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Abstract 

Risk stratification model for lung cancer with gene expression profile is of great interest. Instead of the 

previously reported models based on individual prognostic genes, we aimed to develop a novel system-level risk 

stratification model for lung adenocarcinoma based on gene coexpression network. Using multiple microarray 

datasets obtained from lung adenocarcinoma, gene coexpression network analysis was performed to identify 

survival-related network modules. Representative genes of these network modules were selected and then, risk 

stratification model was constructed exploiting deep learning algorithm. The model was validated in two 

independent test cohorts. Survival analysis using univariate and multivariate Cox regression was performed 

using the output of the model to evaluate whether the model could predict patients’ overall survival independent 

of clinicopathological variables. Five network modules were significantly associated with patients’ survival. 

Considering prognostic significance and representativeness, genes of the two survival-related modules were 

selected for input data of the risk stratification model. The output of the model was significantly associated with 

patients’ overall survival in the two independent test sets as well as training set (p < 0.00001, p < 0.0001 and p = 

0.02 for training set, test set 1 and 2, respectively). In multivariate analyses, the model was associated with 

patients’ prognosis independent of other clinical and pathological features. Our study presents a new perspective 

on incorporating gene coexpression networks into the gene expression signature, and the clinical application of 

deep learning in genomic data science for prognosis prediction.   
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1. Introduction 

Recently, risk stratification based on gene expression profiles is of major biomedical interest in lung cancer 

research (1-6). Previous studies developed risk stratification models that mostly focused on individual 

prognostic genes. However, these studies have not fully considered the nature of biological networks and their 

systematic properties. Since it is more evident that biological processes are derived from numerous interactions 

between many cellular components, gene network analysis could provide valuable information about cancer 

pathogenesis and therapeutic interventions (7). Among the various biological networks, gene co-expression 

network has some strengths: not relying on prior information about genes, avoiding biologically wrong 

assumptions about independence of gene expression levels, and alleviating multiple testing problems (8). 

Lung cancer – mainly, non-small cell lung cancer – is one of the most common cancers and is the leading 

cause of cancer-related death worldwide (9, 10). Currently, TNM staging system is a universal guideline for 

prognosis prediction and treatment decision. However, heterogeneous molecular features of lung cancer require 

diverse adjuvant treatment options and lead to different prognosis even in the same stage (11). Hence, there has 

been a constant need for developing better risk stratification models to predict accurate prognosis and to 

improve cancer-related survival. 

The main objectives of this study were 1) to identify survival-related gene co-expression network modules, 

2) and to propose a deep learning (DL)-based risk stratification model reflecting survival-related network 

modules. Using public microarray datasets from the Gene Expression Omnibus (GEO), we identified survival-

related network modules of lung adenocarcinoma. Subsequently, we constructed DL-based prognostic score 

using representative genes of survival-related network modules and it showed great prognostic property in all 

cohorts.  
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2. Materials and Methods 

2.1.  Gene expression data and preprocessing 

Microarray data sets were searched from the National Center for Biotechnology Information GEO database 

(https://www.ncbi.nlm.nih.gov/geo/) (12) using keywords ‘lung cancer’, ‘lung adenocarcinoma’, or 

‘adenocarcinoma’. We searched for studies analyzed by single platform (Affymetrix HG-U133A Plus 2.0) in 

order to obtain high proportion of overlapping genes. In total, eleven microarray data sets were included and raw 

gene expression data were downloaded from the GEO data repository for preprocessing step (13-21). We 

selected two microarray data sets with survival information (accession number GSE31210 (20) and GSE30219 

(21)) as independent test sets, and the others (13-19) with or without survival information as the training set. For 

those microarray data sets containing multiple histologic types of lung cancer, only the samples from 

adenocarcinoma were extracted. Detailed information of data source used in this study can be found in 

Supplementary Table 1. All available clinico-pathological variables (age, sex, smoking status, stage, and 

molecular subtypes) and survival information (survival status and duration) were compiled from each 

microarray data sets using ‘GEOquery’ package (22) (Table 1). 

