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Protein-truncating variants can have profound effects on gene function and are critical for clinical 
genome interpretation and generating therapeutic hypotheses, but their relevance to medical 
phenotypes has not been systematically assessed. We characterized the effect of 18,228 protein-
truncating variants across 135 phenotypes from the UK Biobank and found 27 associations between 
medical phenotypes and protein-truncating variants in genes outside the major histocompatibility 
complex. We performed phenome-wide analyses and directly measured the effect of homozygous 
carriers, commonly referred to as “human knockouts,” across medical phenotypes for genes 
implicated to be protective against disease or associated with at least one phenotype in our study and 
found several genes with strong pleiotropic or non-additive effects. Our results illustrate the 
importance of protein-truncating variants in a variety of diseases. 

Protein-truncating variants (PTVs), genetic variants predicted to shorten the coding 
sequence of genes, are a promising set of variants for drug discovery since identification 
of PTVs that protect against human disease provides in vivo validation of therapeutic 
targets1,2,3,4. Although tens of thousands of standing germline PTVs have been 
identified5,6, their medical relevance across a broad range of phenotypes has not been 
characterized. Because most PTVs are present at low frequency, assessing the effects of 
PTVs requires genotype data from a large number of individuals with linked phenotype 
data for a variety of diseases and physiological measurements. The recent release of 
genotype and linked clinical and questionnaire data for 488,377 individuals in the UK 
Biobank provides an unprecedented opportunity to assess the clinical impact of 
truncating protein-coding genes at a resolution not previously possible. 
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Results 
To assess the clinical relevance of PTVs, we cataloged predicted PTVs present in the 
Affymetrix UK Biobank array and their effects on medical phenotypes from 337,208 
unrelated individuals in the UK Biobank study 7,8. We defined PTVs as single-nucleotide 
variants (SNVs) predicted to introduce a premature stop codon or to disrupt a splice site 
or small insertions or deletions (indels) predicted to disrupt a transcript’s reading frame 5. 
We identified 18,228 predicted PTVs in the UK Biobank array that were polymorphic 
across 8,750 genes after filtering (Methods, Figure S1). Each participant had 95 predicted 
PTVs with minor allele frequency (MAF) less than 1% on average, and 778 genes were 
predicted to be homozygous or compound heterozygous for PTVs with MAF less than 
1% in at least one individual. The observed number of PTVs per individual is consistent 
with the ~100 loss-of-function variants observed in the 1000 Genomes project 9. In 
contrast, the number of PTV singletons (or observed allele counts less than 10) in ExAC 
suggests approximately five singletons per individual and only ~0.2 per individual in 
highly constrained genes 10,11. These observations indicate that the majority of PTVs in an 
individual are common (or common and low frequency) such that they can be assessed 
via genotyping. 

We used computational matching and manual curation based on hospital in-patient record 
data, self-reported verbal questionnaire data, and cancer and death registry data to define 
a broad set of medical phenotypes including various cancers, cardiometabolic diseases, 
and autoimmune diseases (Table S1) 12. We then performed association analyses between 
the 3,724  PTVs with MAF greater than 0.01% and 135 medical phenotypes with at least 
2,000 case samples (Figure 1, Figure S2) and stratified the association results into three 
bins based on PTV MAF greater than 1% (463 PTVs), between 0.1% and 1% (700 
PTVs), and between 0.01% and 0.1% (2,561 PTVs) to account for expected differences 
in the statistical power to detect associations for PTVs with different MAFs (Figure S3). 
We adjusted the nominal association p-values separately for each MAF bin using the 
Benjamini-Yekutieli (BY) procedure to correct for multiple hypothesis testing and 
identified 74 significant associations between PTVs and medical phenotype (BY-adjusted 
p < 0.05, Figure 2A-C, Table S2).  
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Figure 1. Schematic overview of the study. We prepared a dataset of 18,228 protein truncating variants 
and 135 medical phenotypes from the UK Biobank dataset of 337,208 individuals. From these data, we 
analyzed the clinical effects of predicted protein-truncating genetic variants.  

Among the 74 PTV-phenotype associations we identified, 27 involved PTVs in genes 
outside of the MHC. We identified five PTVs with seven associations consistent with 
protective effects (odds ratio [OR]<1, BY-adjusted p<0.05, Figure 2D, Table S2). We 
found that the rare splice-disrupting PTV rs146597587 in IL33 is strongly associated with 
protection against asthma (MAF=0.48%, p=7.6x10-13, OR=0.64, 95% CI: 0.57-0.72). 
This PTV is negatively associated with eosinophil counts (β=-0.21 SD, p=2.5×10–16) and 
has suggestive evidence of an association with asthma (p=1.8x10-4, OR=0.47, 95% CI: 
0.32-0.70) 13. Our results provide strong evidence in an independent sample that this PTV 
protects against asthma and suggests that knocking down IL33 function may be a useful 
therapeutic approach for asthma. We also identified protective associations for the PTV 
rs11078928 (MAF=47.1%) in GSDMB against asthma (p=6.3x10-50, OR=0.90, 95% 
CI:0.88-0.91) and bronchitis (p=2.6x10-6, OR=0.91, 95% CI: 0.87-0.95). GSDMB is 
associated with asthma in humans and induces an asthma phenotype in mouse when 
overexpressed 14,15. We identified additional protective associations between PTVs in 
IFIH1 and hypothyroidism (labeled as hypothyroidism/myxoedema) (MAF=1.5%, 
p=1.7x10-6, OR=0.80, 95% CI: 0.73-0.88) and VKORC1 and hypertension (MAF=25.3%, 
p=1.4x10-6, OR=0.97, 95% CI: 0.96-0.98).  

