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Abstract 
 
Background: Recent analyses of trait-disorder overlap suggest that psychiatric dimensions 
may relate to distinct sets of genes that exert their maximum influence during different 
periods of development. This includes analyses of social-communciation difficulties that 
share, depending on their developmental stage, stronger genetic links with either Autism 
Spectrum Disorder or schizophrenia. Here we developed a multivariate analysis framework in 
unrelated individuals to model directly the developmental profile of genetic influences 
contributing to complex traits, such as social-communication difficulties, during a ~10-year 
period spanning childhood and adolescence.  
 
Methods: Longitudinally assessed quantitative social-communication problems (N≤ 5,551) 
were studied in participants from a UK birth cohort (ALSPAC, 8 to 17 years). Using 
standardised measures, genetic architectures were investigated with novel multivariate 
genetic-relationship-matrix structural equation models (GSEM) incorporating whole-genome 
genotyping information. Analogous to twin research, GSEM included Cholesky 
decomposition, common pathway and independent pathway models. 
 
Results: A 2-factor Cholesky decomposition model described the data best. One genetic 
factor was common to SCDC measures across development, the other accounted for 
independent variation at 11 years and later, consistent with distinct developmental profiles in 
trait-disorder overlap. Importantly, genetic factors operating at 8 years explained only ~50% 
of the genetic variation at 17 years. 
 
Conclusion: Using latent factor models, we identified developmental changes in the genetic 
architecture of social-communication difficulties that enhance the understanding of ASD and 
schizophrenia-related dimensions. More generally, GSEM present a framework for modelling 
shared genetic aetiologies between phenotypes and can provide prior information with 
respect to patterns and continuity of trait-disorder overlap.  
 
Keywords: ALSPAC, Structural equation modelling, Longitudinal analysis, Genetic variance 
decomposition, Genetic-relationship matrix structural equation modelling, Genetic 
relationship matrix 
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Introduction 

The extent to which genetic aetiologies are shared between traits and disorders 

naturally depends on the genetic composition of the two phenotypes. While psychiatric 

disorders are diagnostic entities, defined by clinical criteria including the age of onset, human 

behaviour changes continously during development. This includes developmental alterations 

in compex genetic trait architectures as reported for cognitive (1) but also social-

communication related characteristics (2).  

Difficulties to socially engage and communicate with others, as observed in the 

general population, are heritable (twin-h2=0.74) (3) and a considerable proportion of the 

underlying genetic variation can be tagged by Single Nucleotide Polymorphisms (SNPs, 

SNP-h2
≤ 0.45) (2). For both, social-communication and social interaction problems, 

multivariate twin (4;5) and bivariate GREML (genetic-relationship-matrix residual maximum 

likelihood) studies (6) reported evidence for a degree of genetic stability, but also change 

during childhood and adolescence (2;7;8) that may affect genetic similarities with other traits.  

Studying the genetic overlap between psychatric illness and social-communciation 

difficulties across multiple developmental stages, different developmental profiles for 

childhood- versus adult-onset psychiatric disorders have been identified (9). The genetic 

overlap with clinical Autism Spectrum Disorder (ASD), a complex highly heritable early-

onset neurodevelopmental condition (10), was strongest for social-communication difficulties 

during childhood, but declined with progressing age of the trait. By contrast, the genetic 

correlation with clinical schizophrenia, an adult-onset psychiatric illness with a typical first-

time diagnosis between 16 to 30 years (10), was highest for social-communication problems 

during later adolescence (9). Thus, the risk of developing these contrasting psychiatric 

conditions might be related to distinct sets of genes, both of which affect social 
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communication skills, but exert their maximum influence during different periods of 

development.  

Discontinuity in trait-disorder overlap may, however, also result because of attrition-

related artefacts such as decreasing power or inherent sample bias (11). As knowledge about 

developmental changes in complex genetic trait architectures is still scarce, development-

related variations in trait-disorder overlap are often dismissed.  

