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One Sentence Summary: Combining evidence from genome wide association studies, real-

world clinical and cohort molecular data together with experimental studies in rodent model 

systems nominates JAK-STAT signaling as an aetiopathological event in Alzheimer’s disease
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Abstract: 

As Genome Wide Association Studies (GWAS) have grown in size, the number of genetic 

variants that have been nominated for an increasing number of diseases has correspondingly 

increased. Despite this increase in the number of associated SNPs per disease, their biological 

interpretation has in many cases remained elusive. To address this, we have combined GWAS 

results with an orthogonal source of evidence, namely real-world, routinely collected clinical 

data from more than 6 million patients in order to drive target nomination. First we show that 

when examined at a pathway level, analysis of all GWAS studies groups Alzheimer’s disease 

(AD) in a cluster with disorders of immunity and inflammation.   Using clinical data we show 

that the degree of comorbidity of these diseases with AD correlates with the strength of their 

genetic association with molecular participants in the JAK-STAT pathway. Using four 

independent open-science datasets we then find evidence for altered regulation of JAK-STAT 

pathway genes in AD. Finally, we use both in vitro and in vivo rodent models to demonstrate that

Aβ induces gene expression of key drivers of this pathway, providing experimental evidence 

validating these data-driven observations. These results therefore nominate JAK-STAT anomalies

as a prominent aetiopathological event in AD and hence potential target for therapeutic 

development, and moreover demonstrate a de-novo multi-modal approach to derive information 

from rapidly increasing genomic datasets.
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Introduction

As Genome Wide Association Studies (GWAS) have grown in size, often now numbering tens of

thousands of research participants, the numbers of genes with common variants that contribute to

disease susceptibility have correspondingly grown. This is as true for Alzheimer’s Disease (AD) 

as it is for many other disorders, and bioinformatic and pathway analyses of these large number 

of susceptibility genes is providing a highly efficient method of proposing and prioritising 

underlying biological pathways of these disorders for further study (1, 2). In some cases this 

understanding adds to existing observations – such as the evidence from GWAS that pathways of

inflammation are important in AD – whereas in other cases pathway analysis yields less expected

findings, such as evidence that cholesterol synthesis and endocytic recycling are part of the 

pathological process (3). However, such analyses have their limitations, not least due to the fact 

that our understanding of molecular pathways is far from complete. Thus, many pathways 

described as categorical entities through data sources such as Kyoto Encyclopedia of Genes and 

Genomes (KEGG) and similar approaches, are skeletal at best and only contain a fraction of the 

genes that might be involved in any given process. Furthermore, many genes, including hub 

genes of networks but also others, are nominated in multiple different pathways through their 

pleiotropic function. As an example, one of the most replicated associations with AD, the gene 

CLU encoding clusterin, is involved in processes as diverse as complement signalling, protein 

binding and chaperoning and cell survival (4). In the context of this incomplete understanding 

together with known and unknown molecular pathway complexity, determining the underlying 

biology of disease from GWAS studies becomes difficult and hence inevitably limited. 

In an effort to address this limitation, we reasoned that it should be possible to hone pathway 

analysis utilising orthogonal datasets. Specifically, we hypothesised that shared molecular 
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pathways might be more meaningful to an understanding of the molecular processes of 

aetiopathogenesis if diseases that shared pathways also shared morbidity. Put another way, if two

or more diseases are more commonly found to co-occur rather than by chance, and if those 

comorbid diseases also share molecular pathways, one would predict that those shared pathways 

are more likely to play a role in aetiopathogenesis. In order to test this reasoning, we combined 

pathway analysis of the GWAS associations from all diseases (as reported in the GWAS catalog; 

https://www.ebi.ac.uk/gwas/) together with a co-morbidity study from real-world data to identify 

shared pathological processes. We then tested the resulting pathway in observational and 

empirically derived genome wide expression datasets from human and rodent studies, and finally

validated the results in empirical studies in rat models in vitro and in vivo. The results, 

demonstrating a role for JAK-STAT signalling in AD, are in line with the known contribution of 

inflammatory processes to the disease, but they further nominate a specific target for therapy and

provide a possible approach to interpretation of GWAS data for other disease areas.    
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Results 

Subhead 1: Genes associated with AD show shared susceptibility to diseases of immunity

Given that recent large scale association studies suggest genes related to AD risk are involved in 

many different biological pathways, only some of which would have been predicted in advance, 

we wondered whether some of these pathway associations would be shared with other diseases. 

To address this question systematically, we first obtained from the GWAS catalogue (5) a list of 

all genes that have been found to be associated with all diseases in that dataset. Subsequently, for

each gene appearing in the list, we determined the number of KEGG pathways that that gene 

shared with each other gene on the list. As a general concept, we assume at this point that if two 

genes, one associated with one disorder and the other associated with a second disorder, both 

appear in the same biological pathways, then those pathways should commonly be associated 

with both diseases. 

