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One Sentence Summary: An open online resource of human immunology data from more than 

10,000 normal subjects including interactive data visualization and download enables a new look 

at immune system differences across age and sex, rapid hypothesis generation, and creation of 

custom control cohorts.  

Abstract:  

New immunological assays now enable rich measurements of human immune function, but 

difficulty attaining enough measurements across sufficiently large and diverse cohorts has 

hindered describing normal human immune physiology on a large scale. Here we present the 

10,000 Immunomes Project (10KIP), a diverse human immunology reference derived from over 

44,000 individuals across 242 studies from ImmPort, a publicly available resource of raw 

immunology study data and protocols. We carefully curated datasets, aggregating subjects from 

healthy/control arms and harmonizing data across studies. We demonstrate 10KIP’s utility by 
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describing variations in serum cytokines and leukocytes by age, race, and sex; defining a 

baseline cell-cytokine network; and using 10KIP as a common control to describe immunologic 

changes in pregnancy. Subject-level data is available for interactive visualization and download 

at http://10kImmunomes.org/. We believe 10KIP can serve as a common control cohort and will 

accelerate hypothesis generation by clinical and basic immunologists across diverse populations. 

 

 [Main Text: ] 

Introduction 

The rapid advancement of technologies in preclinical immunology (1–5) and the promise 

of precision therapeutics in immunology (6–8), have together propelled a rapid increase in the 

production of large-scale immunological data. Similar advancements in other fields, such as 

genomics, where high-throughput assays spurred a swell of data, have demonstrated the need and 

benefit of common reference datasets. Resources such as the 1000 Genomes Project (9–11), 

Health and Retirement Study (https://hrs.isr.umich.edu/), Wellcome Trust Case Control 

Consortium (12), and Exome Aggregation Consortium (13) have accelerated discovery of 

thousands of disease-linked variants and uniquely enable understanding of global variation in the 

human genome in health and disease. To date, however, human immunology has no such 

resource. A common reference would expand our understanding of the diversity of the human 

immune system, accelerate hypothesis testing, and serve as a common control population, 

precluding the need for immunologists to recruit such controls in every individual study. 

The challenge in generating such a resource lies, in part, in the diversity of data types 

available to immunologists. A reference “immunome” might reasonably include flow cytometry, 

gene expression, human leukocyte antigen (HLA) type, cytokine measurements, clinical 
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assessments, and more. Furthermore, standardized protocols for measurement and conventions 

for naming cell types and cytokines are only currently being developed, and adherence is 

inconsistent (14). For the experimental or clinical immunologist, the cost of generating the 

necessary data from scratch—or the temporal and computational costs associated with 

standardizing and harmonizing data from publicly available cohorts across platforms, time 

points, and institutions—is prohibitive. Thus, although the benefit of a common reference 

population is clear, and large-scale data are publicly available, this need has not been met.  

Other lessons from the field of genomics offer additional direction and promise. For 

example, resources like the 1000 Genomes Project (9–11) have clearly demonstrated the 

necessity of exploring and accounting for human diversity; the publication of the original data 

release has been cited more than 5000 times. Additionally, although high-throughput assays 

invariably suffer from inter-experiment technical variation, the field has generated and validated 

statistical methods for overcoming those artifacts while preserving the underlying effects of 

interest (15–19). These breakthroughs, ripe for translation to immunological data, have unlocked 

the potential for deeper insight beyond the initial intent of each of the thousands of studies that 

have made their raw data publicly available to researchers.  

    Given the recent growth in open immunology data, we sought to synthetically construct 

a reference “immunome” by integrating individual level data from publicly available 

immunology studies, an effort which we term the 10,000 Immunomes Project (10KIP). We 

began by manually curating the entire public contents of ImmPort (Data Release 21; 

www.immport.org), the archival basic and clinical data repository and analysis platform for the 

National Institute for Allergy and Infectious Disease (NIAID) (20,21). ImmPort contains studies 

on a diversity of topics related to immunity, including allergy, transplant, vaccinology, and 
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autoimmune disease, and the data represented are diverse, ranging from flow cytometry and 

Enzyme-Linked Immunosorbent Assay (ELISA) to clinical lab tests and HLA type. While most 

of these studies were not designed to examine the diversity of the healthy normal immune 

system, they nonetheless contain healthy control arms that we utilized for this purpose. ImmPort 

is uniquely suited to the task of generating a large diverse reference population of immune 

measurements, as the raw data deposition in ImmPort is highly structured. Every subject, sample, 

experiment, study, and experimental time point is assigned a unique accession, making every 

entity and attribute traceable throughout the database. Data contributors submit protocols 

detailing their process and the specific platforms and reagents used. Finally, every subject is 

associated with an age, sex, and race. This degree of annotation is rare amongst immune data 

repositories and is strictly necessary for compiling a diverse common reference population that 

enables custom cohort creation and systems-level analysis.  

Our goal was to include in our reference only human subjects from the healthy control 

arms of studies and only samples from individuals that have undergone no experimental 

manipulation. Our filtering and data harmonization process resulted in an inaugural dataset 

consisting of 10 data types in standardized tables (mass cytometry [CyTOF], flow cytometry, 

multiplex ELISA, gene expression array, clinical lab tests and others) on 42,117 samples taken 

from 10,344 subjects. We unify the data from all the normal healthy immunomes into a fully 

open and interactive online resource (www.10kimmunomes.org). We expect that the ability to 

dynamically visualize and compare our reference population with samples from immune 

perturbation and disease will accelerate discovery in immunology. We further show that this 

resource can increase the potential for rapid hypothesis generation and testing, can serve as a 

common control population to increase the robustness of human immunology studies, and can 
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also provide a basis for studying immunity across age, sex, and racially-diverse populations. As 

an arm of the ImmPort environment, the 10,000 Immunomes Project (10KIP) is highly scalable, 

and will only grow in value, richness, and scale with the participation of the immunology 

community in the open-data movement.   

 

Results  

Development of the 10,000 Immunomes Project  

To develop the 10KIP, we began with ImmPort Data Release 21 (downloaded May 3, 

2017), which contains 242 studies released to the public, with 44,775 subjects and 293,971 

samples (fig. 1). We began by manually curating each of these 242 studies, reading inclusion and 

exclusion criteria, and selecting by hand which study arms and planned visits constitute data 

collected on samples from normal healthy human subjects prior to any experimental immune 

perturbation. This manual curation process resulted in an inaugural population of 10,344 

subjects, spanning 83 studies and collectively contributing data from 42,117 biological samples. 

An exhaustive list of all studies, arms, and planned visits that qualified for inclusion is available 

as Table S1. 