We generated the training set by assembling nine microarray data sets through stepwise preprocessing 

method described below. The raw gene expression data from microarray data sets were called and normalized 

using robust multichip average method using the ‘affy’(23) package. On a study-by-study basis, we removed 

invalid and duplicated probe sets by ‘featureFilter’ function in ‘genefilter’ package (24) and mapped array probe 

sets for the respective gene symbols. In addition, to remove poor quality probes, we filtered out probe sets with 

low expression level (signal intensity < log2(100) in at least 5% of samples within at least one study) and low 

variability (interquartile range < 0.5). As we combined microarray data from different studies, we performed 

additional normalization using Combat algorithm (25) in order to eliminate potential batch effects. Lastly, we 

detected the outliers by calculating the inter-array correlation based on Pearson’s correlation coefficient for all 

samples, and removed them. As a result, the training set contained 4615 probe sets from 510 lung 

adenocarcinoma samples including 273 samples with available survival information. 

The raw gene expression data of both test sets were called and normalized as the same method with the 

training set. One outlier sample was removed from the test set 2; consequently, the test set 1 and 2 included 226 

and 84 lung adenocarcinoma samples respectively. 
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2.2.  Weighted gene co-expression network construction from the training set 

We used weighted gene co-expression network analysis (WGCNA) package (26, 27) to build a weighted 

gene co-expression network from the training set. We created a correlation matrix on the basis of Pearson’s 

correlation coefficient for all pair-wise genes across all samples. The power –the key parameter for weighted 

network– was selected to optimize both the scale-free topology and sufficient node connectivity and we chose a 

threshold of 6 in this study (Supplementary Fig. 1). The correlation matrix was transformed into adjacency 

matrix (matrix of connection strength) using the power function, and pair-wise topological overlap (TO) 

between genes were calculated. We identified network modules using hierarchical clustering method with TO 

dissimilarity as the distance measure. The modules were detected using dynamic tree cut algorithm (28) in 

WGCNA package, defining height cutoff value of 0.99, deep split as 2, and minimum module size cutoff value 

of 30. Genes that were not assigned to any module were classified to color gray (Fig. 1).   

 

 

Figure 1. Gene co-expression network construction and survival-related modules identification. (A) A schematic 

diagram summarizing our risk stratification modeling strategy. Gene co-expression network was constructed from the training 

set. Gene network modules were extracted based on topological overlap. Survival-related modules were identified from the 

training set and validated in the two test sets. We selected representative genes from survival-related modules, and built 

network-based prognostic scoring system using deep learning. (B) Gene dendrogram and modules identified by weighted gene 

co-expression network analysis from the training set. Modules were labeled with different colors. (C) Univariate Cox regression 

analysis of module eigengene in the training set was performed. Module eigengene is a representative expression value of genes 

of each module calculated by the principal component analysis. The dotted line represents cutoff value (p-value = 0.05) for 

significance, and five modules were identified as survival-related network modules. (D) Survival-related network modules were 

validated in the two test sets using Cox regression analysis. Three modules from test set 1, and two modules from test set 2 were 

significantly associated with overall survival.  
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2.3.  Identification and validation of survival-related network modules  

For each module, we summarized the module expression profile by one representative gene, module 

eigengene (ME), which is the first principal component of the expression matrix of the corresponding module. 

We used ME as the representative of each module to evaluate association with overall survival (OS). The 

survival-related network modules were identified using Cox regression analysis in the training set. For 

validation, the same genes included in the network construction were extracted from each test set, and assigned 

to the modules identified in the previous step. ME was calculated based on the expression profile of each test 

set, and the association between ME and OS was evaluated using Cox regression analysis to see whether the 

modules identified from the training set are also associated with OS in each test set. The modules with 

uncorrected p-value under 0.05 were regarded as significant survival-related network modules.  

 

2.4.  Functional annotation and network visualization of survival-related network modules 

The enrichment of the gene ontology terms in each module were evaluated based on the hypergeometric test 

using ‘clusterProfiler’(29) package. The gene ontology biological process terms at false discovery rate under < 

0.05 in each survival-related module were regarded as significantly enriched terms. The network of two 

common survival-related network modules (red and turquoise) was visualized with Cytoscape Software 3.4.0 

(30).  