Using this data of genes associated with diseases and the KEGG pathways that those genes 

appear in, we then generated a gene-gene matrix, plotting for each gene associated with each 

disease the numbers of KEGG pathways shared with genes associated with each other disease in 

the dataset. Not surprisingly, we find many genes participate in many different pathways. This is 

illustrated for three disorders in Fig. 1, using for this explanatory purpose five genes only. In this 

illustrative segment of the data, it can be seen that the genes associated with Crohn’s disease in 

particular participate in many different named KEGG pathways. Again, this is unsurprising as 

these genes are part of the Human Leukocyte Antigen system encoding the Major 

Histocompatability Complex; a much studied master regulator of immunity. Using this gene-

gene matrix we are then able to explore which diseases share pathways with other diseases. 

Again in the illustrative segment of the data in Fig 1 it can be seen that the genes associated with 
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Crohn’s disease share no pathways with the genes associated with Type II diabetes (T2DM), but 

do share considerable numbers of KEGG pathways with genes associated with Type 1 diabetes 

(T1DM). Note that this observation is not driven by the same genes being associated with any 

two diseases, as we exclude from the comparison the number of pathways that HLA-DRB1 

shares with itself in the T1DM-Crohn’s instance. Rather the T1DM-Chrohn’s association is 

driven by different genes sharing common pathways such as CTLA4 and INS, or HLA-DRB1 

with genes others than itself, which are genes of the HLA complex genes associated with both 

T1DM and Crohn’s disease.

The GWAS catalogue includes 59 diseases where studies have identified at least 25 associated 

genes per condition, and these were therefore used in this analysis. Using the Wilcoxon rank-sum

test, most of these conditions did not show significant overlap of pathways derived from GWAS 

genes in the pathway space, except for a cluster of 18 disorders that strongly overlapped with 

each other (Bonferroni corrected p-value < 0.05). 14 of these diseases were disorders commonly 

classified as diseases of immunity, while the other 4 were AD, Age Related Macular 

Degeneration (ARMD), T1DM and Hypothyroidism (see Fig. 2 for a segment of the data and 

Fig. S1 for the full matrix). Part of this cluster is evident in Fig. 2 as 11 diseases that overlap with

each other in 44 out of 55 disease-disease pairs (repeated pairs eliminated) while the full cluster 

of 18 disorders includes 127 out of 153 significant pairs as seen in Fig. S1. The disorder with 

fewest associations with other diseases from the cluster was Seasonal Allergic Rhinitis (8 out of 

18), while the disorders out of the cluster which had highest number of associations with the 

cluster were Atopic Eczema and HIV-1 Infection (both 2 out of 18).

Subhead 2: Among all KEGG pathways, associations with JAK-STAT signaling are shared 

between diseases co-morbid with AD
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Having demonstrated that AD, together with ARMD, hypothyroidism and T1DM, share multiple 

KEGG pathways with disorders of immunity, we then explored which of these pathways was 

responsible for this overlap. In order to do this systematically, we first determined the strength of

association of each disease with each KEGG pathway, calculating the proportion of susceptibility

genes that a given disease has for each KEGG pathway (‘pathway load’). Then, using the US 

National Hospital Discharge Survey (NHDS), a dataset including diagnostic information from 

more than 6 million patients, we calculated the co-morbidity between disorders of immunity and 

late onset AD on discharge from in-patient care between 1979 and 2006. Finally, and for each 

individual pathway, we then calculated the degree of correlation between pathway load and 

comorbidity with AD. Most of the KEGG pathways showed no significant correlation, with only 

three exceptions, indicating possible meaningful shared pathways contributing to disease 

comorbidity (see Fig. 3). Of these, ‘Cytokine-cytokine interaction’ (KEGG ID hsa04060) and 

‘Viral myocarditis’ (hsa05416) did not survive Bonferroni correction for multiple comparisons 

(uncorrected p value 0.05), while ‘JAK-STAT’ (hsa04630) did survive (uncorrected p value 

0.00022) suggesting that the shared GWAS genes on this pathway might contribute to the 

observed co-morbidity between AD and these disorders of immunity 

Subhead 3: Evidence for altered JAK-STAT pathway gene expression in AD blood, brain and in 

an in vitro model with established relevance to AD

If the KEGG pathway is responsible for the observed co-morbidity between AD and disorders of 

immunity, then we reasoned that altered JAK-STAT signalling would be a feature of AD. In order

to explore this, we utilised gene expression datasets from blood from human cohort studies 

(Datasets 1 and 2), from brain from post-mortem human studies (Dataset 3) and from a rodent in 
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vitro model relevant to AD (Dataset 4) with robust proof of concept using empirical studies with 

gene-knockdown, in animal models and in post-mortem human brain. 

