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Abstract: 29 

Across all domains of life, elaborate control mechanisms regulate proteins, pathways, and cell 30 

phenotypes as organisms adapt to ever-changing environments. Post-translational modifications 31 

(PTMs) allow cells to rapidly and reversibly regulate molecular pathways, but it remains unclear how 32 

individual PTMs regulate fitness. Here, we studied >130 PTM sites in Escherichia coli to unravel how 33 

PTMs regulate cell metabolism and fitness in response to environmental changes, such as the 34 

glucose-acetate diauxie. Using a new metabolic modeling approach, we found a significant fraction of 35 

post-translationally modified enzymes are predicted to control shifts in pathway usage following 36 

evolutionarily-important environmental changes. Genetic screens using Multiplex Automated 37 
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Genome Engineering confirmed that these PTMs impact cellular fitness, especially under dynamically 38 

changing environments. Finally, mechanisms of how individual PTMs impact protein function were 39 

detailed using molecular dynamics simulations and enzyme assays for enolase, transaldolase, and 40 

serine hydroxymethyltransferase. Thus, by integrating whole-cell data and pathway modeling with 41 

detailed biochemical analysis, we unraveled how individual PTMs regulate enzymes, pathways, and 42 

phenotypes to adapt to sudden environmental changes. 43 

 44 

Introduction 45 

Organisms have evolved elaborate control mechanisms to regulate cell physiology and help cells 46 

survive and compete as environments frequently and suddenly change(López-Maury et al., 2008; 47 

Savageau, 1998). For example, bacteria that are consumed by an animal will be exposed to several 48 

rapid nutritional shifts (e.g., oxygen, sugar, and amino acid levels) as they traverse through the 49 

gastrointestinal track. Familiar changes that are sustained for longer periods of time will invoke 50 

transcriptional regulatory mechanisms to gradually adapt a cell to an environment. However, these 51 

mechanisms are costly in time and resources, and are inadequate to respond to sudden and transient 52 

changes from environmental perturbations or expression noise in the cell. To cope with immediate 53 

environmental changes in metabolism, small metabolites directly regulate enzymes through 54 

allosteric or competitive mechanisms.  55 

Post-translational modifications (PTMs) are of particular interest since they can rapidly regulate cell 56 

pathways, but their effect is also more sustained than regulation through metabolite 57 

feedback(Kochanowski et al., 2015). This is particularly important to adapt to nutritional fluctuations 58 

in the microenvironment or transient variations in enzyme abundance in a single cell (Labhsetwar et 59 

al., 2013). Despite their potential importance, many PTMs remain poorly characterized, and their 60 

regulatory roles remain unstudied. Indeed, only about a half dozen metabolic enzymes in E. coli are 61 
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specifically known to be regulated by PTMs to control metabolic flux (Pisithkul et al., 2015). 62 

Furthermore, in prokaryotes, it is commonly assumed that phosphorylation is primarily relevant to 63 

two-component signaling (Pearlman et al., 2011). Recent studies, however, challenged these 64 

perceptions by elucidating the widespread nature of PTMs in bacteria, which suggest that many more 65 

bacterial proteins are regulated by acetylation or phosphorylation(Cain et al., 2014). While some 66 

PTMs could be spurious and low-stoichiometry chemical modifications(Weinert et al., 2013), there 67 

remains compelling evidence that many PTMs could regulate bacterial metabolism(Chubukov et al., 68 

2014; Hansen et al., 2013; Kochanowski et al., 2015). However, it has been difficult to unravel the 69 

physiological roles of the PTMs in a high-throughput manner. Thus, it is unclear (i) when PTMs are 70 

used to regulate metabolic enzymes, (ii) how the PTMs impact downstream pathways and regulate 71 

physiology, and (iii) how they exert their function on individual enzymes. 72 

Here we demonstrate when and how many PTMs are deployed to control metabolism through the 73 

detailed analysis of >100 PTM sites in E. coli. We do this using several techniques including genome-74 

scale metabolic modeling, genome editing using Multiplexed Automated Genome Engineering 75 

(MAGE), all-atom molecular dynamics simulations, and in vitro biochemical assays. Through this we 76 

demonstrate that: (i) PTMs occur on specific enzymes in bacterial metabolism that regulate 77 

important branch points; (ii) PTM-based regulation controls metabolic flux to enhance cellular 78 

fitness in dynamic environments; and (iii) PTMs alter the molecular properties of these proteins to 79 

modulate their activities. We further provide detailed analysis of PTMs on three specific proteins to 80 

highlight novel insights into how these proteins are regulated. Our findings further demonstrate how 81 

specific PTMs in bacterial metabolism can influence the fitness of an entire organism by facilitating 82 

adaptation to ever-changing environmental conditions. 83 
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Results  84 

Metabolic regulation can be predicted in genome-scale models 85 

When the nutritional environment changes, cells change their metabolic pathway usage 86 

accordingly(Chubukov et al., 2014) (Fig. S1-S2). Steady-state metabolic flux for all reactions can be 87 

predicted under diverse environments using constraint-based methods on genome-scale models 88 

(Lewis et al., 2012). The steady-state assumption of these methods, such as Flux Balance Analysis, 89 

specifically states that metabolite concentrations do not change. Therefore, it has been more difficult 90 

to use such approaches to study how the cell responds to sudden changes in the cellular 91 

microenvironment, which would require sudden transient regulation of specific enzymes. Here we 92 

overcome this challenge with a new algorithm, called Regulated Metabolic Branch Analysis (RuMBA), 93 

which predicts how cells regulate enzymes to optimally respond to transient metabolic 94 

perturbations.  95 

The RuMBA algorithm specifically identifies enzymes that must be regulated to ensure optimal cell 96 

fitness immediately following a sudden change in its microenvironment. This is accomplished as 97 

follows. First, thousands of candidate flux states for all reactions are computed with Monte Carlo 98 

sampling, while enforcing near-optimal growth (Schellenberger and Palsson, 2009). This is done for 99 

the metabolic states before and after the perturbation. Second, these predicted flux states are 100 

subsequently compared (see Methods and Fig. S3). Specifically, each metabolite is queried to see if it 101 

is the center of a flux split (e.g., isocitrate in Fig. 1a). For each flux split, an empirical p-value is 102 

computed, testing if each reaction in the metabolic branch point significantly shifts its flux towards 103 

or away from the reaction. Thus, my taking a metabolite-centric view of Monte Carlo sampling data, 104 

RuMBA identifies enzymes that must be suppressed or activated to rapidly force flux from one branch 105 

to another to ensure optimal cell fitness immediately following the perturbation. 106 
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We validated RuMBA by predicting the enzymes that are regulated in E. coli’s canonical diauxic shift 107 

from glucose to acetate metabolism (Figs. 1 and S3). As E. coli grows on glucose, acetate and other 108 

fermentation products are secreted; when glucose is exhausted, the cells metabolize acetate(Holms 109 

and Bennett, 1971). When metabolism shifts from glucose to acetate metabolism, our model 110 

accurately predicted that flux diverts from isocitrate dehydrogenase to isocitrate lyase (p<<1x10-5; 111 

Fig. 1a-b). Furthermore, the model predicted that 131 additional proteins could be regulated to aid 112 

in the diauxic shift (Table S1), many of which have been experimentally shown to be allosterically 113 

regulated in E. coli (Fig. 1c; Tables S2-S3).  114 

PTMs occur on key enzymes in E. coli metabolism that require regulation 115 

We wondered if PTMs could also regulate RuMBA-regulated enzymes. Analyzing lists of E. coli 116 

peptides with S/T/Y phosphorylation(Macek et al., 2008), lysine acetylation(Yu et al., 2008; Zhang et 117 

al., 2009), or lysine succinylation(Zhang et al., 2011), we found 56% of the modified proteins are 118 

metabolic (Fig. 2a), far more than expected, even when controlling for expression level 119 