The aim of this work is to provide insight into the developmental profile of genetic 

factors influencing complex traits, such as social-communication difficulties during 

childhood and adolescence, using a longitudinal analysis framework. Building on our 

previous work (2;9), we investigate here two extreme hypotheses: We evaluate whether the 

genetic variance/covariance structure of social-communication difficulties during childhood 

and adolescence is consistent with multiple independent genetic influences, suggesting 

developmental changes in the genes responsible for inter-individual variation over time, or 

whether, alternatively, there is evidence for a shared single genetic factor, irrespective of age.  

To study the developmental profile of genetic factors in unrelated individuals, we 

implemented multivariate genetic-relationship-matrix structural equation models (GSEM). 

These models utilise genome-wide genetic relationship matrices (GRMs)(12), calculated 

from hundreds of thousands of SNPs across the genome, to estimate the total amount of 

phenotypic variance and covariance tagged by common genetic variants, similar to GREML 

(12;13). GREML and related approaches (12;14–16) have re-shaped the research of complex 

genetic trait architectures beyond twin designs by exploiting the availability of genome-wide 

genetic data in cohorts of unrelated individuals. Genetic correlations are, however, typically 

estimated by these methods by studying two phenotypes only. Using a structural equation 

modelling (SEM) framework (17), as widely applied within twin research (4;5), we now 
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extend this bivariate approach by flexibly modelling complex latent genetic factor structures 

within a multivariate context.   

In this paper we use multivariate GSEM to model longitudinal data on social-

communication difficulties across childhood and adolescence in the Avon Longitudinal Study 

of Parents and Children (ALSPAC), a phenotypically-rich longitudinal population-based birth 

cohort from the UK (18). 

 

Methods 

Participants and measures 

All analyses were carried out using children’s data from ALSPAC, a UK population-

based longitudinal pregnancy-ascertained birth-cohort (estimated birth date: 1991 to 

1992)(18). Please note that the study website contains details of all the data that is available 

through a fully searchable data dictionary (http://www.bris.ac.uk/alspac/researchers/data-

access/data-dictionary/). Ethical approval was obtained from the ALSPAC Law-and-Ethics 

Committee (IRB00003312) and the Local Research-Ethics Committees. Written informed 

consent was obtained from a parent or individual with parental responsibility and assent (and 

for older children consent) was obtained from the child participants.   

Phenotype information: Social-communication difficulties during childhood and 

adolescence were collected with the 12-item mother-reported Social Communication 

Disorder Checklist (SCDC; score-range: 0 to 24, age range: 3 to 18 years)(3). The SCDC is a 

brief screening instrument of social reciprocity and verbal/nonverbal communication (e.g. 

"Not aware of other people’s feelings”), which has high reliability and internal consistency, 

and good validity (3) with higher scores reflecting more social-communication deficits. 

Quantitative SCDC scores in ALSPAC children and adolescents were repeatedly measured at 
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8, 11, 14 and 17 years and information on phenotypic and genotypic data was available for 

4,174 to 5,551 children (Supplementary Table S1).  

Descriptive analyses of SCDC scores were carried out in R.v.3.2.4. The distribution 

of SCDC scores was positively skewed and predominantly leptokurtic (Supplementary Table 

S1). Each score was adjusted for sex, age and the two most significant ancestry-informative 

principal components (see below) using ordinary least square (OLS) regression. Residuals 

were subsequently transformed to perfect normality using rank-based inverse normal 

transformation (19) , as previously reported (9), to allow for comparisons across different 

algorithms (see below). There were moderate phenotypic correlations between repeatedly 

assessed SCDC scores, using both untransformed and transformed data (Supplementary 

Table S2, SCDC: Spearman's-ρ: 0.39 to 0.57; Pearson-r: 0.38 to 0.61) as previously shown 

(9).  

Genome-wide genotype information: ALSPAC children were genotyped using the 

Illumina HumanHap550 quad chip genotyping platforms (Supplementary Methods). After 

quality control, 8,237 children and 477,482 directly genotyped Single Nucleotide 

Polymorphisms (SNPs) were kept within the study.  

