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ABSTRACT 58 

Background: Phospholipid homeostasis in biological membranes is essential to maintain functions of 59 

organelles such as the endoplasmic reticulum. Phospholipid perturbation has been associated to non-60 

alcoholic fatty liver disease, obesity and other metabolic disorders. However, in most cases, the 61 

biological significance of lipid disequilibrium remains unclear. Previously, we reported that 62 

Saccharomyces cerevisiae adapts to lipid disequilibrium by upregulating several protein quality 63 

control pathways such as the endoplasmic reticulum-associated degradation (ERAD) pathway and 64 

the unfolded protein response (UPR). 65 

Results: Surprisingly, we observed certain ER-resident transmembrane proteins (TPs), which form 66 

part of the UPR programme, to be destabilised under lipid perturbation (LP). Among these, Sbh1 was 67 

prematurely degraded by fatty acid remodelling and membrane stiffening of the ER. Moreover, the 68 

protein translocon subunit Sbh1 is targeted for degradation through its transmembrane domain in an 69 

unconventional Doa10-dependent manner. 70 

Conclusion: Premature removal of key ER-resident TPs might be an underlying cause of chronic ER 71 

stress in metabolic disorders. 72 

 73 

Keywords: Transmembrane protein degradation, Sbh1, phosphatidylcholine imbalance, chronic ER 74 

stress, unfolded protein response, ER protein quality control, ERAD, Doa10 complex, NAFLD, NASH. 75 
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BACKGROUND 89 

Phospholipid homeostasis is crucial in the maintenance of various cellular processes and functions. 90 

They participate extensively in the formation of biological membranes, which serve to generate 91 

distinct intracellular environments into ordered compartments known as organelles for metabolic 92 

reactions, storage of biomolecules, signalling, as well as sequestration of metabolites. Existing as 93 

various and distinct species, phospholipids are regulated within relatively narrow limits and their 94 

composition in biological membranes among organelles differs significantly [1]. 95 

 96 

Perturbation of the two most abundant phospholipids, phosphatidylcholine (PC) and 97 

phosphatidylethanolamine (PE), can lead to various disease outcomes including non-alcoholic fatty 98 

liver disease (NAFLD) [2-5], type II diabetes (T2D) [6], as well as cardiac and muscular dystrophies 99 

[7]. Being highly abundant in biological membranes, the perturbation of PC and PE levels results in 100 

endoplasmic reticulum (ER) stress [8]. For instance, an elevated PC/PE ratio in obesity was found to 101 

contribute to the development of NAFLD [9, 10]. Perturbation in phospholipids was shown to cause 102 

the premature degradation of the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) ion pump, 103 

disrupting calcium homeostasis and resulting in chronic ER stress [9]. This eventually led to hepatic 104 

steatosis and liver failure. In another study, mice fed with high fat diet exhibited an increase in gut 105 

microbiota enzymatic activity that have been shown to reduce choline [11, 12]. Choline is an essential 106 

dietary nutrient primarily metabolised in the liver and used for the synthesis of PC. Similarly, choline 107 

deficiency may play an active role in the development of insulin resistance. However, the 108 

development of chronic ER stress and metabolic diseases from lipid perturbation (LP) remains largely 109 

unknown. 110 

 111 

In Saccharomyces cerevisiae, de novo synthesis of PC is catalysed by the enzymes Cho2 and Opi3, 112 

and similarly carried out by the homologue of Opi3, PEMT, in mammals (Fig. 1a). Cho2 first 113 

methylates PE to N-monomethyl phosphatidylethanolamine (MMPE), which is further methylated by 114 

Opi3 to PC through the intermediate N,N-dimethyl phosphatidylethanolamine (DMPE). Alternatively, 115 

PC is synthesised from choline, when available, through the Kennedy pathway. Both pathways are 116 

highly conserved from yeast to humans. It has been reported that PEMT-/- mice develop NAFLD within 117 
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three days of choline deficient diet [5]. Previously, we developed a LP yeast model to mimic NAFLD 118 

by deleting the gene OPI3 [13]. 119 

 120 

The unfolded protein response (UPR) is a stress response pathway monitoring ER stress to restore 121 

cellular homeostasis [14]. Upon accumulation of misfolded proteins, the UPR is activated and 122 

alleviates stress by reversing severe dysfunctions through the upregulation of nearly 400 target genes 123 

in yeast [15]. Major targeted regulatory pathways includes cytosolic protein quality control (CytoQC), 124 

ER-associated degradation (ERAD), protein translocation, protein modification and phospholipid 125 

biosynthesis [15, 16]. By increasing ER protein folding capacity and enhanced clearance of misfolded 126 

proteins coupled with a general attenuation of protein translation [17], the UPR aims to achieve ER 127 

homeostasis. 128 

 129 

Recently, it was demonstrated that the UPR is essential in alleviating ER stress in lipid dysregulated 130 

cells to maintain protein biogenesis, protein quality control and membrane integrity [13, 18-20]. LP, by 131 

the absence of CHO2 or OPI3, exhibits synthetic lethality with the sole UPR signalling transducer in 132 

yeast, IRE1, as well as its downstream transcription factor HAC1 [19, 20]. LP has been well 133 

characterised to induce ER stress [21-23], and the failure of the UPR to restore homeostasis is 134 

implicated in several human diseases [24-26]. This clearly establishes the critical role of the UPR in 135 

buffering the lethal effects of LP to ensure cell survival. 136 

 137 

In this study, we observed certain ER-resident transmembrane proteins (TPs), part of the UPR 138 

programme, to be prematurely degraded under LP. First, we demonstrated that LP affects the ER 139 

membrane which results in the destabilisation of the TPs. Furthermore, we elucidated the mechanism 140 

of how one such TP, Sbh1, gets recognised for degradation through ERAD. Our findings reveal that 141 

under LP, Sbh1 transmembrane degron becomes accessible to the Doa10 complex leading to its 142 

premature degradation. 143 

 144 

 145 

 146 

 147 
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RESULTS 148 

A subset of transmembrane proteins is destabilised during lipid perturbation 149 

Global transcriptional and proteomic analyses from our previous work indicated a dramatically altered 150 

biochemical landscape in yeast cells under LP [13]. Among these, 66 proteins were identified to be 151 

transcriptionally upregulated, yet displayed a decrease in protein abundance (Table S1), including 11 152 

ER-resident TPs. From these, we analysed the steady-state levels of ten TP candidates in cells under 153 

LP using the PC-deficient strain opi3∆ (Fig. 1a-b) [13]. Coy1, Cue1 and Erp5 exhibited similar protein 154 

steady-states in opi3∆ and WT, while Ctr1, Nsg2, Sbh1 and Scs7 had significantly lower steady-state 155 

levels. Surprising, Emc4, Prm5 and Yet3 showed higher steady-state protein levels. To exclude 156 

possible cellular functions affected from LP such as transport and secretion, we focused on ER-157 

resident proteins by focusing on Cue1, Emc4, Nsg2, and Sbh1. Cue1 is an essential component of 158 

the ERAD pathway [27]. Emc4 is a member of the conserved ER transmembrane complex (EMC) and 159 

is required for efficient folding of proteins in the ER [21, 28]. The EMC is also proposed to facilitate the 160 

transfer of phosphatidylserine from the ER to mitochondria [29]. Nsg2 regulates the sterol-sensing 161 

protein Hmg2 [30]. Lastly, the β subunit of the Sec61 ER translocation complex, Sbh1, is highly 162 

conserved in eukaryotes and plays a role in the translocation of proteins into the ER [31-33]. Sbh1 is 163 

non-essential for translocation but leads to a defect in this process when deleted in conjunction with 164 

its paralogue, Sbh2 [34]. 165 

 166 

To assess the stability of TP candidates during LP, cycloheximide chase assay was performed in WT 167 

and opi3Δ strains. Half-lives of Emc4, Nsg2, and Sbh1 were found to be significantly reduced under 168 

lipid disequilibrium (Fig. 1c). No significant decrease in Cue1-HA protein level was detected in opi3Δ 169 

although the decrease was reproducible. One hour after attenuating protein translation, levels of 170 