We first examined expression of genes from the JAK-STAT pathway (KEGG ID hsa04630) in 

blood from patients with AD compared to unaffected controls, reasoning that post-mortem brain 

might have more late-stage, secondary changes of inflammation, possibly less relevant to 

aetiopathological pathways. We used two cohorts, one a multinational longitudinal study 

(AddNeuroMed - ANM; 105 AD and 114 unaffected age matched subjects; denoted Dataset 1 in 

this manuscript), and another, a single centre longitudinal study utilising the exact same protocol 

(Dementia Case Register - DCR; 95 AD and 78 control blood samples (6); denoted Dataset 2). In

ANM, 15 of the 47 JAK-STAT genes measured in this dataset were significantly dysregulated 

when comparing controls with AD subjects (p<0.05 after Bonferroni correction, see Fig. 4A). A 

binomial exact test reveals that this proportion of significant genes in the JAK-STAT pathway is 

larger than expected by chance (p-value 5×10-9). In DCR, 6 of the 47 JAK-STAT genes were 

significantly altered (p<0.05), also revealing significance at the pathway level (p-value 0.03). P-

values obtained in ANM were significantly correlated (p = 4×10-7 for Spearman correlation, see 

Fig. 4B) with those obtained from DCR. We also merged both datasets and repeated the analysis,

finding again 15 out of 47 genes were dysregulated (p<0.05) in the AD population when 

compared with the control population. We then examined JAK-STAT genes in the MCI 

population compared to unaffected controls in both cohort datasets, finding 10 out of 47 genes 

dysregulated in both studies, with binomial test being also significant (p-value 9×10-5).

We then examined the expression of JAK-STAT signalling genes in post-mortem brain tissue 

utilising a study of 129 AD subjects and 101 controls (7) (Dataset 3). In this cohort, 153 JAK-

STAT genes were sampled, of which 53 showed significant dysregulation (p-value < 0.05), and 
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37 of which survived multiple comparison correction (p-value < 0.05 after FDR adjustment). A 

binomial exact test reveals that this proportion of significant genes in the JAK-STAT pathway is 

larger than expected by chance (p-value 2×10-16). With respect to the five genes that were 

significant in ANM (Dataset 1) and that were also sampled in DCR (Dataset 2), TYK2 (p-value 

0.0002), IFNAR2 (0.04) and PIAS1 (2×10-5) were also significantly altered in Dataset 3 (see 

Table 1).

Finally, we also analyzed a previously reported (8) in vitro cell model derived dataset (Dataset 

4). This study demonstrated that in rodent neurons, exposure to Aβ induced gene expression 

changes that overlap extensively with changes in gene expression induced by the Wnt signaling 

antagonist, Dickkopf-1 (Dkk1); itself a gene induced in response to Aβ in rodent cells, animal 

models and human brain. This gene expression signature was subsequently validated in animal 

models with cerebral amyloid plaque pathology and in AD brain, as well as in a human DKK1 

over-expressing mouse model. Knock-down of particular genes on this pathway prevented Aβ 

induced phenotypes including neurotoxicity and tau-phosphorylation. This experimental dataset 

contained measurements of 32 JAK-STAT genes, with 8 of these being significantly dysregulated

(p-values < 0.05). Binomial testing showed that this proportion of dysregulated genes was higher

than expected by chance alone (p-value 0.0001). Of the four genes that were significant in ANM 

(Dataset 1) and were also sampled in all other datasets (DCR – Dataset 2, Array Express – 

Dataset 3; and rodent model – Dataset 4), Akt1 (p-value 0.001), Ifnar2 (0.007) and Pias1 (0.016) 

were also dysregulated in Dataset 4 (see Table 1).

Subhead 4: Empirical evidence for JAK-STAT dysregulation in both in vitro and in vivo models 

of Aβ-induced neurotoxicity
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We then further validated these bioinformatics results using empirical studies, measuring the key 

drivers of the pathway, Jak1, Jak2, Jak3 and Tyk2, in an in vitro model of neuronal toxicity. 

Previously, we and many others have demonstrated that rodent neurons exposed to amyloid 

peptides are susceptible of Aβ-induced toxicity and other phenotypes, including tau 

phosphorylation and synaptic alterations (8–12).

.. We therefore exposed primary neuronal cultures to 3 µM of oligomerised Aβ42 and real time 

PCR was performed at 30m, 4h and 24h after Aβ exposure (Fig. 5). Hprt1 and Actb were used as 

housekeeping genes for data normalization. Tyk2 showed a time-dependent increase in 

expression detectable at 4h (p=0.0077) and maintained up to 24h (p= 0.0063).  Jak1 and Jak2 

mRNA levels were only significantly increased at 24h with p values of p= 0.024 and p= 0.015, 

respectively. Jak3 expression was modulated by Aβ at any time point (p>0.05). 