This dataset consists of 10 distinct data types (flow cytometry, high-throughput serum 

protein measurements, gene expression, clinical lab tests and others). For each data type, we 

developed a standardized pipeline for data cleaning and harmonization (see Methods). Across all 

studies, we standardized analyte names and units of measurement, segregated data by sample 

type (e.g. peripheral blood mononuclear cells (PBMC) versus whole blood versus serum), and 

corrected for differences in sample dilutions. This process resulted in standardized data tables, 

which form the backbone of the reference. The normalized data and their raw counterparts are 
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available for visualization and download at http://10kImmunomes.org/.  

 

Contents of the inaugural release of the 10,000 Immunomes Project 

The initial release of the 10KIP contains 10,344 subjects. They are approximately evenly split 

between male and female, represent a diverse racial makeup, and include more than 1,000 

pediatric subjects (<18 years of age) and over 1,300 subjects above 65 years of age (fig. S1). As 

enumerated in Table 1, the resource contains secreted protein data from over 4,800 subjects, 

clinical lab test data from over 2,600 subjects, flow cytometry or mass cytometry data from over 

1,400 subjects, HAI titers from over 1,300 subjects, and HLA types from over 1,000 subjects, in 

addition to several other data types. Because many subjects contribute more than one type of 

measurement, the total counts of subjects across all measurement types substantially exceeds the 

number of distinct subjects. 

 

Multiplex ELISA measurements across the population 

The regulation of immune system components through cytokines, chemokines, adhesion 

molecules, and growth factors is central to maintenance of a healthy immune homeostasis and 

response to acute infection (22–25). Recent advances in the measurement of such secreted 

proteins with multiplex ELISA (also known as multiplex bead-based analysis or by the trade 

name “Luminex”) allow for high-throughput profiling of the immune molecular milieu (26,27). 

Similar to high-throughput measurements of RNA expression, however, this type of 

measurement must be interpreted with caution, due to inter-experimental technical variation, as 

well as differences in reagents and platforms used (28). In fact, there is contention within the 
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field of computational immunology regarding the validity of directly comparing high-throughput 

serum cytokine measurements across studies (29,30). 

Here we suggest, however, that previously described models for statistical compensation 

for batch effects in genomics are sufficient for analysis of multiplex ELISA data. We find that, 

without batch correction, technical variation contributes significantly to the clustering of 

multiplex ELISA data as visualized by t-SNE (fig. 2A). The empirical Bayes algorithm ComBat 

(15), originally designed for analysis of microarray data, compensates for both mean and 

variance differences across studies while preserving potential effects of interest, such as 

differences by age, sex or race (fig. 2B, fig. S2). We have additionally confirmed the efficacy of 

this strategy through 1000-fold simulations of multiplex ELISA data with mean, variance, and 

single-analyte batch effects (fig. S2). This strategy preserves known effects, such as a 

significantly higher serum leptin concentration in women as compared to men (fig. 2C, (31)). 

Additionally, the ability to combine data across studies from disparate geographic 

locations and distinct ethnic populations enables us to find novel associations. Our analyses 

suggest, for example, a significantly higher level of C-X-C motif chemokine 5 (CXCL5) among 

African Americans as compared to other races (fig. 2D). This chemokine, which is produced by 

adipose tissue resident macrophages, is of potential clinical interest due to its association with 

insulin resistance (32). In total, we find that 27 out of the 50 most commonly measured 

cytokines, chemokines, and metabolic factors measured by multiplex ELISA differ significantly 

by age, sex, or race (fig. 2, S3). Finally, this analysis from a population of 1286 individuals 

across 17 studies allows us to describe the distribution of serum cytokine measurements in a 

diverse human population. Some, such as Interleukin-5 (IL5) and IL7, lie within a relatively 

small range, whereas others, such as chemokines C-C motif chemokine 4 (CCL4) and (CXCL9) 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 25, 2017. ; https://doi.org/10.1101/180489doi: bioRxiv preprint 

https://doi.org/10.1101/180489
http://creativecommons.org/licenses/by-nd/4.0/


display a many-fold range, even within this population of putative healthy normal human 

subjects. Together, these findings affirm the benefit of maintaining and growing a diverse 

common control population for the future of clinical and precision immunology. 

 

Individual level cell subset measurements across the population 

Similarly, even within this reference population, we find a high degree of variability in the 

proportion of immune cell subsets from PBMC as measured by mass cytometry. This variability 

in cell subsets within a normal healthy population corroborates previously-reported descriptions 

of cell subset percentages (33). CD4+, CD8+, and gamma-delta T cell subsets, in particular, span 

a wide range as a percentage of total leukocytes. Smaller subsets, such as memory B cells and 

plasmablasts, span a tighter range (fig. 3A). For high-throughput analysis of mass cytometry 

data, we have employed a previously-validated pipeline that begins with raw fcs files, enacts 

quality control, implements automated gating based on a standard set of markers, and reports a 

standardized set of cell subset percentages as a proportion of total leukocytes (see Methods; 

(34)). In a prior publication, we enumerated a number of associations between race and cell-

subset percentages from analysis of publicly available data (34). 

Here, we describe the effects of age (fig. 3B, C), sex (fig. 3D, E), and race (fig. S4) in 

this larger healthy normal population. As an example, our analysis reveals a pronounced decline 

in naïve CD8+ T cells with age (fig. 3C) with a concomitant increase in memory CD4+ T cells 

(fig. 3C). These findings are anticipated given the accumulation of antigen exposures over the 

lifespan. Our analysis additionally suggests that women have significantly higher levels of naïve 

CD4+ T cells, naïve CD8+ T cells, naïve B cells, and plasmablasts than do male subjects, while 

having a significantly smaller proportion of effector CD8+ T cells (fig. 3D,E). We affirm the 
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previously-published finding that Asian subjects have a lower proportion of CD4+ T cells as a 

proportion of leukocytes than do white subjects (34). We additionally find that NK cells are 

found at a significantly lower level in Asian subjects as compared to white subjects, and that 

regulatory T cells are measured at a significantly higher level in African American subjects as 

compared to all other races (fig. S4). These age, sex, and race-related differences in immune cell 

subsets may help explain population differences in infections and autoimmune disease or impact 

clinical decision-making as it pertains to treatment selection. Developing a diverse reference of 

immune measurements uniquely enables this type of discovery. 

 

Systems-level network analysis of cellular and molecular immunity 

In addition to characterizing the diversity of the immune system in terms of cellular and 

molecular markers, the diversity of measurements available in the 10KIP also has the potential to 

facilitate systems-level network analysis. We selected 321 individuals from the dataset for which 

immune cell subsets in PBMC and protein measurements of serum cytokines, as measured 

respectively by mass cytometry and multiplex ELISA, were assessed in the same biological 

samples. We modeled the partial correlation between each cell type and each cytokine, 

statistically controlling for age, sex, and race (fig. 4), all of which our analyses suggest can have 

significant effects on cellular and molecular immune repertoire (fig. 2-3), and display only those 

correlations that remain significant at an FDR of 0.01 following Benjamini-Hochberg correction.  