(hypergeometric p<3x10-8). Therefore, PTMs could be important in the global regulation of 120 

metabolism. However, we note that currently, very few metabolic enzymes are known to be regulated 121 

by phosphorylation or acetylation in E. coli (Pisithkul et al., 2015).  122 

Further evidence supports the functional relevance of PTMs in metabolism. First, PTM residues on 123 

RuMBA-regulated proteins are highly conserved across 1057 prokaryotic genomes (compared to 124 

non-modified S/T/Y/K residues in the same proteins, p = 0.0041; rank-sum test). Second, an analysis 125 

of PTMs on 62 proteins with available crystallographic structures (Table S3), showed many PTMs 126 

were within 10Å of catalytic site residues (Fig. 2b-c). Furthermore, at least half of the 62 metabolic 127 

proteins have PTMs that potentially disrupt or create salt bridging interactions. Third, the deletion 128 

of kinases and acetyltransferases significantly changes E. coli growth on individual carbon sources 129 

(Fig. S4), with some mutants increasing fitness in glucose M9 media, while others preferred M9 media 130 
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with poor carbon sources, thus suggesting they may help regulate enzymes involved in metabolism 131 

in those conditions. Together, our findings suggest that (i) metabolic enzymes are enriched for PTMs, 132 

(ii) the PTMs are located where they could directly modulate catalysis or complex assembly, and (iii) 133 

kinase or acetyltransferase mutants show different phenotypes on media with specific metabolic 134 

needs. 135 

We further investigated if PTMs could regulate metabolic flux under diverse changes in 136 

environmental conditions, beyond the glucose-acetate diauxie. We simulated changes in metabolism 137 

for 15,051 shifts between pairs of media (see Table S4) and predicted necessary regulation in each 138 

shift. PTMs are enriched among regulated enzymes in the glucose-acetate diauxie (Fig. 2d), and 92% 139 

of the other 15,050 shifts in media (hypergeometric test; FDR<0.01; Fig. 2e). Furthermore, we found 140 

that enzymes with PTMs required regulation in more conditions than enzymes without PTMs 141 

(Wilcoxon p=6x10-6). Indeed, enzymes cluster into four groups based on their frequency of regulation 142 

(Fig. 2f; Fig. S5-S6). In the most highly regulated cluster, 43% of the enzymes had PTMs (Fig. 2g), 143 

which is enriched in glycolytic enzymes and the glyoxylate shunt (Fig. 2h). In contrast, far fewer 144 

enzymes have experimentally measured PTM sites in clusters with enzymes requiring minimal or 145 

occasional regulation (9%) or enzymes not requiring regulation (3%). In summary, PTMs are 146 

positioned in pathways to regulate metabolism and rapidly transition between metabolic states 147 

when the nutritional environment changes.  148 

Protein modifications influence in vivo fitness in dynamic environments 149 

We experimentally assessed when the PTMs influence cellular fitness in vivo by adapting 150 

MAGE(Wang et al., 2009) to perturb the PTM states of metabolic proteins. We introduced 268 151 

targeted genetic modifications to change 134 known PTM sites in 61 proteins (Tables S5-S6) to 152 

amino acids (Fig. 3a) that (i) mimic a PTM (i.e., replacing S/T/Y residues with glutamate to mimic 153 

phosphorylation or asparagine for acetylation, referred to as “PTM-mimic”), or (ii) remove the 154 
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propensity for PTM addition (i.e. replacing S/T/Y with asparagine or lysine with arginine; referred 155 

to as “PTM-null”). These targeted mutations frequently impacted organism fitness under specific 156 

media conditions, as exemplified by the PTM-null mutation at K54 of serine 157 

hydroxymethyltransferase (glyA), generated by MAGE. This mutation doubled growth rate on acetate 158 

M9 minimal medium, while not having a considerable impact on growth on glucose M9 minimal 159 

medium (Fig. 3b).   160 

To allow for rapid profiling of many PTM sites across several growth conditions at multiple time 161 

points, we used pooled screens (Fig. 3a) to test cell fitness effects for each of the 268 genetic changes 162 

across different media conditions. To quantify the influence of each genotype on population fitness, 163 

we measured the frequency of wild-type (WT) cells, “PTM-mimic” mutants, and “PTM-null” mutants 164 

before the screens and at 2-4 timepoints during the screens. In the screen, the fitness of many MAGE 165 

mutants was significantly impacted in specific media conditions (Fig. 3c), exhibiting positive or 166 

negative fitness in different conditions (i.e., >2 standard deviations, corresponding to 1.94 and 1.97-167 

fold difference in abundance of mutant alleles in the “PTM-null” and “PTM-mimic” populations. 168 

respectively; Fig. 3d). Indeed, 88% of the sites showed a significant change in abundance in at least 169 

one screen. Furthermore, 35 genes had PTM sites showing significantly different impacts between 170 

“PTM-mimic” and “PTM-null” variants in at least one condition (FDR<0.05; Fig. 3e), thus suggesting 171 

that many PTM states are preferred in a specific nutrient conditions. 172 

PTMs impact cell fitness by regulating key proteins in dynamic environments 173 

What properties determine whether a PTM influences cellular fitness? To address this, we performed 174 

a global analysis of the MAGE screen data using a generalized estimating equation (GEE)(Ratcliffe 175 

and Shults, 2008) to identify how modifications impact fitness through several protein and 176 

environmental factors. The GEE is a semiparametric regression technique and allows one to control 177 

for correlation across samples with multiple time points. First, the GEE showed that modifications 178 
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impacting cellular fitness are often located on proteins that are essential for growth in the medium 179 

tested (Fig. 3f). That is, enzymes critical for growth are prime targets for PTM regulation to gain a 180 

fitness advantage. Second, MAGE modifications impacting fitness often occur at structurally-relevant 181 

positions in proteins (e.g., salt bridge residues or near active site residues), which could impact 182 

growth by controlling enzyme activity. Third, modifications can influence the cell’s ability to adapt to 183 

environmental shifts. Specifically, the effects of modifications were tested within two types of 184 

nutrient environments, static (a single medium) and oscillating (media conditions were changed 185 

periodically, such as between glucose and acetate). The GEE demonstrated that when MAGE 186 

mutations force proteins to remain in a single PTM state (thereby preventing transient control at 187 

these sites), they more significantly impact cellular fitness in oscillating environments compared to 188 

static environments (Fig. 3f). 189 

Altogether, the genetic screens show that PTMs are functionally relevant and that they regulate 190 

specific enzymes in vivo. Specifically, the GEE analysis of the MAGE data showed that PTMs are best 191 

positioned on enzymes in the metabolic network to control cell physiology under the growth 192 

conditions tested. Perhaps most importantly the modifications impact in vivo cellular fitness most 193 

when the primary nutrients change, consistent with the computational predictions of PTMs localizing 194 

to model-predicted branch points to facilitate pathway switching when the nutritional environment 195 

changes. This reinforces the notion that PTMs are required by the cell to quickly adapt to rapidly 196 

changing nutrient conditions. 197 

PTMs alter the molecular properties of proteins to modulate their 198 

activities 199 

Our findings from metabolic modeling and MAGE demonstrated that many PTMs likely regulate 200 

specific enzymes to adapt to changes in nutrient availability, and the results from the analyses 201 
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identify which proteins are most likely to be regulated by PTMs (Tables S3 and S7). To unravel the 202 

specific mechanisms by which the PTMs regulate the proteins, we further studied three E. coli 203 

proteins, for which such knowledge had never been previously unraveled. Furthermore, we highlight 204 

how similar mechanisms are likely used by the remaining proteins in our study. Specifically, we show 205 

that the PTMs (i) modulate interactions at protein interfaces, (ii) manipulate binding site 206 

conformations, or (iii) control catalytic residues. To do this, we subjected each to classical molecular 207 

dynamics simulations and in vitro biochemical assays for these three example proteins.   208 