 

2.5.  Representative genes selection for risk stratification model construction 

Representative genes of the survival-related network modules were selected to construct risk stratification 

model. Degree of representativeness of genes in each module was calculated by gene module membership 

(GMM), a correlation coefficient between gene expression profile and module eigengene. Additionally, the 

relationship between GMM and prognostic significance (p-value) of an individual gene was tested. Prognostic 

significance of gene was measured by univariate Cox regression analysis for overall survival. Pearson 

correlation analysis was performed between GMM and prognostic significance for every gene. We selected top 

10 genes according to the GMM from the modules which showed significant correlation between GMM and 

prognostic significance. Accordingly, expression levels of the selected genes in the same network module were 

highly correlated to each other, and they could be also highly associated with prognosis because of strong 

correlation between GMM and prognostic significance. The expression levels of selected genes were used for 
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risk stratification model based on DL.  

 

2.6.  DL-based risk stratification model 

Expression profiles of representative genes were used for the input of the deep learning because they were 

expected to preserve co-expression patterns and to reflect the systematic properties of survival-related network 

modules. Convolutional neural network (CNN) was specifically used to extract gene expression patterns of 

modules. It finally produced gene network prognostic score (NetScore).  

DL framework was based on a nonlinear proportional hazard model, which assumed hazard function (𝜆), a 

product of a time-dependent baseline hazard function (𝜆0) and a risk function determined by covariates: 

𝜆(𝑥, 𝑡) =  𝜆0(𝑡) × 𝑒ℎ(𝑥). Conventional Cox model for the risk stratification using multiple covariates 

(𝑥1, 𝑥2, … , 𝑥𝑛) estimates the risk function ℎ(𝑥) by a combination of linear functions. 

ℎ𝛽(𝑥) =  𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑛𝑥𝑛 

DL-based risk stratification modeling also adopts proportional hazard model, however, replaces linear risk 

function with the output of neural network (31). We designed a simple CNN to estimate risk function, ℎ𝜃(𝑥). 

Firstly, 1-dimensional convolutional filters were applied. Filter size was same as the input length, 10. Thus, the 

number of the output of the first layer was same as the number of convolutional filters. Genes in different 

modules were inputted as different channels. We set the number of filters were 24. The outputs of convolutional 

layer were hierarchically connected to three fully-connected (FC) layers. Each FC layer had 24 nodes except 

final output layer. For FC layers, a dropout function was applied to reduce overfitting and learn more robust 

features. This function randomly drops the connections with predefined probability. We set the probability as 

0.5. The final output of CNN, ℎ𝜃(𝑥), was a single node. 

The CNN model was trained by the RMSprop algorithm (32). The model was optimized to minimize the 

loss function, negative log partial likelihood.  

𝐿(𝜃) = − ∑ ( ℎ𝜃(𝑥) − 𝑙𝑜𝑔 ∑ 𝑒ℎ𝜃(𝑥)

𝑗∈𝑅(𝑇𝑖)

)

𝑖:𝐸𝑖=1

 

𝐸𝑖=1 represents that the event has occurred in individual i at event time Ti. 𝑗 ∈ 𝑅(𝑇𝑖) represents that another 

patient j is still at risk of the event at time Ti.  

Our framework was trained by initial learning rate with 1x10-4 and took 500 epochs for the training. The 
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CNN was implemented using a deep learning library, Keras (ver. 1.0.4) with the Theano (ver. 0.8.2) backend 

(33). 

Parameters related to training of the neural network including number of layers, nodes, training epoch and 

learning rate were determined by 5-fold cross-validation. Training set was randomly divided into 5 subsets. At 

each step, a single subset was left for testing and other four subsets were used for training. The performance of 

the model was measured by Harrell’s C-index of the final output score of the model (34). The optimal 

parameters were selected according to the maximum average C-index across the 5-fold of the loop. The 

predictive value of NetScore was independently validated in two test sets. C-index for each test set was also 

evaluated.  