 

GSEM 

Multivariate SEM techniques were used to assess the relative importance of genetic 

and residual influences to variation in longitudinal SCDC scores during child and adolescent 

development. Similar to GREML (12), GSEM use the genetic similarity between unrelated 

individuals to partition the expected phenotypic variance/covariance matrix into genetic and 

residual components. More generally, however, the statistical framework of GSEM is 

analogous to twin analysis methodologies (4;5), but uses GRMs, instead of twin correlations, 

to estimate genetic variance/covariance structures using full information maximum likelihood 
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(FIML). Thus, genetic and environmental influences are modelled in the GSEM framework 

as latent factors contributing to inter-individual covariation in phenotypic measures. The 

advantage of our approach is that multivariate SEM methodology has been widely established 

within twin research (4;5) and allows for flexible modelling of complex genetic factor 

structures. Conversely, GREML, as implemented in the GCTA software package, is currently 

restricted to bivariate situations (20). While multivariate GSEM can be fit with SEM software 

such as OpenMx (21) using both mxGREML and FIML algorithms, these models are 

currently computationally expensive (see Results). We therefore implemented GSEM within 

R (Rv3.2.4) (for details see Supplementary Methods).  

In short, GSEM describe the phenotypic covariance structure using one or more 

additive genetic factors A that capture genetic variance, tagged by common genotyped SNPs, 

as well as one or more residual factors E that capture residual variance, containing untagged 

genetic variation and unique environmental influences (including measurement error). As 

SEM methodology has its origins in the method of path analysis (22), path diagrams are 

useful in visualising the relationship among observed and latent variables (represented as 

squares and circles respectively, see e.g. Figure 2). Single headed arrows (factor loadings or 

'paths') denote causal relationships between measures, whereas double headed arrows define 

correlations.  

In our formulation, additive genetic variances (GSEM-Varg) and genetic covariances 

(GSEM-Covg) are modelled as the product of additive genetic factor loadings and genetic 

factor variances (the latter being standardised to unit variance). For example, using 

multivariate GSEM, a saturated model can be fit to the data through a decomposition of both 

the genetic variance and residual variance into as many latent factors as there are observed 

variables (Cholesky decomposition model; see Supplemental methods). Estimated genetic 

variances and covariances can then be used to estimate genetic correlations (GSEM-rg) (23), 
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i.e. the extent to which two phenotypes share common genetic factors (Supplementary 

Methods). Here, we utilised the Cholesky decomposition model as saturated and baseline 

model (Supplementary Information). Beside Cholesky decomposition models, multivariate 

GSEM also permit the fitting of models with smaller numbers of latent genetic and residual 

factors, defined according to theory (24).  

Multivariate GSEM of longitudinally assessed SCDC scores were fitted in two stages.  

In a first step (I), we specified a priori three standard multivariate AE models, 

analogous to twin research (Figure 2A-C): we studied a Cholesky decomposition model 

(saturated model), an independent pathway model and a common pathway model.  

1) The Cholesky decomposition model, as described above, is a fully parametrised 

descriptive model without any restrictions on the structure of latent genetic and 

residual influences (20 free parameters) (Figure 2A) and involves multiple 

independent genetic influences sharing genetic aetiologies across development. 

2) The independent pathway model, in its simplest form, specifies a single common 

genetic factor and a single common residual factor, in addition to age-specific 

genetic and residual influences (16 free parameters) (Figure 2B) . 

3) The common pathway model, in its simplest form, parametrises a single latent 

factor, influenced by both genetic and residual sources of variance, in addition to 

age-specific genetic and residual influences  (Figure 2C), and is the most 

constrained model (14 free parameters). The model constrains the variance of the 

latent factor to one (i.e. the sum of squared genetic and residual factor loadings). 

Although the likelihood of this model can be estimated, the resulting Hessian is 

not invertible due to singularity problems. For these reasons, the model constraint 

was relaxed within this work. 
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Both, the independent pathway model and the common pathway model are consistent 

with a shared single genetic factor across development and are nested submodels of the full 

Cholesky decomposition model.  