Emc4, Nsg2, and Sbh1 were found to be 27%, 41%, and 58% lower in opi3Δ, respectively, compared 171 

to WT. This suggests that the UPR programme transcriptionally upregulates genes to restore ER 172 

homeostasis under LP, while a subset of TPs is recognised and targeted for degradation. 173 

 174 

 175 

 176 
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A subset of ER-localised transmembrane proteins is destabilised by a decrease in 177 

phosphatidylcholine 178 

To ensure that Cue1, Emc4, Nsg2, and Sbh1 remain as integral ER membrane proteins during lipid 179 

perturbation, we verified their localisation at the ER (Fig. 2a) and their insertion into cellular 180 

membranes (Fig. 2b) in opi3Δ cells. Together, these results suggest that integration into the ER 181 

membrane is unaffected by PC depletion. To study the topology of these four proteins, we performed 182 

proteinase K (PK) digestion from isolated microsomes (Fig. 2c). In WT cells, the C-termini HA tags of 183 

Cue1-HA, Emc4-HA and Nsg2-HA are oriented towards the cytosol. Thus, the HA tag will be cleaved 184 

off if the proper topology is preserved, while the detection of a HA-bearing peptide after PK digestion 185 

indicates an inverted topology. The three proteins were found to be fully digested under LP and the 186 

predicted smaller protein fragments of 23.7, 8.53, and 5.8 kDa were not detected for Cue1-HA, Emc4-187 

HA, and Nsg2-HA, respectively, in both WT and opi3Δ. Sbh1-HA is a tail-anchored protein where the 188 

C-termini HA tag is found in the ER lumen. The predicted protein fragment of 10.5 kDa after PK 189 

digestion was detected in both WT and opi3Δ strains, indicative of its correct membrane topology. 190 

Typically, tail-anchored proteins are tagged at the N-termini as the C-termini interacts with the Get 191 

complex for insertion into the ER membrane [35]. This result shows that, along with alkaline 192 

carbonate extraction (Fig. 2b), adding a C-terminus HA tag to Sbh1 does not interfere with its 193 

integration into the ER membrane. The four TPs were fully digested in the presence of the non-ionic 194 

detergent Nonidet P-40 (NP40). Together, these findings suggest that the four TPs are prematurely 195 

targeted for degradation once they are fully translated and integrated into the ER membrane.  196 

 197 

To further confirm the four TPs are destabilised specifically from low PC levels, their degradation was 198 

monitored in cells grown in the presence of choline to restore PC homeostasis (Fig. 1a) [13, 36]. 199 

Choline supplementation significantly stabilised Cue1-HA, Emc4-HA, Nsg2-HA, and Sbh1-HA in 200 

opi3Δ to the levels of WT (Fig. 3a). Subsequently, we concentrated our effort on Sbh1 to better 201 

understand how it is targeted for premature degradation during LP. 202 

 203 

The UPR is strongly activated in response to LP [13, 21]. In opi3Δ, the UPR activation is constitutively 204 

elevated and unresolved, thereby referred to as chronic ER stress [13, 37]. To ensure that Sbh1 is not 205 

destabilised as a consequence of strong UPR activation, we introduced a constitutively active form of 206 
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the downstream effector, HAC1i, into WT cells [16, 38]. As expected, HAC1i-induced UPR activation 207 

did not further destabilise Sbh1 in WT cells (Additional file 1: Fig. S1a). Noticeably, steady-state Sbh1 208 

protein level is higher in UPR-activated WT cells as SBH1 is upregulated from the UPR programme 209 

[13, 15]. Additionally, yeast cells can mount an intact UPR in the absence of SBH1 (Additional file 1: 210 

Fig. S1b). Thus, this indicates that the UPR programme in opi3Δ is not sufficient to drive premature 211 

Sbh1 degradation. 212 

 213 

Changes in ER membrane fluidity is sufficient to destabilise Sbh1 214 

To narrow down the specific effect of LP that might contribute to the premature degradation of Sbh1, 215 

we analysed the fatty acid (FA) composition of whole cells and fractionated microsomes. Overall, 216 

there was a general increase of cellular and microsomal (ER) saturated fatty acids (SFAs) and 217 

decrease of monosaturated fatty acids (MUFAs) in opi3Δ when compared to WT (Fig. 3b). A 218 

significant decrease of oleic acid (C18:1) was also observed in opi3Δ microsome fraction compared to 219 

that of WT. In addition to FA remodelling, the intermediate for the synthesis of PC from PE, MMPE, 220 

largely accumulates with the deletion of OPI3 as we previously reported (Fig. 1a) [13]. A large MMPE 221 

increase is expected to induce negative membrane curvature stress as has been reported for PE [39]. 222 

The remodelling of FA saturation state could be another adaptive response to alleviate membrane 223 

curvature stress in opi3Δ [40, 41], as FA saturation states of biological membranes are highly linked 224 

to membrane fluidity [42-44]. 225 

 226 

To better understand the impact of membrane remodelling on TPs behaviour, we monitored the 227 

dynamics of the ER-resident membrane protein Sec63-sGFP by fluorescence recovery after 228 

photobleaching (FRAP) [45]. A region of the cortical ER is photobleached and signal recovery 229 

correlates with Sec63-sGFP mobility. The recovery of Sec63-sGFP fluorescence was significantly 230 

slower in opi3Δ compared to WT suggesting rigidity of the ER membrane (Fig. 3c-e). This result is 231 

consistent with previous reports on the effect of decreased PC/PE ratio in stiffening membranes [40, 232 

46]. Taken together, it suggests that a decrease in membrane fluidity might prevent TPs to associate 233 

to their interacting partners following translation and resulting in premature degradation. 234 

 235 

 236 
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Sbh1 binding to interacting partners is compromised under lipid imbalance 237 

To further characterise the effect of LP on Sbh1 stability, we performed the split-ubiquitin based 238 

membrane yeast two hybrid (MYTH) screen in WT and opi3Δ cells to identify changes in Sbh1 239 

membrane protein interactome [47, 48]. The reporter moiety was added at the N-terminus of Sbh1 240 

(TF-Cub-Sbh1) and did not compromise its ER localisation (Additional file 1: Fig. S2a). Strains 241 

expressing the Sbh1 bait were transformed with a yeast prey genomic plasmid library in which open 242 

reading frames are fused to sequences encoding the cognate reporter moiety [49]. A total of 49 and 243 

14 putative Sbh1-interacting proteins were identified in WT and opi3Δ, respectively (Additional file 1: 244 

Fig. S2b). To eliminate false positive interactors, a bait dependency test was done using the single-245 

pass transmembrane domain of the human T-cell surface glycoprotein CD4 tagged to Cub-LexA-VP16 246 

[49]. In WT, we identified 38 bona fide Sbh1 interactors including previously reported interactors Ost4, 247 

Sec61, Spc2, Ssb1, Sss1, and Yop1 (Fig. 4a) [50-53]. Sbh1 was also found to interact with 248 

membrane proteins involved in sterol biogenesis (Erg4, Erg24 and Nsg1) and fatty acid elongation 249 

(Elo2 and Tsc13). On the other hand, only 13 proteins were found to interact with Sbh1 in opi3Δ cells 250 

(Fig. 4b). No interaction of Sbh1 with Sec61 and Sss1 was detected in opi3Δ. This suggests that 251 

Sbh1 could be dissociated from the Sec61 complex under LP, and therefore causes its premature 252 

degradation. This is consistent with the finding that Sbh2, the paralogue of Sbh1, becomes 253 

destabilised and degraded rapidly when unbound to the Sec61-like complex Ssh1 [54]. Similarly, 254 