Our analysis recovers some known relationships; for example, we see that effector CD4+ 

T cells function as a major hub in the network, contributing positive associations with known 

Th2 cytokines IL5, IL10, and IL13 (35). We additionally see a negative association between 

regulatory T cells and the pro-inflammatory CSF3 (formerly granulocyte colony stimulating 
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factor or GCSF)—consistent with the known immunomodulatory role of Treg cells (36,37). We 

detect an association between CXCL10 and monocyte subsets, concordant with evidence that 

this cytokine is expressed by and acts to recruit monocytes (38). Furthermore, acute phase 

reactants interferon alpha-2 and IL-6 are negative associated with central memory CD8+ T cells 

and memory B cells, which is concordant with the understanding of the kinetics of the transition 

from acute inflammation to memory formation (39). This exploratory analysis of the cell-

cytokine network in the normal, healthy immune system also generates testable hypotheses about 

human immune function. For example, this analysis suggests a positive association between 

leptin and transitional and memory B cells, connections that are potentially of interest given B 

cell expression of the leptin receptor and the recent discovery that B cells may promote insulin 

resistance (40,41). Furthermore, this connection through memory B cells extends to the 

adipokine resistin and to the adhesion molecules ICAM-1 and VCAM-1, a cluster of molecules 

also known to be affected by adiposity (42–44). These analyses together demonstrate the utility 

of the 10KIP for generating systems-level hypotheses from large-scale publicly available 

immunology data collected for a variety of disparate purposes. 

 

Use as a common control population for precision immunology in pregnancy 

Finally, to illustrate the potential of the 10KIP to serve as a common control group for clinical 

studies, we used an age and sex-matched subset of the 10KIP to compare with immune 

measurements in pregnancy, derived from ImmPort study SDY36. In this ImmPort study, 

researchers collected rich clinical data, as well as flow cytometry and serum cytokine 

measurements, from a population of 56 women during each trimester of pregnancy, six weeks 

postpartum, and six months postpartum. Cell count data from this study, as well as trends in 
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cytokine secretion from cultured cells, have been published previously (45). Changes in serum 

cytokine levels over gestation and analyses of cell subset percentages (which are potentially 

differentially affected during pregnancy, (46)), however, remain undescribed. Additionally, the 

study design did not incorporate a pre-pregnancy control, leaving open the question of whether 

cell subsets and serum cytokines truly return to baseline by six months postpartum. Given work 

demonstrating persistence of fetal cells and DNA in maternal blood and brain many years 

postpartum (47,48), the comparison to a common control has the potential to enrich our 

understanding of the immune system in pregnancy and maternity.  

We first applied principal components analysis (PCA) to the serum cytokine 

measurements, which revealed a major shift in cytokine regulation during the first trimester of 

pregnancy as compared to second and third trimester measurements, postpartum measurements, 

and measurements taken from age and sex-matched 10KIP controls (fig. 5A). This shift is 

primarily driven by increased concentrations of CCL2, CCL3, CCL4, CCL5, CCL11, CXCL10, 

and IL6. As an example of this modulation, we see that CCL5 concentration is significantly 

increased during the first and second trimester, decreased during the third trimester and up to 6 

weeks postpartum, but returns to baseline by 6 months postpartum (fig. 5B). In contrast, IL15 

measurements remain relatively constant over the entire course of gestation (fig. 5C).  

In addition to analysis of serum cytokine concentrations, we also examined changes in 

cell subset percentages in pregnancy. PCA analysis of flow cytometry measurements indicated 

that changes in cell subsets over the course of gestation are not the primary source of variation as 

compared to postpartum or reference measurements (fig. 5D). This is not to say, however, that 

cell subsets remain static over the course of pregnancy. We see, for example, that CD4+ T cells, 

as a percent of lymphocytes, undergo a significant increase during all three trimesters of 
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pregnancy as compared to the 10KIP reference population (fig. 5E). B cells, in contrast, exhibit a 

small but significant dip during the second and third trimesters (fig. 5F). This analysis 

demonstrates that the size and scope of the 10KIP are sufficient to generate age and sex-matched 

control cohorts for two types of high-throughput immune measurements as a baseline or 

comparator to immune perturbation or disease. In clinical studies, where challenges of 

compliance and recontactability limit researchers’ ability to generate well-powered control 

cohorts, common reference populations such as the 10KIP could accelerate discovery and 

increase confidence in findings of potential clinical import.  

 

Discussion  

Although the availability of large common control cohorts, such as the 1000 Genomes Project 

(9–11) and the Wellcome Trust Case Control Consortium (12) has proven immensely useful for 

various biological research communities, no parallel resource exists for immunological 

measurements. Here we produced, through manual curation and study-by-study harmonization, 

the 10,000 Immunomes Project, a standardized reference dataset for the immunology 

community. To enable its use by experimental and clinical immunologists, we developed a 

framework for interactive data visualization, as well as custom cohort creation and data 

download, available at http://10kImmunomes.org/. Through statistical testing and validations in 

simulated data, we demonstrate the ability to compensate for technical artifacts that invariably 

arise from collecting data on different days, across different platforms, or at distant institutions, 

by repurposing algorithms developed in computational genetics. 

 In doing so, we recover known differences by age and sex across serum cytokine and 

cell-subset measurements, but also reveal differences, particularly by race, that would have been 
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impossible to uncover without the combination of dozens of independent datasets generated to 

answer varied and unrelated questions in immunology. Through network analysis, we 

additionally demonstrate the utility of the resource for generating insights into cell-cytokine 

relationships in the human immune system. Finally, we demonstrate that the size and scope of 

the data are sufficient for custom cohort selection, enabling us to generate a reference cohort of 

women between the ages of 18 and 40 who have both cell subset and serum cytokine data 

available on the same blood samples for comparison with an external dataset derived from 

measurements taken during pregnancy. Generating a sufficiently powered sex and age-matched 

population with multiple immune measurements for comparison allowed us to explore the cell-

subset and cytokine changes that occur as the immune system is modulated over the course of 

gestation. We expect that the 10KIP will prove useful as a common reference population for a 

diversity of future clinical and preclinical immunological studies.  