We also found 20 risk associations for PTVs in 12 genes outside the MHC (Figure 2D, 
Table S2). We identified clinically relevant PTV-phenotype associations such as FLG, 
whose protein product contributes to the structure of epidermal cells, and 
eczema/dermatitis (MAF=0.48%, p=6.7x10-15, OR=1.80, 95% CI: 1.55-2.08) 16 and 
TSHR, thyroid stimulating hormone receptor, and hypothyroidism/myxoedema 
(MAF=0.046%, p=1.2x10-13, OR=3.30, 95% CI: 2.41-4.53) 17. We replicated known risk 
genome-wide association study (GWAS) associations such as BRCA2 and family history 
of lung cancer (MAF=0.93%, p=7.3x10-11, OR=1.19, 95% CI: 1.13-1.25) 18 and 
rs33966350 in ENPEP and hypertension (MAF=1.3%, p=4.8x10-11, OR=1.17, 95% CI: 
1.12-1.23) 19 and identified risk associations between FANCM, a member of the same 
gene family as BRCA2, and lung cancer (MAF=0.11%, p=9.7x10-10, OR=1.58, 95% CI: 
1.36-1.83) as well as NOL3, a regulator of apoptosis in muscle cells, and muscle or soft 
tissue injury (MAF=0.11%, p=6.5x10-8, OR=3.43, 95% CI:2.19-5.36) 20,21. Even in the 
context of variants with strong predicted effects such as PTVs, it is critical to evaluate 
whether the associated variant is causal in the context of neighboring variants. We 
initially identified an association between the PTV rs34358 in ANKDD1B and high 
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cholesterol, although this association disappeared upon conditional analysis with 
rs17238484, an intronic variant in HMGCR known to be associated with cholesterol 
levels 22. Another association between rs34358 and family history of diabetes remained 
upon conditional analysis with rs17238484 (p=9.1x10-5, OR=1.03, 95% CI: 1.02-1.05). 
Overall we found both PTV-phenotype associations that reflect known biology or disease 
associations and PTV-phenotype associations that implicate genes in disease. 

We identified five significant associations between PTVs and family history phenotypes 
included in our analysis (Table S2). For two of these associations, the variant associated 
with the family history phenotype was also associated directly with the phenotype. 
rs180177132 in PALB2 was associated with a family history of breast cancer 
(MAF=0.037%, p=2.5x10-8; OR=2.14, 95% CI: 1.64-2.79) as well as breast cancer 
diagnosis (p=9.0x10-12; OR=4.25, 95% CI: 2.80-6.43) and FUT2 was associated with 
family history of high blood pressure (MAF=49.1%, p=1.3x10-7; OR=1.03, 95% CI: 
1.02-1.04), hypertension diagnosis (p=5.7x10-13; OR=1.04, 95% CI: 1.03-1.05), and 
essential hypertension (p=5.2x10-8, OR=1.04, 95% CI: 1.02-1.05). We also found that the 
PTV rs11571833 in BRCA2 was associated with lung cancer (MAF=0.934%, p=7.3x10-

11, OR=1.19, 95% CI: 1.13-1.25). These results demonstrate previous approaches for 
identifying genetic associations using family history information (e.g. 23) can be applied 
even to relatively rare PTVs. 

To further characterize the PTV-phenotype associations, we asked whether missense 
variants with MAF greater than 0.01% in the genes with significant PTV associations 
were also associated with the same phenotypes. For each of the 27 PTV-phenotype 
associations in our GWAS, we performed association analyses between the missense 
variants in that gene and the phenotype that the PTV was associated with and found 23 
missense variant-phenotype associations with p<0.001 (Table S2). 13 of these 23 
associations remain significant when after a conditional analysis including the PTV 
genotype as a covariate indicating that a number of genes with PTV associations also 
contain independent missense associations. For instance, we found two different missense 
variants in TSHR that were both associated with hypothyroidism independent of the PTV 
association. We also identified independent missense associations for genes and 
phenotypes such as ENPEP and hypertension; GSDMB and asthma; IFIH1 and 
hypothyroidism; and PALB2 and lung cancer (Table S2). In total, we found at least one 
missense association for seven genes implicated in our PTV GWAS providing more 
evidence that these genes are likely important to the etiology of these conditions. 

47 of the 74 significant associations involved PTVs in genes in or near the MHC (Table 
S2). To investigate whether these associations are caused by linkage between these PTVs 
and HLA susceptibility alleles, we performed association analyses for each of these PTVs 
conditional on the presence of each of 344 HLA alleles that were polymorphic among the 
337,208 subjects (Table S3). We found that the p-values for all five associations with 
MAF between 0.1% and 1% were greater than 0.05 for at least one HLA allele (Figure 
2E). Similarly, the p-values for 30 of 42 associations with MAF greater than 1% were 
greater than 0.05 for at least one HLA allele and only three were less than 0.001 (Figure 
2F). For instance, we identified an association between rs72841509 in BTN3A2 and 
Celiac disease (coded malabsorption/coeliac disease) in our initial GWAS (MAF=0.13, 
p=1.8x10-119, OR=2.33, 95% CI: 2.17-2.50). However, conditioning upon the presence of 
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the well-known Celiac disease risk allele HLA-B8 reduced the p-value of the association 
between rs72841509 and Celiac disease to p=0.92 24. These results indicate that the 
majority of the associations identified here for PTVs in MHC genes are likely due to LD 
with HLA susceptibility alleles and show that it is important to carefully consider the 
genomic context of associated variants, even for variants with strong predicted effects 25. 

 
Figure 2. Identification of risk and protective alleles for 135 phenotypes. (A-C) Manhattan plots for all 
PTVs and all phenotypes stratified by minor allele frequency (A) greater than 1%, (B) between 0.1% and 
1%, and (C) between 0.01% and 0.1%. Scatter points are colored according to phenotype. 14 associations 
with -log10 p-values greater than 20 were plotted at 20. PTVs in genes near or in the MHC region have 
smaller scatter points. (D) Effect size “cascade plot” for all associations outside the MHC with BY-adjusted 
p < 0.05.  Error bars represent 95% confidence intervals. (E-F) Manhattan plots for PTVs in or near the 
MHC with minor allele frequency (E) greater than 1% and (F) between 0.1% and 1%. The p-values for 
grey points are the same as in (A) and (B), respectively. The p-values for the color points have been re-
calculated conditional on HLA alleles.   

We next investigated whether we could identify PTV-phenotype associations using 
imputed genotypes. After filtering (Methods), we identified 546 PTVs outside the MHC 
with MAF greater than 0.01% among the UK Biobank imputed genotypes. We stratified 
these PTVs into the same MAF bins as above (0.01%-0.1%, 0.1%-1%, and 1%-50%) and 
applied the BY adjustment to the association p-values for each bin. We found nine 
significant associations for imputed PTVs (BY-adjusted p<0.05, Table S2) including 
rs74315329 in MYOC and glaucoma (MAF=0.0012, p=1.8x10-30, OR=4.71, 95% CI: 
3.61-6.14) 26, a well-known risk variant for glaucoma 27, and D2HGDH and asthma 
(MAF=0.445, p=1.6x10-12, OR=0.95, 95% CI: 0.94-0.96) and hay fever (coded 
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hayfever/allergic rhinitis) (p=8.4x10-9, OR=0.94, 95% CI: 0.92-0.96). The D2HGDH 
PTV is in partial LD with an intronic variant rs34290285 in D2HGDH (r2=0.366, LDlink) 
that has been associated with asthma and allergic disease28,29. We also identified an 
association between the PTV rs754512 in MAPT and Parkinson’s disease (MAF=0.23, 
p=1.1x10-6; OR=0.94, 95% CI: 0.92-0.97) 30. This variant is predicted to be a PTV but is 
in the intron of the canonical MAPT transcript and lies on the same haplotype as three 
MAPT missense variants (rs17651549, rs62063786, rs10445337) so conditional analysis 
could not establish the causal allele. We found associations between a PTV in RPL3L and 
atrial flutter (MAF=0.0021, p=5.0x10-10, OR=0.54, 95% CI: 0.44-0.66) and atrial 
fibrillation (p=2.3x10-9, OR=0.55, 95% CI: 0.46-0.67). The missense variant 
rs140185678 in RPL3L is also independently associated with atrial fibrillation 
(MAF=0.0363, p=5.4x10-9, OR=1.21, 95% CI: 1.14-1.30, unpublished data) and atrial 
flutter (p=1.1x10-7, OR=1.20, 95% CI: 1.12-1.28). Overall, we were able to recover a 
small number of associations using imputed PTVs, indicating that better imputation 
methods are likely needed in the absence of direct genotyping of PTVs. 