We proceeded to test the response of the ak-StatJAK-STAT pathway in an acute in vivo rat model

of Aβ toxicity (QPS; Austria GmbH). Five male rats were subjected to bilateral 

intracerebroventricular injection of 50 µM Aβ1-42 or equal volumes of phosphate buffered saline

(PBS). 3h post injection, animals were sacrificed and brains harvested for RNA extraction. We 

measured the mRNA levels for Jak1, Jak2, Jak3 and Tyk2 in entorhinal cortex from Aβ-injected 

rats or PBS-sham controls by real time PCR. 3h after Aβ injection, the levels of Jak1 (p-value 

0.001), Jak2 (0.0071) and Tyk3 (0.0032) were significantly upregulated (p<0.05) in the brains of 

these rats but not in control animals (Fig. 6) providing further validation for the implication of 

this pathway in Aβ-mediated toxicity.
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Discussion 

We have presented here a series of integrated analyses predicated on the underlying hypothesis 

that co-morbidity of disease can, in some cases, indicate shared genetic susceptibility to disease 

and that this is manifested most robustly at the level of pathways more than at the level of single 

genes. By combining genome wide pathway association from all diseases together with their 

comorbidity with Alzheimer’s disease (AD), we identify JAK-STAT signaling as a shared factor 

correlated with the degree of comorbidity. In the first data-driven phase utilizing gene association

data we find this disease cluster to include a series of disorders of immunity and inflammation 

together with Age Related Macular Degeneration (ARMD) and Type 1 Diabetes Mellitus 

(T1DM). The association with ARMD is particularly interesting as it has previously been found 

to be a risk factor for AD (16, 17), because Aβ is a component of the drusen pathology in the 

retina of people with ARMD (18, 19) and because the gene most associated with ARMD – CFH -

encodes for a protein replicated as a biomarker of AD, Complement Factor H (20–22). That our 

approach of using all-GWAS data in a pathway clustering analysis identifies a relationship 

between AD and ARMD is all the more remarkable in because this association, in our study, is 

not driven by CFH. The association we find with T1DM is also intriguing as, although T2DM 

diabetes is one of the most substantiated risk factors for AD (23), our data now suggests that 

there might be a relationship also with early onset T1DM that is worth further attention. 

However, the most extensive association between shared pathways and disease we find is with 

disorders of immunity and inflammation. The role of inflammation in AD has been apparent for 

many years. This evidence is very extensive and comes from many directions (24). It includes 

evidence the use of non-steroidal anti-inflammatory drugs appear to decrease the risk of AD (25–

27), post-mortem studies showing that inflammation is associated with AD pathology (28, 29), 
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and in vivo data showing that markers of inflammation are predominant amongst protein 

biomarkers both in AD and in pre-dementia conditions (30, 31). In addition, there is increasing 

evidence from GWAS studies and from rare mutations, that genes encoding proteins involved in 

immunity are amongst the most consistently associated with disease (24). However, when 

considered in isolation, the pathways and processes identified by AD genetic studies are 

predominantly those of complement signaling and microglial function (3, 32, 33). These 

pathways are clearly important in disease with very considerable evidence to support their role, 

but the approach we have used here, triangulating between GWAS, real-world and empirical 

data, and including all disease and all genes, nominates a pathway as part of the aetiopathogenic 

process that is not identified by such AD gene focused studies.

As in any ‘Big Data’ approach, there are limitations both to the datasets available and to our use 

of them. First, in using the GWAS catalogue as a primary data-source, we limit ourselves to 

disease-gene associations where a significant number of genes have been identified. We do this 

in order to provide sufficient power for analysis, but acknowledge that the limit of 25 

susceptibility genes to enable a disease to enter analysis is both arbitrary and dependent on the 

size and numbers of studies that happen to have been conducted to date. Almost certainly, we 

miss information as a consequence of data limitation. Secondly, by segregating genes into 

pathways we attempt to overcome the intrinsic limitation of GWAS studies, in that biology is 

mechanistically enacted at the level of pathway and not gene, let alone SNP. Given the large 

number of SNPs and genes in the human genome, two diseases may have no elements measured 

in GWAS, or even sequencing studies, in common and yet share an overlapping disease 

pathogenesis. Measuring association not with SNP but with multiple SNPs across a gene (‘gene-

wide association’) is one attempt to overcome the limitation; here we go one step beyond this 
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with a pathway-wide association approach. However, in attempting to derive such information 

from the GWAS data, we are severely limited by current understanding of biological pathways, 

which is rudimentary at best. This limitation is bound to hinder our derivation of knowledge 

from information in this context. Thirdly, in seeking to identify diseases comorbid with AD, we 

have crudely utilised a dataset of concurrent diagnoses, taking no account of some of the 

confounds or other concerns of conventional epidemiology. Indeed we cannot be sure whether 

the co-morbidity we observe is due to the disease itself or the drugs used to treat the disease. 

However, we note that similar claims-level analyses of real-world clinical data have recently 

proven valuable in studying genetic and environmental factors shared amongst diseases (34)

We accept the limitations of our approach described above. However, in mitigation of these 

potential limitations, the datasets we examine are huge; namely, all genetic studies with all genes

and all diseases in the first phase, and a dataset of over 6 million people in the second. 