Sbh1 was found to interact with proteins of the ERAD pathway under LP (Fig. 4b). Sbh1 interactors 255 

include the membrane-embedded ubiquitin-protein ligase Doa10 which is part of the ERAD Doa10 256 

complex [55, 56]. As the Doa10 complex is generally specific for substrates containing cytosolic 257 

lesions (ERAD-C) [57], it suggests that a polypeptide stretch of Sbh1 might become exposed on its 258 

cytosolic side under LP making it susceptible to ubiquitination. Subsequently, targeted substrates for 259 

degradation are polyubiquitylated in the cytosol by the addition of Lys-11-linked ubiquitin (Ubi4), a 260 

protein identified to interact with Sbh1 exclusively in opi3Δ cells. The AAA+ ATPase protein Cdc48 261 

was also found to interact with Sbh1 in opi3Δ cells (Fig. 4b). Ubiquitylated substrates are retro-262 

translocated to the cytosol by the action of the Cdc48 complex and targeted to the proteasome for 263 

degradation [58, 59]. Another important player of the ERAD pathway, Png1, was found to exclusively 264 

interact with Sbh1 under LP. Png1 catalyses the deglycosylation of misfolded glycoproteins, and is a 265 

critical step for ERAD substrates modification to be fit for proteasomal degradation [60]. Together, the 266 
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MYTH screening results suggest that a change in membrane properties lead to the dissociation of 267 

Sbh1 from the Sec61 complex, resulting in its rapid degradation through the ERAD-C complex. 268 

 269 

To ensure levels of the Sec61 complex subunits other from Sbh1 remain unchanged under lipid 270 

perturbation, we carried out cycloheximide chase assay to follow the stability of Sec61 and Sss1-Flag. 271 

Both Sec61 and Sss1 were found to be stable in opi3Δ as in WT in agreement with our previous 272 

proteomic data (Fig. 4c) [13]. To assess the interaction of Sbh1 with Sec61 complex on the ER 273 

membrane under LP, native co-immunoprecipitation (co-IP) was performed (Fig. 4d). In contradiction 274 

to the MYTH screen results, Sec61 was found to interact stably with Sbh1-HA in both WT and opi3Δ 275 

strains. The discrepancy could be due to the difference in membrane dynamics in vivo and in vitro 276 

from the MYTH and co-IP assay, respectively. 277 

 278 

Sbh1 is destabilised from its transmembrane domain and degraded in a Doa10-dependent 279 

manner 280 

To validate that Sbh1 is degraded in a Doa10-dependent manner, we carried out cycloheximide 281 

chase assay to monitor Sbh1 stability in different ERAD mutants. Sbh1 was found to be fully stabilised 282 

in opi3Δdoa10Δ but not in opi3Δhrd1Δ and opi3Δusa1Δ mutants (Fig. 5a). Hrd1 and Usa1 are both 283 

part of the Hrd1 complex which recognises lesions within the luminal domains of membrane and 284 

soluble proteins (ERAD-L) and those found within transmembrane region (ERAD-M) [61]. As some 285 

misfolded proteins in the ER are routed to the vacuole for degradation, we confirmed that Sbh1 286 

degradation under LP is independent of the vacuolar pathway as shown by a similar degradation 287 

profile in opi3Δpep4Δ. Conversely, Sbh1 degradation showed dependency on Cue1, a conserved 288 

element in both the Doa10 and Hrd1 complexes (Additional file 1: Fig. S3). Together with the MYTH 289 

data, it suggests that Sbh1 is exclusively targeted for degradation by the ERAD Doa10 complex. 290 

 291 

To further elucidate how Sbh1 might be targeted for degradation by the Doa10 complex during LP, we 292 

mutated Sbh1 cytosolic lysine residues to alanine separately [Sbh1(K15A,K17A), Sbh1(K23A), 293 

Sbh1(K30A,K31A), and Sbh1(K41A)] and combined [Sbh1(6KA)]. The E3 ubiquitin-protein ligase 294 

Doa10 has been extensively reported to recognise ER proteins with cytosolic lesions resulting in the 295 

transfer of ubiquitin to lysine residues [62-69]. The degradation rates of Sbh1(K15A,K17A), 296 
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Sbh1(K23A), Sbh1(K30A,K31A), and Sbh1(K41A) expressed in opi3Δ cells were similar to unmutated 297 

Sbh1 (Fig. 5b,c). Similarly, Sbh1(6KA) destabilisation was comparable to unmutated Sbh1 in opi3Δ 298 

strain (Fig. 5d,e). Together, these findings suggest that Sbh1 is targeted for degradation by the Doa10 299 

complex independently from the ubiquitination of its cytosolic domain. Yeast paralogue of Sbh1, 300 

Sbh2, is degraded by Doa10 through an intramembrane degron [54]. Thus, we examined the 301 

degradation of Sbh1 containing the transmembrane domain of Sbh2 in opi3Δ strain (Fig. 5f). 302 

Replacing the transmembrane domain of Sbh1 was sufficient to stabilise it during LP suggesting the 303 

degron recognised by Doa10 is within the lipid-embedded Sbh1 α-helix [54]. To further validate this 304 

finding, we used a stable Sbh2 mutant wherein the two non-conserved amino acids of the 305 

transmembrane domain of Sbh2 have been mutated from serine to proline and alanine at positions 61 306 

and 68, respectively [Sbh2(S61P,S68A)]. These two point mutations drive Sbh2 native interaction 307 

from the Ssh1 translocon to the Sec61 translocon. As previously reported, Sbh2(S61P,S68A) was 308 

stable in WT cells (Fig. 5f). Unexpectedly, Sbh2(S61P,S68A) was similarly stable in opi3Δ cells, 309 

suggesting the Sec61 translocon maintains its ability to interact with the non-essential β subunit. 310 

Together these findings suggest that the Doa10 complex recognises the Sbh1 transmembrane 311 

degron that becomes accessible during LP perhaps due to the change in the ER membrane 312 

composition. 313 

 314 

 315 

DISCUSISON 316 

The strong association between obesity and non-alcoholic fatty liver disease (NAFLD) in human 317 

populations is evident of the importance of lipid regulation in determining the emergence of fatty liver 318 

pathogenesis: NAFLD is now the most common cause of chronic liver enzyme elevation and 319 

cryptogenic cirrhosis, as a result of increased obesity [70, 71]. Total PC is consistently decreased in 320 

NAFLD and non-alcoholic steatohepatitis (NASH) liver samples from human patients and mouse 321 

models [8, 72, 73], and it correlates with a decrease of the enzyme required for de novo synthesis of 322 

PC in the liver, PEMT [9, 73]. Concurrently, chronic ER stress and the activation of the UPR are both 323 

associated with NAFLD pathologies [9, 74, 75]. Despite these connections, little is known on the effect 324 

of phospholipid perturbation on pathways of the ER. Thus, we sought to better understand how the 325 
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ER fails to reach homeostasis under chronic PC depletion and how the protein quality control 326 

machinery is implicated using our previously reported yeast model system [13]. 327 

 328 

The proteostasis network undergoes extensive remodelling upon PC depletion in yeast [13]. Although 329 

a large subset of proteins is increased in these stressed cells, we noticed that key proteins are rapidly 330 

degraded and are indeed sensitive to phospholipid variations. Out of the 66 proteins which displayed 331 

decreased protein abundance despite being genetically upregulated, 40% are transmembrane 332 

proteins (TPs). As 30% of the proteome is predicted to be integral or peripheral membrane proteins 333 

[52], it suggests that TPs are more sensitive to LP compared to other types of proteins. Among the 334 

identified TPs, a large proportion are ER-resident proteins suggesting this organelle is more 335 

vulnerable to the effects of LP, and that this in turn affects TP integrity in the ER. The virtual absence 336 

of sterol at the ER, a key regulator of membrane fluidity, might contribute to its susceptibility to 337 

change in the biophysical properties of the membrane through lipid variation {Zinser, 1993 338 