To further assess the role of PTVs across medical phenotypes, we performed a phenome-
wide association analysis (pheWAS) to determine whether PTVs that have been 
implicated in disease predisposition may impact other diseases or commonly measured 
traits 31. We focused this analysis on PTVs with minor allele frequency greater than 
0.01% in the 17 genes with significant associations in our GWAS. In addition to PTVs in 
the genes identified here, we also investigated PTVs in genes with previously identified 
protective effects such as: CARD9, RNF186 and IL23R shown to confer protection 
against Crohn’s disease and/or ulcerative colitis 2,1; ANGPTL4, PCSK9, LPA, and APOC3 
shown to confer protection against coronary heart disease 4,32,33,34,35,36; and SCN9A where 
homozygous PTV carriers show an inability to experience pain 37 (Table S4). 

We identified all associations (p<0.01) for PTVs in these 25 genes with a MAF greater 
than 0.01% and found that PTVs in many of these genes were associated with a broad 
range of phenotypes (Table S2, Figure S4). PTVs in eight of the 25 genes were associated 
with eight or more phenotypes. We observed associations between the viral receptor 
IFIH1 and 10 phenotypes including protective effects against hypothyroidism, 
hypertension, gastric reflux, and psoriasis (Figure 3, Table S4). Despite minor allele 
frequencies ranging from 0.02% to 1.5%, three of these associations were observed for 
more than one IFIH1 PTV. PTVs in IFIH1 were also associated with increased risk for 
ulcerative colitis, inflammatory bowel disease, and endometriosis. We identified new 
protective effects for IL33 for hay fever (coded hayfever/allergic rhinitis), nasal polyps, 
and angina as well as weak risk effects for bowel/intestinal obstruction and 
shoulder/scapula fracture (Figure S4). Overall, these results demonstrate that PTVs can 
have pleiotropic effects across diverse phenotypes and that PTVs in the same gene can 
both protect against and increase risk for different diseases. 
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Figure 3. PheWAS for IFIH1. Phenome-wide associations (p<0.01) for four PTVs in IFIH1 with minor 
allele frequency greater than 0.01%. The left panel shows the number of cases per phenotype in thousands. 
The middle panels shows the logistic regression -log10 p-value. The right panel shows the estimated odds 
ratios and 95% confidence intervals.  

Homozygous carriers of PTVs, referred to as homozygous knockouts (KOs), may have 
dramatically altered medical outcomes compared to carriers with only one PTV 
(heterozygous KOs) 38. Genetic association analyses typically assume that genetic effects 
are additive; that is, the log OR of a homozygote is expected to be twice the log OR of a 
heterozygote. Given the large difference between having one functional copy and no 
functional copies of a gene, however, we expect that homozygote KOs may have non-
additive effects that are stronger or weaker than would be predicted given the effect size 
for heterozygote KOs. To assess whether any of the genes whether any of the 17 genes 
with significant associations in our GWAS or the eight genes with published protective 
effects (Table S4) have evidence for non-additive effects on medical phenotypes, we 
estimated the KO status in each subject for each of these 25 genes. Subjects with one 
PTV in a gene were considered heterozygote KOs for that gene and subjects with two or 
more PTVs were considered homozygote KOs. In total, 16 of the 25 genes had at least 
one predicted homozygous KO carrier. We fit additive and non-additive models to test 
for associations between KO status for these 16 and 206 medical phenotypes (minimum 
1,000 cases, Figure S5) and found 13 associations (6 distinct genes, 12 distinct 
phenotypes) with potential non-additive effects (Figure S6, Table S5, Methods). 

We identified 87,176 predicted homozygous KOs for FUT2 caused by a common PTV 
rs601338 with MAF 49.1% and identified non-additive risk associations between FUT2 
KO status and eight phenotypes including hypertension and mumps (Figure 4, Table S5). 
FUT2 regulates the expression of the H antigen on the gastrointestinal mucosa and 
genetic variation in FUT2 is associated with Crohn’s disease 39,40, psoriasis 41, plasma 
vitamin B12 levels 42,43, levels of two tumor biomarkers 44,45, and urine fucose levels 46. 
Under a non-additive model, the ORs for heterozygous FUT2 KOs are all nearly one 
while FUT2 homozygous KOs have ORs ranging from 1.05 (95% CI: 1.03-1.07) to 1.51 
(95% CI: 1.29-1.77). Given the frequency of the rs601338 PTV, our results indicate that 
FUT2 function may play an important role in a wide range of phenotypes. 
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We also found evidence that the association between GSDMB KO and asthma described 
in our GWAS analysis above is non-additive (Figure S6, Table S5). In total, we identified 
168,025 heterozygous KOs and 74,534 homozygous KOs for GSDMB. Under an additive 
model, GSDMB heterozygote KOs are predicted to have a decreased risk for asthma with 
OR=0.90 (p=5.9x10-50; 95% CI: 0.88-0.91). Under a non-additive model, however, 
GSDMB heterozygote KOs are predicted to have OR=0.86 (p=4.3x10-38; 95% CI: 0.84-
0.88) while GSDMB homozygote KO offers only modestly higher protection (p=9.7x10-

46, OR=0.81, 95% CI: 0.79-0.84). Variants that increase expression of GSDMB in humans 
are associated with asthma risk, 47 and increased GSDMB expression causes an asthma 
phenotype in mice 48. Our results suggest that knocking out just one copy of GSDMB 
provides most of the effect on asthma risk. Overall, we identified non-additive PTV 
associations for six of 16 genes tested demonstrating that the effect of PTVs on disease 
risk can be complex. 