Furthermore, we would suggest that some confounds are less critical in the analysis we present 

here. For example, in studies of risk and protection then clearly understanding direction of effect 

– whether it is the disease or the treatment that affects risk – is fundamental. However, it 

becomes less important, potentially irrelevant, where we are determining simply whether the 

same processes are involved, as both disease and treatment will at some level and in some cases 

affect the same molecular pathways, which are the axis of our analysis. Finally, despite the 

limitations of deriving knowledge from data using this approach, the fact that the findings 

replicate in observational molecular studies in man and in experimental studies in rodents offers 

strong support to the results.

The JAK-STAT signaling pathway, nominated as a potential target for therapy through data-

driven genomics and real-world data in this study, is a key regulator of the response to mediators 
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of inflammation, including cytokines, chemokines (35) and microglia activation (36). Binding of 

cytokines (interleukin, interferon and growth factors) and other ligands (such as hormones) to 

their receptors increases tyrosine kinase activity of Janus Kinases (JAKs, including TYK2), 

which in turn phosphorylate the receptors and recruit STATs which are themselves then 

phosphorylated. Subsequent dimerization leads to nuclear translocation and transcription factor 

activity. Given this critical role in the modulation of the inflammatory response, it is not 

surprising that JAK-STAT signaling has previously been associated with inflammatory disease 

and targeted for therapeutics, some of which have been approved for clinical use (37). The 

pathway has also been identified as of importance in relation to diabetes (38) but less often in 

relation to AD. Very high concentrations of Aβ have been shown to increase tyrosine 

phosphorylation and transcriptional activity in a Tyk2 dependent manner in rodent models, and 

tyrosine phosphorylation of STAT3 is increased in AD brain (39), while inhibition of JAK-

STAT3 signaling inhibits activation of astrocytes and microglia in animal models of 

neurodegeneration (40). JAK-STAT signaling has also been identified as a component of 

plasticity, specifically Long Term Depression (LTD) (41, 42), interesting not least because LTD 

and Long Term Potentiation (LTP) are regulated, in opposite directions, by GSK3, the 

predominant tau-kinase implicated in AD pathogenesis (43–45).

In summary, a combined, sequential analysis of GWAS data agnostic to disease type, combined 

with real-world data of co-incidence of AD with other diseases, nominated JAK-STAT signaling 

amongst other pathways as a possible underlying pathogenetic mechanism shared across multiple

diseases. Remarkably, these diseases – inflammatory disorders, ARMD and Diabetes had 

previously been implicated as risk factors for AD. Adding to the weight of evidence for JAK-

STAT signaling in AD, we subsequently found altered gene expression of the pathway in 
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multiple human and rodent datasets and in empirical studies of Aβ exposure in rodents, both in 

vitro and in vivo. These data are not the first to nominate JAK-STAT signaling for therapeutic 

intervention (46), as experiments suggest that humanin (HN) and colivelin (CLN) protect against

AD-related neurotoxicity thought its activity in JAK-STAT. However the combination of genetic,

human and rodent, observational and empirical data, make a strong case to pursue this pathway 

as a target for therapies for AD, not least because clinically approved compounds already exist. 

This further suggests that this novel integration of orthogonal data is a promising approach to 

find novel targets in complex disorders.
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Materials and Methods

Subhead 1: Overlap of susceptibility genes across human disease

In order to identify biological pathways shared across different diseases, we utilised the GWAS-

catalogue (5) to obtain a list of all known gene associations with disease derived from GWAS 

studies. We used the Experimental Factor Ontology (EFO) (47) to identify disease studies, 

filtering by diseases with at least 25 associated genes, and only including the 25 strongest 

associated genes ranked by p-value where more than 25 genes have been found to show some 

association. For any two genes ‘α’ and ‘β’ sampled in the GWAS-catalogue, we then calculated 

the number of KEGG pathways that these 2 genes share, obtaining a gene × gene matrix of 

which we show a section in Fig. 1. In order to determine whether susceptibility genes of any 

given disease share more pathways with the susceptibility genes of any other given disease than 

expected from chance alone, we used a non-parametric Wilcoxon rank-sum test. 

Formally, if we denote the gene × gene matrix as ‘n(α,β)’ (with ‘α’ and ‘β’ being any gene 

sampled in the GWAS-catalogue), ‘A’ as the set of genes associated with disease ‘A’, and ‘B’ as 

the set of genes associated with disease ‘B’, the first sample ‘S+’ of our test becomes:

 B &   ),(   AwithnS (1)

While the second sample ‘S-’ becomes: 

    B & or  B &    ),(   AAwithnS (2)

Then, a one-tailed Wilcoxon rank-sum test compares ‘S+’ against sample ‘S-’. The statistical 

results of this comparison determine whether diseases ‘A’ and ‘B’ share more pathways than 

expected from chance according to their GWAS associations.
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Subhead 2: Contribution of biological pathways to diseases

Given that the results from the analysis described above suggested an intersection between AD 

and inflammatory diseases and hence confirming known associations, as discussed in the results 

and discussion sections, we subsequently focussed on this overlap. For each inflammatory 

disease sampled in the GWAS-catalogue that had statistical power for subsequent analysis (see 

below), we calculated a so-called pathway load for each KEGG pathway. This is a numeric value

that represents the proportion of susceptibility genes that a given disease has on a given KEGG 

pathway. Given disease ‘A’ and pathway ‘p’, the pathway load is equal to the number of 

susceptibility genes that disease ‘A’ has on pathway ‘p’, divided by the total number of times that

any associated gene of disease ‘A’ is annotated as belonging to any KEGG pathway. 