 

2.7.  Comparison of predictability between DL-based model and conventional Cox proportional hazard 

model 

Expression level of all selected genes was fitted into multivariate Cox regression model and the predictive 

value of the Cox model was evaluated by C-index as in DL-based model. C-index of Cox model was measured 

by 5-fold cross validation in the training set, and it was calculated in two test sets. C-index of Cox model was 

compared with that of DL-based model in each cohort (35).  

 

2.8.  Survival analysis using NetScore in all cohorts 

 Prognostic property of NetScore as continuous variable was evaluated by univariate Cox analysis. To 

define risk groups, NetScore was dichotomized using the median value in each cohort. Kaplan-Meier method 

was used to assess survival rates according to the risk groups and survival rate differences were assessed with 

the log-rank test. Additionally, independent prognostic value of NetScore was assessed by multivariate and 

subgroup analysis. Multivariate Cox analysis was performed using clinical and pathological variables as well as 

NetScore. Subgroups were divided on the basis of clinical and pathological features, and univariate Cox analysis 

of NetScore was performed in each subgroup. 
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3. Results 

3.1.  Gene co-expression network modules from the training set 

We aimed at developing a risk stratification model based on gene co-expression networks (Fig. 1A). The 

networks were constructed from the training set 

which consists of microarray data of 510 lung 

adenocarcinoma samples. The clinico-

pathological features of all samples from the 

training set are detailed in Table 1. Using 

WGCNA, 23 co-expression network modules 

were identified from the training set (Fig. 1B, 

Supplementary Data 1). The relationship 

between modules is visualized with hierarchical 

clustering dendrogram and heatmap of the 

corresponding ME (Supplementary Fig. 2). 

 

3.2.  Identification of survival-related 

modules from the training set and 

validation in test sets 

 Total five modules were significantly 

associated with OS (Fig. 1C): red (p < 0.0001), 

turquoise (p = 0.018), magenta (p = 0.029), black 

(p = 0.043), and lightgreen (p = 0.044). To 

validate the survival-related modules, we 

conducted survival analysis in two independent 

test sets (GSE31210 as test set 1 and GSE30219 

as test set 2; n=226 and 84, respectively). 

Consequently, turquoise (p = 0.0005), lightgreen 

(p = 0.019), red (p = 0.030) modules in test set 1, 

 
Figure 2. Selection of representative genes of survival-related 

network modules. Co-expression networks of red (A) and turquoise 

(B) modules were visualized. Note that 160 genes among 880 genes 

of turquoise module and their connections were shown. 160 genes 

were selected according to the gene module membership. Size of 

nodes is proportional to gene module membership. (C) To construct 

risk stratification model, representative genes were selected 

according to the gene module membership. Gene module 

membership was correlated with the significance of association 

between individual gene expression and survival. Y-axis represents 

statistical significance calculated by univariate Cox analysis of 

individual genes. A strong correlation was found in the red and 

turquoise modules (r = 0.53 and p < 1x10-19 for red module; r = 0.35 

and p < 1x10-23 for turquoise module).  
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and turquoise (p = 0.011) and red (p = 0.049) modules in test set 2 were significantly associated with OS (Fig. 

1D). 

The networks of two common survival-related network modules (red and turquoise) are presented in Fig. 2A 

and 2B. The significantly enriched gene ontology terms of the red module included ‘organic acid catabolic 

process’, ‘carboxylic acid catabolic process’, ‘small molecule catabolic process’, and the turquoise module 

included ‘DNA strand elongation involved in DNA replication’, ‘mitotic cell cycle phase transition’, ‘DNA-

dependent DNA replication’ (Supplementary Table 2, Supplementary Data 2). 

 

3.3.  DL-based risk stratification model using representative genes of survival-related module 

By measuring the correlation between gene significance for OS (p-value) and GMM in each survival-related 

module, we identified two modules demonstrating high correlation with statistical significance (r = 0.53, p < 

1x10-19 and r = 0.35, p < 1 x 10-26 for red and turquoise module, respectively; Fig. 2C). Based on the strong 

correlation, we could assume that the genes with high representativeness measured by GMM has high 

significance for OS and are the most important elements of the module; therefore, we selected top 10 genes 

according to GMM from the red and turquoise modules for the DL-based risk stratification model construction 

(Supplementary Fig. 3).  