PTMs modulate protein interactions at dimer interfaces 209 

Serine hydroxymethyltransferase (SHMT) requires regulation in 12% of all in silico substrate shifts 210 

based on RuMBA. The protein is acetylated at K54, K250, and K354, near the dimer interface, which 211 

forms part of the substrate binding domain. Using the SHMT crystallographic structure (PDB 1DFO), 212 

we analyzed long timescale molecular dynamics trajectories to analyze each acetylation site in both 213 

substrate-bound and substrate-free complexes. 214 

K250 and K354 acetylation (where two SHMT subunits interact) affects the structure of the N-215 

terminal domain of monomeric SHMT with an average root mean squared deviation (RMSD) of 3.5Å 216 

relative to the crystallographic structure (100ns simulation; Fig. S7). Acetylation of K250 also 217 

interferes with cofactor binding, as this residue interacts with tetrahydrofolate (THF) in 95% of the 218 

100ns trajectory (Fig. 4a,top). Acetylation of K54 disrupts a salt bridge with E36 of the neighboring 219 

subunit, increasing the intermolecular interaction by 2-4Å, relative to WT protein (Fig. 4a and S8). In 220 

vitro, we found that mimicking K54 acetylation to interrupt the K54-E36 interaction reduced 221 

enzymatic activity (Fig. 4b), and the in vivo K54 PTM-mimic mutant leads to a significant decrease in 222 

fitness (Fig. 4c). Similarly, the MAGE mutants of K250 also decreases organism fitness in vivo. Thus, 223 

the molecular dynamics, in vitro enzymatic assays and MAGE all demonstrate that acetylation at the 224 
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dimer interface of SHMT influences enzyme activity, and preventing this transient control 225 

mechanism influences cellular fitness.   226 

PTMs modulate binding site geometry 227 

We predicted that transaldolase is regulated in 22% of all substrate shifts. Many experimentally 228 

detected PTMs occupy a shallow channel where substrates and products pass to enter/exit the active 229 

site (i.e., T33, S37, S226, K187, and K308; PDB 1ucw). The conformational state of this channel 230 

impacts substrate binding and catalysis, mediated by key residues (primarily P36, F178 and F302) 231 

that form a network of interactions between neighboring alpha helices that ultimately influence the 232 

formation of two isogenic conformational states (“closed” versus “open,” characterized by a 4Å 233 

change in substrate channel width; Fig. S9)(Lehwess-Litzmann et al., 2011).  234 

Using classical molecular dynamics, we compared protein conformations of WT and five modified 235 

transaldolase proteins during 1.05μs (Fig. S9). The PTMs induce several molecular events. First, 236 

phosphorylation of T33 forms a salt bridge with D184 and induces large-scale structural changes in 237 

a nearby alpha helix, occluding substrate entry. Second, phosphorylation of S226 increases the 238 

interaction distance between P36 and F302 by 4Å relative to WT protein, inducing the “open” state 239 

(Fig. 4d). Lastly, acetylation of K308 disrupts a salt bridge with D305 (upheld throughout 60% of the 240 

trajectory), and interferes with interactions between P36 and F302 by inducing hydrogen bonding 241 

between D305 and S37 (Table S8). 242 

In vitro, modification of S226 reduced activity by 40% (Fig. 4e), but the MAGE “PTM-mimic” state is 243 

preferred in vivo compared to the “PTM-null” state (Fig. 4f), presumably to maintain the “open” state, 244 

albeit at a cost of reduced activity. In contrast, forcing acetylation at K308 significantly decreases 245 

organism fitness (Fig. 4f), possibly by disrupting an “open” state formed by the salt-bridge with D305 246 

and the D305-S37 interaction. These findings suggest that the certain PTMs act as precise, yet 247 

transient, mechano-chemical “switches” for tuning enzyme activity by impacting active site 248 
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accessibility, thereby also controlling many downstream cellular processes to increase organism 249 

fitness during specific nutrient shifts.  250 

PTMs control catalytic residues 251 

Modification of catalytic residues could directly impact protein reactivity, as we found for enolase, 252 

another branch point enzyme, which we predict to be regulated in 48% of the substrate shifts. PTMs 253 

on active site residues S372 and K341 destabilize the binding of two Mg2+ ions, which are required 254 

for catalysis (Fig. 4g; Fig. S10). We further performed in vitro enzyme assays to study the effect of 255 

modifying K341 and S372 on enzyme activity (Fig. 4h; Fig. S11). Mutating S372 to aspartate arrests 256 

activity as the phosphorylation mimic introduces a negative charge near Mg2+. Similarly, mutating 257 

K341 to asparagine or glutamine completely arrests catalysis. These changes also cause significant 258 

changes in organism fitness in vivo across certain nutrient environments (Fig. 4i). These findings 259 

suggest that the direct modulation of catalytic residues provides a precise mechanism to regulate a 260 

highly sensitive branch point, such as for enolase. 261 

Discussion 262 

Recent efforts in proteomics have successfully detected many PTMs in prokaryotes, but their 263 

functions have remained unclear. Here, we developed a platform to elucidate the roles of the PTMs 264 

in modulating metabolism and other cell systems.  265 

What purpose do PTMs serve and how do they fit into the global regulatory network? We find that 266 

metabolic enzyme PTMs influence cell fitness. Our work suggests that PTMs allow cells to rapidly 267 

respond to familiar extrinsic nutrient fluctuations and intrinsic expression noise as the nutrient 268 

environment fluctuates. The PTMs satisfy an important middle ground between small-molecule 269 

mediated regulation and transcriptional regulation; providing a stable, yet rapid solution while more 270 

costly and slower processes catch up(Chubukov et al., 2013; Dekel and Alon, 2005; Lewis et al., 271 
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2010a; Zaslaver et al., 2004). Indeed, PTMs demand less energy and allow for an immediate response, 272 

compared to transcriptional and translational control mechanisms, which can take 1-2 generations 273 

in rapidly growing cells(Zaslaver et al., 2004), and likely longer to fine-tune expression(Dekel and 274 

Alon, 2005; Lewis et al., 2010a).  275 

Our work also clearly shows from multiple angles that PTMs can directly regulate metabolism in 276 

prokaryotes, and provides examples of how they regulate enzyme activities. Across most changes in 277 

nutrient availability, except when media are very similar (Fig. S6), PTMs are enriched among branch 278 

point enzymes, where metabolic flux must be diverted from one pathway to another. Furthermore, 279 

the fitness effects of preventing or mimicking PTMs were greater on the MAGE screen when cells 280 

were subjected to oscillating media conditions. Finally, structural analyses and molecular 281 

simulations further supported the functional impact of the PTMs, based on proximity to important 282 

structural features and the degree of molecular changes observed upon site modifications. Together, 283 

these lines of evidence can elucidate the exact role of PTMs, and the influence they exert at both the 284 

level of individual proteins and within complex pathways.  285 

While we find many PTMs modulate metabolism in E. coli, other PTMs likely regulate activities 286 

beyond metabolism. For example, the modification of specific threonine residues in enolase may 287 

impact organism fitness by influencing the binding stability of the RNAse E mediated assembly and, 288 

thus, its recruitment via the RNA degradosome (Fig. 4g, bottom; Fig. S10)(Chandran and Luisi, 2006; 289 

Kühnel and Luisi, 2001). For such cases, comparable systems level methods may elucidate the role of 290 

PTMs in non-metabolic networks (e.g., in signaling pathways). We note, however, that there may be 291 

many non-functional PTMs that occur at low stoichiometry from non-specific chemical 292 

modifications(Weinert et al., 2013). Thus, the use of systems approaches with large genetic screens 293 

can help prioritize the study of PTMs that more likely have physiologically meaningful functions.  294 
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From a systems perspective, determining states of a network requires a complete delineation of the 295 

cell parts, pathway structure, and an understanding of how the parts and pathways interact with cell 296 

environment. Our combined computational and experimental approach provides a means to reliably 297 

navigate a set of experimentally-determined PTMs and probe promising functional roles considering 298 

specific environmental perturbations. These analyses open new vistas in systems biology, 299 

empowering the systematization of biochemistry and shaping the study of PTMs in other organisms. 300 

