cycles. A Hopf bifurcation is a type of bifurcation where a fixed 
point loses stability, giving rise to a limit cycle (also termed a periodic orbit). A model 
with a limit cycle is often termed an "oscillator". There are two types of Hopf 
bifurcation: supercritical, where the limit cycle is stable and coexists with the 
unstable fixed point, and subcritical, where the limit cycle is unstable and coexists 
with the stable fixed point. The Hopf normal form is most conveniently expressed in 
polar coordinates (𝑟, 𝜃), where 𝑟 is the amplitude (so 𝑟 = 0 corresponds to a fixed 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 28, 2017. ; https://doi.org/10.1101/181313doi: bioRxiv preprint 

https://doi.org/10.1101/181313


	 30	

point), and 𝜃 is the phase. To drive a transition from the fixed point to the limit cycle 
(i.e., "seizure onset"), we include independent additive 𝑏<. 𝜁< and multiplicative 𝑏=. 𝜁=𝑥 
noisy drives, where 𝜁< and 𝜁= are zero-mean unit-variance Gaussian white noise, and 
𝑏<and 𝑏= are the standard deviations of the stochastic inputs.  
 
The state variables evolve according to, 
 
 𝑑𝑟

𝑑𝑡 = −𝑟f + 𝜆𝑟h + 𝛽𝑟 + 𝜎𝜂 𝑡 , 
	
𝑑𝜃
𝑑𝑡 = 𝜔, 

(A7) 
 

(A8) 
 
where 𝜆 and 𝛽 are parameters that determine the number, amplitude, and stability 
of limit cycle solutions, 𝜔 is a constant angular velocity (in this simple case, the phase 
plays no role in the dynamics – it is directly proportional to time). For the bistable 
model here, we have extended the more typical 3rd-order Hopf bifurcation normal 
form to 5th order. This has the effect of introducing an additional high-amplitude 
limit cycle that coexists with the low amplitude one, as well as an additional 
bifurcation (a "saddle-node") where two solutions meet and annihilate. This form is 
bistability generic, in the sense that it emerges from a normal form that exists near 
any Hopf bifurcation. 
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