The goodness-of-fit of GSEM to empirical data was assessed using likelihood ratio 

test (LRT), the Akaike Information Criterion (AIC) (25) and the Bayesian Information 

Criterion (BIC) (26) (Supplementary Methods).  

In a second step (II), we adopted a data-driven approach and investigated the pattern 

of genetic factor loadings for the best fitting model from (I) in detail. The smallest genetic 

factor loadings were successively dropped from the model and the overall fit of the model 

compared with the best-fitting a priori defined GSEM (or an adapted form) using LRTs. The 

statistical significance of factor loadings was assessed using a Wald test (2-sided test). 

Standard errors (SEs) for genetic and residual variances and covariances, and genetic 

correlations were derived from the variance-covariance matrix of the estimated factor 

loadings using the delta method. Standard errors for factor loadings were estimated by 

GSEM. Note that for rank-transformed measures with unit variance, such as the SCDC scores 

in this study, genetic variances are equivalent to SNP-h2 estimates. However, path 

coefficients for multivariate GSEM were re-standardised to enhance the interpretability. 

GRMs were estimated using the GCTA software (12) and based on directly genotyped 

SNPs. All GSEM were fitted to data from participants with non-missing information to 

simplify the estimation algorithm. All R scripts are available via the R gsem package. 

(https://gitlab.gwdg.de/beate.stpourcain/gsem, Supplementary Information).  

For the purpose of benchmark comparisons with univariate GCTA, we also fitted 

univariate GSEM, where genetic variances were estimated as a single variance component. 
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GREML 

The GCTA software package can be used to estimate the proportion of phenotypic 

variation that is jointly explained by SNPs on a genotyping chip using GREML (13) (AE 

model). Likewise, bivariate GREML (20) allows estimating genetic covariances and genetic 

correlations between two phenotypes. An advantage of this method is that genetic 

correlations between two phenotypes can be estimated even when these phenotypes are not 

measured in the same individuals.  

Univariate and bivariate GREML were carried out as part of sensitivity and 

simulation analyses. For comparison with GSEM, genetic relationship matrices (GRMs) were 

derived from directly genotyped SNPs, but excluded individuals with a pairwise relationship 

>0.025, as recommended (13). All analyses were conducted with GCTA software v1.25.2 

(12). 

 

OpenMx SEM models 

OpenMx SEM models (21), as implemented in the OpenMx  software 

(http://openmx.psyc.virginia.edu/)(v2.5 and v2.7), were fitted using FIML and mxGREML 

and included a full Cholesky decomposition of both genetic and residual variances (AE 

model, see above). Bivariate OpenMx SEM analyses were conducted as part of a simulation 

analysis. Genetic variances, genetic covariances, and genetic correlations were derived as 

described for GSEM above.  

 

All analyses were conducted on High Performance Clusters at the University of 

Bristol and the MPI for Psycholinguistics. 
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Data simulation 

To evaluate the accuracy of multivariate GSEM, we carried out data simulations 

(Supplementary Methods).  

 

Attrition analysis 

SCDC-attrition scores were generated to investigate potential sources of bias. 

Analyses included sample-specific estimates of genetic correlations among SCDC-attrition 

scores, and between SCDC scores and subsequent sample dropout (Supplementary Methods).  

 

Results 

Accuracy of multivariate GSEM 

We simulated a bivariate trait (N=5000) with two standardised measures (10 

replicates; Supplementary Figure S1A, Supplementary Table S3) and confirmed the accuracy 

of multivariate GSEM through comparison with GCTA and OpenMx software. All methods 

provided accurate estimates, both with respect to genetic and residual variances and 

covariances as well as genetic and residual factor loadings (GSEM and OpenMx SEM 

models only), with comparable RMSE, MAD and little bias (Bias2<10-3 for all methods, 

Supplementary Table S3). Computationally, multivariate OpenMx SEM models were, 

however, more expensive (≤ 78 GB RAM FIML v2.5; ≤ 2694 minutes mxGREML/FIML 

v2.7) than multivariate GSEM (≤ 13 GB RAM, ≤ 301 minutes) per single bivariate replicate 

analysis. A comparison of computing resources is shown in Supplementary Table S4. There 

was also little difference between estimated OpenMx versus GSEM parameters when 

analysing a trivariate simulated trait with three standardised measures, as part of a benchmark 
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test (Supplementary Figure S1B, Supplementary Table S5). Note that trivariate replicate 

analyses using OpenMx were not considered within this study due to computational 

constraints.  