Formally, if we denote ‘m(A,p)’ as the number of genes of disease ‘A’ that belong to pathway ‘p’,

the pathway load is: 







),(

),(
),(

Am

pAm
pAload

(3)

We divide by 



),(Am
 to control for diseases whose genes may have been more thoroughly 

studied, and therefore included in more KEGG pathways, than less studied diseases.

Subhead 3: Shared contribution of biological pathways to disease comorbidity with AD

We determine the comorbidity of inflammatory diseases with AD using the US National Hospital

Discharge Survey (NHDS https://www.cdc.gov/nchs/nhds/, (48)) records from 1979 to 2006, 

which can be found in the Inter-university Consortium for Political and Social Research 

(ICPSR), file ICPSR 24281 (http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/24281), or in 
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the National Archive of Computerized Data on Aging (NACDA (49)). This randomised survey 

collects medical information, including final diagnosis coded in ICD-9-CM and demographic 

data, from the discharge records of a number of hospitals in the US, totalling 6,552,504 patient 

discharges in the sample used here. The record only includes hospitals with an average patient 

stay length of 30 days or less, excluding military and hospitals from institutions such as prisons 

(48). We identified all patients in the dataset with a diagnosis of AD (ICD-9-CM code 331.0) and

aged above 60 years in order to focus on late onset AD cases. For each case we find one control 

matched in gender, age, race and survey year (i.e. the year at which the survey was ran on that 

patient). To eliminate the diagnoses with lowest statistical power, we analyse only the 

inflammatory diseases that had more than 15 patients among the AD cases and their matched 

controls. For each inflammatory disease, we calculate the number of patients of that disease in 

the AD population divided by the number of patients of that disease in the matched population. 

For descriptive purposes we call this value ratioAD(A). Finally, for each KEGG pathway, we 

calculate whether the pathway load (load(A,p)) values correlate with the AD ratios (ratioAD(A)) 

using Pearson’s correlation.

Subhead 4: Pathway gene expression dysregulation in AD

In order to examine the relationship between gene expression and disease we obtained RNA 

expression data from 4 independent datasets; 1) AddNeuroMed (ANM), a longitudinal multi-

centre cohort study with blood samples from 105 AD cases, 125 Mild Cognitive Impairment 

(MCI) individuals and 114 controls (6, 50); 2) the Dementia Case Register (DCR), a single 

centre longitudinal cohort utilising the exact same protocol as ANM with blood samples from 90 

AD cases, 65 MCI individuals and 73 controls; 3) the largest post-mortem AD dataset available 

in ArrayExpress, E-GEOD-44770, with samples of post-mortem pre-frontal cortex from 129 AD 
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cases and 101 controls (7); 4) a rodent in-vitro dataset of neuronal gene response to amyloid 

peptide (8). Throughout this paper, these datasets are respectively denoted “Dataset 1”, “Dataset 

2”, “Dataset 3” and “Dataset 4”. The case ascertainment, diagnostic process and other details of 

ANM have been described previously (6, 50, 51) while DCR used an identical clinical and 

laboratory protocol. Demographics from the three human cohorts (Datasets 1 to 3) are reported 

in table 2. 

To test for statistically significant differences in RNA-expression in these 4 datasets for a given 

pathway, we use a per gene general linear model (GLM) with a binomial link function, which 

models AD status (two levels per person – either AD patient or control) as a function of RNA-

expression while controlling for a number of covariates (gender, age and sampling centre). The 

p-values we report correspond to the RNA-expression variable per gene. 

Subhead 5: Proof of concept in an in vitro rat model of Aβ exposure

In order to explore JAK-STAT signaling in vitro, primary neuronal cultures were generated from 

Sprague Dawley E18 rat  embryos by papain dissociation according to the manufacturer’s 

instructions (Worthington, Lakewood, NJ, USA) and cultured as previously described (52). 

Briefly, brains were harvested and maintained in sterile PBS, hippocampi and cortices were 

dissected out using a dissection microscope, triturated using a sterile glass Pasteur pipette and 

maintained in serum-free medium. Viable cells were counted using a hemacytometer. Neurons 

were plated in Neurobasal medium supplemented with B27, 0.30% glutamine, 100 U/ml 

penicillin and 100 μg/ml streptomycin, at a density of 300,000 cells/ml in plates coated with 

poly-D-lysine and incubated at 37°C in 5% CO2 atmosphere. Neuronal cultures were treated 7-9 

days post-plating. 
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Aβ1–42 peptide was purchased from Dr. David Teplow (California, UCLA) and was 

resuspended in 100% 1,1,1,3,3,3 hexafluoro-2-propanol (HFIP) at a final concentration of 1 mM.