The expression profiles of selected 20 genes were used as input data of the risk stratification model (Fig. 

3A). NetScore, the final output of our model, was significantly associated with OS in the training and two test 

sets (Fig. 3B) (p < 0.00001, p < 0.0001 and p = 0.02 for training set, test set 1 and 2, respectively). Subjects 

were divided into two groups, high- and low-risk groups, according to the median value of NetScore in each 

cohort. The high-risk group was significantly associated with OS in the training set (p < 0.0001; Fig. 3C) and in 

test set 1 (p < 0.0001; Fig. 3D). A trend of the association was also shown in test set 2 (p = 0.054; Fig. 3E).  

 

3.4.  NetScore as an independent predictive factor for prognosis  

Cox multivariate analysis revealed that the risk group was associated with OS independent of stage as well 

as other clinico-pathological features in the training set and test set 1 (Table 2). The independent predictive 

factors for OS in Cox multivariate analysis were the risk group (p = 0.001) and T-stage 3 (p = 0.030) in training 

set, and the risk group (p = 0.01) and EGFR mutation status (p = 0.005) in test set 1. In the test set 2, there was 

no feature significantly associated with OS in univariate Cox analysis, though the high risk group showed a 
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trend of unfavorable prognosis (p = 0.06). We also evaluated the prognostic value of NetScore in subgroups 

divided by clinical and pathological features. In the training set, the high risk group was significantly associated 

with poor prognosis in subgroups regardless of age and T-stage. In all subgroups, a trend of close relationship 

between the risk group and OS was found except never-smoking subgroup (Fig. 4A, Supplementary Fig. 4). 

According to subgroup analysis in test set 1, the risk group was closely associated with OS in male, old-aged, 

ever/never smokers, stage IA/IB, EGFR positive and all negative mutation subgroups (Fig. 4B, Supplementary 

Fig. 5). A trend of association between the risk group and OS was also revealed in each subgroup of test set 2, 

regardless of clinical features including sex, age and T stage (Fig. 4C, Supplementary Fig. 6).  

 

 

  

 
Figure 3. Risk stratification model using representative genes of survival-related network modules. (A) To construct 

risk stratification model, deep convolutional neural network was used. Input data were expression value of top 10 genes from 

each of red and turquoise module. The first layer consists of one-dimensional convolutional filters which extract gene expression 

patterns of each module. Three additional fully-connected (FC) layers were followed and connected to the output score gene 

network prognostic score (NetScore). (B) Univariate Cox regression analysis of NetScore as a continuous variable was 

performed in the training and two test sets. It shows significant association between the score and overall survival in all sets. The 

blue line represents hazard ratio for overall survival and the blue area represents 95% confidence interval. (C-E) Overall survival 

of dichotomized group according to NetScore was depicted by Kaplan-Meier survival curve. The statistical difference was tested 

by log-rank test. The high risk group showed worse survival in the training set (C) and test set 1 (D) with statistical significance. 

The high risk group of the test set 2 (E) also showed worse prognosis though the difference did not reach statistical significance.  
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4. Discussion 

In this study, we developed a risk stratification 

model for lung adenocarcinoma based on gene co-

expression networks and deep learning. Survival-

related network modules were identified in 

multiple cohorts and representative genes of these 

modules were selected for risk stratification 

modeling. The model constructed by deep CNN 

reflects gene expression patterns of survival-

related network modules and it provides 

prognostic score, NetScore. The NetScore was 

significantly associated with OS in all cohorts and 

also an independent predictor for OS from clinico-

pathological variables.  

The model based on survival-related network 

modules can provide more robust risk stratification 

compared with models focusing on statistical 

combination of individual prognostic genes which 

have been proposed in the previous studies (1-6). 