#871;Weete et al., 2010;Subczynski, 2017 #943}. 339 

 340 

We sought to investigate changes in membrane properties under LP that caused the destabilisation of 341 

a subset of TPs. PC is cylindrically shaped with a cross-sectional area for the head-group similar to its 342 

constituent acyl chain tails, generating minimal curvature and forming flat lamellar phase phospholipid 343 

bilayers [76]. PE is classified as cone-shaped lipid forming non-lamellar membrane structure as it 344 

generates negative membrane curvature [39]. The phospholipid intermediate MMPE becomes highly 345 

abundant under the ablation of OPI3, and being mono-methylated, it has physical properties more 346 

similar to PE (Fig. 1a). The increase in membrane curvature from the replacement of PC to MMPE 347 

may induce cells to decrease their FA chain lengths in accordance to the seminal Helfrich theory of 348 

membrane bending elasticity (Fig. 3b) [41]. A more pronounced remodelling of the FA chain length in 349 

the ER over whole cell suggests either the ER is more susceptible to LP due to the minimal presence 350 

of ergosterol at the ER [77] or cells respond more aggressively to the ER membrane bilayer disruption 351 

to alleviate ER stress. Accordingly, a rise in membrane lipid packing from elevated saturated fatty 352 

acids will reduce the propensity to form curvatures. 353 

 354 
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However, the remodelling of the ER to alleviate negative membrane curvature stress, induced from 355 

high PE and MMPE levels, can impose further challenges to cells. An elevation in saturated fatty acid 356 

chains decreases ER membrane fluidity (Fig. 3b) [78] which might be partially due to the absence of 357 

the rich unsaturated fatty acid provider, PC [79, 80]. Additionally, the replacement of PC with MMPE 358 

contributes to the stiffening of the membrane [46]. Thus, these changes combined with the relatively 359 

low abundance of ergosterol at the ER membrane bilayer make this organelle particularly susceptible 360 

to PC level variations. Indeed, this change in the ER membrane led to the premature degradation of 361 

Sbh1 by the Doa10 complex through a degron within the transmembrane domain of Sbh1. The loss of 362 

Sbh1 interacting partners, during LP, might contribute to its degradation as reported for its yeast 363 

paralogue Sbh2 [54]. Dissociation of Sbh2 from the Ssh1 complex (yeast Sec61 paralogue) was 364 

proposed to sufficiently drive its Doa10-mediated degradation. Interestingly, none of the Sbh1 365 

cytosolic lysine residues are required for its degradation through the Doa10 complex suggesting Sbh1 366 

might by atypically ubiquitylated as has been reported for the Doa10 substrate Asi2 [81]. 367 

 368 

Alteration of lipid raft composition at the plasma membrane can lead to loss of protein function and 369 

rapid degradation [79, 82, 83]. The rigidity of the ER membrane, from depleting PC, may interfere with 370 

Sbh1 conformational changes necessary for its interaction with the Sec61 complex and thus result in 371 

its degradation [84]. Alternatively, the stiffening of the lipid membrane may reduce Sbh1 diffusion 372 

through the lipid bilayer leading to sustained interaction with the Doa10 complex (Fig. 4 and 6) [54, 373 

85]. Thus, a decrease in PC clearly targets Sbh1 for degradation from a change in the biophysical 374 

property of the membrane. It remains to be determined if the LP-induced degradation mechanism of 375 

Sbh1 applies to the other destabilized TPs that have been identified (Fig. 1b). Additionally, the 376 

absence of PC with its large head-group and the abnormally high presence of PE and MMPE with 377 

smaller head-groups at the lipid membrane-cytosol interface should result in Doa10 accessibility of 378 

the Sbh1 α-helix degron [54]. 379 

 380 

The coordinated upregulation of the proteostasis network by the UPR serves as an important stress 381 

recovery mechanism that helps cells cope with the otherwise lethal effects of LP [13]. Despite this 382 

robust stress response under LP, the UPR programme fails to increase the expression level of a 383 

subset of TPs. The premature degradation of these TPs can prevent an effective proteostatic 384 
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response especially under prolonged LP (Fig. 6). ER stress induced from a temporary lipid 385 

perturbation will result in the upregulation of UPR target genes and consequently ER homeostasis. 386 

However, in the context of fatty liver, prolonged LP might prevent cells from reaching ER homeostasis 387 

by the premature degradation of key UPR target TPs. Therefore, this will lead to chronic ER stress 388 

which might contribute to the progression of NAFLD. In addition, the prolonged upregulation of 389 

lipogenic transcription factors from the UPR programme may also contribute to liver progression into 390 

hepatosteatosis [86]. 391 

 392 

In contrast, disrupting phospholipid homeostasis may be exploited to target pathogens. An increase in 393 

phospholipid synthesis is essential for replication of the parasite Plasmodium falciparum during the 394 

erythrocytic stage [87]. Phospholipid content of parasite-infected erythrocytes dramatically increases 395 

during maturation with 85% of newly synthesised phospholipids being PC and PE for growth and cell 396 

division [88]. Hence, the inhibition of phospholipid synthesis might be an effective strategy for 397 

antimalarial drugs [87, 89]. In addition, P. falciparum resistance to artemisinin-based combination 398 

therapies (ACTs) is associated to ER stress where the UPR mitigates artemisinin-induced protein 399 

damage [90]. Thus, targeting phospholipid biosynthesis in combination with artemisinin might be an 400 

efficient strategy to overcome resistance by preventing effective UPR activation in P. falciparum. [91]. 401 

Similarly, it may be applied to therapeutic strategies against diseases such as cancer where UPR 402 

activation is a potent driver of cell division [24, 92]. 403 

 404 

 405 

CONCLUSIONS 406 

Here, we report that a subset of transmembrane proteins, part of the UPR programme, are 407 

prematurely degraded under LP. ER-resident proteins Cue1, Emc4, Nsg2, and Sbh1 topology and 408 

integration into the ER are not affected by LP while they are prematurely degraded. By further 409 

investigating the β subunit of Sec61 ER translocation complex, Sbh1, we proposed that it is 410 

prematurely degraded by the Doa10 complex through the recognition of a specific transmembrane 411 

degron. The proper association of Sbh1 with its interacting partners as well as the maintenance of 412 

membrane lipid PC level should be sufficient to prevent the Sbh1 degron from being recognised by 413 

the Doa10 complex during lipid equilibrium. However, the drastic decrease of PC associated with fatty 414 
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liver promotes the dissociation of Sbh1 from its interacting partners as well as the exposure of Sbh1 415 

proline 54 leading to its premature degradation in a Doa10-dependent manner. Thus, the premature 416 

degradation of a subset of ER-resident TPs during prolonged lipid perturbation might contribute to 417 

chronic ER stress associated with NAFLD and NASH. 418 

 419 

 420 

METHODS 421 

Statistics 422 

Error bars indicate standard error of the mean (SEM), calculated from at least three biological 423 

replicates, unless otherwise indicated. P values were calculated using two-tailed Student’s t test, 424 

unless otherwise indicated, and reported as P=value in figures.  425 

 426 

Strains and antibodies 427 

Saccharomyces cerevisiae strains used in this study are listed in Additional file 1: Table S2. Strains 428 

were generated using standard cloning protocols. Anti-Kar2 polyclonal rabbit antibody and anti-Sec61 429 

polyclonal rabbit antibody were gifts from Davis Ng (Temasek Life Sciences Laboratories, Singapore). 430 

Anti-HA mouse monoclonal antibody HA.11 (Covance, Princeton, NJ), anti-Pgk1 mouse monoclonal 431 

antibody (Invitrogen), anti-GFP mouse monoclonal antibody (Sigma-Aldrich, St. Louis, MO) anti-432 

tubulin mouse monoclonal antibody 12G10 (DHSB) and anti-LexA polyclonal rabbit antibody (Abcam, 433 

Cambridge, United Kingdom) were commercially purchased. Secondary antibodies goat anti-mouse 434 

IgG-DyLight 488 (Thermo Fisher, Waltham, MA), goat anti-rabbit IgG-DyLight 550 (Thermo Fisher, 435 

Waltham, MA), goat anti-mouse IgG-HRP (Santa Cruz Biotechnology, Dallas, TX), goat anti-rabbit 436 

IgG-HRP (Santa Cruz Biotechnology, Dallas, TX), goat anti-mouse IgG-IRDye 800 (LI-COR 437 