 
Figure 4. Non-additive associations for FUT2. Association results under additive and non-additive 
models for predicted FUT2 heterozygous or homozygous knockouts (KOs) with a difference between non-
additive model AIC and additive model AIC less than -1. The left panel shows the number of cases per 
phenotype. The middle-left panel shows the -log10 p-value for the KO association analysis. The middle-
right panel shows the estimated log odds ratios and 95% confidence intervals under an additive model 
(orange) and under a non-additive model for heterozygote KOs (blue) and homozygote KOs (green).  

Discussion 
Assessing the medical relevance of protein-truncating variants is critical for prioritizing 
putative drug targets and clinical interpretation. We systematically characterized the 
association of PTVs, a class of variants with functional consequences likely to be 
consistent with inhibition, with medical phenotypes using data from the UK Biobank 
study. We estimated the effects of PTVs across 135 phenotypes and identified 27 
associations between PTVs in 17 genes and 20 different phenotypes. We found four 
associations for PTVs with minor allele frequency less than 0.1% indicating that more 
subjects or case/control studies design may be needed to test for associations between 
ultra-rare PTVs and relatively low prevalence diseases that are not well-represented in 
biobank datasets. We performed 25 phenome-wide association analyses for the genes 
implicated by GWAS in this study plus eight genes curated from the literature (Table S4) 
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and identified eight genes that were associated with eight or more phenotypes (p < 0.01). 
6 of these 25 genes showed evidence for non-additive associations across several 
phenotypes including non-additive associations between GSDMB and asthma and FUT2 
and eight phenotypes including hypertension and cholesterol. 

The genetic associations reported here directly link gene function to disease etiology and 
provide attractive targets for drug discovery. Naturally occurring human knockouts that 
protect against disease provide in vivo validation of safety and efficacy and may be 
relatively simple to target with drugs. Protective associations between PTVs in IL33 and 
asthma; GSDMB and asthma; and IFIH1 and hypothyroidism represent particularly 
attractive drug targets while risk associations between PTVs in FANCM and lung cancer 
and NOL3 and muscle injuries implicate these genes as important to the development of 
these conditions. Our results illustrate the value of deep population-scale health and 
genomic datasets for prioritizing genetic variants and genes with translational potential. 
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Rivas.pdf), and the results are displayed in the Global Biobank Engine 
(https://biobankengine.stanford.edu). We would like to thank the Customer Solutions 
Team from Paradigm4 who helped us implement efficient databases for queries and 
application of inference methods to the data. 

Supplementary Materials 

Materials and Methods 
Quality Control of Genotype Data 

We used genotype data from UK Biobank dataset release version 2 for all aspects of the 
study except the imputed PTV GWAS 4950. To minimize the impact of cofounders and 
unreliable observations, we used a subset of individuals that satisfied all of the following 
criteria: (1) self-reported white British ancestry, (2) used to compute principal 
components, (3) not marked as outliers for heterozygosity and missing rates, (4) do not 
show putative sex chromosome aneuploidy, and (5) have at most 10 putative third-degree 
relatives. We removed 151,169 individuals that did not meet these criteria. For the rest of 
337,208 individuals, we used PLINK v1.90b4.4 51 to compute the following statistics for 
each variant: (a) genotyping missingness rate, (b) p-values of Hardy-Weinberg test, and 
(c) allele frequencies. 

Protein-Truncating Variant Annotation 

We annotated 784,257 autosomal variants extracted from the mapping bim files provided 
by the UK Biobank using VEP version 87 and the LOFTEE plugin 
(https://github.com/konradjk/loftee) and identified 27,057 putative PTVs 52. We first 
removed 8,118 PTVs specific to the UK BiLEVE Axiom Array or with missingness 
greater than 1% among the subjects genotyped on the UK Biobank Axiom Array. Despite 
a missingness rate of 28% on the Axium Biobank Array, we kept rs141992399 (CARD9) 
in the analysis. We removed 11 variants with cluster plots that indicated unreliable 
genotypes. We removed Affx-89018997 because the REF/ALT annotation caused 
problems with analysis software. 

We next matched our PTVs to PTVs annotated in gnomAD 
(gnomad.exomes.r2.0.1.sites.vcf.gz) based on genomic position, reference, and alternate 
alleles and compared the allele frequencies in the UKB and gnomAD by (1) performing a 
Fisher’s exact test using the minor allele counts from the 337,208 UKB subjects and the 
minor allele counts from gnomAD and (2) calculating the log odds ratio of observing the 
minor allele in the UKB versus gnomAD. We stratified our PTVs by minor allele 
frequency into the following three bins: (0.01%, 0.1%], (0.1%, 1%], (1%, 50%]. For bin 
(0.01%, 0.1%], we removed PTVs with Fisher p < 1e-7 and an absolute log odds ratio 
greater than 3. For bin (0.1%, 1%], we removed PTVs with Fisher p < 1e-7 and an 
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absolute log odds ratio greater than 2. For bin (1%, 100%], we removed PTVs with 
Fisher p < 1e-7 and an absolute log odds ratio greater than 1 (Figure S1). In total, 123 
variants were removed in this step. 

There were 134 variants with MAF greater than 0.1% that we did match to the gnomAD 
exome data. We manually reviewed these variants on the gnomAD browser to determine 
whether they were likely to accurately type a PTV in gnomAD. In cases where the PTV 
was present on the gnomAD browser but was not included in the exome data, we kept the 
PTV in our analysis. In cases where the UKB array likely typed a non-PTV or there was 
no variant present on the browser, we removed the PTV from our analysis. In total, 
79/134 variants were removed during in this step. 18,726 PTVs remained after filtering of 
which 18,228 were polymorphic. We focused on these 18,228 PTVs for subsequent 
analyses.  

We considered variants on chr6:25477797-36448354 as in or near the MHC for all 
analyses. We use the hg19 human genome reference throughout. 

Cancer Phenotype Definitions 

We used the following procedure to define cases and controls for cancer GWAS. 
Individual level ICD-10 codes from the UK Cancer Register 
(http://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=100092), Data-Field 40006 
(http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=40006), and the National Health Service 
(http://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=2022), Data-Field 41202 
(http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=41202), in the UK Biobank were 
mapped to the self-reported cancer codes, Data-Field 20001 
(http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=20001). The mapping was performed 
via manual curation of ICD-10 codes for each of the self-reported cancer codes. UKB 
field codes for self-reported cancer were created with a tree structure such that more 
specific cancer subtypes (e.g. “malignant melanoma”) are nested under more general 
categories (“skin cancer”). This tree structure was preserved in the field code to ICD-10 
mapping. For example, the self-reported phenotype of “lip cancer” was mapped to its 
field code, 1010, and the ICD-10 codes for “malignant neoplasm of lip”, C00 and C000-
C009. After this mapping, individuals with an affirmative entry in one or more of the 
phenotype collections (self-reported cancer, cancer registry, and the NHS) were included 
in the case cohort for the GWAS. No secondary neoplasms were included in the cancer 
phenotype mappings. 