 Here, we demonstrate that the abundance of well-documented publicly available immune 

measurements in ImmPort is now sufficient to create an open data platform for human 

immunology. While we recognize the ideal would be to recruit and collect immune 

measurements from a large cohort, the resources required to collect immunologic measurements 

from a sufficiently sized heterogeneous population would be considerable, and a sizable volume 

of subject-level human immunology data are currently available to the research community. We 

also acknowledge further potential limitations in this work. For example, we are selecting 

subjects, standardizing labels and units, and otherwise curating the data with the best available 

information on these studies, but it is possible errors in the original data descriptions or labeling 

might persist. Also, we present the data after normalization and batch correction, but of course, 

we recognize that all of these source data sets were collected independently across institutions, 
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technologies, and time.  It is possible that our normalization efforts and assumptions might not 

hold true for every analysis in every study. We also note that, although the cohort is large and 

will continue to grow, some data types might not be measured densely enough to make reliable 

models that span all ages or races, and to date, racial information in ImmPort is acquired at a 

relatively coarse grain. As high-throughput immunological techniques become more widely 

available and as experimentalists continue to deposit these data in ImmPort, however, the 

resource will continue to grow, enabling well-powered analyses on more specific populations 

and over an increasing number of data types with time. 

 Finally, we want to recognize current reference datasets for immunology. The extant 

resources, while of clear import to the research community, serve different purposes than does 

the 10KIP. ImmGen (49), for example, represents an immense resource of immune gene 

expression in murine models, while the 10KIP instead focuses on multiple data types in human 

immunology. Likewise, ImmuneSpace (50) provides a suite of visualization and analysis tools, 

allowing users to interact and download data at the level of individual human immunology 

studies. The 10KIP, in contrast, has as its primary goals to filter the extant data for only healthy 

normal subjects, and to enable visualization and analysis across many studies. The 10KIP takes 

full advantage of the structure of ImmPort, in which subjects are assigned a unique accession 

number and are associated with their age, sex, and race. The resource allows researchers to 

subset the population or to look for associations with these general demographic phenotypes. 

Additionally, it leverages the richness of data available through ImmPort, which encompasses 

soluble protein and cytokine measurements, such as multiplex ELISA, cell-phenotyping 

measurements such as flow-cytometry and CyTOF, standard medical laboratory test panels, gene 

expression data, and others. We believe that integrating these datasets and presenting them as a 
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fully open resource will pay dividends in terms of both basic research and the precision and 

robustness of ongoing translational efforts in immunology.  

Materials and Methods 
 

Subjects 

Subjects were extracted from Data Release 21 of ImmPort database, which contains 242 open-

access studies, together comprising 44,775 subjects and 293,971 samples. Each subject in 

ImmPort is assigned a unique identifier, allowing every measurement in the ImmPort database to 

be assigned to a unique subject. Each subject has, at minimum, race, age, and sex demographic 

information. The ImmPort data architecture requires that each study contain detailed descriptions 

of inclusion and exclusion criteria for subjects. Additionally, each arm (experimental and control 

arms) of each study is assigned a unique accession. Finally, each experimental measurement is 

time stamped with a unique planned visit accession. Manual review of the inclusion/exclusion 

criteria, arms, and planned visits allowed us to select control subjects, and to examine only those 

measurements taken before the onset of any experimental manipulation, such as vaccine, drug, or 

surgery that may have occurred. A complete list of qualifying studies, arms, and planned visits 

contained in the 10KIP is available in Table S1. 

 

Extract Immune Cell Frequencies from Cytometry Data  

Meta-analysis of Cytometry data is conducted using the MetaCyto package (34). Briefly, flow 

cytometry data and CyTOF data of healthy human blood samples from ImmPort studies SDY89, 

SDY112, SDY113, SDY144, SDY167, SDY180, SDY202, SDY212, SDY296, SDY305, 

SDY311, SDY312, SDY314, SDY315, SDY364, SDY368, SDY387, SDY404, SDY420, 
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SDY472, SDY475, SDY478, SDY514, SDY515, SDY519, SDY702, SDY720, and SDY736 

were downloaded from ImmPort web portal. Flow cytometry data from ImmPort were 

compensated for fluorescence spillovers using the compensation matrix supplied in each fcs file.  

All data from ImmPort were arcsinh transformed. For flow cytometry data, the formula f(x) = 

arcsinh (x/150) was used. For CyTOF data, the formula f(x) = arcsinh (x/8) was used. 

Transformation and compensation were done using the preprocessing.batch function in 

MetaCyto (34). The cell definitions from the Human ImmunoPhenotyping Consortium (14) were 

used to identify 24 types of immune cells using the searchClster.batch function in MetaCyto. 

Specifically, each marker in each cytometry panels was bisected into positive and negative 

regions. Cells fulfilling the cell definitions are identified. For example, the CD14+ CD33+ CD16- 

(CD16- monocytes) cell subset corresponds to the cells that fall into the CD14+ region, CD33+ 

region and CD16- region concurrently. The proportion of each cell subsets in the PBMC or 

whole blood were then calculated by dividing the number of cells in a subset by the total number 

of cells in the blood. Differences by age, sex, and race were detected with a linear model, with 

Tukey’s Honestly Significant Difference (Tukey’s HSD) post-hoc tests and Benjamini-Hochberg 

correction for false discovery rate. 

 

Multiplex ELISA analysis 

Secreted protein data measured on the multiplex ELISA platform were collected from ImmPort 

studies SDY22, SDY23, SDY111, SDY113, SDY180, SDY202, SDY305, SDY311, SDY312, 

SDY315, SDY420, SDY472, SDY478, SDY514, SDY515, SDY519, and SDY720. Data were 

drawn from the ImmPort parsed data tables using RMySQL or loaded into R from user-

submitted unparsed data tables. We corrected for differences in dilution factor and units of 
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measure across experiments and standardized labels associated with each protein as HUGO gene 

symbols. This step represents the “formatted” multiplex ELISA data table. For our own analysis, 

as represented in Figure 2, we analyzed only those proteins that were measured in more than half 

of the subjects leaving the 50 most-commonly measured proteins. Compensation for batch 

effects was conducted using the ComBat function of the R package sva, with study accession 

representing batch and a model matrix that included age, sex, and race of each subject. Data were 

log2 transformed before normalization with ComBat to better fit the assumption that the data are 

normally distributed. We verified that a linear model associating age, sex, ethnicity, and study 

accession of each subject no longer revealed any significant associations between study 

accession and protein concentration following batch correction, and that known differences, such 

as the difference in leptin concentration by sex, were captured following our batch correction 

procedure. We additionally validated our approach using 1000-fold data simulations (see below). 

Differences by age, sex, and race were detected with a linear model, with Tukey’s Honestly 

Significant Difference post-hoc tests and Benjamini-Hochberg correction for false discovery 

rate.  