Biosciences) and goat anti-rabbit IgG-IRDye 680 (LI-COR Biosciences, Lincoln, NE) were 438 

commercially purchased. 439 

 440 

Plasmids used in this study 441 

Plasmids and primers used in this study are listed in Additional file 1: Table S3 and S4, respectively. 442 

Plasmids were constructed using standard cloning protocols. All coding sequences of constructs used 443 

in this study were sequenced in their entirety. The plasmid pJC835 containing HAC1i gene in pRS316 444 
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was previously described [14]. The plasmids pGT0179, pGT0181, pGT0183, and pGT0185, were 445 

generated by amplifying the promoter and open reading frame of NSG2, CUE1, SBH1, and EMC4 446 

with primer pairs BN033-034, BN029-030, BN035-036, and BN031-032, respectively, from the 447 

template WT genomic DNA (gDNA). PCR products of NSG2, SBH1, and EMC4 were digested with 448 

the restriction enzymes NotI and NcoI before being ligated into the corresponding restriction sites in 449 

pRS315. CUE1 PCR product was digested with the restriction enzymes NcoI and PstI before being 450 

ligated into the corresponding restriction sites in pRS315. The plasmid pGT0288 was generated by 451 

amplifying the open reading frame of Sbh1 with primer BN027 and BN028 from WT gDNA and 452 

digested with the restriction enzyme SfiI before being ligated into the corresponding restriction sites in 453 

pBT3N. The plasmid pGT0350 was generated by Gibson assembly to join the promoter and open 454 

reading frame of SSS1 with primers BN013 and BN014 from WT gDNA with a 3X FLAG tag amplified 455 

with primers BN015 and BN016 from pGT0284 into pRS313. Plasmids pGT0352, pGT0445, 456 

pGT0446, and pGT0447 were generated by performing site-directed mutagenesis on pGT0183 with 457 

primer pairs BN037-BN038, PS153-PS154, PS141-142, and PS143-144, respectively, as previously 458 

described [93]. The plasmid pGT0459 was generated by sequential site-directed mutagenesis from 459 

pGT0352 using primer pairs PS143-PS144, PS141-PS142, and PS139-140 as previously described 460 

[93]. 461 

 462 

Cycloheximide chase assay 463 

Cycloheximide chase assay was carried out as previously described [94]. Typically, 6 OD600 units of 464 

early log phase cells were grown in synthetic media. Protein synthesis was inhibited by adding 200 465 

µg/ml cycloheximide. Samples were taken at designated time points. Cell lysates from these samples 466 

were resolved by SDS-PAGE and transferred onto a nitrocellulose membrane. Immunoblotting was 467 

performed with appropriate primary antibodies and horseradish peroxidase-conjugated secondary 468 

antibodies or IRDye-conjugated secondary antibodies. Proteins were visualised using the ECL system 469 

(C-DiGit Chemiluminescent Western Blot Scanner) or the NIR fluorescence system (Odyssey CLx 470 

Imaging System). Values for each time point were normalised using anti-Pgk1 or anti-Tub1 as loading 471 

controls. Quantification was performed using an Odyssey infrared imaging program (LI-COR 472 

Biosciences, Lincoln, NE). 473 

 474 
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Indirect immunofluorescence 475 

Indirect immunofluorescence was carried out as previously described [95]. Typically, cells were grown 476 

to early log phase at 30°C in selective synthetic complete media, fixed in 3.7% formaldehyde and 477 

permeabilised. After blocking with 3% BSA, staining was performed using anti-HA (1:200), anti-LexA 478 

(1:500), anti-GFP (1:200) or anti-Kar2p primary antibody (1:1,000) followed by Alexa Fluor 488 goat 479 

anti-mouse secondary antibody (1:1,000) and goat anti-rabbit IgG-DyLight 550 (Thermo Fisher, 480 

Waltham, MA). Samples were visualised using a Zeiss LSM 710 microscope with a 100x 1.4 NA oil 481 

Plan-Apochromat objective (Carl Zeiss MicroImaging). 482 

 483 

Alkaline carbonate extraction 484 

Alkaline carbonate extraction was carried out as previously described [96]. Five OD600 units of early 485 

log phase cells were resuspended in 1.2 ml of 10 mM sodium phosphate pH 7.0, 1mM PMSF and 486 

protease inhibitor cocktail (PIC). An equal volume of 0.2 M sodium carbonate (pH 11.0) was added to 487 

cell lysates incubated 30 min at 4°C and spun down at 100,000 x g for 30 min, 4°C. The pellet 488 

(membrane fraction) was solubilised in 3% SDS, 100 mM Tris, pH 7.4, 3 mM DTT and incubated at 489 

100°C for 10 min. Proteins from total cell lysate and supernatant fractions (collected from centrifuged 490 

lysate) were precipitated with 10% trichloroacetic acid (TCA) and spun down 30 min at 18,400 x g, 491 

4°C. Proteins were resuspended in TCA resuspension buffer (100 mM Tris-HCL pH 11.0, 3% SDS). 492 

 493 

Proteinase K digestion assay 494 

Fifty OD600 units of early log phase cells were pelleted and resuspended in 1 ml Tris Buffer (50 mM 495 

Tris pH 7.4, 50 mM NaCl, 10% glycerol, 1mM PMSF and PIC). The clarified cell lysate was spun 496 

down at 100,000 x g for 1 h at 4 °C. The pellet was resuspended and washed with 0.5 ml Tris Buffer 497 

without PMSF and PIC. Around ~ 5 OD600 equivalent of microsomes were incubated with 1 mg/ml 498 

Proteinase K (Promega, Fitchburg, WI) and 1% Nonidet P40 substitute (Sigma-Aldrich, St. Louis, MO) 499 

when indicated and incubated at 37°C for 30 min. To quench the reaction, 5 mM PMSF was added 500 

followed by TCA precipitation. Samples were resolved by SDS-PAGE and transferred onto a 501 

nitrocellulose membrane. Immunodetection was performed with appropriate primary antibodies and 502 

IRDye-conjugated secondary antibodies. Immunoreactive species were visualised using the NIR 503 

fluorescence system (Odyssey CLx Imaging System). 504 
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 505 

Lipid extraction and fatty acid analysis 506 

For whole cells, 10 OD600 of early log phase cells were pelleted, washed and resuspended with ice-507 

cold water and lyophilised using Virtis Freeze Dryer under vacuum. For lipid extraction for 508 

microsomes, 50 OD600 of early log phase cells were pelleted, washed with phosphate-buffered saline 509 

(PBS) and resuspended in 1 ml of Tris Buffer (50 mM Tris-HCL, 150 mM NaCl, 5 mM EDTA pH 8.0, 510 

167 µM PMSF and PIC). The clarified lysate was spun down at 100,000 x g for 1 h at 4°C. The pellet 511 

was resuspended in 100 µl ddH2O and sonicated for 30 min. Lipid content was normalised to protein 512 

content using bicinchoninic acid (BCA) protein assay (Sigma-Aldrich, St. Louis, MO). Normalised 513 

microsome contents were resuspended with ice-cold ddH2O and lyophilised using Virtis Freeze Dryer 514 

under vacuum. Lyophilised samples were subjected to 300 µl 1.25 M HCl-MeOH (Sigma-Aldrich, St. 515 

Louis, MO) and incubated at 80°C for 1 h to hydrolyse and esterify FAs into FA methyl esters (FAME). 516 

FAMEs were extracted three times with 1 ml of hexane and separated on a gas chromatography with 517 

flame ionization detector (GC-FID; GC-2014; Shimadzu, Kyoto, Japan) equipped with an Ulbon HR-518 

SS-10 capillary column (nitrile silicone, 25 m x 0.25 mm; Shinwa Chemical Industries, Kyoto, Japan). 519 

The temperature was held 3 min at 160°C and increase to 180°C with 1.5°C/min increments and to 520 

220°C with 4°C/min increments. 521 

 522 

Fluorescence recovery after photobleaching 523 

Fluorescence recovery after photobleaching (FRAP) was carried out as previously described [45]. 524 