Perhaps most important is the demonstrated ability to understand how a modification at specific 301 

sites in individual proteins can impact biological fitness, both on the molecular and physiological 302 

levels.   303 

 304 

Acknowledgements: 305 

The authors acknowledge support from the Swiss National Science Foundation (p2elp2_148961), the 306 

Gordon and Betty Moore Foundation (GBMF 2550.04 Life Sciences Research Foundation 307 

postdoctoral fellowship), NIH (R01-GM057089 and R35-GM119850), the US DOE (DE-FG02-308 

02ER63445), and the Novo Nordisk Foundation Center for Biosustainability (NNF16CC0021858 and 309 

NNF10CC1016517). The authors also acknowledge NERSC computer facilities. 310 

Author contributions: 311 

NEL conceived and managed the research. NEL and EB led, designed, and conducted analyses.  NEL, 312 

DK, EB, JX conducted experiments. RLC, HH, JTY conducted analyses. HW, CY, BOP, and GC oversaw 313 

experiments and analyses. EB and NEL wrote the manuscript. All authors read and approved of the 314 

manuscript. 315 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 25, 2017. ; https://doi.org/10.1101/180646doi: bioRxiv preprint 

https://doi.org/10.1101/180646
http://creativecommons.org/licenses/by-nd/4.0/


14 

Methods 316 

Post-translational modifications and data on metabolic regulation 317 

Lists of metabolic proteins with PTMs were obtained from proteomic studies of protein acetylation, 318 

phosphorylation, and succinylation in E. coli (Macek et al., 2008; Yu et al., 2008; Zhang et al., 2009, 319 

2011). All reported occurrences of non-covalent metabolite-mediated metabolic regulation were 320 

obtained from Ecocyc (Keseler et al., 2005) and are reported in Table S2.  321 

Regulated Metabolic Branch Analysis (RuMBA) 322 

Metabolic regulation is a rapid means to redirect flux in a metabolic network, while transcriptional 323 

regulation and regulation of enzyme abundance are processes that act on a longer time scale. 324 

Therefore, it is expected that following a shift to a new growth condition, allosteric regulation and 325 

post-translational enzyme modification will redirect flux at important branch points. The rationale 326 

for this response is that, in vivo, there are regular fluctuations in the cellular microenvironment and 327 

frequent environmental changes (Mitchell et al., 2009; Savageau, 1998, 1983). It would be 328 

advantageous for the cell to have a means to rapidly regulate metabolic pathway usage using 329 

reversible mechanisms while slower and more permanent regulatory mechanisms are being 330 

activated. The relative costs and timescale of a few types of regulation are given in Fig. S1. 331 

Two methods have been developed to predict which enzymes will require significant changes in 332 

activity level following a change in carbon substrate for shorter and longer timescales, called these 333 

RuMBA and FSS, respectively. Code, compatible with the COBRA Toolbox is provided in 334 

Supplementary Data File S1. 335 

FSS has been used previously (Bar-Even et al., 2010; Bordbar et al., 2010; Nam et al., 2012).  Another 336 

method similar to FSS has also been published, showing its conceptual accuracy(Bordel et al., 2010). 337 
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A brief discussion of this method provides a conceptual basis to understand RuMBA. Constraint-338 

based modeling, the framework upon which both RuMBA and FSS are based, uses the metabolic 339 

network topology to define a space of possible phenotypes by adding a series of known biologically-340 

relevant governing constraints (e.g., uptake rates for media components, by-product secretion rates, 341 

growth rates, etc.)(Bordbar et al., 2014; Lewis et al., 2012). This space of possible phenotypes 342 

represents all possible combinations of metabolic steady-state pathway usage that a cell can use in 343 

the given growth conditions. Assuming the constraints are accurate, the actual steady state flux 344 

distribution (or pathway usage) should be within the in silico solution space (Fig. S2.a). The range 345 

and distribution of flux through each reaction within these solution spaces are dependent on the 346 

constraints, such as reaction thermodynamics, metabolite uptake rates, etc. Therefore, the space is 347 

condition-specific, i.e., the various dimensions of the space might move when the model is simulated 348 

under two different growth conditions. For example, as shown in Fig. S2.b-c, the flux may be 349 

significantly higher in the second growth condition (reaction 2), or show no significant change 350 

between the two growth conditions (reaction 1). 351 

The predicted changes in pathway usage from FSS represent the changes that lead to the optimal 352 

pathway usage in different growth conditions. However, to achieve this optimality, the activity of 353 

numerous enzymes must be fine-tuned, and often, many proteins need to be up- or down-regulated 354 

to meet this requirement. These adjustments require significant changes in transcription and 355 

translation, which can take a generation or two for entire pathways. On a shorter time scale, when 356 

changes in enzyme level are either less efficient (e.g., protein degradation) and/or not feasible to 357 

obtain, a more reasonable adaptive response involves a temporary suppression of the activity of an 358 

enzyme to avoid sending metabolites down less efficient pathways, or to boost the activity of present 359 

enzymes that will be needed in the new growth conditions. Thus, regulation at metabolic branch-360 

points becomes of great importance, so that metabolites can be shuttled down the most efficient 361 

pathways. 362 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 25, 2017. ; https://doi.org/10.1101/180646doi: bioRxiv preprint 

https://doi.org/10.1101/180646
http://creativecommons.org/licenses/by-nd/4.0/


16 

RuMBA leverages this idea to compute the shift of the solution space for short-time scale changes in 363 

metabolic pathway activity at metabolic branch points. To do this, Markov chain Monte Carlo 364 

sampling of the metabolic solution space is used to obtain a uniformly distributed assessment of 365 

feasible flux values each reaction can have at steady state. To assess each branch point metabolite in 366 

the network, all reactions that can produce or consume it are identified. For example, aconitase 367 

produces isocitrate, while isocitrate dehydrogenase and isocitrate lyase both consume it (Fig. S3.a). 368 

Flux through each branch point metabolite in the network with a connectivity less than 30 is 369 

assessed. For each sample point in the solution space (Fig. S3.b-c), all incoming fluxes are summed 370 

up, as are all outgoing fluxes. Then, for each ith reaction, the fraction of total flux through the 371 

metabolite, vmet, that is contributed by the reaction of interest, is computed as follows: 372 

 373 

where vi is the flux through reaction i and fi is the fraction of all flux passing through the metabolite 374 

of interest, that is passing through reaction i. Since this is done for many random feasible sets of flux 375 

values through all of the reactions at the branch point, a distribution of fi fractions is computed for 376 

each reaction for the two growth conditions of interest (Fig. S3.d). Therefore, a p-value can be 377 

computed that measures the overlap of the fi values for that reaction under the given growth 378 

condition, thus quantifying how significantly the flux changes from one enzyme to another when 379 

environmental conditions change. The function of a phosphorylation event can subsequently be 380 

predicted if the change in phosphorylation is also known. 381 

A small fraction of reactions can show miniscule, but significant changes due mostly to slight 382 

differences in predicted growth rates. Thus, the list of the regulated reactions and their associated 383 

enzymes is filtered to focus on the more significant results. Reactions that change their predicted flux 384 

level by less than 50% are filtered out from the list of reactions requiring regulation. This was done 385 
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by simulating changes in reaction flux occurring in a shift between two conditions, as done 386 

previously(Bar-Even et al., 2010; Bordbar et al., 2010).  387 

Once the flux values were normalized, the changes of fluxes between two conditions were 388 

determined as previously described (Bordbar et al., 2010). Briefly, calls on differential reaction 389 

activity were made when the distributions of feasible flux states (obtained from MCMC sampling) 390 

under two different conditions did not significantly overlap. For each metabolic reaction, a p-value 391 

was obtained by computing the probability of finding a flux value for a reaction in one condition that 392 

is equal to or more extreme than a given flux value in the second condition. Significance of p-values 393 

was adjusted for multiple hypotheses (FDR = 0.01). When the magnitude of flux changed less than 394 