 

Network Analysis 

The bipartite network depicted in Figure 4 represents an analysis over the 24 immune cell subset 

percentages calculated in the mass cytometry analysis described above in Extract Immune Cell 

Frequencies from Cytometry Data and the 50 soluble protein measurements, normalized and 

batch-corrected as described above in Multiplex ELISA analysis.  Data were included from the 

321 subjects where both multiplex ELISA and mass cytometry measurements were conducted on 

the same biological sample. Edges depict the Spearman’s ρ of a partial correlation between each 
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cytokine concentration and each individual cell type, accounting for age, sex, and race. Only 

correlations that remained significant at a BH-corrected p < 0.01 are shown. 

 

Cell and cytokine modulation in pregnancy 

We compared serum cytokine and cell subset percentages from 10KIP samples to measurements 

taken from women during and after pregnancy. We selected samples from the 10KIP from 

women aged 18-40 who contributed CyTOF data from PBMC and multiplex ELISA 

measurements. Samples from pregnancy were taken from ImmPort study SDY36. The serum 

cytokine and flow cytometry from SDY36 was batch corrected together with the ImmPort 

reference data, using the default parameters of the ComBat algorithm, and including age, sex, 

race, and time point in pregnancy in the model while using study accession as a surrogate for 

batch. Because SDY36 measured a smaller number of cytokines and cell subsets than are 

available as part of the 10KIP, we further selected a subset of the 10KIP to include just those 

parameters measured in SDY36. These data were used to conduct standard PCA analysis (R: 

prcomp, ggbiplot). Differences were calculated using ANOVA with a Tukey’s HSD post-hoc 

test.  

 

Gene expression array harmonization and normalization 

Gene expression array data were obtained in three formats. For data collected on Affymetrix 

platforms, we utilized the ReadAffy utility in the affy Bioconductor package to read in raw .CEL 

files. The rma utility was used to conduct Robust Multichip Average (rma) background 

correction (as in (51)), quantile normalization, and log2 normalization of the data. For data 

collected on Illumina platforms and stored in the Gene Expression Omnibus (GEO) database, we 
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utilized the getGEO utility in the GEOquery Bioconductor package to read the expression files 

and the preprocessCore package to conduction rma background correction, quantile 

normalization, and log2 normalization of the gene expression data. Finally, for data collected on 

Illumina platforms but not stored in GEO, we utilized the read.ilmn utility of the limma 

Bioconductor package to read in the data, and the neqc function to rma background correct, 

quantile normalize, and log2 normalize the gene expression data. In all instances, probe IDs were 

converted to Entrez Gene IDs. Where multiple probes mapped to the same Entrez Gene ID, the 

median value across probes was used to represent the expression value of the corresponding 

gene. The background-corrected and normalized datasets were combined based on common 

Entrez IDs, missing values were imputed with a k-nearest neighbors algorithm (R package: 

impute, function: impute.knn) using k = 10 and default values for rowmax, colmax, and maxp. 

To create the normalized and batch corrected dataset available through the 

www.10kImmunomes.org portal, we utilized a well-established empirical Bayes algorithm for 

batch correction (15), compensating for possible batch effects while maintaining potential effects 

of age, race, and sex across datasets and mapped Entrez IDs to HUGO gene IDs.  

 

Simulations to validate the batch correction algorithm 

The empirical Bayes algorithm we have used to generate the normalized data available for 

download has previously been validated in its use for gene expression microarray analysis (15). 

To assess the efficacy of using an empirical Bayes algorithm to compensate for batch effects in 

multiplex ELISA data, we generated simulated multiplex ELISA data as skewed normal 

distributions from a set of parameters selected to mimic those skewed normal distributions that 

best fit the actual multiplex ELISA data used in our analysis. We generated this data for 50 
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analytes and 1500 subjects and purposefully introduced batch effects intended to mimic the types 

of batch effects we might encounter in real multiplex ELISA data. To account for use of a 

differently calibrated machine, for example, we simulated data in which one batch had a higher 

mean that the other batches. To account for the possibility that one lab’s data might be more 

variable than others, in one simulation we introduced random noise into one batch of the data. 

Finally, to account for the fact that the antibodies used may differ in efficacy across lots and 

experiments, we devised a simulation in which just one analyte in just one batch has a perturbed 

mean. In each of 1000 simulations of this data, we then generated a linear model to test whether 

the empirical Bayes algorithm ComBat (15) would successfully correct for these deviations from 

the true value of the simulated data. Additionally, we took the largest single batch of multiplex 

ELISA data (data from ImmPort study SDY 420) and intentionally introduced the same 3 types 

of batch effects we introduced into the simulated data. Following the same procedure, we 

demonstrate that ComBat successfully removes these introduced batch effects from real 

multiplex ELISA data. 
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Fig. 1. Resource Development and Selected Applications. 

Data from 242 studies and 44,775 subjects (including flow cytometry and CyTOF, mRNA 

expression, secreted protein levels—including cytokines, chemokines, and growth factors—

clinical lab tests, HAI titers, HLA type and others) were collected from the NIAID Immunology 

Data and Analysis Portal, ImmPort (www.immport.org). We hand curated the entire contents of 

ImmPort to filter for normal healthy control human subjects. Each of the 10 data types was 

systematically processed and harmonized. These data constitute the largest compendium to date 

of cellular and molecular immune measurements on healthy normal human subjects. Both the 

normalized data and their raw counterparts are openly available for visualization and download 

at http://10kImmunomes.org/.  
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Table 1. Data Available in the Initial Release.  

Counts of distinct subjects for whom raw data of each type is represented in the initial release of 

the 10KIP. Because many subjects contributed multiple measurement types, the totals across all 

measurement types substantially exceed the number of distinct subjects.  

 

 

Data available in the  
10,000 Immunomes Project 

 

Total Samples 42117 
Total Distinct Subjects 10344 

MEASUREMENT 

Secreted Proteins 

SUBJECTS 

4835 
ELISA 4035 
Multiplex ELISA 1286 

  
Virus Titer 3609 

Virus Neutralization Titer 2265 
HAI Titer 1344 
  

Clinical Lab Tests  2639 
Complete Blood Count 1684 
Comprehensive Metabolic Panel 664 
Fasting Lipid Profile 664 
  

Questionnaire 1422 
  

Cytometry 1415 
Flow Cytometry (PBMC) 907 
CyTOF (PBMC) 583 
Flow Cytometry (Whole Blood) 164 

  
HLA Type 1093 
  
Gene Expression Array 476 
Whole Blood 311 
PBMC 165 
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Fig. 2. High-throughput secreted protein data: characterizing the range of unperturbed secreted 

protein levels in a diverse population. 

(A) tSNE visualization of high-throughput secreted protein data, colored by study accession, 

reveals that much of the variance across the data is explained by batch.   

(B) After batch correction with an empirical Bayes algorithm, which accounts for both mean and 

variance difference across studies while maintaining effects of covariates such as age, sex, 

and race, the data no longer cluster by batch. 