Typically, early log phase cells expressing Sec63-sGFP were fixed on coverslips in Attofluor cell 525 

chambers (Thermo Fisher, Waltham, MA) with concanavalin A before rinsing thrice with ddH2O. Cells 526 

were imaged for 5 s followed by photobleaching a region of interest of 82 x 82 pixels at 100% intensity 527 

488 nm laser under 5 × magnification. Subsequently, images were taken at 1.57 s intervals for a total 528 

of 160 sec. Images were acquired using a Zeiss LSM 710 microscope with a 100x 1.4 NA oil Plan-529 

Apochromat objective (Carl Zeiss MicroImaging) with argon laser line 488 nm of optical slices 4.2 μm. 530 

ZEN black edition was used for image acquisition and analysis. Magnification, laser power, and 531 

detector gains were identical across samples. For data analysis, the fluorescence intensities of three 532 

regions of interest were measured for the duration of the experiment: the region of interest (ROI), a 533 

region outside of the cell to measure the overall background fluorescence (BG), and a non-534 
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photobleached region within the cell was monitored to measure the overall photobleaching and 535 

fluorescence variation (REF). Normalised fluorescence intensity [F(t)norm] was calculated for each time 536 

point using Eq. 1 [97]. F(i) denotes the initial fluorescence intensities. 537 
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 539 

Fluorescent recovery was analysed by calculating half maximal fluorescence intensity (t½) using Eq. 2 540 

[98]. F0 denotes the normalised initial fluorescence intensity, F
∞
 the normalised maximum 541 

fluorescence intensity and F(t) the normalised fluorescent intensity at each time point. 542 
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 (2) 543 

The t½ values were plotted using GraphPad Prism 5.0. 544 

 545 

Membrane yeast two-hybrid system assay 546 

Membrane yeast two-hybrid (MYTH) assay was carried out as previously described [47]. Yeast two-547 

hybrid screen uses the split ubiquitin two hybrid (N-terminus, Nub and C-terminus, Cub). Briefly, MYTH 548 

bait was generated by integrating Cub-LexA-VP16 tag at the N-terminus of Sbh1 under the control of 549 

the promoter CYC1 and transformed into the NMY51 yeast strain. Sbh1 tagged protein localization 550 

was verified by indirect immunofluorescence using anti-LexA antibodies against the tag described 551 

above. Seven micrograms of NubG-X cDNA prey library (Dualsystems) was transformed in 35 OD600 552 

units of SBH1 reporter cells. Interactors were isolated on selective complete (SC) media lacking 553 

tryptophan, leucine, adenine and histidine complemented with 80 µg/mL X-Gal and 5 mM 3-Amino-554 

1,2,4-triazole (3-AT) and grown for two days at 30°C. The histidine inhibitor 3-AT was used to reduce 555 

false positive colonies. Only colonies which display robust growth on selective media and a blue 556 

colour were selected for further analysis. The prey cDNA plasmids were isolated and sequenced. The 557 

list of interactors was verified via the bait dependency test, wherein all identified interactors are 558 

retransformed back into the original bait strain, together with a negative control using the single-pass 559 

transmembrane domain of human T-cell surface glycoprotein CD4 tagged to Cub-LexA-VP16 MYTH 560 

[49]. Interactors that activate the reporter system in yeast carrying the negative control bait were 561 
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removed from the list of interactors. Yeast that harbour the prey and the bait-of-interest and did not 562 

grow were likewise removed from the list of interactors. 563 

 564 

Co-immunoprecipitation 565 

Native lysis protocol was carried out as previously described [99]. Briefly, 40 OD600 units of 566 

exponentially growing early log phase cells were harvested and resuspended in 1 ml native lysis 567 

buffer (50 mM Tris, pH 7.5, 150 mM NaCl, 5 mM EDTA, 1 mM PIC and 1 mM PMSF). Microsomes 568 

were spun down from the clear lysates at 200,000 X g for 30 min, 4ºC. The pellet was solubilised in 569 

native lysis buffer with 1% digitonin (Calbiochem) overnight at 4ºC. The resulting lysate was cleared 570 

by centrifugation at 16,000 X g for 10 min, 4ºC prior to immunoprecipitation. Solubilised microsomes 571 

were incubated with Protein G beads and anti-HA antibodies overnight at 4ºC. Beads were washed 572 

thrice lysis buffer containing 0.5% digitonin and twice with TBS. Proteins were separated using SDS-573 

PAGE and visualised by immunoblotting as described above. 574 

 575 

β-galactosidase reporter assay 576 

The β-galactosidase reporter assay was carried out as previously described [16]. Typically, four OD600 577 

units of early log phase cells were collected and resuspended in 75 μl LacZ buffer (125 mM sodium 578 

phosphate, pH 7, 10 mM KCl, 1 mM MgSO4, 50 mM β-mercaptoethanol). As positive control to induce 579 

the UPR, tunicamycin was added at a concentration of 2.5 μg/ml to growing WT cells 1h prior to 580 

harvest. An aliquot of 25 μl cell resuspension was transferred into 975 μl ddH2O and the absorbance 581 

was measured at 600 nm. To the remaining resuspension, 50 μl chloroform and 20 μl 0.1% SDS were 582 

added and vortexed vigorously for 20 sec. The reaction was started with the addition of 1.4 mg/ml 583 

ONPG (2-nitrophenyl -D-galactopyranoside; Sigma) in LacZ buffer. Then, the reaction was quenched 584 

with 500 μl of 1 M Na2CO3 when sufficient yellow colour had developed without exceeding a ten-585 

minute reaction. The absorbance was measured at 420 and 550 nm. The β-galactosidase activity was 586 

calculated using Eq. (3). 587 

Miller units = 1000 x (OD420-1.75x OD550)/(t x (VA/VR) x OD600) (3) 588 

The values were then normalised to the activity of WT. 589 

 590 

 591 
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LIST OF ABBREVIATIONS 592 

co-IP, co-immunoprecipitation; CytoQC, cytosolic protein quality control; DMPE, N-dimethyl 593 

phosphatidylethanolamine; ER, endoplasmic reticulum, ERAD, endoplasmic reticulum-associated 594 

degradation; FA, fatty acid; LP, lipid perturbation; MMPE, N-monomethyl phosphatidylethanolamine; 595 

MYTH, membrane yeast two hybrid; NAFLD, non-alcoholic fatty liver disease; NASH, non-alcoholic 596 

steatohepatitis; PC, phosphatidylcholine; PE, phosphatidylethanolamine; SERCA, sarco/endoplasmic 597 

reticulum Ca2+-ATPase; T2D, type II diabetes; TP, transmembrane protein; UPR, unfolded protein 598 

response. 599 
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FIGURE LEGENDS 945 

Figure 1. A subset of ER transmembrane proteins is prematurely degraded under lipid 946 

imbalance. 947 

(a) Metabolic pathways for the synthesis of phosphatidylcholine in S. cerevisiae. PE, 948 

phosphatidylethanolamine; MMPE, N-monomethyl phosphatidylethanolamine; DMPE, N,N-dimethyl 949 

phosphatidylethanolamine; PC, phosphatidylcholine; DAG, diacylglycerol; CDP-choline, cytidine 950 

diphosphate-choline; P-choline, phosphate-choline. (b) Steady state level of transmembrane proteins. 951 

Equal cell numbers were harvested. Proteins were separated by SDS-PAGE and detected by 952 

immunoblotting with antibodies against the HA tag and Tub1 as loading control. aP<0.05, bP<0.01, 953 

cP<0.005, Student’s t test. (c) Degradation of HA-tagged proteins was analysed after blocking protein 954 

translation with cycloheximide. Proteins were separated by SDS-PAGE and detected by 955 

immunoblotting with antibodies against the HA tag and Pgk1 as loading control. 956 