High Confidence Phenotype Definitions 

We used the following procedure to define cases and controls for non-cancer phenotypes 
(referred to as “high confidence” phenotypes). ICD-10 codes (Data-Field 41202), were 
grouped with self-reported non-cancer illness codes (Data-Field 20002) that were closely 
related.  This was done by first creating a computationally generated candidate list of 
closely related ICD-10 codes and self-reported non-cancer illness codes, then manually 
curating the matches.  The computational mapping was performed by calculating the 
token set ratio between the ICD-10 code description and the self-reported illness code 
description using the FuzzyWuzzy python package.  The high scoring ICD-10 matches 
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for each self-reported illness were then manually curated to ensure high confidence 
mappings.  Manual curation was required to validate the matches because fuzzy string 
matching may return words that are similar in spelling but not in meaning.  For example, 
to create a hypertension cohort the code description from Data-Field 20002 
(“Hypertension”) was mapped to all ICD-10 code descriptions and all closely related 
codes were returned (“I10: Essential (primary) hypertension” and “I95: Hypotension”).  
After manual curation code I10 would be kept and code I95 would be discarded. 

 

Family History Phenotype Definitions 

We used data from Category 100034 (Family history - Touchscreen - UK Biobank 
Assessment Centre) to define “cases” and controls for family history phenotypes. This 
category contains data from the touchscreen questionnaire on questions related to family 
size, sibling order, family medical history (of parents and siblings), and age of parents 
(age of death if died). We focused on Data Coding 20107: Illness of father and 20110: 
Illness of mother. 

Genome-Wide Association Analyses 

We performed genome-wide logistic regression association analysis with Firth-fallback 
using PLINK v2.00a(17 July 2017). Firth-fallback is a hybrid algorithm which normally 
uses the logistic regression code described in 53, but switches to a port of logistf() 
(https://cran.r-project.org/web/packages/logistf/index.html) in two cases: (1) one of the 
cells in the 2x2 allele count by case/control status contingency table is empty (2) logistic 
regression was attempted since all the contingency table cells were nonzero, but it failed 
to converge within the usual number of steps. We used the following covariates in our 
analysis: age, sex, array type, and the first four principal components, where array type is 
a binary variable that represents whether an individual was genotyped with UK Biobank 
Axiom Array or UK BiLEVE Axiom Array. For variants that were specific to one array, 
we did not use array as a covariate. We stratified GWAS p-values from PLINK into three 
minor allele frequency bins: 0.01%-0.1% (2,562 PTVs), 0.1%-1% (700 PTVs), and >1% 
(463 PTVs). We corrected p-values separately for each bin using the Benjamin-Yekutieli 
approach implemented in R’s p.adjust 54. 

For the missense variant GWAS, we identified missense variants with MAF > 0.01% in 
each of the 17 non-MHC genes that had a significant PTV from the PTV GWAS. All 
genes except for IRF5 had at least one missense variant. We then performed associations 
analyses as described above for the missense variants from each gene and the phenotypes 
that PTVs in that gene were associated with. We considered significant any missense-
phenotype associations with nominal p<0.001. We repeated the association analyses 
using the PTV genotype as a covariate to evaluate whether the association signals were 
independent for significant missense variants. 

HLA Conditional Analysis 

We performed conditional association analyses for 47 of the 74 significant associations 
from our GWAS for PTVs in genes in or near the MHC using the HLA alleles provided 
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by the UK Biobank (ukb_hla_v2.txt). For each PTV-phenotype association, we re-ran the 
association analysis using each of the 344 HLA alleles polymorphic in the 337,208 
subjects used here as a covariate in turn. We then identified which HLA allele, when used 
as a covariate, corresponded to the largest p-value for the additive genetic effect. These 
results are reported in Table S3.  

ANKDD1B Conditional Analysis 

In our initial GWAS, we found associations between the PTV rs34358 in ANKDD1B and 
family history of diabetes and high cholesterol. Since ANKDD1B is near HMGCR, we 
performed a conditional association analysis between rs34358 and family history of 
diabetes and high cholesterol using the imputed genotypes for rs17238484, an intronic 
variant in HMGCR associated with cholesterol levels 22, as covariates. We found that 
conditioning on rs17238484 made the association between rs34358 and high cholesterol 
insignificant (p=0.052) but that the association between rs34358 and family history was 
only slightly reduced from p=1.5x10-7 to p=9.1x10-5. We therefore decided to include this 
association in Table S2. 

Imputed PTVs GWAS 

We identified 962 PTVs among the UK Biobank imputed genotypes that were not multi-
allelic, had MAF greater than 0.01%, and were not already included in our study by 
comparing the chromosomal coordinates and reference and alternate alleles of PTVs 
annotated in gnomAD to the UK Biobank positions and alleles for the UK Biobank data. 
We only considered PTVs in the HRC site list version 1.1 (http://www.haplotype-
reference-consortium.org/site). We removed 408 imputed PTVs that had an imputation 
score less than 0.8, missingness greater than 1%, or whose MAF differed substantially 
from the non-Finnish European MAF in gnomAD. We removed eight more imputed 
PTVs that were in genes near the MHC. In total we were left with 546 imputed PTVs that 
we stratified into the following MAF bins: 0.01%-0.1% (247 PTVs), 0.1%-1% (153 
PTVs), and >1% (146 PTVs). We corrected p-values separately for each bin using the 
Benjamin-Yekutieli approach implemented in R’s p.adjust 54. We assessed linkage 
disequlibrium between imputed PTVs and other variants using LDmatrix in LDlink 55. 

For the missense variant rs140185678 (MAF=0.0363) in RPL3L, we ran GWAS as 
described above and found that the variant was associated with associated with atrial 
fibrillation (p=5.4x10-9, OR=1.21, 95% CI: 1.14-1.30) and atrial flutter (p=1.1x10-7, 
OR=1.20, 95% CI: 1.12-1.28). We re-ran this analysis using the genotype of the RPL3L 
PTV rs140192228 as a covariate and found that the associations between rs140185678 
and atrial fibrillation (p=4.3x10-9, OR=1.21, 95% CI: 1.14-1.29) and atrial flutter 
(p=8.4x10-8, OR=1.20, 95% CI: 1.12-1.28) were still significant. The PTV was also 
significant under these models for atrial fibrillation (p=1.1x10-5, OR=0.85, 95% CI: 0.79-
0.91) and atrial flutter (p=2.1x10-6, OR=0.84, 95% CI: 0.78-0.90). 