(C) Secreted protein data as measured by multiplex ELISA across 17 studies captures known 

effects, such as elevated levels of serum leptin in female relative to male subjects 

(ANCOVA, n = 906, p = 9 x 10-28). 

(D) Analysis of the reference population reveals novel demographic associations, including 

elevated CXCL5 in African American subjects as compared to other races. (ANCOVA, n = 

917, p-values: * p < 0.05, ** p < 0.01). 

(E) We characterize the distribution of secreted protein levels from serum across the reference 

population (n = 1286).  
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Fig. 3. Mass cytometry: characterizing the range of cell subset percentages in a diverse 

population. 

(A) Distribution of cell subset percentages across the 10KIP. 

(B) Analysis of mass cytometry data reveals significant effects of age on cell subset percentages, 

while accounting for sex and race. Only cell subset associations with Benjamini-Hochberg 

corrected p-values < 0.05 are shown. (ANCOVA, n = 578, * p < 0.05, ** p < 0.01, *** p < 

0.001). Effect sizes are displayed as Pearson’s r  ± 95% confidence intervals. 

(C) Naïve CD8+ T cells decrease significantly with age (ANCOVA, n  = 565, p = 1.1 x 10-21), 

while central memory CD4 T cells increase significantly with age (ANCOVA, n = 578, p = 

5.3 x 10-6), while accounting for sex and race. 

(D) Analysis of mass cytometry data reveals significant effects of sex on cell subset percentages, 

while accounting for age and race. Only cell subset associations with Benjamini-Hochberg 

corrected p-values < 0.05 are shown. (ANCOVA, n = 578, * p < 0.05, ** p < 0.01, *** p < 

0.001). Effect sizes are displayed as Cohen’s d ± 95% confidence intervals. 

(E) T Cells (ANCOVA, n  = 565, p = 7.4 x 10-6) and naïve CD4+ T cells (ANCOVA, n = 578, p 

= 3.3 x 10-8) are significantly elevated in women as compared to men, accounting for age and 

race.  
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Fig. 4. Immune cell and serum cytokine bipartite graph.  

Immune cell percentages and serum protein concentrations, as measured by CyTOF and 

multiplex ELISA, were processed as described in Methods, and the cell cytokine relationship 

was described as partial correlations accounting for age, sex, and race. Only relationships 

significant at a BH-corrected p < 0.01 are shown. 
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Fig. 5. Comparing pregnancy data to the common control reveals cell-subset and immune protein 

modulation in pregnancy. 

(A) PCA plot depicting the variation in serum proteins, as measured by multiplex ELISA, over 

the course of pregnancy, taken from ImmPort Study SDY36, as compared to multiplex 

ELISA measurements from women between the ages of 18-40 from the reference population. 

The variance in measurements is dominated by a deviation in serum cytokine measurements 

during the first trimester (teal) relative to all other time points during pregnancy and relative 

to the 10KIP controls (green). These differences are driven primarily by changes in CCL2, 

CCL3, CCL4, CCL5, CCL11, IL6, and CXCL10. 
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 (B) As an example of cytokine modulation in pregnancy, serum CCL5 levels are significantly 

increased in the first and second trimester relative to the 10KIP controls, decrease during the 

third trimester and remain low for at least 6 weeks postpartum. CCL5 levels return to 

baseline levels by 6 months postpartum (ANOVA with Tukey HSD, n = 142 controls, n = 57 

pregnancy, * p < 0.05, ** p < 0.01, *** p < 0.001).  

(C) In contrast, serum IL15 levels make no significant deviations from normal over the course of 

pregnancy (ANOVA with Tukey HSD, n = 142 controls, n = 57 pregnancy). 

(D) PCA plot depicting the variation in immune cell subsets, as measured by flow cytometry, 

over the course of pregnancy, taken from ImmPort Study SDY36, as compared to cytometry 

measurements from women between the ages of 18-40 from the 10KIP controls. As opposed 

to cytokine measurements (A), the preponderance of variation in cell subset measurements is 

not due to changes over the course of pregnancy. All time points during and following 

gestation substantially overlap with the controls (green).   

(E) The percentage of CD4+ T cells, as a fraction of lymphocytes, is significantly elevated over 

the duration of pregnancy, but returns to baseline in the postpartum period (ANOVA with 

Tukey HSD, n = 94 controls, n = 57 pregnancy, * p < 0.05, *** p < 0.001). 

(F) The percentage of B cells, as a fraction of lymphocytes, exhibits a small but significant dip in 

the second and third trimesters (ANOVA with Tukey HSD, n = 94 controls, n = 57 

pregnancy, * p < 0.05). 
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Supplementary Materials 

 

 

Fig S1. Demographics of the reference population 

(A) Age distribution of the reference population.  

(B) Sex distribution of the reference population. 

(C) Racial distribution of the reference population. 
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Fig S2. Batch correction of multiplex ELISA data 

Because the linear model tests the effect of batch on each of the 50 analytes independently, the 

output of each run of the simulation could vary between 0 and 50 significant batch-analyte 

associations. Results are reported as mean number of analytes that are significantly affected by 

batch in a linear model ± the standard deviation in the number of analytes over the 1000 

iterations. 

(A-F) 1000 different simulated multiplex ELISA datasets were generated as described in the 

Methods. In each of these 1000 simulations, three conditions were tested. 1) One entire batch 

has an increased mean value. 2) One entire batch has increased variance. 3) One analyte in 

one batch has a decreased mean value. For each condition, the data were altered to add this 

batch effect, and the data were then processed with ComBat to attempt to remove this batch 

effect.  A,C,E represent the uncorrected data. B,D,F represent data after batch correction.  

(A) Over the 1000 runs of the simulation there were, in the mean perturbed data, 50 

significant batch-analyte associations in every run.  

(B) This was reduced to 0 ± .08 following batch correction.  

(C) In the variance-perturbed data, there were 10 ± 2.7 significant batch analyte associations. 

(D) This was reduced to 0.6 ± 0.5 following batch correction.  

(E) In the single analyte perturbed data, there were 3 ± 1.5 significant batch-analyte 

associations (an increase of 1 over baseline)  

(F) This was reduced to 0 ± 0.04 following batch correction. These findings, together with 

our ability to recover known effects of demographic variables in multiplex ELISA data, 
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provided confidence that the Empirical Bayes method of compensating for batch effects 

was reasonable and effective for the data at hand.  

(G-L) We also selected the largest single batch of multiplex ELISA data, data taken from 

ImmPort study SDY420, and tested the same three conditions as above in a 1000-fold 

simulation. G,I,K represent the uncorrected data. H,J,L represent data after batch correction.  