50% of the initial flux magnitude, these reactions were filtered out from the set of predicted sites of 395 

regulation and excluded from further analysis. However, results were robust for a wide range of filter 396 

levels. 397 

To test if this method can predict the function of PTMs, three E. coli enzymes were identified from 398 

the literature, that undergo differential protein phosphorylation between growth on glucose and 399 

acetate. RuMBA was employed to predict the effect of phosphorylation on these three enzymes (Fig. 400 

S3.e). At late log phase, enolase has been shown to have seven times higher phosphorylation when E. 401 

coli was grown on glucose than when grown on acetate (Dannelly et al., 1989). In silico, RuMBA 402 

predicts that enolase will have a reduced flux level on acetate. Therefore, one may predict that the 403 

phosphorylation event would activate its forward flux. It was determined that when treated with acid 404 

phosphatase, enolase was inhibited(Dannelly et al., 1989). Similarly, RuMBA predicts that on acetate, 405 

the flux through isocitrate dehydrogenase (ICDHyr) decreases, while the flux through isocitrate lyase 406 

(ICL) should increase. Experimentally, the phosphorylation of ICDHyr increases and may increase for 407 

ICL (phosphorylation is high when grown on acetate, but has not been rigorously tested on glucose). 408 

Thus, it is predicted that phosphorylation of ICDHyr inhibits enzyme activity, while it activates ICL. 409 
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Both of these predictions are consistent with published data (Dean et al., 1989; Hoyt and Reeves, 410 

1988). 411 

Markov chain Monte Carlo sampling 412 

The distribution of feasible fluxes for each reaction in the models used here were determined using 413 

Markov chain Monte Carlo (MCMC) sampling (Schellenberger and Palsson, 2009), as previously 414 

described (Bordbar et al., 2010; Lewis et al., 2010b), and was implemented with the COBRA Toolbox 415 

v2.0 (Schellenberger et al., 2011b). Uptake rates were used to constrain the models as detailed above. 416 

To model more realistic growth conditions (Schuster et al., 2008), suboptimal growth was modeled. 417 

Specifically, the biomass objective function (a proxy for growth rate) was provided a lower bound of 418 

90% of the optimal growth rate as computed by flux balance analysis (Orth et al., 2010). Thus, the 419 

sampled flux distributions represented sub-optimal flux-distributions, while still modeling fluxes 420 

relevant to cell growth and maintenance. 421 

MCMC sampling was used to simulate thousands of feasible flux distributions (referred to here as 422 

“points”) using the artificially centered hit-and-run algorithm with slight modifications, as described 423 

previously (Bordbar et al., 2010; Lewis et al., 2010b). Briefly, a set of non-uniform points was 424 

generated. Each point was subsequently moved in random directions, while remaining within the 425 

feasible flux space. To do this, a random direction is first chosen. Next, the limit for how far the point 426 

can travel in the randomly-chosen direction is calculated. Lastly, a new random point on this line is 427 

selected. This process is repeated until the set of points approaches a uniform sample of the solution 428 

space, as measured using the mixed fraction metric, which measures uniformity by measuring how 429 

many of the sample points pass through the middle line of the solution space(Schellenberger et al., 430 

2011a). A mixed fraction of approximately 0.50 was obtained, suggesting that the space of all possible 431 

flux distributions is nearly uniformly sampled. 432 
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The distributions of sampled fluxes for each reaction were compared between two media conditions. 433 

First, flux magnitudes were normalized between each pair of media conditions (media A and B). To 434 

do this, a ratio of total flux through the metabolic network was computed and used to normalize each 435 

sample point. To compute this ratio, each sample point was taken and the magnitudes of all n non-436 

loop-associated reaction fluxes were summed to acquire a value for the total network flux. For both 437 

media conditions, the median total network flux was taken and used to normalize each reaction flux 438 

for all sample points in medium B, as follows:  439 

 440 

where v*i,j,B, is the normalized flux through reaction i in sample point j under media condition B, 441 

obtained after multiplying the sampled flux vi,j,B, by the ratio of the median total flux magnitude for 442 

the reaction for all p sample points under growth on medium A to the median total flux magnitude 443 

for the reaction for all p sample points under growth on medium B. 444 

Metabolic model parameterization 445 

The genome-scale metabolic model of E. coli was used with published uptake and secretion rates 446 

(Feist et al., 2007). A few irreversible reactions were removed because they had reversible duplicates 447 

in the model. These include: GLCtexi, URIt2pp, URAt2pp, THMDt2pp, KAT1, INSt2pp, INDOLEt2pp, 448 

ICHORSi, CYTDt2pp, and ADNt2pp. 449 

To identify all possible simulated media formulations in E. coli (Table S4), glucose uptake was set to 450 

zero in the model, and flux balance analysis was used to find which of all other carbon sources could 451 

support growth in M9 minimal media. For each of the 174 growth-supporting carbon sources, an 452 

uptake rate was set, which was consistent with uptake rate of glucose in the published model (i.e., 8 453 

mmol gDW-1 hr-1), normalized by the number of carbons in the metabolite. For example, since glucose 454 
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has 6 carbons, the uptake rate of glycerol, with 3 carbons, was set as 16 mmol gDW-1 hr-1 (which is 455 

similar to the actual reported glycerol uptake rate in M9 minimal media (Hua et al., 2006)). While 456 

this was used to standardize the media conditions, variations in carbon uptake rates did not 457 

significantly impact the results presented in this work. 458 

Clustering of reaction changes 459 

An m x n matrix with m gene-reactions pairs (predicted to be regulated in at least one media shift; m 460 

= 1814) and n total media shifts (n = 15,051) was made, detailing in which shifts each gene-reaction 461 

pair is predicted to require regulation (FDR < 0.01). All gene-reaction pairs with at least one 462 

significantly regulated enzyme were subjected to k-means clustering (k = 3). Clustering was repeated 463 

100 times with different seed values to find consensus clusters. 464 

Determination of expressed genes 465 

For the analysis in Figure 2a, expression profiles were obtained from previous studies(Cho et al., 466 

2009; Covert et al., 2004; Fong et al., 2005; Lewis et al., 2009). The Affymetrix CEL files were 467 

normalized using gcrma, implemented in R. Genes were considered not expressed if they did not have 468 

a mean expression level across biological replicates that were significantly higher than the five 469 

highest-expression non-E. coli negative control probe sets on the array (1-tail t-test; FDR = 0.05). The 470 

sets of expressed genes from each study were used to estimate the number of expressed proteins. 471 

Residue conservation analysis 472 

All protein sequences of 1057 prokaryotic species were acquired from the KEGG database (Release 473 

58.0). Homologs to all E. coli proteins containing at least one known PTM were identified by using 474 

the Smith-Waterman algorithm. SSEARCH35 of the FASTA suite(Pearson and Lipman, 1988) was 475 

used to determine a PID conservation for each post-translationally modified iAF1260 gene in all 476 

other genomes. The flags used in SSEARCH35 were ‘–m9 –E 1 –q –H'. When more than two proteins 477 
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in one species had the same percent identity, the protein with the lowest e-value was chosen. In the 478 

rare case in which multiple proteins from a species had identical % identity scores and e-values, all 479 

qualifying proteins were included. 480 

Each metabolic E. coli protein with a PTM (n=109) was then grouped with its homologs (median 481 

number of homologs for a protein = 911, 25th  percentile = 706, 75th  percentile = 1000), and the pair-482 

wise Smith Waterman alignment between the individual E. coli protein and each of the homologs was 483 

used to quantify the conservation of post-translationally modified residues, as calculated (i.e., the 484 

percent of pair-wise comparisons where the aligned residue was identical in the homolog).  485 

Conservation of non-modified residues for these amino acids was calculated in an identical fashion. 486 

Relative conservation of the PTM residues on each protein was calculated by comparing their 487 

conservation to the conservation of non-PTM residues on the same protein, and a statistically 488 

significant enrichment of higher conservation was seen for PTM sites on proteins that were predicted 489 

to be regulated by RuMBA. 490 

Conservation  was done in comparison to other STYK residues on the same proteins and shown to be 491 

on average more conserved compared to other STYK on the same proteins. We have clarified this in 492 

the text. 493 

Salt bridge prediction and measurement of distance from PTMs to active site residues 494 

