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Abstract 
 
Advances in neuroimaging and sequencing techniques provide an unprecedented 
opportunity to map the function of brain regions and to identify the roots of 
psychiatric diseases. However, the results generated by most neuroimaging studies, 
i.e., activated clusters/regions or functional connectivities between brain regions, 
frequently cannot be conveniently and systematically interpreted, rendering the 
biological meaning unclear. We describe a Brain Annotation Toolbox (BAT), a 
toolbox that helps to generate functional and genetic annotations for neuroimaging 
results. The toolbox can take data from brain regions identified with an atlas, or from 
brain regions identified as activated in tasks, or from functional connectivity links or 
networks of links. Then, the voxel-level functional description from the Neurosynth 
database and the gene expression profile from the Allen Brain Atlas are used to 
generate functional and genetic knowledge for such region-level data. Parametric 
(Fisher’s exact test) or non-parametric (permutation test) statistical tests are adopted 
to identify significantly related functional descriptors and genes for the neuroimaging 
results. The validity of the approach is demonstrated by showing that the functional 
and genetic annotations for specific brain regions are consistent with each other; and 
further the region by region functional similarity network and gene co-expression 
networks are highly correlated for many major brain atlases. One application of BAT 
is to help provide functional and genetic annotations for the newly discovered regions 
with unknown functions, e.g., the 97 new regions identified in the Human 
Connectome Project. Importantly too, this toolbox can help understand differences 
between patients with psychiatric disorders and controls, and this is demonstrated 
using data for schizophrenia and autism, for which the functional and genetic 
annotations for the neuroimaging data differences between patients and controls are 
consistent with each other and help with the interpretation of the differences. 
 
Introduction 
Advances in non-invasive neuroimaging techniques have allowed investigation of the 
neural basis of human behavior1, 2and to search for the roots of psychiatric diseases3, 4. 
Neuroimaging analysis generates results in clusters of voxels/ brain regions or in 
functional connectivity (FC) links between pairs of voxels or brain areas with 
correlated activity. The biological interpretation of these results, however, remains 
difficult, and we often need to look up and summarize individual studies in the 
literature to find biological explanations. Since each study usually has a small sample 
size and the results may be under powered and have a high false discovery rate5, 6, 
explanations based on these results may not be very reliable.  
Recently, Neurosynth integrated results from tens of thousands of neuroimaging 
investigations, providing more reliable mappings between brain voxels and cognitive 
states than individual studies7. Meanwhile, the Allen Human Brain Atlas was 
constructed and provided a comprehensive ‘all genes-all structure’ profile of the 
human brain8. These two datasets have provided us with comprehensive knowledge 
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for understanding the human brain at multiple scales and with multiple types or 
modalities of investigation. However, a huge gap still exists in using these data to 
interpret neuroimaging results. The mappings between voxels to function in 
Neurosynth, and to gene expression profiles in the Allen Brain Atlas are fine-scale 
(voxel-level) representations, which cannot directly provide functional or genetic 
meaning for brain regions consisting of clusters of voxels, or of the FCs between them. 
Therefore, for most neuroimaging analyses that generate results in the form of 
multiple brain regions or FCs, a rigorous statistical mapping from voxel-level 
representations (either functional or genetic) to region-level knowledge is needed. 
In this research, we developed the BAT (Brain Annotation Toolbox), which, when 
provided with voxel-level coordinates, transfers information from Neurosynth about 
which functions are associated with those coordinates, and from the Allen Brain Atlas 
about which genes are associated with those coordinates. BAT can perform functional 
and genetic annotation for many neuroimaging results, either in 3D-volume space or 
2D-surface space, in the form of clusters/regions or FCs. One appealing application is 
that BAT can provide functional and genetic descriptors for different widely used 
brain atlases such as Brodmann9, AAL2 (Automated Anatomical Labeling Atlas 2)10, 
and Craddock 20011. And BAT can also help identify the potential genetic and 
functional characteristics of newly discovered regions, such as the 97 brain regions 
recently identified by the Human Connectome Project (HCP), whose functional roles 
and genetic properties remain unclear12, 13. The toolbox and a user-friendly graphical 
user interface was developed and is publicly available at 
(http://www.dcs.warwick.ac.uk/~feng/BAT).   
 