(G) Over the 1000 runs of the simulation there were, in the mean perturbed data, 47 ± 1.8 

significant batch analyte associations.  

(H) This was reduced to 0 ± 0 following batch correction.  

(I) In the variance-perturbed data, there were 16 ± 1.6 significant batch analyte associations. 

(J) This was reduced to 0 ± 0 following batch correction.  

(K) In the single analyte perturbed data, there were 3 ± 0.04 significant batch-analyte 

associations (an increase of 1 over baseline)  

(L) This was reduced to 1 ± 0.13 following batch correction. These findings, together with 

our ability to recover known effects of demographic variables in multiplex ELISA data, 

provided confidence that the Empirical Bayes method of compensating for batch effects 

was reasonable and effective for the data at hand.  
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Fig. S3. Multiplex ELISA measurements differ by age, race, and sex. 

(A) Multiplex ELISA data were processed as described in Methods. 20 out of the 50 most 

commonly measured serum proteins were significantly associated with age. Only 

proteins significantly associated with age at a threshold of BH-corrected p < 0.05 are 

shown. (ANCOVA, n = 1286, *** p < 0.001, ** p < 0.01, * p < 0.05). Effect sizes are 

displayed as Pearson’s r ± 95% confidence intervals. 

(B) Leptin, CXCL5, and CSF2 are all expressed at significantly lower levels in men as 

compared to women. Only proteins significantly associated with age at a threshold of 

BH-corrected p < 0.05 are shown. (ANCOVA with Tukey HSD,  *** p < 0.001). Effect 

sizes are displayed as Cohen’s d ± 95% confidence intervals. 

(C) We found 10 of the 50 most commonly measured serum proteins to differ significantly 

by race (ANCOVA with Tukey HSD, *** p < 0.001, ** p < 0.01, * p < 0.05). 
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Fig. S4. Cell subset measurements differ by race. 

(A) Natural Killer Cells are significantly elevated in Asian, as compared to white subjects, 

accounting for age and sex (ANCOVA with Tukey HSD, n = 578, * p < 0.05). 

(B) Lymphocytes are significantly elevated in Asian as compared to white subjects, 

accounting for age and sex (ANCOVA with Tukey HSD, n = 578, * p < 0.05). 

(C) CD4+ T cells are significantly decreased in Asian as compared to African American or 

white subjects, accounting for age and sex (ANCOVA with Tukey HSD, n = 578, * p < 

0.05). 

(D) Regulatory T cells are significantly decreased in African American subjects as compared 

to all other ethnic groups, accounting for age and sex (ANCOVA with Tukey HSD, n = 

578, * p < 0.05). 
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Fig. S5. Web Interface 

Screen capture of the interactive visualization portion of the web interface, depicting a plot of 

CXCL5 concentration by race. From this page, users can plot data from the resource by age, sex, 

race, and study. They can subset which data are plotted based on the demographic variables of 

their choosing, and they can download the plots as PDF files as well as the underlying data in a 

standardized format that includes subjects’ demographic information and the study from which 

the data were obtained. 
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Study Subjects Arm Planned 
Visit 

Topic Submitter Institution 

SDY839 2681 ARM3251 PV5047 vaccine 
response 

Gregory 
Poland 

Mayo Clinic 

SDY25 1411 ARM25 PV1240 B-cell 
physiology 

Richard 
Kaslow 

University of Alabama at 
Birmingham 

SDY22 1003 ARM15 PV1218 vaccine 
response 

Diane 
Wagener 

Research Triangle 
Institute, NC 

SDY23 1000 ARM16 PV1222 vaccine 
response 

Diane 
Wagener 

Research Triangle 
Institute, NC 

SDY40 758 ARM303 PV1572 TLR  David Hafler Yale University 
SDY420 743 ARM2412 PV3251 aging Ellis 

Reinherz 
Dana Farber Cancer 
Institute 

SDY41 739 ARM408 PV1574 vaccine 
response 

Charles 
Fathman 

Stanford University 

SDY6 438 ARM257 PV1538 atopic 
dermatitis 

Jack Gorski Blood Center of 
Wisconsin 

SDY736 393 ARM3055 PV4678 immune 
aging 

Gregory 
Poland 

Mayo Clinic 

SDY24 360 ARM23 PV1226 vaccine 
response 

Richard 
Kaslow 

University of Alabama at 
Birmingham 

SDY313 177 ARM2133 PV2934 juvenile 
arthritis 

Mark Davis Stanford University 

SDY67 159 ARM544 PV1792 vaccine 
response 

Mark Davis Stanford University 

SDY400 98 ARM2351 PV3206 vaccine 
response 

David Hafler Yale University 

SDY112 91 ARM642 PV1950 vaccine 
response 

Mark Davis Stanford University 

SDY212 91 ARM894 PV2481 vaccine 
response 

Mark Davis Stanford University 

SDY314 91 ARM2134 PV2935 vaccine 
response 

Mark Davis Stanford University 

SDY146 84 ARM704 PV2153 immunosupp
ression 

Ignacio Sanz University of Rochester 
Medical Center 

SDY312 83 ARM2131 PV2932 vaccine 
response 

Mark Davis Stanford University 

SDY515 82 ARM2605 PV3460 vaccine 
response 

Mark Davis Stanford University 

SDY59 81 ARM454 PV1763 juvenile 
arthritis 

Lisa Beck University of Rochester 
Medical Center 
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SDY202 78 ARM857 PV3254 vaccine 
response 

Harry 
Greenberg 

Stanford University 

SDY183 76 ARM790 PV2361 vaccine 
response 

PJ Utz Stanford University 

SDY514 75 ARM2596 PV3457 vaccine 
response 

Mark Davis Stanford University 

SDY311 72 ARM2126 PV2930 vaccine 
response 

Mark Davis Stanford University 

SDY404 72 ARM2358 PV3222 vaccine 
response 

Erol Fikrig Yale School of Medicine 

SDY315 71 ARM2137 PV2937 vaccine 
response 

Christian 
Larsen 

Emory Transplant Center 

SDY60 70 ARM455 PV1768 memory T 
cells, aging 

David Hafler Yale University 

SDY478 69 ARM2527 PV3386 vaccine 
response 

Mark Davis Stanford University 

SDY113 68 ARM646 PV1954 vaccine 
response 

Harry 
Greenberg 

Stanford University 

SDY10 67 ARM274 PV1550 atopic 
dermatitis 

Donald 
Leung 

National Jewish Health 

SDY269 63 ARM1889 PV2723 vaccine 
response 

Bali 
Pulendran 

Emory University 

SDY80 63 ARM557 PV4267 vaccine 
response 

Robert 
Coffman 

Dynavax Technologies 
Corporation 

SDY4 61 ARM245 PV1530 atopic 
dermatitis 

Erol Fikrig Yale School of Medicine 

SDY520 61 ARM2620 PV3474 vaccine 
response 

David Hafler Yale University 

SDY720 61 ARM3030 PV4599 innate 
immunity, 
aging 

Janko 
Nikolich-
Zugich 

University of Arizona 

SDY519 60 ARM2612 PV3470 vaccine 
response 

Mark Davis Stanford University 

SDY702 56 ARM2994 PV4544 T cells Elias Haddad Drexel University 
College of Medicine 