In spite of their promising results, several models 

failed to validate in independent samples of other 

study (4). Furthermore, there were few 

overlapping significant prognostic genes in the 

previous models. A meta-analysis of published 

gene expression data revealed that few genes were 

associated with survival of lung adenocarcinoma 

(36). The result of few significant prognostic genes 

in large samples implied the limitation of usage of 

individual genes for risk stratification. Besides, 

 
Figure 4. Subgroup analysis using NetScore. (A) Predictive value of 

our risk stratification model was tested in subgroups classified by 

clinico-pathological characteristics of the training set. A trend of 

association between the risk group and overall survival was found in 

all subgroups. (B, C) The same subgroup survival analysis was also 

performed in both test sets. (B) The risk group was associated with 

overall survival regardless of clinico-pathological variables except 

female, stage II and KRAS mutation subgroups in test set 1. (C) 

Regardless of subgroups, a trend of poor prognosis in high risk group 

was also found in the test set 2 
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selection of individual significant genes has a substantial problem of multiple statistical testing (37). Instead of 

these previous approaches, systemic approach integrating gene interaction as well as individual genes would be 

a breakthrough for robust risk stratification modeling because variation patterns of their expression levels can be 

associated with prognosis. 

Functional annotation elucidated the role of specific gene network in lung adenocarcinoma pathophysiology. 

The red module was functionally associated with catabolic process of organic acid and carboxylic acid. As 

cancer cells rely on aerobic glycolysis and facilitate the metabolic process of amino acid, nucleotides and lipid 

for rapid proliferation, genes related to fatty-acid and amino acid metabolism could reflect progression of cancer 

cell (38). The turquoise module was related to DNA replication and cell-cycle. A previous gene co-expression 

analysis also revealed that cell-cycle related genes were closely associated with lung cancer prognosis (39). 

Furthermore, overexpression of cyclins has repeatedly been associated with poor prognosis in lung cancer (40). 

Our result also emphasizes the importance of cell-cycle genes in lung cancer prognosis. 

Recently, DL has dramatically improved data analysis in genomics and imaging fields (41, 42). The main 

contribution of DL for our risk stratification model is firstly applying convolutional neural network to gene 

expression data. It was used for extracting multiple gene expression patterns by applying convolutional filters. 

Another contribution is to solve regression problems of survival data by using a specialized loss function (31). 

We compared predictive accuracy of DL-based model and conventional Cox proportional hazard model 

obtained from the expression level of selected 20 genes. Predictability of the DL-based model was significantly 

higher than that of the Cox model in test set 1 (C-index= 0.709±0.042 and 0.608±0.046, respectively; p = 

0.004). It was also higher in the training set and test set 2 though the difference did not reach statistical 

significance (Supplementary Fig. 7). To our knowledge, NetScore is the first study that apply deep 

convolutional neural network to high-dimensional gene expression data for predicting prognosis. By applying 

this novel approach to various genomic data, risk stratification and survival prediction could be improved 

compared with conventional Cox model.  

NetScore was trained by various samples with different clinico-pathological characteristics. We found 

NetScore was associated with sex, smoking status, stage and molecular subtypes (Supplementary Fig. 8). 

Briefly, a trend of high NetScore was found in male, smokers, late stage and KRAS mutation positive samples. 

Nonetheless, NetScore was significantly associated with OS independent of clinico-pathological variables 

according to multivariate and subgroup analyses. Of note, NetScore was significant predictor in early stage 
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subgroups (stage IA/IB). This finding could be important because the new risk stratification could identify 

patients who might need adjuvant chemotherapy. For example, a recent clinical trial using 15-gene signature 

based on individual prognostic genes showed successful selection of patients with stage IB and II NSCLC who 

would most likely benefit from adjuvant chemotherapy (43). In the future, as a new prognostic biomarker based 

on gene network, the usefulness of NetScore should be tested whether it could affect clinical decision, and 

compared with the previous prognostic models using individual genes.  
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5. Conclusion 

We developed a risk stratification model for lung adenocarcinoma using gene co-expression network. A 

future extension of our work would be to apply this approach to the co-expression networks of other cancer 

types. In terms of technical improvement, modification of DL architecture and selection process of 

representative genes could improve the prediction accuracy. Finally, we expected that a prospectively designed 

clinical trial with well-controlled clinico-pathological variables would help find clinical application of our new 

risk stratification model.  
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Tables 