Protein structures for modified enzymes were obtained from the Protein Data Bank. Potential salt 495 

bridges that could be disrupted by a PTM were determined by finding all residues within 4Å of a 496 

lysine or serine that could form a salt bridge. Potential new salt bridges were found by searching for 497 

basic residues within 8Å of a phosphorylated serine, threonine, or tyrosine. Distances between 498 

modified residues and all other amino acids were calculated between centroids of each amino acid. 499 

These were used to compare distance between random residues and modified residues with 500 

distances between modified residues and functional residues. Functional residues are defined as 501 
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active sites on proteins, substrate binding sites, and residues which modulate enzyme activity if 502 

replaced, and were all acquired from Ecocyc, Uniprot, and the literature. 503 

Mutant Growth assays 504 

Wild type E. coli and several mutants missing kinases, phosphatases, or acetyltransferases (ΔaceK, 505 

ΔcobB, ΔpphA, ΔyeaG, ΔyfiQ, ΔyiaC, ΔyihE, and ΔynbD) were obtained from the Keio collection(Baba 506 

et al., 2006). Gene deletion was verified by PCR of the scar region, and strains were subsequently 507 

grown overnight M9 media, supplemented in 2g/L glucose, L-lactate, or inosine in a seeding culture. 508 

An aliquot of culture was returned to fresh media such that the OD600 was ~0.03. Cultures were 509 

subsequently grown at 37°C with constant stirring. Turbidity was periodically measured at OD600 510 

as a proxy for cell count, and growth rates were computed from OD measurements at mid-511 

exponential phase. 512 

Strains and culture condition for MAGE 513 

The EcNR2 strain (Wang et al., 2009) used here was a mutant of WT MG1655 E. coli in which the λ 514 

prophage with the bla gene was introduced via P1 transduction at the bioA/bioB gene locus and 515 

selected on ampicillin. In the strain, mutS was also replaced with a chloramphenicol resistance gene 516 

(cmR cassette). To enhance electroporation efficiency, EcNR2 was grown in LB-Lennox medium, a 517 

low salt LB-min medium with 10 g tryptone, 5 g yeast extract, 5 g NaCl, dissolved in 1 L ddH2O, with 518 

50 µg/ml carbenicillin. For growth screens following MAGE, M9 minimal media was used (Teknova, 519 

catalog #M8005), supplemented with 0.1 μM biotin and carbon sources of 1.77 g/L glucose, 4 g/L 520 

NaAc*3H2O, or 1.58 g/L inosine. For growth selection, Azure media was also acquired from Teknova 521 

(catalog #3H5000) and supplemented with 1.77 g/L glucose. LB-Lennox was used for all LB 522 

experiments.  523 

Oligonucleotide design for MAGE 524 
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A panel of phosphorylation and acetylation sites were identified from previous studies(Macek et al., 525 

2008; Yu et al., 2008; Zhang et al., 2009), and codons for the phosphorylation sites on serine and 526 

threonine or lysine acetylation were changed. Serines and threonines were changed to glutamate to 527 

mimic the phosphorylation and an asparagine to mimic the unphosphorylated residue. Lysines were 528 

converted to glutamine to mimic the acetylated state and arginine to inhibit acetylation. Codons were 529 

selected to require at least two point mutations to the gene sequence in order to ensure that 530 

subsequent sequencing of the wild-type and mutant forms would not be masked by sequencing 531 

errors. All 90-mer MAGE oligonucleotide sequences are provided for the subset of genes studied 532 

(Tables S5-S6). MAGE oligonucleotides were synthesized by Integrated DNA Technologies with 533 

standard purification. Oligos were designed to target the lagging strand and to minimize secondary 534 

structure. MAGE Oligonucleotides also contained four phosphorothioate bases at the 5’ end to 535 

enhance efficiency as described previously(Wang et al., 2009). Additional primers were designed to 536 

validate a subset of the targets using MASC-PCR (Table S9). Two sets of primers were designed to 537 

enable a two-step amplification and library preparation for amplicon sequencing and barcoding of 538 

libraries for each sample (Table S10-11). Specifically, the first set of primers were designed to amplify 539 

99 regions containing all mutation sites targeted in our screen. At the 5’ end, each forward primer 540 

also contained the sequence 5’-CCTACACGACGCTCTTCCGATCTNNNN-3’ and each reverse primer 541 

contained the sequence 5’-GAGTTCAGACGTGTGCTCTTCCGATCT-3’. The second set of primers were 542 

designed to add the remaining sequenced needed for barcoding and next-generation sequencing. 543 

MAGE 544 

MAGE was conducted as previously described (Wang et al., 2009). Specifically, cultures were initially 545 

inoculated with EcNR2 cells into 3 mL of LB-Lennox medium, and cells were grown in sterilized 10-546 

ml polystyrene tubes at 30℃ in a rotating incubator under gentle agitation until they reached an OD 547 

of 0.4 at 600nm. Cells were then heat shocked at 42℃ in a shaking water bath (300 rpm) for 15 548 

minutes. The cells were then chilled at 4℃ to make them electrocompetent. One mL of cells was 549 
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subsequently gently washed through several rounds of centrifugation, buffer exchanges with ice-cold 550 

ddH2O, and resuspension. The washed cell suspension was then mixed with 50μL single-stranded 551 

MAGE oligos (total concentration of 10μM), which were then electroporated into cells in a 1 mm gap 552 

conductive cuvette with the following setup: 1.8 kV, 200 Ω, and 25 μF. The cells were then 553 

resuspended with LB-Lennox media in preparation for further rounds of MAGE. Four rounds of MAGE 554 

were conducted. Multiplex allele-specific colony PCR (MASC-PCR) was used as previously 555 

described(Wang et al., 2012) to verify mutations and to identify specific mutants for phenotyping. 556 

Screen for PTM mutation fitness 557 

We used pooled screens to assess any changes in cell fitness for each of the 268 genetic changes 558 

across multiple media conditions (e.g., LB, Azure defined rich + glucose, Glucose M9, Acetate M9, and 559 

Inosine M9) at 30℃ as well as for two oscillating conditions (Azure and glucose M9, or glucose and 560 

acetate M9). The screens were sampled at 2-4 time points (Table S12) and allele frequencies were 561 

quantified by amplifying the genes with PTM sites from the genomic DNA and sequencing the 562 

amplicons with next-generation sequencing (NGS). To obtain the final pool with all MAGE mutants, 563 

multiplexed MAGE was conducted in 5 batches, each with approximately 46 different MAGE oligos. 564 

MAGE oligos were grouped to ensure that no two oligos targeted within 100 basepairs of each other, 565 

to avoid competition between oligos in any one pool. The batches of mutants were combined and 566 

subjected to phenotypic selections.  567 

Measurements of the allele frequency were made at three hours after electroporation and pooling 568 

and overnight storage at 4°C. Cells pellets were subsequently washed with the medium used in the 569 

screen. Cells were maintained at 30°C at exponential growth by serial dilution at regular intervals 570 

(about every three doublings; see Table S12 for values). Aliquots were saved at each dilution, and 571 

time points were selected for subsequent sequencing and analysis of allele frequencies at each PTM 572 

site.   573 
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In addition, oscillatory experiments were designed to test the fitness of the mutants when subjected 574 

to periodic changes in the nutritional environment. The oscillating conditions tested here were (i) 575 

glucose M9 and glucose-supplemented Azure chemically defined rich media and (ii) glucose M9 and 576 

acetate M9 minimal media. The experimental details are as follow. After the initial expansion of cells 577 

after the final electroporation and pooling of MAGE batches, the 24 hour time point cells were washed 578 

with the starting medium for the oscillation and allowed to grow to an OD of 0.3 at 600nm. At that 579 

point, the cell pellet was washed with the second medium and grown therein. Media were then 580 

periodically alternated after every 1-2 doublings (see Table S12 for details).  More data on doubling 581 

times and the results from MAGE screen are found in Tables S12-16. 582 

Sequencing, alignment and quantification of variants 583 

For each sample, cells were pelleted and DNA was isolated using the MasterPure DNA purification kit 584 