SDY34 52 ARM227 PV1493 vaccine 
response 

Octavio 
Ramilo 

Nationwide Children's 
Hospital 

SDY89 50 ARM566 PV1868 vaccine 
response 

Robert 
Coffman 

Dynavax Technologies 
Corporation 

SDY63 49 ARM467 PV1777 vaccine 
response 

David Hafler Yale University 

SDY97 49 ARM610 PV1902 vaccine 
response 

Andrea Sant University of Rochester 
Medical Center 

SDY111 48 ARM641 PV1945 vaccine 
response 

Jorg Goronzy Stanford University 
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SDY753 47 ARM3087 PV4704 nasal 
microbiome 

Scott Boyd Stanford University 

SDY180 46 ARM780 PV2339 vaccine 
response 

Karolina 
Palucka 

Baylor Research Institute 

SDY167 45 ARM747  PV2282 vaccine 
response 

Julie 
Ledgerwood 

NIAID 

SDY296 45 ARM2102 PV2856 vaccine 
response 

Karolina 
Palucka 

Baylor Research Institute 

SDY301 40 ARM2107 PV2889 vaccine 
response 

Karolina 
Palucka 

Baylor Research Institute 

SDY200 39 ARM852 PV2411 vaccine 
response 

Linda 
Thompson 

Oklahoma Medical 
Research Foundation 
(OMRF) 

SDY198 38 ARM848 PV2403 vaccine 
response 

Linda 
Thompson 

Oklahoma Medical 
Research Foundation 
(OMRF) 

SDY199 37 ARM850 PV2407 vaccine 
response 

Linda 
Thompson 

Oklahoma Medical 
Research Foundation 
(OMRF) 

SDY640 37 ARM2863 PV4158 vaccine 
response 

Jennifer 
Nayak 

University of Rochester 
Medical Center 

SDY13 32 ARM293 PV1562 atopic 
dermatitis 

Jon Hanifin OHSU 

SDY197 32 ARM846 PV2399 vaccine 
response 

Linda 
Thompson 

Oklahoma Medical 
Research Foundation 
(OMRF) 

SDY196 31 ARM844 PV2395 vaccine 
response 

Linda 
Thompson 

Oklahoma Medical 
Research Foundation 
(OMRF) 

SDY33 31 ARM225 PV1487 renal 
transplant 

Christian 
Larsen 

Emory Transplant Center 

SDY270 30 ARM1891 PV2728 vaccine 
response 

Bali 
Pulendran 

Emory University 

SDY546 30 ARM2993 PV3540 renal 
transplant 

Kenneth 
Newell 

Emory University 

SDY644 30 ARM2872 PV4171 vaccine 
response 

Gregory 
Poland 

Mayo Clinic 

SDY7 30 ARM261 PV1544 vaccine 
response 

Donna 
Farber 

Columbia University 

SDY460 27 ARM2480 PV3306 vaccine 
response 

Scott Boyd Stanford University 

SDY773 27 ARM3119 PV4746 vaccine 
response 

Donald 
Leung 

National Jewish Health 

SDY299 25 ARM2105 PV2874 vaccine 
response 

Robert 
Coffman 

Dynavax Technologies 
Corporation 

SDY3 25 ARM236 PV1519 vaccine Henry National Jewish Health 
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response Milgrom 
SDY5 25 ARM248 PV1534 atopic 

dermatitis 
Richard 
Gallo 

UC San Diego 

SDY305 24 ARM2115 PV2919 vaccine 
response 

Harry 
Greenberg 

Stanford University 

SDY364 23 ARM2290 PV3081 vaccine 
response 

Octavio 
Ramilo 

Nationwide Children's 
Hospital 

SDY368 22 ARM2297 PV3094 vaccine 
response 

Octavio 
Ramilo 

Nationwide Children's 
Hospital 

SDY387 22 ARM2325 PV3141 vaccine 
response 

Thomas 
Bieber 

The University of Bonn, 
Germany 

SDY9 21 ARM268 PV1548 atopic 
dermatitis 

Lisa Beck University of Rochester 
Medical Center 

SDY8 20 ARM265 PV1546 atopic 
dermatitis 

John Tsang NIH 

SDY522 20 ARM2622 PV3487 vaccine 
response 

Octavio 
Ramilo 

Nationwide Children's 
Hospital 

SDY144 17 ARM683 PV2143 vaccine 
response 

Octavio 
Ramilo 

Nationwide Children's 
Hospital 

SDY201 17 ARM854 PV2415 vaccine 
response 

Linda 
Thompson 

Oklahoma Medical 
Research Foundation 
(OMRF) 

SDY475 17 ARM2518 PV3363 vaccine 
response 

Martin Angst March of Dimes at 
Stanford University 

SDY14 15 ARM298 PV1567 atopic 
dermatitis 

Richard 
Gallo 

UC San Diego 

SDY224 14 ARM926 PV2550 vaccine 
response 

Hulin Wu, 
Martin Zand 

University of Rochester 
Medical Center 

SDY232 12 ARM953 PV2577 NK cell 
phenotyping 

Catherine 
Blish 

Stanford University 

SDY690 12 ARM2974 PV4522 vaccine 
response 

Donald 
Leung 

National Jewish Health 

SDY300 10 ARM2106 PV2885 vaccine 
response 

Karolina 
Palucka 

Baylor Research Institute 

SDY675 10 ARM2945 PV4478 vaccine 
response 

Robert 
Cofman 

Dynavax Technologies 
Corporation 

SDY207 6 ARM880 PV2436 T-cell 
phenotyping 

Mark Davis Stanford University 

SDY87 5 ARM564 PV1847 vaccine 
response 

Karolina 
Palucka 

Baylor Research Institute 

SDY461 3 ARM2482 PV3308 celiac Eugene 
Butcher 

Stanford University 

 

 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 25, 2017. ; https://doi.org/10.1101/180489doi: bioRxiv preprint 

https://doi.org/10.1101/180489
http://creativecommons.org/licenses/by-nd/4.0/


Table S1. Data included in the 10,000 Immunomes Project 

Enumerates the studies, experimental arms, time points (planned visits) determined by manual 

review to contain samples from healthy control subjects and included in the 10KIP. Each study is 

associated with its data contributor and their respective institution. 
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