DATA and METHOD 
Data 
Task activation maps 
The task activation maps from the Neurosynth database (http://neurosynth.org) 
provide voxel-level functional annotation, i.e., each voxel is associated with a number 
of terms or tasks which help to interpret the function if that region7. This was obtained 
by integrating more than 11,000 journal articles (at the time of our analyses (May 
2017) that provided the locations of task-related activations for various tasks. More 
than 3,000 search terms with their activation maps were obtained using text-mining 
techniques to analyze the abstract and automatically extract the coordinates of 
activations from all the articles. In our analysis, we deleted terms that were not useful 
in identifying tasks (e.g., ‘able’, ‘abstract’ etc.) and selected 217 terms that bear clear 
biological significance (details of the selection criteria are described in our previous 
work14), see Supplementary Table S1. We used forward inference maps to indicate the 
degree to which each voxel is consistently activated in studies that used a given term 
(FDR correction of P < 0.01). The activation maps were resliced to 1 × 1 × 1 mm3 and 
transformed to binary images by setting all the non-zeros entries as 1.   
 
Gene expression profile 
The ‘all genes-all structure’ profiles from the Allen Human Brain Atlas (AHBA) 
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(http://human.brain-map.org/) provided the brain’s genetic expression levels for 
different brain regions15, obtained from six adult human brains from the AHBA16. 
Two of the brains were with both hemispheres and four only with the left hemisphere. 
The number of anatomic samples obtained from each brain varied from 363 to 946. In 
total, 3695 unique anatomic samples with 20,738 gene expression profiles were 
obtained (details of AHBA’s microarray information / data normalization: 
http://help.brain-map.org/display/humanbrain/documentation/). To further remove 
individual differences and pool all the AHBA samples from different subjects together 
to provide voxel-level genetic knowledge, a normalization procedure was applied: for 
each given gene in any individual, expressions were normalized by extracting the 
median of the gene's expression across all samples of the individual, and were divided 
by the median. Then, for each AHBA tissue sample, we created a 6 mm sphere region 
of interest (ROI) in the MNI volume space centered on its MNI centroid coordinate. 
Finally, 3695 ROIs with their corresponding normalized gene expression profiles 
were used in our following analysis. 
 
Method 
Mapping from MNI volume space to the surface space 
Both of the activation maps, from Neurosynth and the gene expression in AHBA 
samples, were in MNI volume space (3D) and could not be directly used to interpret 
neuroimaging results in 2D surface space. A mapping scheme from the 3D volume 
space to the 2D surface space was therefore needed for both the Neurosynth and Allen 
Brain Atlas database. For Neurosynth, for each activation map of the 217 functional 
search terms, we mapped the coordinates of the activations from the MNI volume 
space to the Conte69 human surface-based atlas 
(http://brainvis.wustl.edu/wiki/index.php//Caret:Atlases/Conte69_Atlas) using the 
Human Connectome Workbench. The activation z-value of each surface vertex was 
transformed from the voxels in which the vertex lay. We performed this mapping for 
all the 217 functional terms’ activation maps in volume space, and the surface-based 
activation maps were obtained in the 32k Conte69 surface-based space17, 18. 
For the Allen Brain database, we mapped the AHBA ROIs in the MNI space to the 
Conte69 human surface-based atlas using the same method that we used to map the 
activation maps. For each AHBA sample, we obtained its corresponding vertices on 
the surface. We manually checked the NeuroSynth activation maps and the Allen 
Human Brain Atlas (http://atlas.brain-map.org) 15, 19 ROIs that we mapped from their 
volume space to the surface space to ensure accuracy. We illustrate examples for 
comparison of the maps in the two spaces in Supplementary Fig 1. In the following, 
we use “voxel” to denote both the 3D and 2D pixel in the brain images for 
convenience.   
 