For complete solubilisation the peptide was homogenized using a Teflon plugged 250 μl 

Hamilton syringe. HFIP was removed by evaporation in a SpeedVac, Aβ1–42 resuspended at a 

concentration of 5 mM in dimethylsulfoxide (DMSO) and sonicated for 10 minutes. Oligomers 

were prepared as previously described (53): Aβ1–42 was diluted in PBS to 400 μM and 1/10 

volume 2% sodium dodecyl sulfate (SDS) in H2O added. Aβ was incubated for 24 hours at 37°C

and further diluted to 100 μM in PBS followed by 18 hours incubation at 37°C. Rat primary 

neuronal cultures were treated with 3 µM Aβ for either 4h or 24h. These time points were 

selected based on the commonly observed time progression of changes in RNA after Aβ 

treatment.

Subhead 6: Proof of concept in an in vivo rat model of Aβ exposure

We further tested whether the observations made in vitro were also found in in vivo models. 

Male wild type Wistar rats (approximately 300g body weight) were subjected to bilateral 

injections of 50 µM Aβ1-42 or PBS (n = 5 per group) into the lateral ventricles (QPS, Austria). 

Brains were collected 3 hours post injection. Entorhinal cortex was subdissected, frozen in liquid

nitrogen and processed for RNA extraction. Frozen tissues were thawed and homogenised in 

Trizol and total RNA extracted according to the manufacturer’s instructions (Invitrogen, Paisley, 

UK). 

Total RNA from entorhinal cortex (1 μg) was reverse transcribed using random hexamers and a  

Taqman RT kit (Applied Biosystems, Cheshire, UK) according to the manufacturer’s 

instructions. PCR primers were designed using the Universal Probe Library package (Roche 

Molecular Biochemicals, Lewes, UK) and used in SYBR Green-based PCR reactions performed 
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on a StepOnePlusTM (96 well) thermal cycler (Applied Biosystems, California, USA). Relative 

quantification of gene expression between samples was determined using the 2-ΔΔCT method as 

described by Livak and Schmittgen (54). Internal control genes used to normalise for RNA input 

were HPRT and β-actin. 

Primer sequences: Jak1(NM_053466.1): Forward: 5´-ccaccgggacatttcact-3´ ; Reverse: 5´-

ttgtgggaaacctgtctcatc-3´; Jak2 (NM_031514.1): Forward: 5´-ggagagtatgttgccgaagaa-3´ ; Reverse:

3´-atattatgatacacaggcgtaatacca-3´; Jak3 (NM_012855.2): Forward: 5´-ggccaaagtcccatcttct-3´; 

Reverse: 5´-gaagctccacacgtcagattg-3´; Tyk2 (NM_001257347.1): Forward: 5´-

tgccatcttgctctcaacc-3´; Reverse: 5´-gtgagggatacagttcttgaagc-3´.

All samples were run in triplicate from three independent experiments. The mean crossing 

threshold (CT) values for both the target and internal control genes in each sample were 

determined and the 2-ΔΔCT calculations performed. The fold change in the target genes (after 

normalising to the internal control gene) were calculated for each sample and the mean 

calculated. Statistical significance was determined by Student´s t-test. Data are represented as 

normalised fold increases over control samples. Values are given as mean ± s.e.m (standard error 

of the mean).

Subhead 7: Ethical considerations

All animal studies described in this manuscript were ethically reviewed and carried out in 

accordance with Animals (Scientific Procedures) Act 1986. We further certify that the research 

(including Embryonic and Fetal Research if appropriate) was conducted according to the 

requirements of POL-GSKF-410 and associated relevant SOPs, and that all related 

documentation is stored in an approved HBSM database. Human biological samples were 

sourced ethically and their research use was in accord with the terms of the informed consents
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Supplementary Materials

Supplementary materials are detailed in “Supplementary materials.doc” file, as requested in the 

instructions for authors provided at “http://stm.sciencemag.org/content/instructions-authors-new-

research-articles”.

Fig. S1. Overlap of GWAS genes, full version.
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Figures: 

Fig. 1. Number of shared pathways.

Number of pathways shared by the top 5 genes of 3 of the studied diseases - Crohn’s Disease and

Type 1 and Type 2 Diabetes Mellitus. For any two genes (as indicated on the X and Y axes), the 

color of the corresponding cell represents how many KEGG pathways these two genes share. 