(Epicentre), and quantified using Qubit Fluorometric quantification. Sequencing libraries were 585 

prepared as follows. Genomic regions targeted by the MAGE oligos were amplified by PCR using the 586 

KAPA HiFi HotStart DNA polymerase and primers in Table S10. Amplicons were gel-quantified using 587 

ImageJ. For each sample, amplicons were pooled and a second set of PCR primers added barcodes to 588 

each sample (Table S11). Samples were gel purified, Qubit quantified, and paired-end sequenced on 589 

a HiSeq 2500.  590 

We developed a custom DNA sequence aligner tailored to our MAGE sequencing data to map the 591 

reads to the genome and to quantify the MAGE mutants. This was done with our algorithm called 592 

KmeR-based Alignment for Multiple mismatchEs per Read (KRAMER; see code in Supplementary 593 

Data File S1). This Python-based DNA sequence aligner allows the alignment of sequencing reads 594 

with high mismatch frequency to be aligned to a predetermined set of genomic loci. The aligner takes 595 

in these loci as input and aligns Kmers derived from each sequencing read. That is, each sequencing 596 

read is broken into a set of Kmers of length k (default = 8). Of these Kmers, m (default = 8) must map 597 
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to a particular locus in order for that read to be mapped. The reads can be broken into overlapping 598 

Kmers by specifying o (default = no overlap).  For the results shown here, values for k and m were 599 

varied to provide the best results; k=8 and m=8 were chosen after sensitivity analysis 600 

After assigning a locus to each sequencing read, each read is compared to the wild type locus to 601 

determine if a particular target site in the locus perfectly matches a site in the read. Specifically, in 602 

this study, we used MAGE to change at least one codon in each gene. Thus, we searched for perfect 603 

matches surrounding the site of the modified codon, and then also looked to see if the site of the 604 

modification had the WT codon (Ser,Thr, or Lys), the codon for the PTM mimic (Glu or Gln), or the 605 

codon for the amino acid that cannot be post-translationally modified (Asp or Arg).  The algorithm 606 

uses a parameter called targetsize t (default = 9), which is specified to be the length of the stretch of 607 

target DNA that will be matched; in this implementation, t is an odd number from 5 to 43 (e.g., t = 5 608 

would have the target codon with one flanking nucleotide on both ends). To aid in quality control 609 

assessment, reads that map to the E. coli genome but that do not map to the targeted loci are saved 610 

to a separate file, thus allowing further analysis and identification of potential contaminants. 611 

Similarly, reads that do not map to the E. coli genome or MAGE target sites are written to a file for 612 

quality assessment. 613 

The implementation provided in this work allows for other optional arguments: 614 

615 

-h, --help          display arguments 616 

-k K               Length of kmer (default = 8) 617 

-m NUMBERMATCHES     How many kmers must align for read to map (default = 8) 618 

-t TARGETSIZE      Size of mutation region to map (default = 9) 619 

-o OVERLAP          Should kmers overlap within a read (default = n) 620 

-d DIRECTORY      Directory of fastqfiles (default = cwd) 621 
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-l LOGFILE          Creates a logfile with runtime information 622 

-c NUMCORES      Number of cores (default = 4) 623 

 624 

After quantifying the allele frequency for each sample, the allele frequencies were median-625 

normalized, and fold change in frequency was determined by log transforming the allele frequencies 626 

and after subtracting the mean frequencies of the control samples (hour 3, pre and post incubation 627 

at 4°C).  628 

Identification of covariates modulating the impact of loss of PTM switching 629 

We first identified several biological features for each experiment, gene, and modification site for the 630 

MAGE screens. These included the following phenotypic features for experimental samples: 1) 631 

whether the experiment was a steady growth condition or oscillating, 2) if the media included glucose 632 

or an alternative poor carbon substrate, 3) if the media was M9 minimal media or a rich medium, and 633 

4) the number of doublings seen by the sample after the start of the time course. In addition, we 634 

considered, for each PTM, if the modification was phosphorylation or acetylation, and if the 635 

modification was on a gene that is predicted to be essential for the given growth condition, based on 636 

flux balance analysis simulations (Lewis et al., 2012). 637 

GEE analysis of MAGE screen data 638 

To identify features that best explained the variation in phenotypic impacts of the MAGE mutations, 639 

the generalized estimating equation was used with Markov correlation structure using the GEEQBOX 640 

package in MATLAB(Ratcliffe and Shults, 2008). This model identified features that best explained 641 

the variation in phenotypic impacts of the MAGE mutations. This model was used to control for the 642 

multiple measurements of each experiment while controlling for variation in number of doublings 643 

across the samples.  644 
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A univariate pre-screening was conducted to assess the contribution of each experimental and 645 

biological feature. Since each sample was measured at multiple time points, the generalized 646 

estimating equation was used with the Markov correlation structure(Hanley et al., 2003) to account 647 

for correlation between time points. Biological features that were not significant in the univariate 648 

pre-screening were eliminated from further analysis. Significant variables were subsequently 649 

assessed for multicollinearity to eliminate redundant variables. Following the pre-screening, a few 650 

features were identified as providing a significant contribution to fitness of mutants in the screen. 651 

These included 1) whether the cells were grown in a single growth condition or oscillating media, 2) 652 

whether the media contained glucose or a poor carbon source, 3) whether the media was rich or 653 

minimal media, 4) if the PTMs were on essential genes for the given growth condition, 5) the 654 

proximity of the PTM to active site residues, and 6) whether the PTM is predicted to modulate salt 655 

bridges. The significant media conditions were multicollinear and two models were analyzed 656 

including only one of the two correlating features. In the final models, analyses comparing poor vs. 657 

rich carbon sources and minimal vs. complex media were correlated and therefore were analyzed in 658 

separate models. 659 

Molecular Dynamics Simulations 660 

Classical molecular dynamics simulations were performed starting from the crystal structure of all 661 

proteins. The individual mutations were manually changed according to the post-translational 662 

modification of interest. Parameters for the phosphorylated amino acids were based on the 663 

parametrization of Homeyer et al. (Homeyer et al., 2006). Using PROPKA (Bas et al., 2008; Li et al., 664 

2005; Olsson et al., 2011) we estimated that all of the residues adopt the default protonation states. 665 

All other non-standard parameters (i.e. for substrates) were calculated per procedures used for the 666 

generation of the parm99 parameters and recommended in the AMBER manual. RESP (Bayly et al., 667 

1993; Cieplak et al., 1995; Cornell et al., 1993) charges were generated by performing a three stage 668 
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RESP fit on two HF/6-31G* optimized structures. Simulations were performed for both substrate-669 

bound and substrate-free states. Each structure was solvated with TIP3P water and, depending on 670 

the total charge of the system, either 14, 7, 20, Na+ ions, achieved system neutrality, (for apo serine 671 

hydroxymethyltransferase (SHMT), transaldolase and enolase, respectively), in an orthothrombic 672 

periodic box (dimensions for SHMT: 94 × 95 × 114 Å; dimensions for transaldolase: 89 x 74 x 75 Å; 673 

dimensions for enolase: 110 x 101 x 89 Å). The particle mesh Ewald (PME) method(Darden et al., 674 

1993; Essmann et al., 1995), with a nonbonded cutoff of 12 Å, was used with periodic boundary 675 

conditions and the Langevin piston Nosé–Hoover method (Feller et al., 1995; Martyna et al., 1994; 676 

Nosé, 1984) to ensure constant pressure and temperature conditions. For each system, GPU-enabled 677 