Phenome-Wide Association Analyses 

We performed phenome-wide association analyses (pheWAS) on the 17 genes with at 
least one significant association in our GWAS as well as 8 genes reported to have 
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protective genetic associations: CARD9, RNF186, IL23R, ANGPTL4, PCSK9, LPA, 
APOC3, and SCN9A (Table S4). We identified associations between PTVs in these genes 
with MAF greater than 0.01% and 135 medical phenotypes (p < 0.01, Figure S4). Four 
genes (ANGPTL4, IL23R, PCSK9, and APOC3) did not have any associations with 
p<0.01 in the pheWAS. 

Knockout Status 

We estimated PTV knockout carrier status for each individual by summing the total 
number of PTVs present in an individual for each gene that had at least one PTV. If a 
PTV was predicted to effect more than one gene, we counted that PTV for each gene. If 
an individual was predicted to carrier more than 2 PTVs in a given gene, we set his or her 
count to two. We thus obtained carrier statuses for each gene in each subject that ranged 
from no KO, heterozygous KO, or homozygous KO. For all 18,228 predicted PTVs, we 
found 262 PTVs per subject on average and 1,173 genes with at least one putative KO. If 
we restrict to only high confidence (HC) PTVs, we observe 174 PTVs per subject on 
average and 995 genes with at least one putative KO. If we restrict to PTVs with MAF 
less than 1%, we observe 95 PTVs per subject on average and 778 genes with at least one 
putative KO.  

Additivity Analyses 

To test for departures from additivity, we tested for associations between PTV carrier 
status and phenotype status for 16 of the 25 genes used in the pheWAS analysis that had 
at least one homozygote knockout and 206 phenotypes with at least 1,000 cases. For each 
gene and phenotype, we fit two models using the glm function in R (family=“binomial”). 
For the additive model, we provided PTV carrier status as a numeric variable, and for the 
non-additive model, we provided PTV carrier status as a factor. We included age, sex, 
genotyping array, and the first four principal components as covariates for both models. 
To identify gene-phenotype associations with suspected departures from additivity, we 
identified genes and phenotypes where either the additive p-value or homozygote KO p-
value was less than 10-4 and the difference between the non-additive model AIC and 
additive model AIC was less than -1.  

Data Availability 

The UK Biobank data is available through the UK Biobank 
(http://www.ukbiobank.ac.uk/). We will make analysis scripts and notebooks available on 
Github at publication. GWAS results can be browsed on the Global Biobank Engine 
(biobankengine.stanford.edu). 

URLs 

LDlink, https://analysistools.nci.nih.gov/LDlink/; gnomAD browser, 
http://gnomad.broadinstitute.org/; UK Biobank, http://www.ukbiobank.ac.uk/. 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 2, 2017. ; https://doi.org/10.1101/179762doi: bioRxiv preprint 

https://doi.org/10.1101/179762
http://creativecommons.org/licenses/by/4.0/


Figures 

 
Figure S1. gnomAD allele frequency comparison. (A) PTV allele frequency and (B) log10 allele 
frequency among gnomAD non-Finnish Europeans (NFE) exome dataset and 337,208 UK Biobank (UKB) 
participants used in this study for all PTVs that could be matched between the two datasets. Small scatter 
points indicate PTVs that were filtered out for any reason. (C) PTV allele frequency and (D) log10 allele 
frequency among gnomAD non-Finnish Europeans exome dataset and 337,208 UK Biobank participants 
used in this study for PTVs that passed filtering and could be matched between the two datasets. (E) MAF 
histogram for all 18,228 polymorphic PTVs that passed filtering. (F) log10 MAF histogram for all 18,228 
polymorphic PTVs that passed filtering. (G) MAF histogram for 17,765 PTVs with MAF < 0.01. (H) MAF 
histogram for 17,065 PTVs with MAF < 0.001.  
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Figure S2. Case numbers for phenotypes with at least 2,000 cases. Number of cases for (A) cancers 
with more than 2,000 cases, (B) high confidence phenotypes with more than 20,000 cases, and (C) high 
confidence phenotypes with more than 2,000 cases but less than 20,000 cases. Bars are colored according 
to the number of cases identified from health records (blue) or questionnaire data (orange).  
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Figure S3. GWAS QQ plots. QQ plots for single variant association analyses for 3,724 PTVs stratified 
into three minor allele frequency bins: (0.01%, 0.1%], (0.1%, 1%], (1%, 50%]. 26 associations with -log10 
p-values greater than 14 are not shown.  

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 2, 2017. ; https://doi.org/10.1101/179762doi: bioRxiv preprint 

https://doi.org/10.1101/179762
http://creativecommons.org/licenses/by/4.0/


 
Figure S4. PheWAS results. -log10 p-values and odds ratios for associations (p<0.01) for PTVs in 21 
genes and 135 medical phenotypes. The gene for each plot is indicated above the p-value panel. IFIH1 is 
plotted in Figure 3.  
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Figure S4. Continued  
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Figure S5. Case numbers for phenotypes with between 1,000 and 2,000 cases. Number of cases for (A) 
cancers with more than 1,000 cases but less than than 2,000 cases, (B) high confidence phenotypes with 
more than 1,750 cases but less than 2,000 cases, and (C) high confidence phenotypes with more than 1,000 
cases but less than 1,750 cases. Bars are colored according to the number of cases identified from health 
records (blue) or questionnaire data (orange).  
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Figure S6. Non-additive associations. The left panel shows the -log10 p-values for (blue) additive genetic 
model and (green, orange) non-additive genetic model. The right panel shows the estimated odds ratio and 
95% confidence interval for (blue) additive genetic model and (green, orange) non-additive genetic model. 
The gene-phenotype association is labeled on the left with the difference in AIC between the additive and 
non-additive models. A more negative difference in AIC favors the non-additive model. FUT2 is plotted in 
Figure 4.  
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Supplemental Tables 
Table S1. Medical Phenotypes. 206 medical phenotypes used in this study. Category 
indicates whether the phenotype was derived from family history questionnaire 
information (FH) or from diagnosis of a cancer (CA) or other disease (HC). See Methods 
and Figures S2,5 for more information.  
Table S2. Significant GWAS and pheWAS associations. Significant associations from 
PTV and missense GWASs and pheWAS analysis. Variant IDs are from the UK Biobank 
data release. “gwas_protective” and “gwas_risk” tabs contain significant PTV 
associations (BY-adjusted p<0.05) for genes outside the MHC. “imputed” tab contains 
significant associations (BY-adjusted p<0.05) for imputed PTVs. “missense” tab contains 
significant (p<0.001) missense associations. “phewas” tab contains significant (p<0.01) 
pheWAS associations.   