 957 

Figure 2. Transmembrane proteins are destabilised by the decrease in phosphatidylcholine 958 

synthesis. 959 

(a) Protein candidates were detected using antibodies against HA tag and Kar2 as ER marker. Scale 960 

bar, 5 µm. (b) Membranes prepared from wild type and opi3Δ cells expressing HA-tagged proteins 961 

were treated with 0.1 M sodium carbonate, pH 11, for 30 min on ice. A portion was kept as the total 962 

fraction (T), and the remaining was subjected to centrifugation at 100,000 X g. Supernatant (S) and 963 

membrane pellet (P) fractions were collected and analysed by immunoblotting. Proteins were 964 

detected using anti-HA antibody. Kar2 and Sec61 serve as soluble and integral membrane protein 965 

controls, respectively. (c) Membranes prepared from WT and opi3Δ cells expressing HA-tagged 966 

proteins were treated with 1 mg/ml proteinase K, for 30 min at 37°C, with or without 1% NP40. HA-967 

tagged proteins were precipitated with 10% TCA, separated by SDS-PAGE and detected by 968 

immunoblotting with HA antibody. Expected protein molecular weights are shown below for non-969 

digested (N), digested (D), and flipped and digested (F). The orientation of the HA tag is shown as 970 

black dot. Fragments missing the HA tag and are therefore undetectable are illustrated with 971 

transparency. The ER lumen and cytosol are at the top and bottom of the membrane, respectively. 972 

 973 

 974 
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Figure 3. Sbh1 is destabilised from increased membrane fluidity of the ER membrane. 975 

(a) Cell were grown with or without 1 mM choline before addition of cycloheximide. Time points were 976 

taken as indicated. Proteins were separated by SDS-PAGE and detected by immunoblotting with 977 

antibodies against the HA tag and Tub1 as loading control. (b) Heat map of log2-transformed fold 978 

changes (FC) in fatty acids (FA) in opi3Δ as compared to WT. FAs in whole cells and microsomes 979 

(ER) of WT and opi3Δ were quantified by gas chromatography after FAME derivatisation. (c-e) 980 

Fluorescence recovery after photobleaching using Sec63-sGFP in WT and opi3Δ. (c) Averages of 981 

Sec63-sGFP signal intensity from 20 cells are plotted over a 60-second period. (d) Fluorescence 982 

intensity was monitored from the white boxes ROI (region of interest), REF (reference), and BG 983 

(background). Scale bar, 5 µm. A region of the cortical ER of live cells were photobleached and 984 

recovery points at 1.57 s intervals were taken. (e) The time elapsed for the half-maximal fluorescence 985 

recovery (t½) was calculated and plotted. Student’s t test compared to WT. 986 

 987 

Figure 4. Sbh1 binding to interacting parters is compromised under lipid imbalance. 988 

(a,b) Proteins identified as interacting partners of N-termini reporter tagged Sbh1 (TF-Cub-Sbh1) by 989 

the MYTH method in WT (A) and opi3Δ (B) cells. ERAD factors were only detected in opi3Δ and are 990 

denoted in red. Previously reported interactors of Sbh1 are indicated with black dots. (c) The 991 

degradation of Sec61 or Sss1-Flag was analysed in WT and opi3Δ cells after blocking translation with 992 

cycloheximide. Proteins were separated by SDS-PAGE and detected by immunoblotting with 993 

antibodies against Sec61 or Flag tag and Tub1 as loading control. (d) Immunoprecipitation of Sbh1-994 

HA with protein G beads were analysed in WT and opi3Δ native cell lysates. Eluted and input 995 

fractions were resolved by SDS-PAGE, transferred to nitrocellulose membrane, and analysed by 996 

immunoblotting with antibodies against Sec61 and the HA tag after the release of HA bound Sbh1 997 

with HA peptide. 998 

 999 

Figure 5. Sbh1 is destabilised from its transmembrane domain and degraded in a Doa10-1000 

dependent manner. 1001 

(a) The degradation of Sbh1-HA was analysed in WT, opi3Δ, opi3Δdoa10Δ, opi3Δhrd1Δ, and 1002 

opi3Δusa1Δ cells after blocking translation with cycloheximide. Proteins were separated by SDS-1003 

PAGE and detected by immunoblotting with antibodies against the HA tag and Tub1 as loading 1004 
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control. (b) The degradation of Sbh1-HA in WT and opi3Δ cells or Sbh1 cytosolic lysine mutant in 1005 

opi3Δ cells treated as in a. (c) Sbh1 percentage remaining at the 60 min time point from b. (d) The 1006 

degradation of Sbh1-HA in WT and opi3Δ cells or Sbh1 all cytosolic lysine mutated to alanine 1007 

[Sbh1(6KA)] in opi3Δ cells treated as in a. (e) Sbh1 percentage remaining at the 60 min time point 1008 

from d. (f) The degradation of mutant Sbh2 with amino acids 61 and 68 mutated to proline and 1009 

alanine, respectively [HA-Sbh2(S61P,S68A)], and chimeric Sbh1 protein with its transmembrane 1010 

domain replaced with that of Sbh2 (HA-Sbh121) in WT and opi3Δ cells treated as in a. The ER lumen 1011 

and cytosol are at the top and bottom of the membrane, respectively. 1012 

 1013 

Figure 6. Premature degradation of TPs leads to chronic ER stress and development of 1014 

NAFLD. 1015 

Normally, ER homeostasis can be reached from lipid perturbation through the regulation of 1016 

downstream UPR target genes. UPR transactivator (yellow protein representing Ire1, PERK, or ATF6) 1017 

senses ER stress from the accumulation of misfolded proteins and/or lipid perturbation. However, 1018 

under prolonged LP, ER homeostasis could not be achieved due to the premature degradation of a 1019 

subset of misfolded proteins (blue protein) leading to chronic ER stress, cell death, and eventually the 1020 

development of NAFLD. 1021 

 1022 
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ADDITIONAL FILES 1035 

 1036 

Additional file 1: Supplemental methods and data, Figures S1-S3, and Tables S2-S4. (PDF file) 1037 

Additional file 2: Table S1. List of genes upregulated transcriptionally but having lower protein 1038 

abundance under LP. (XLSX file) 1039 

 1040 

 1041 

SUPPLEMENTARY FIGURE LEGEND 1042 

 1043 

Figure S1. Strong activation of the UPR does not destabilise Sbh1. 1044 

(a) The degradation of Sbh1-HA was analysed in WT and opi3Δ cells containing control vector (ve) or 1045 

HAC1i-bearing plasmid after blocking translation with cycloheximide. Proteins were separated by 1046 

SDS-PAGE and detected by immunoblotting with antibodies against the HA tag and Tub1 as loading 1047 

control. (b) Cells were grown to early log phase at 30˚C in selective synthetic complete media. UPR 1048 

induction was measured using a UPRE-LacZ reporter assay. Tm, tunicamycin. 1049 

 1050 

Figure S2. Validation of Sbh1 interacting partners. 1051 

(a) N-termini reporter tagged Sbh1 (TF-Cub-Sbh1) remains localised to the ER membrane in both WT 1052 

and opi3Δ. Protein candidates were detected using antibodies against LexA and eroGFP as ER 1053 

marker. Scale bar, 5 µm. (b) Interacting proteins of N-tagged (TF-Cub-Sbh1) were retransformed with 1054 

the original bait strain, together with a negative control using the single-pass transmembrane domain 1055 

of human T-cell surface glycoprotein CD4 tagged to Cub-LexA-VP16 MYTH. Positive control of 1056 

pOST1-NubI bait was used (ve ctrl). Tm, tunicamycin. 1057 

 1058 

Figure S3. Sbh1 is degraded by the ERAD and not the vacuolar pathways. 1059 

The degradation of Sbh1-HA was analysed in WT, opi3Δ, opi3Δcue1Δ, and opi3Δpep4Δ cells after 1060 

blocking translation with cycloheximide. Proteins were separated by SDS-PAGE and detected by 1061 

immunoblotting with antibodies against the HA tag and PGK1 as loading control. 1062 

 1063 

 1064 

 1065 
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Table S2. Strains used in the study 1066 