PMEMD molecular dynamics was performed (Salomon-Ferrer et al., 2013), using the AMBER  99sb 678 

force field (Hornak et al., 2006; Wang et al., 2000) for 50-120 ns per protein state (i.e., substrate-679 

bound versus substrate-free in wild-type or modified variant proteins). 680 

Enzymatic Assays  681 

Enolase activity was assayed by measuring the conversion of 2-PGE to PEP at 25℃ as described 682 

previously(Liu et al., 2012) with modifications. The reaction mixture contained 1 mM 2-PGE in 683 

reaction buffer (100 mM HEPES buffer, pH 8.5, 7.7 mM KCl, 10 mM MgSO4, prewarmed to 25℃), and 684 

enolase was added to initiate the reaction. The reaction was monitored spectrophotometrically by 685 

measuring absorbance at 240 nm for the production of PEP at 30 sec intervals for 10 min.  686 

For transaldolase, the reverse reaction catalyzed by transaldolase was tested at room temperature 687 

as described previously (Huang et al., 2008) with some modifications. The reaction mixture 688 

contained 5 mM D-fructose-6-phosphate, 0.2 mM erythrose-4-phosphate, 0.1 mM NADH, and 10 μg 689 

of α−glycerolphosphate dehydrogenase-triosephosphate isomerase (Sigma) in reaction buffer (40 690 

mM triethanolamine, pH 7.6, 5 mM EDTA), and transaldolase was added to initiate the reaction. The 691 

reaction was monitored spectrophotometrically by measuring absorbance at 340 nm at 30 sec 692 
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intervals for 10 min. 693 

Serine hydroxymethyltransferase activity of THF-dependent cleavage was measured as described 694 

previously(Schirch, 1971) with some modifications. The reaction mixture in a final volume of 75 μl 695 

consisted of 0.3 mM pyridoxal phosphate, 40 mM mercaptoethanol, 15 mM serine and serine 696 

hydroxymethyltransferase in reaction buffer (10 mm potassium phosphate, pH 7.3, 0.5 mM EDTA). 697 

After a 5-minute incubation at 37℃, 1 mM THF was added to initiate the reaction. The reaction was 698 

stopped after 2 minutes by the addition of 100 μl of pH 9.5 carbonate buffer. 20 μl of 2 mM NADP+ 699 

and enough methylene tetrahydrofolate dehydrogenase were then added to carry out the auxiliary 700 

reaction and the increase in absorbance at 340 nm was followed to completion. 701 

 702 
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 891 

Fig. 1. Metabolically-regulated enzymes can be predicted in silico. As changes in nutrient 892 

availability or enzyme copy number in cells occur, metabolic regulation can help rebalance 893 

metabolism while the transcriptional programs are deployed and fine-tuned. (a) This often occurs at 894 

branch-points in metabolism, such as the branch point at isocitrate, which divides flux between the 895 

TCA cycle and glyoxylate shunt during the glucose-acetate diauxie. (b) Randomly-sampled in silico 896 

flux distributions for growth on acetate and glucose show that isocitrate dehydrogenase is used for 897 

growth on glucose minimal media, while flux is diverted to isocitrate lyase when the cell is 898 

metabolizing acetate. (c) The RuMBA algorithm identifies a rank-ordered list of reactions and their 899 

associated enzymes that require significant regulation to redirect flux when rapidly shifting from one 900 

carbon substrate to another. Many of these predictions are enzymes that are known to undergo 901 

metabolic regulation (blue; see Table S1 for identities of enzymes). 902 

 903 

 904 

Fig. 2. PTMs are associated with enzymes predicted to require metabolic regulation. (a) PTMs 905 

are found on many enzymes in central metabolism and other pathways. 56% of proteins with PTMs 906 

are in E. coli metabolism, which is ~2X expected (29%) when considering protein-coding genes (or 907 

35% when considering only expressed genes). (b) Across 62 metabolic protein structures, PTMs 908 

were significantly closer to functional residues (i.e., catalytic or substrate binding residues) than 909 

expected >48% of the proteins. (c) 37% of the proteins had PTMs closer than 10Å to functional 910 

residues. (d) The RuMBA algorithm provides a rank-ordered enzyme list of enzymes that should be 911 

regulated to redirect flux when rapidly shifting between nutrients. PTMs (salmon) are enriched in 912 

RuMBA predictions for the glucose-acetate diauxie, and for (e) 92% of the pairwise shifts between 913 

174 media conditions. (f) We clustered all enzymes predicted to require regulation for at least one 914 
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of the 15,051 media shifts. (g) 43% of the enzymes in the highly-regulated cluster have one or more 915 

PTM, while ~9% in the less regulated clusters have PTMs. Only 3% of the enzymes that never require 916 

regulation have PTMs. (h) Clusters of RuMBA regulated enzymes reveal key pathway features 917 

underlying different conditions that may stimulate regulation. 918 

 919 

Fig. 3. Enforcing PTM states with MAGE demonstrates PTMs are functionally relevant and 920 

impact fitness in oscillating environments. (a) The MAGE-generated mutant population had 921 

codons edited at PTM sites to mimic the PTM or disallow the PTM (“PTM-null”). A mutant pool 922 

harboring 268 different mutations to 134 amino acids on 61 genes was obtained and screened on 923 

diverse media conditions. Mutant abundance was quantified by amplicon-sequencing MAGE sites. 924 

(b) Individual mutants showed media-specific responses (e.g., enhanced growth on acetate M9 media 925 

for the GlyA K54R mutant). (c) The mutant pool was screened on 5 media conditions and two 926 

oscillating conditions to identify PTM sites that, when forced in a PTM-mimic or PTM-null state, had 927 

altered cellular fitness in specific conditions. (d) Many combinations of PTM mutations/media 928 

conditions showed >2 fold changes in fitness, and 88% of PTM sites showed a phenotype in at least 929 

one condition. (e) PTM sites on 35 proteins exhibited a significant preference for the PTM-mimic or 930 

PTM-null states. (f) A GEE analysis quantified factors influencing cell fitness after MAGE inhibited the 931 

change of PTM state. MAGE mutations only moderately impacted fitness on complex or minimal 932 

media. In comparison, the impact on fitness was almost three times as great on oscillating media 933 

when the PTM state was frozen in the PTM-mimic or PTM-null state. The localization of PTMs near 934 

active site residues on essential proteins significantly influenced fitness, especially when predicted 935 

to modulate salt bridges. Thus, the PTMs are poised to regulate the key proteins to immediately adapt 936 

to changes in growth condition.  937 

 938 
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Fig. 4. PTMs modulate protein interactions, binging site geometry or enzyme catalytic 939 

capacity. (a) Acetylation of K250 of serine hydroxymethyl transferase (SHMT) disrupts a salt-bridge, 940 

leading to decreased THF binding (top). K54 participates in a salt bridge with E36 of the other protein 941 

subunit (bottom), and acetylation increases the distance between K54 and E36 by >4Å (Fig. S8). (b) 942 

The E36-K54 interaction was disrupted in vitro, and catalytic activity decreased. (c) Average fitness 943 

for all significantly changing conditions is plotted for the PTM-mimic (x-axis) and the PTM-null (y-944 

axis) MAGE mutants. The K54 PTM-mimic state exhibits reduced fitness, while the K250 PTM-null 945 

state significantly enhances growth. FFO= 5-formyl tetrahydrofolate and PLG= N-glycine-[3-hydroxy-946 

2-methyl-5-phosphono-oxymethyl-pyridin-4-yl-methane]. (d) Interactions between six active site 947 

residues determine the open and closed states in transaldolase. The closed state involves D305-K308 948 

and P36-F302 interactions. In the open state, S37 interacts with D305 and K308, while F302 interacts 949 

with F178, to allow the exchange of catalytic water. (e) Enzymatic assays show reduced activity of 950 

S226D and S226N mutants, but (f) the open conformation rescues the reduced activity of the S226 951 

MAGE PTM-mimic state. The closed enzyme from the S226 PTM-null and K308 PTM-mimic reduced 952 

fitness. (g) (top) The catalytic site of enolase (PDB 3h8a) and (bottom) enolase in complex with a 953 

minimal binding segment of RNase E (PDB 2yfm). (h) PTMs modifying two catalytic residues in 954 

enolase abolish activity, as tested with in vitro enzyme assay and (i) phenotypes from MAGE mutants. 955 
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