Table S3. HLA conditional analysis. p-values for genetic effects for PTVs in MHC 
genes from our initial GWAS (“P_variant_gwas”) and from an analysis conditional on 
the HLA allele in the “HLA_subtype” column (“P_variant_conditional”). 
“P_subtype_conditional” contains the p-value for the association between the given HLA 
subtype and phenotype in the conditional analysis.  
Table S4. Genes with known protective associations. We identified eight genes that did 
not have significant associations in our single-variant analysis (BY-adjusted p<0.05) but 
have been reported in the literature to protect against different diseases. We included 
these genes in our pheWAS and additivity analyses.  
Table S5. Non-additive associations. Results from fitting additive and non-additive 
models of association for PTV carrier status (no PTVs, heterozygous knockout, or 
homozygous knockout) in 25 genes against 206 medical phenotypes with at least 1,000 
cases. Columns that begin with “dosage1” and “dosage2” correspond to results for the 
non-additive model while columns that begin with “additive” correspond to the additive 
model. “aic_diff” is the AIC of the additive model subtracted from the AIC of the non-
additive model.  

References 
1.Rivas, M. A. et al.. A protein-truncating R179X variant in RNF186 confers protection 
against ulcerative colitis.. Nat Commun 7, 12342 (2016). 

2.Rivas, M. A. et al.. Deep resequencing of GWAS loci identifies independent rare 
variants associated with inflammatory bowel disease.. Nat Genet 43, 1066–73 (2011). 

3.Cohen, J. et al.. Low LDL cholesterol in individuals of African descent resulting from 
frequent nonsense mutations in PCSK9.. Nat Genet 37, 161–5 (2005). 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 2, 2017. ; https://doi.org/10.1101/179762doi: bioRxiv preprint 

https://doi.org/10.1101/179762
http://creativecommons.org/licenses/by/4.0/


4.Cohen, J. C., Boerwinkle, E., Mosley, T. H. J. & Hobbs, H. H. Sequence variations in 
PCSK9, low LDL, and protection against coronary heart disease.. N Engl J Med 354, 
1264–72 (2006). 

5.Rivas, M. A. et al.. Human genomics. Effect of predicted protein-truncating genetic 
variants on the human transcriptome.. Science 348, 666–9 (2015). 

6.Lek, M. et al.. Analysis of protein-coding genetic variation in 60,706 humans.. Nature 
536, 285–91 (2016). 

7.Bycroft, C. et al.. Genome-wide genetic data on  500,000 UK Biobank participants. 
bioRxiv (2017). doi:10.1101/166298 

8.Allen, N. E., Sudlow, C., Peakman, T. & Collins, R. UK biobank data: come and get it.. 
Sci Transl Med 6, 224ed4 (2014). 

9.MacArthur, D. G. et al.. A Systematic Survey of Loss-of-Function Variants in Human 
Protein-Coding Genes. Science 335, 823–828 (2012). 

10.Kosmicki, J. A. et al.. Refining the role of de novo protein-truncating variants in 
neurodevelopmental disorders by using population reference samples. Nature Genetics 
49, 504–510 (2017). 

11.Lek, M. et al.. Analysis of protein-coding genetic variation in 60,706 humans. Nature 
536, 285–291 (2016). 

12.Zengini, E. et al.. The genetic architecture of osteoarthritis: insights from UK 
Biobank. (2017). doi:10.1101/174755 

13.Smith, D. et al.. A rare IL33 loss-of-function mutation reduces blood eosinophil 
counts and protects from asthma.. PLoS Genet 13, e1006659 (2017). 

14.Zhao, C.-N. et al.. The Association ofGSDMBandORMDL3Gene Polymorphisms 
With Asthma: A Meta-Analysis. Allergy, Asthma & Immunology Research 7, 175 (2015). 

15.Das, S. et al.. GSDMB induces an asthma phenotype characterized by increased 
airway responsiveness and remodeling without lung inflammation. Proceedings of the 
National Academy of Sciences 113, 13132–13137 (2016). 

16.Irvine, A. D., McLean, W. H. I. & Leung, D. Y. M. Filaggrin Mutations Associated 
with Skin and Allergic Diseases. New England Journal of Medicine 365, 1315–1327 
(2011). 

17.Cassio, A. et al.. Current loss-of-function mutations in the thyrotropin receptor gene: 
when to investigate clinical effects, and treatment. Journal of Clinical Research in 
Pediatric Endocrinology 4, (2012). 

18.Wang, Y. et al.. Rare variants of large effect in BRCA2 and CHEK2 affect risk of 
lung cancer. Nature Genetics 46, 736–741 (2014). 

19.Surendran, P. et al.. Trans-ancestry meta-analyses identify rare and common variants 
associated with blood pressure and hypertension. Nature Genetics 48, 1151–1161 (2016). 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 2, 2017. ; https://doi.org/10.1101/179762doi: bioRxiv preprint 

https://doi.org/10.1101/179762
http://creativecommons.org/licenses/by/4.0/


20.Koseki, T., Inohara, N., Chen, S. & Núñez, G. ARC, an inhibitor of apoptosis 
expressed in skeletal muscle and heart that interacts selectively with caspases.. Proc Natl 
Acad Sci U S A 95, 5156–60 (1998). 

21.Davis, J., Kwong, J. Q., Kitsis, R. N. & Molkentin, J. D. Apoptosis Repressor with a 
CARD Domain (ARC) Restrains Bax-Mediated Pathogenesis in Dystrophic Skeletal 
Muscle. PLoS ONE 8, e82053 (2013). 

22.Benn, M., Nordestgaard, B. G., Frikke-Schmidt, R. & Tybjærg-Hansen, A. Low LDL 
cholesterol,PCSK9andHMGCRgenetic variation and risk of Alzheimer’s disease and 
Parkinson’s disease: Mendelian randomisation study. BMJ j1648 (2017). 
doi:10.1136/bmj.j1648 

23.Liu, J. Z., Erlich, Y. & Pickrell, J. K. Casecontrol association mapping by proxy using 
family history of disease. Nature Genetics 49, 325–331 (2017). 

24.Price, P. et al.. The genetic basis for the association of the 8.1 ancestral haplotype (A1, 
B8, DR3) with multiple immunopathological diseases.. Immunol Rev 167, 257–74 
(1999). 