 

Univariate analyses 

Using univariate GSEM, common genetic variants explained a large proportion of 

phenotypic variation in SCDC scores during childhood as well as during later adolescence 

(age 8: Varg(SE)=0.25(0.061), p=3.4x10-5; age 11: Varg(SE)=0.22(0.061), p=2.9x10-4, age 

17: Varg(SE)=0.47(0.086), p=4.4x10-8; Figure 1, Supplementary Table S6) but not during 

early adolescence (age 14, Varg(SE)= 0.086(0.064), p=0.18), as previously reported (2). 

Univariate GCTA(GREML) yielded nearly identical results (Supplementary Table S7).  

 

Figure 1 about here 

 

Multivariate analyses 

We first examined the profile of genetic factors contributing to variation in SCDC 

scores during development (13,180 observations; 3,295 participants) using three a priori 

defined multivariate GSEM (Figure 2A-C). Based on all three fit indices, LRT, AIC and BIC, 

the best-fitting a priori defined model was the full Cholesky decomposition model (Model 1, 

Table 1, Figure 2A, Figure 3A). Neither a single factor independent pathway model nor a 

single factor common pathway model could sufficiently capture the underlying 

variance/covariance structure of the data. As the full Cholesky decomposition model is, 

however, also the baseline model, the model identification progressed with the identification 
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of meaningful GSEM through data-driven model modifications. Consistent with near zero 

factor loadings for the latent genetic factors A3 and A4 (Supplementary Table S8), a two 

genetic factor Cholesky model was studied (Model 4, Figure 2D) that provided a near-

identical fit to the data (Table 1, ΔΧ2 <0.01 (Δdf=3), p=1). This model parametrised one 

genetic factor arising at age 8 years, and a second independent genetic factor explaining 

novel genetic influences arising at age 11 years, each contributing to phenotypic variation 

during later development (Figure 2D). Using LRTs, the model fitting progressed (Model 5, 

Table 1, Supplementary Table S8) until all genetic factor loadings reached p<0.05 without a 

significant drop in the log-likelihood (ΔΧ2=<0.01 (Δdf=2), p=1, with respect to Model 4).  

 

Figure 2 about here 

Table 1 about here 

 

The identified model  included one common genetic factor A1, accounting for shared 

phenotypic variation throughout development, as well as a second genetic factor A2 

influencing SCDC scores at 11 years and especially at 17 years of age (Table 1, Figure 3B). 

Figure 3 shows the full Cholesky decomposition model (Model 1) and its best-fitting reduced 

form (Model 5) with their standardised path coefficients (factor loadings ≥ 0.32 explain 

>10% of the phenotypic variance).  

Overall, the estimates of genetic variance, as predicted by GSEM (Model 1 and 5, 

Supplementary Table S9), were consistent with univariate GSEM estimates (Figure 1), 

although latter were based on larger sample numbers (Supplementary Table S6). The pattern 

of genetic factor loadings suggested, however, a dynamic change in the variance composition 
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of the trait during development such that only ~50% of the genetic variance at age 17 was 

accounted for by genetic variation at age 8 (e.g. age 17: ratio Varg(A1) to Varg(A1+A2); 

Model 1: 0.53(SE=0.18)%; Model 5: 0.53(SE=0.12)%)(Figure 1).  