Strains Genotype Source 
W303a MATa, leu2-3,112, his3-11, trp1-1, ura3-1, can1-100, ade2-1 [14] 
GTY68 MATa, opi3::KANMX, W303 background [13] 
YGT0315 MATa, pGT0181, W303 background This study 
YGT0317 MATa, opi3::KANMX, pGT0181, W303 background This study 
YGT0318 MATa, pGT0182, W303 background This study 
YGT0320 MATa, opi3::KANMX, pGT0182, W303 background This study 
YGT0321 MATa, pGT0179, W303 background This study 
YGT0323 MATa, opi3::KANMX, pGT0179, W303 background This study 
YGT0327 MATa, pGT0185, W303 background This study 
YGT0329 MATa, opi3::KANMX, pGT0185, W303 background This study 
YGT0330 MATa, pGT0315, W303 background This study 
YGT0332 MATa, opi3::KANMX, pGT0315, W303 background This study 
YGT0374 MATa, pGT0183, W303 background This study 
YGT0375 MATa, opi3::KANMX, pGT0183, W303 background This study 
YGT0432 MATa, pJC835, W303 background This study 
YGT0540 MATa, pGT0288, NMY51 background (his3Δ200, trp-901, leu2-3,112, 

ade2, LYS::(lexAop)4-HIS3, ura3::(lexAop)8-LACZ, (lexAop)8-ADE2, 
GAL4) 

This study 

YGT0541 MATa, opi3::KANMX, pGT0183, NMY51 background This study 
YGT0574 MATa, doa10::KANMX, opi3::KANMX, pGT0183, W303 background This study 
YGT0575 MATa, hrd1::KANMX, opi3::KANMX, pGT0183, W303 background This study 
YGT0576 MATa, usa11::KANMX, opi3::KANMX, pGT0183, W303 background This study 
YGT0671 MATa, pGT0352, W303 background This study 
YGT0672 MATa, opi3::KANMX, pGT0352, W303 background This study 
YGT0673 MATa, pGT0183, pRS313, W303 background This study 
YGT0674 MATa, opi3::KANMX, pGT0183, pRS313, W303 background This study 
YGT0675 MATa, pGT0183, pGT0349, W303 background This study 
YGT0676 MATa, opi3::KANMX, pGT0183, pGT0349, W303 background This study 
YGT0690 MATa, pGT0180 , W303 background This study 
YGT0691 MATa, opi3::KANMX, pGT0180, W303 background This study 
YGT0721 MATa, pGT0350, pGT0183, W303 background This study 
YGT0722 MATa, opi3::KANMX, pGT0350, pGT0183, W303 background This study 
YGT0725 MATa, pGT0350, pRS315, W303 background This study 
YGT0726 MATa, opi3::KANMX, pGT0350, pRS315, W303 background This study 
YGT0769 MATa, pGT0366, W303 background This study 
YGT0770 MATa, opi3::KANMX, pGT0366, W303 background This study 
YGT0771 MATa, pGT0368, W303 background This study 
YGT0772 MATa, opi3::KANMX, pGT0368, W303 background This study 
YGT0773 MATa, pGT0365, W303 background This study 
YGT0774 MATa, opi3::KANMX, pGT0365, W303 background This study 
YGT0874 MATa, pPS1622, pRS313, W303 background This study 
YGT0875 MATa, opi3::KANMX, pPS1622, pRS313, W303 background This study 
YGT0876 MATa, pGT0349, pPS1622, W303 background This study 
YGT0877 MATa, opi3::KANMX, pGT0349, pPS1622, W303 background This study 
YGT1122 MATa, pGT0445, W303 background This study 
YGT1123 MATa, opi3::KANMX, pGT0445, W303 background This study 
YGT1124 MATa, pGT0446, W303 background This study 
YGT1125 MATa, opi3::KANMX, pGT0446, W303 background This study 
YGT1126 MATa, pGT0447, W303 background This study 
YGT1127 MATa, opi3::KANMX, pGT0447, W303 background This study 
YGT1148 MATa, pGT0459, W303 background This study 
YGT1149 MATa, opi3::KANMX, pGT0459, W303 background This study 
YGT1167 MATa, STK05-5-9, W303 background This study 
YGT1168 MATa, opi3::KANMX, STK05-5-9, W303 background This study 
YGT1169 MATa, STK05-8-5, W303 background This study 
YGT1170 MATa, opi3::KANMX, STK05-8-5, W303 background This study 
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Table S3. Plasmids used in the study 1067 

Plasmid Encoded protein Promoter Vector Source 
pJC31 β-galactosidase UPRC-CYC1 pRS315 [100] 
pPS1622 Sec63-sGFP SEC63 pRS316 [101] 
pJC835 Hac1 HAC1 pRS313 [14] 
pGT0284 IRE1-3X FLAG IRE1 pRS426 [102] 
pPM28 eroGFP GAP pRS316 [103] 
STK05-5-9 HA-Sbh2(S61P,S68A) MET25 p413MET25 [104] 
STK05-8-5 HA-Sbh121 MET25 p413MET25 [104] 
pGT0179 Nsg2-HA NSG2 pRS315 This study 
pGT0181 Cue1-HA CUE1 pRS315 This study 
pGT0183 Sbh1-HA SBH1 pRS315 This study 
pGT0185 Emc4-HA EMC4 pRS315 This study 
pGT0288 Cub-LexA-VP16-Sbh1 CYC1 pBT3-N This study 
pGT0352 Sbh1(K41A)-HA SBH1 pRS315 This study 
pGT0350 Sss1-3XFlag SSS1 pRS313 This study 
pGT0445 Sbh1(K15/17A)-HA SBH1 pRS315 This study 
pGT0446 Sbh1(K23A)-HA SBH1 pRS315 This study 
pGT0447 Sbh1(K30/31)-HA SBH1 pRS315 This study 
pGT0459 Sbh1(6KA)-HA SBH1 pRS315 This study 
 1068 
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 1070 
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 1072 
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 1075 

 1076 

 1077 
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 1080 
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Table S4. Oligonucleotide primers used in the study 1088 

Primer Sequence (5’ to 3’) 
BN013 CCGCGGTGGCGGCCGCCACTAGCCGATGTTATC 
BN014 GTAGTCCGCATGCCCAACAATAACGTATCTGATTGG 
BN015 GGGCATGCGGACTACAAAGACCATGACG 
BN016 CGGCCGCCACCGCGGTGG 
BN027 ATGAGGGCCATTACGGCCATGTCAAGCCCAACTCCTCC 
BN028 CTCATGGCCGAGGCGGCCTTAAAATAACTTACCGGCAACTTTAGAAATAACATG 
BN029 CTCATGCTGCAGATGGAGGATTCGAGATTGCTTATCACTTTG 
BN030 CTCATGCCATGGGAGTCAGCAAACTTTGCAAATCTTTATCAC 
BN031 AACGTCGCGGCCGCAGCAAATGATTCCTCGACTGAATATAAAGG  
BN032 CCATGGCGCGCTAATCGGAAAACCATTGTAATCCATTATTATAATGAGCA 
BN033 CTCATGCTGCAGATGGCCAATAGAGGAGAACCGG 
BN034 CTCATGCCATGGGATGAGAATATAGATATCTTCCTAGTTTTCCAAACATTAG 
BN035 CTCATGCTGCAGATGTCAAGCCCAACTCCTCC 
BN036 CTCATGCCATGGGAAATAACTTACCGGCAACTTTAGAAATAACATG 
BN037 AATTCGATTTTGGCGATTTATTCTGAT 
BN038 ATTGCTGTTCGTGTTTTTCTTTGGAGC 
PS139 TACTTTGCAAGCGAGAGCACAGGGAAGTTC 
PS140 CGTTGACCACCTGGAGGAGTTGGG 
PS141 AAGTTCACAAGCAGTTGCGGCAT 
PS142 CCCTGTTTTCTCTTTTGCAAAGTACG 
PS143 ATCCGCTCCAGCGGCAAACACGAACA 
PS144 GCCGCAACTTTTTGTGAACTTCCCTGTTTT 
PS153 AAAGTTGCGGCATCCGCTC 
PS154 TTGTGAACTTCCCTGTGCTCTCGCTTGCAAAG 
 1089 
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