25.Mahajan, A. et al.. Refining The Accuracy Of Validated Target Identification Through 
Coding Variant Fine-Mapping In Type 2 Diabetes. (2017). doi:10.1101/144410 

26.Stone, E. M. Identification of a Gene That Causes Primary Open Angle Glaucoma. 
Science 275, 668–670 (1997). 

27.Gharahkhani, P. et al.. Accurate Imputation-Based Screening of Gln368Ter Myocilin 
Variant in Primary Open-Angle Glaucoma. Investigative Opthalmology & Visual Science 
56, 5087 (2015). 

28.Zhu, Z. et al.. Shared Genetic Architecture Of Asthma With Allergic Diseases: A 
Genome-wide Cross Trait Analysis Of 112,000 Individuals From UK Biobank. (2017). 
doi:10.1101/133322 

29.Pickrell, J., Berisa, T., Segurel, L., Tung, J. Y. & Hinds, D. Detection and 
interpretation of shared genetic influences on 40 human traits. (2015). 
doi:10.1101/019885 

30.Rhodes, S. L., Sinsheimer, J. S., Bordelon, Y., Bronstein, J. M. & Ritz, B. Replication 
of GWAS Associations for GAK and MAPT in Parkinsons Disease. Annals of Human 
Genetics no–no (2010). doi:10.1111/j.1469-1809.2010.00616.x 

31.Denny, J. C. et al.. PheWAS: demonstrating the feasibility of a phenome-wide scan to 
discover gene-disease associations.. Bioinformatics 26, 1205–10 (2010). 

32.Musunuru, K. & Kathiresan, S. Cardiovascular endocrinology: Is ANGPTL3 the next 
PCSK9?. Nat Rev Endocrinol (2017). 

33.Stitziel, N. O. et al.. ANGPTL3 Deficiency and Protection Against Coronary Artery 
Disease.. J Am Coll Cardiol 69, 2054–2063 (2017). 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 2, 2017. ; https://doi.org/10.1101/179762doi: bioRxiv preprint 

https://doi.org/10.1101/179762
http://creativecommons.org/licenses/by/4.0/


34.Lim, E. T. et al.. Distribution and medical impact of loss-of-function variants in the 
Finnish founder population.. PLoS Genet 10, e1004494 (2014). 

35.Stitziel, N. O. et al.. Coding Variation in ANGPTL4, LPL, and SVEP1 and the Risk of 
Coronary Disease.. N Engl J Med 374, 1134–44 (2016). 

36.Saleheen, D. et al.. Human knockouts and phenotypic analysis in a cohort with a high 
rate of consanguinity.. Nature 544, 235–239 (2017). 

37.Nahorski, M. S., Chen, Y. C. & Woods, C. G. New Mendelian Disorders of 
Painlessness.. Trends Neurosci 38, 712–24 (2015). 

38.MacArthur, D. G. et al.. Guidelines for investigating causality of sequence variants in 
human disease. Nature 508, 469–476 (2014). 

39.Maroni, L., van, de G. S. F., Hohenester, S. D., Oude, E. R. P. & Beuers, U. 
Fucosyltransferase 2: a genetic risk factor for primary sclerosing cholangitis and Crohn’s 
disease–a comprehensive review.. Clin Rev Allergy Immunol 48, 182–91 (2015). 

40.Franke, A. et al.. Genome-wide meta-analysis increases to 71 the number of 
confirmed Crohn’s disease susceptibility loci.. Nat Genet 42, 1118–25 (2010). 

41.Tsoi, L. C. et al.. Large scale meta-analysis characterizes genetic architecture for 
common psoriasis associated variants. Nature Communications 8, 15382 (2017). 

42.Hazra, A. et al.. Common variants of FUT2 are associated with plasma vitamin B12 
levels.. Nat Genet 40, 1160–2 (2008). 

43.Lin, X. et al.. Genome-wide association study identifies novel loci associated with 
serum level of vitamin B12 in Chinese men.. Hum Mol Genet 21, 2610–7 (2012). 

44.He, M. et al.. A genome wide association study of genetic loci that influence tumour 
biomarkers cancer antigen 19-9 carcinoembryonic antigen and 𝛼 fetoprotein and their 
associations with cancer risk. Gut 63, 143–151 (2013). 

45.Liang, Y. et al.. Genetic variations affecting serum carcinoembryonic antigen levels 
and status of regional lymph nodes in patients with sporadic colorectal cancer from 
Southern China.. PLoS One 9, e97923 (2014). 

46.Rueedi, R. et al.. Genome-wide association study of metabolic traits reveals novel 
gene-metabolite-disease links.. PLoS Genet 10, e1004132 (2014). 

47.Verlaan, D. J. et al.. Allele-specific chromatin remodeling in the 
ZPBP2/GSDMB/ORMDL3 locus associated with the risk of asthma and autoimmune 
disease.. Am J Hum Genet 85, 377–93 (2009). 

48.Das, S. et al.. GSDMB induces an asthma phenotype characterized by increased 
airway responsiveness and remodeling without lung inflammation.. Proc Natl Acad Sci U 
S A 113, 13132–13137 (2016). 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 2, 2017. ; https://doi.org/10.1101/179762doi: bioRxiv preprint 

https://doi.org/10.1101/179762
http://creativecommons.org/licenses/by/4.0/


49.Sudlow, C. et al.. UK Biobank: An Open Access Resource for Identifying the Causes 
of a Wide Range of Complex Diseases of Middle and Old Age. PLOS Medicine 12, 
e1001779 (2015). 

50.Bycroft, C. et al.. Genome-wide genetic data on ~500,000 UK Biobank participants. 
(2017). doi:10.1101/166298 

51.Chang, C. C. et al.. Second-generation PLINK: rising to the challenge of larger and 
richer datasets. GigaScience 4, (2015). 

52.McLaren, W. et al.. The Ensembl Variant Effect Predictor. Genome Biology 17, 
(2016). 

53.Hill, A. et al.. Stepwise Distributed Open Innovation Contests for Software 
Development: Acceleration of Genome-Wide Association Analysis. GigaScience 6, 1–10 
(2017). 

54.Yekutieli, D. & Benjamini, Y. under dependency. The Annals of Statistics 29, 1165–
1188 (2001). 

55.Machiela, M. J. & Chanock, S. J. LDlink: a web-based application for exploring 
population-specific haplotype structure and linking correlated alleles of possible 
functional variants: Fig. 1.. Bioinformatics 31, 3555–3557 (2015). 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 2, 2017. ; https://doi.org/10.1101/179762doi: bioRxiv preprint 

https://doi.org/10.1101/179762
http://creativecommons.org/licenses/by/4.0/