 

Figure 3 about here 

 

The predicted bivariate genetic correlations by multivariate GSEM (Model 1 and 5, 

Supplementary Table S9) were overall similar to bivariate GCTA(GREML) estimates, 

although latter were based on larger numbers of observations (Supplementary Table S10 and 

Supplementary Figure S3). Restricting analyses to the same sets of individuals, both bivariate 

GSEM and bivariate GCTA(GREML) provided near-identical estimates (Supplementary 

Table S10), although these analyses were less powerful. Thus, small differences in genetic 

correlations patterns, as estimated by multivariate GSEM versus bivariate GCTA(GREML), 

are likely to be due to minor differences in sample numbers. 

There was furthermore little evidence that genetic influences between SCDC scores 

and subsequent SCDC sample dropout are shared in ALSPAC (Supplementary Table S11). 

Nominal evidence for a genetic correlation was observed between SCDC scores at 8 years 

and dropout at 14 years only (rg=0.39(SE=0.19), pone-tailed=0.02). Nonetheless, SCDC attrition 

scores were genetically correlated across all SCDC measures in ALSPAC (pone-tailed<10-3, 

Supplementary Table S12).  
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Discussion 

Using multivariate SEM in combination with common variant-based genetic 

correlation matrices, we investigated the developmental structure of genetic factors 

contributing to social-communication difficulties during childhood and adolescence. We 

showed that the genetic architecture of this population-based complex trait changes 

continuously during development and is consistent with multiple genetic influences operating 

at different stages during development. Thus, our study provides evidence against the 

hypothesis that social communication behaviour during development is a genetically 

homogenous phenotype.  

The best-fitting model, specifying two distinct genetic factors, suggested that the 

genetic origins of child and adolescent social-communication behaviour lie in middle and late 

childhood. The first genetic factor, parametrised to account for all genetic influences at age 8 

years, explained a considerable proportion of phenotypic variance throughout development 

(>20%) with the exclusion of SCDC scores at age 14 that have negligible SNP-h2 estimates. 

(This is consistent with recent reports of low SNP-h2 for autistic symptoms at the beginning 

of adolescence (1) and might be related to pubertal adjustments (2)). 

The second genetic factor, parametrised to be independent of the first one and to 

capture novel genetic influences arising at age 11 years, explained predominantly phenotypic 

variation at 17 years of age (~19%). Thus, the model predicted changes in the composition of 

the genetic variance during development, and only ~50% of the genetic variation at age 17 

was accounted for by genetic variation at age 8. Within defined developmental stages, 

however, such as those spanning mid-childhood to very early adolescence (e.g. 8 to 11 years), 

we found evidence for strong genetic correlations across measures. These results are 

consistent with recent longitudinal twin research that reported moderate to high genetic 

stability for autistic traits, including communication impairments, between mid-childhood 
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and early adolescence (7), but only moderate genetic stability between behaviour in 

childhood versus emerging adulthood (8). The identified genetic factor structure using GSEM 

reflects therefore both a degree of genetic stability, but also genetic change in social-

communication behaviour during development, depending on the size of the developmental 

window.  

The identification of two distinct genetic factors, especially during later adolescence, 

suggests that SCDC scores at age 8 or 11 years are, in terms of average composition, different 

from those influencing SCDC scores at age 17. Developmental changes in the genetic 

architecture of social communication traits are consistent with biological maturation 

processes during childhood and adolescence. For example, synaptic pruning in the cerebral 

cortex is a signature late maturational process for generating a diversity of neuronal 

connections (27), which occurs during puberty and extends into early adult life (28). In 

parallel, there are changes in adolescent social cognitive development, especially with respect 

to emotional perspective taking, resistance to peer influence and changes in social behaviour 

(29). Given the identified genetic factor structure, it could be speculated whether multiple 

concepts of 'social reciprocity and verbal/nonverbal communication' may co-exist, especially 

at age 17, and whether changes in genetic factor contributions may continue into early 

adulthood. Thus, even for psychological instruments with high reliability, internal 

consistency and good discriminant validity, like the SCDC (3), the nature of the captured 

continuous phenotype may vary across developmental periods spanning ~10 years. This 

underlines the need for behavioural genetic studies across the life-span.  