Each one of these 15 genes has been associated through a GWAS study with at least one of these 

diseases. Although performed for each disease in the GWAS Catalogue using the 20 most 

strongly associated genes (i.e. lowest p-value), this figure only shows the top 5 genes and only 3 

diseases for representational purposes. 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 21, 2017. ; https://doi.org/10.1101/179267doi: bioRxiv preprint 

https://doi.org/10.1101/179267
http://creativecommons.org/licenses/by-nd/4.0/


Fig. 2. Overlap of molecular pathways in susceptibility genes for all disease.

Susceptibility genes from association studies of multiple diseases overlap in the pathway space. 

Although we analyzed 59 diseases with at least 25 susceptibility genes each, for representational 

purposes the figure shows those classified as either eye disease, immune system disease, or 

nervous system disease. The color of each square in the table represents the p-value obtained 

when calculating whether the GWAS-genes of diseases A and B overlap in the pathway space 

more than would be expected from chance. Full data is presented in supplementary Fig. S1.
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Fig. 3. Pathways association with disease from real-world data.

As described in the methods, we calculate the correlation between the co-incidence of the 

inflammatory diseases (denoted ratioAD(A)) and the proportion of susceptibility genes of these 

diseases on any given pathway (denoted load(A,p)).This figure shows this correlation for the 

three pathways where such correlation was the most significant. The ratioAD(A) of each disease 

is represented in the Y-axis, while load(A,p) is represented in the X-axis. Each disease is 

represented by a number and a color, as shown in the legend to the right. The p-values 

corresponding to each pathway are, from left to right, 0.00022, 0.027 & 0.039. Only JAK-STAT 

signaling survives multiple testing correction. T1DM stands for Type 1 Diabetes Mellitus; COPD

for Chronic obstructive pulmonary disease; Cytokine-cytokine for Cytokine-cytokine receptor 

interaction pathway; JAK-STAT for JAK-STAT signaling pathway. 
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   A B

Fig. 4. Gene expression of JAK-STAT pathway genes in blood in AD.

(A) We determined the expression of JAK-STAT pathway genes in blood, comparing people with

AD (open circles) and MCI (solid circles) to unaffected individuals in the ANM/DCR study. (B): 

Results from datasets 1 (ANM) and 2 (DCR). Axis represent p-values from each dataset. The 
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solid line shows the a linear regression, with confidence intervals in grey shading. Names are 

shown for the most significant genes that were also sampled in dataset 3. 
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Fig. 5. The Janus kinases Jak1, Jak2 and Tyk2 are induced in vitro after Aβ stimulation in a 

sequential pattern 

Neuronal cultures treated with 3 µM Aβ show a sequential pattern of induction for components 

of the JAK-STAT pathway. 4h after Aβ exposure Tyk2 is upregulated in rat primary neuronal 

cultures. The levels of this gene are maintained elevated 24h after Aβ incubation. After Tyk2 

levels are induced Jak1 and Jak2 are then subsequently upregulated.
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Fig. 6. JAK kinases are upregulated in an in vivo model of Aβ toxicity 

Entorhinal cortex of male wild type rats injected with Aβ (n=5) or with PBS (n=5) bilaterally 

into the lateral ventricles was analyzed by real time PCR to determine the levels of Jak1, Jak2, 

Jak3 and Tyk2. Each sample was run in triplicate. Jak1, Jak2 and Tyk2 were significantly 

upregulated (p=0.001, p=0.0071, p=0.0032 respectively) in the Aβ-injected animals but not in the

PBS injected control group. Data represented as normalized fold induction. Values given as mean

±s.e.m. Statistical significance determined by Student´s t-test.
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Gen

Dataset 1

(blood, ANM)

Dataset 2

(blood, DCR)

Dataset 3

(brain, AE)

Dataset 4

(in-vitro)

TYK2 5· 10-10 0.0005 0.0002 -

PIK3R1 1· 10-6 0.03 0.3 0.5

IFNAR2 0.0004 0.7 0.04 0.007

AKT1 0.0003 0.001 0.5 0.001

PIAS1 0.0007 0.0003 8· 10-5 0.016

Table 1. Comparing most significant genes

P-values from analysis of case versus control samples when comparing RNA-expression in the 

different datasets. Among the 15 most significant genes of ANM (Dataset 1), the table shows 

those that were also sampled in DCR. (ANM-AddNeuroMed; DCR- dementia case register; AE-

ArrayExpress – see methods for details)
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Dataset 1

(blood, ANM)

Dataset 2

(blood, DCR)

Dataset 3

(brain, AE)

Gender (n)

   Female 209 148 108

   Male 135 80 121

Age (years)

   mean ± SD 75.9 ± 6.8 78.1 ± 7.0 73.8 ± 12

Centre (n)

   1 44 44 229

   2 34 11 -

   3 84 62 -

   4 43 43 -

   5 45 25 -

   6 94 43 -

Diagnosis (n)

   AD 105 90 129

   control 114 73 100

   MCI 125 65 0

Table 2. Characteristics of human datasets. 

Human study cohorts with the variables used in the linear model (ANM-AddNeuroMed; DCR- 

dementia case register; AE-ArrayExpress – see methods for details)
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