Table 1. Demographic and baseline clinical characteristics of patients 

Variables   Training set (n = 533)   Test set 1 (GSE31210, n = 226)   Test set 2 (GSE30219, n = 85) 

        Available data         
Sex  Female : Male   229:209 (52.3%:47.7%) 438    121:105 (53.5%:46.5%)   19:66 (22.4%:77.6%) 
                  
Age     65.46 ± 10.14 313    59.58 ± 7.40   61.49 ± 9.28 
                  
Smoking Current   52 (29.1%) 

179  
  111(49.1%)     

Ex-smoker   92 (51.4%)         
Never   35 (19.5%)   115 (50.9%)     

                  
T stage T1   79 (43.2%) 

183  

      71 (83.5%) 
T2   99 (54.1%)       12 (14.1%) 
T3   4 (2.2%)       2 (2.4%) 
T4   1 (0.5%)         

                  
N stage N0   136 (78.2%) 

174  
      82 (96.5%) 

N1   34 (19.5%)       3 (3.5%) 
N2   4 (2.3%)         

                  
M stage M0   127 (100%) 127        85 (100%) 
                  
Stage IA   91 (29.1%) 

313  

  114 (50.4%)    
IB   127 (40.6%)   54 (23.9%)    
II   73 (23.3%)   58 (25.7%)    
III   18 (5.7%)        
IV   4 (1.3%)         

                  
Mutation All negative         68 (30.1%)     

ALK fusion         11 (4.9%)     
EGFR mutation         127 (56.2%)     
KRAS mutation         20 (8.8%)     

                  
Status Death : Alive   106:183 (36.7%:63.3%) 289    35:191 (15.5%:84.5%)   45:40 (52.9%:47.1%) 
                  

Survival time 
  

52.08 months 
 (0.20 - 190.40) 

289    
58.150 months 
(7.37 - 128.80) 

  
68.00 months  
(0.00 - 221.00) 
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Table 2. Univariate and multivariate Cox regression analysis of the risk stratification model and clinicopathological variables for overall survival in the training 

and test sets.  

  Univariate analysis   Multivariate analysis 

Variables Hazard Ratio (95% CI) p-value   Hazard Ratio (95% CI) p-value 

Training set           

Gene network prognostic score - High risk group 2.51 (1.65 - 3.81) < 0.001   3.057 (1.556 - 6.006) 0.001 

Age - Older than 60 1.66 (0.96 - 2.86) 0.068          

Sex – Male 1.28 (0.86 - 1.88) 0.221        

Smoking status - Ex-smoker 0.59 (0.31 - 1.12) 0.108        

Smoking status - Never-smoker 0.51 (0.22 - 1.19) 0.120        

T stage : II 2.50 (1.31 - 4.79) 0.006    1.266 (0.599 - 2.674) 0.537  

T stage : III 13.32 (2.89 - 61.32) 0.001    5.895 (1.189 - 29.237) 0.030  

N stage : I 2.27 (1.28 - 4.05) 0.005    1.762 (0.943 - 3.294) 0.076  

            

Test set 1           

Gene network prognostic score - High risk group 4.39 (1.92-10.06) 0.0004   2.97 (1.25-7.09) 0.01 

Age - Older than 60 1.27 (0.65-2.48) 0.49       

Sex – Male 1.52 (0.78 - 2.96) 0.22       

Smoking status - Never-smoker 0.61 (0.31-1.19) 0.15       

Stage: II  4.23 (2.17 - 8.24) 0.00002       

EGFR mutation + 0.47 (0.24-0.93) 0.03   2.74 (1.36-5.54) 0.005 

KRAS mutation + 0.87 (0.27-2.85) 0.82   0.64 (0.32-1.27) 0.20 

            

Test set 2           

Gene network prognostic score - High risk group  1.81(0.98-3.36) 0.06       

Age - Older than 60 1.33(0.73-2.43) 0.35       

Sex – Male 0.83(0.40-1.75) 0.63       

Stage: T2 1.65(0.84-3.25) 0.14       
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