An important implication that flows from the observation of developmental variations 

in the genetic trait architecture is that measures assessed at different developmental stages 

may reveal different patterns of trait-disorder overlap, as previously shown for clinical ASD 

and schizophrenia respectively (9). Moreover, the identification of a 2-genetic factor is also 
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consistent with recent reports of little genetic overlap between ASD versus schizophrenia-

related dimensions (30), especially with respect to social-communication symptoms. 

Structural models capturing developmental changes in the genetic architecture of complex 

phenotypes can therefore be leveraged to obtain prior information concerning the stability of 

trait-disorder overlap and consequently the extent to which development-specific genetic trait 

factors are shared among different psychiatric dimensions. 

Our findings have therefore specific relevance for the study of functional dimensions 

of human behaviour spanning the continua from normal to abnormal and across development, 

consistent with the framework of Research Domain Criteria (31).  

Finally, our study proves that structural models of genetic influences in unrelated 

individuals, as captured by GRMs, are computationally feasible within a longitudinal context. 

Beyond the scope of bivariate GCTA(GREML), multivariate GSEM allow for the modelling 

of complex latent genetic factor structures across different stages of development, in 

particular their genetic variance composition, and can reveal developmental origins of genetic 

variation that are otherwise hidden. It is furthermore possible to envisage that the concept of 

GSEM can be extended to investigate multivariate models of cross-disorder overlap and other 

complex phenomena, such as reciprocal causation. Note that also novel OpenMx FIML and 

mxGREML algorithms are currently being developed. 

A limitation of our study is the analysis of non-missing data across all repeatedly 

assessed measures. Thus, weaker genetic links, spanning wider age gaps, may not have been 

sufficiently captured as a consequence of lower power, although genetic correlations 

predicted by multivariate GSEM and bivariate GCTA(GREML) were overall similar. In 

addition, cohort studies can be affected by attrition bias (32). We identified, however, little 

evidence for a specific genetic link between variation in SCDC scores and subsequent sample 

dropout, although attrition scores across all assessed SCDC measures were genetically 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 23, 2017. ; https://doi.org/10.1101/179978doi: bioRxiv preprint 

https://doi.org/10.1101/179978
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 
 

correlated. This is consistent with studies reporting an association between study non-

participation, including SCDC dropout, and polygenic risk for schizophrenia (9;32), 

irrespective of when phenotypes were sampled during development. In addition, we 

exclusively studied rank-transformed phenotypes to ensure multivariate normality and 

comparability across different estimation algorithms, and we can therefore not exclude 

transformation-related biases. However, genetic overlap with psychiatric conditions provided 

some evidence for the content validity of the analysed trait (9). Also, maternal characteristics 

may have contributed to phenotypic and, to a lesser extent, genetic correlations. However, the 

impact of these effects is likely to be small, given the identified developmental changes in 

genetic variances and covariances for SCDC scores during development. Finally, a Cholesky 

decomposition of a variance/covariance matrix may not always result in fitting statistics that 

follow the expected chi-squared distribution (33). Model comparisons using real and 

simulated data provided, however, little evidence for systematic differences between 

GCTA(GREML), GSEM and OpenMx SEMs. Thus, despite potential limitations, our study 

demonstrates that structural models of longitudinally assessed behavioural traits can inform 

on developmental changes in genetic trait architectures as tagged by common SNPs.  

 

Conclusions  

The genetic architecture of social-communication difficulties, as tagged by common 

genetic variation, changes with age and involves multiple genetic factors operating at 

different developmental stages during a 10-year period spanning childhood and adolescence. 

The identification of distinct genetic trait factors is consistent with different profiles of trait-

disorder overlap, and underlines the importance of investigating genetic trait variances within 

a multivariate context. 
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Table 1: Multivariate GSEM of SCDC scores 
Model Path 

diagram 
-2LL k ΔΧ

2 to 
model 1 

Δdf to 
model 1 

p AIC BIC 

A priori defined multivariate GSEM         
1. Full Cholesky decomposition model - saturated model 
 

Figure 2A, 
Figure 3A 

7900.97 20 - - - 7940.97 8062.97 

2. Independent pathway model 
 

Figure 2B 7914.51 16 13.55 4 0.0089 7946.51 
 

8044.12 
 

3. Common pathway model 
 

Figure 2C 8082.7 14 181.73 6 <10-15 8110.70 8196.10 

Data-driven model modification         
4. Two genetic factor Cholesky model  
 

Figure 2D  7900.96 17 <0.01 3 1 7934.96 8038.67 

 Path 
diagram 

-2LL k ΔΧ
2 to 

model 4 
Δdf to 

model 4 
p AIC BIC 

Best-fitting model         
5. Two genetic factor Cholesky model (excluding non-
significant paths) * 

Figure 3B 7900.96 15 <0.01 2 1 7930.96 
 

8022.47 
 

The goodness-of-fit of genetic-relationship-matrix structural equation models (GSEM) was assessed with likelihood ratio tests, the Akaike Information 
Criterion (AIC) and the Bayesian Information criterion (BIC). Following the investigation of a priori defined GSEM, the model fitting progressed until all 
genetic factor loadings reached p<0.05 without a significant drop in the log-likelihood. Path diagrams are shown in Figure 2.  The best-fitting model (*) is 
starred. 3,295 participants had SCDC scores across all ages. k - Number of parameters; LL - Log-likelihood; SCDC - Social and Communication Disorders 
Checklist   

.
C

C
-B

Y
-N

C
-N

D
 4.0 International license

a
certified by peer review

) is the author/funder, w
ho has granted bioR

xiv a license to display the preprint in perpetuity. It is m
ade available under 

T
he copyright holder for this preprint (w

hich w
as not

this version posted A
ugust 23, 2017. 

; 
https://doi.org/10.1101/179978

doi: 
bioR

xiv preprint 

https://doi.org/10.1101/179978
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 
 

Figures legends 

 

Figure 1: Genetic variance of SCDC scores during development   

Genetic variances for SCDC scores across development as estimated using a univariate model 

(Supplementary Table S6, N≥ 4,174) and the full Cholesky decomposition model (Table 1, 

Model 1; Supplementary Table S8, N=3,295). Genetic factor A3 and A4 of the Cholesky 

decomposition model are not shown as their estimated Varg was negligible (<0.01). All 

reported Varg estimates are equivalent to SNP-h2 estimates. Grey lines indicate one standard 

error (SE) in total genetic variance (Varg) for each SCDC measure.  

SCDC - Social and Communication Disorders Checklist; Varg - Genetic variance 
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Figure 2: Path diagrams of a priori defined multivariate GSEM and data-driven model 

modifications 

A - Full Cholesky decomposition model; B - Independent pathway model; C - Common 

pathway model; D - Two genetic factor Cholesky model (Data-driven model modification) 

 

Observed phenotypic measures are represented by squares and latent factors by circles. Single 

headed arrows ('paths') define causal relationships between variables. Double headed arrows 

define correlations. Note that the variance of latent variables is constrained to unit variance, 

this is omitted from the diagrams to improve clarity. GSEM - Genetic-relationship-matrix 

structural equation models 
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Figure 3: Path diagram of the full Cholesky decomposition model for SCDC scores (A) and 

its reduced form (B) 

 

The full Cholesky decomposition model (A) and its most parsimonious reduced form (B) are 

described in detail in Table 1 (Model 1 and 5 respectively). Corresponding to the phenotypic 

measures P1(8 years), P2(11 years), P3(14 years) and P4(17 years), the latent genetic factors 

with factor loadings a are A1(8 years), factor A2(11 years), factor A3(14 years), factor A4(17 

years) and the latent residual factors with factor loadings e are E1(8 years), factor E2(11 

years), factor E3(14 years), factor E4(17 years). All path coefficients are standardised. 3,295 

participants had repeated scores across all ages. Note that the variance of latent variables is 

constrained to unit variance, this is omitted from the diagrams to improve clarity. SCDC - 

Social and Communication Disorders Checklist 
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