Functional annotation analysis for given clusters/regions 
The aim of the functional annotation analysis for clusters/regions was to provide a 
functional explanation or interpretation for given clusters/regions. The principle of 
our functional annotation analysis was the same as the widely-used gene enrichment 
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analysis, which assumes that the co-functioning genes for the abnormal biological 
process underlying the study are more likely to be selected as a relevant group by high 
throughput screening techniques20, 21. Similarly, in neuroimaging research, voxels 
within a cluster/region have a higher probability to be co-activated by the same terms 
that are functionally related to the cluster/region, compared to voxels selected at 
random. For a given term in the Neurosynth database, the extent of activation of a 
given cluster/region was termed as the activation ratio (i.e., the number of activated 
voxels in this region divided by the total number of the voxels in the region). Further, 
the statistical significance of the activation was evaluated by either parametric 
(Fisher’s exact test) or a non-parametric approach (a permutation test performed by 
randomly selecting voxels within the brain background mask). In the toolbox, 
functional annotation analysis can be performed for a cluster/region consisting of a 
single component with connected voxels (e.g., a single AAL2 region), a cluster/region 
consisting of multiple connected components (e.g., the activated clusters obtained 
from a specific task), and multiple clusters/regions (e.g. multiple AAL2 regions).  
For a single cluster/region, the above two kinds of statistical tests help users to infer 
which functional terms are significantly related to it. The parametric test is based on 
the Fisher’s exact test which is widely used in gene enrichment analysis21, 22, and the 
null hypothesis is that there is no relation between whether a voxel lies within a 
cluster/region and whether the voxel is activated for a given term. Under this null 
hypothesis, we can model the number of voxels in a cluster/region that are activated 
by a given term by the Hypergeometric distribution. Supposing there are x activated 
voxels in the cluster/region for the given term, we can get the p-value by simply 
computing the probability of observing x or more activated voxels in the 
cluster/region, see Eq.1 for details.  

p � 1 � � ��
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�����
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                                                  	1
 

where N and M are the number of voxels in the cluster/region and the background 
mask, respectively; and x and K are the number of activated voxels in the 
cluster/region and the background. 
For the statistical test based on a non-parametric permutation test, three approaches 
are used, differentiated by the way in which the spatial structure of the voxel in the 
cluster/region is considered. The first one is the most efficient and is suitable for all 
forms of cluster/regions. It randomly selects non-overlapping voxels within the 
background (with the same number as those in the given clusters/regions) and 
regardless of their spatial relationship. The second is suitable for the clusters/regions 
consisting of a single spatially connected component. For example, to annotate a 
region in the AAL template, we select the same number of voxels as that in the given 
region and these voxels are also spatially adjacent in the background. The third is for 
the clusters/regions consisting of multiple spatially connected components. In this 
case, we randomly select non-overlapping connected components (with the same 
number as that in the given cluster/region), each consisting of spatially adjacent 
voxels (and with the same number as those in the components in the given 
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cluster/region) from the background. After determining the voxel/vortex selection 
approach, BAT runs the permutation N times (N is the number of permutations 
defined by the user), to get a null distribution of the activation ratio for each term. The 
observed activation ratio is then compared with the null distribution to get the 
corresponding p-value. 
 
Genetic analysis for the clusters/regions  
Based on the gene expression data from AHBA, the BAT’s genetic analysis for the 
clusters/regions can provide the whole genomic gene expression profiles for the 
cluster/regions of interest, and help to identify the differentially expressed genes. The 
details for our genetic annotation analysis for clusters/regions are as follows.  
First, with a given background mask, we retain AHBA samples with more than 50% 
of voxels that are also present in the background mask to perform further analysis (we 
term these samples as the background AHBA samples). Then, for each background 
AHBA sample, we map it to one of the given clusters/regions, that which has the 
largest number of overlapping voxels with this AHBA sample. The gene expression 
profile of each region/cluster is defined as the average gene expression of all the 
samples mapped to the cluster/region. We then adopt permutation analysis to identify 
the differentially expressed genes in the given clusters/regions (compared with all 
samples in the background). Two methods are used for sample selection in the 
background: 1.  randomly selected AHBA samples from the background without 
repetition, and 2. randomly selected AHBA samples in the background samples but 
not the ones that were already mapped to the region/ROI. Then for each cluster/region 
in each permutation run, we randomly select the same number of AHBA samples as 
those that are mapped to the cluster and calculate the average gene expression profiles 
across all selected samples. A null distribution for each gene was thereby obtained, 
allowing us to rank each gene in its null distribution and got its corresponding p-value 
for over-expression or down-expression.  
 
Functional annotation analysis for functional connectivity (FC) 
The BAT can also perform functional enrichment analysis for a FC or set of FCs 
constituting a network. A difference from previous analyses described for the BAT is 
that now the input data consist of a set of significant functional connectivity (FC) 
links. For example, we can determine the functions associated with the underlying 
FCs/networks identified by either a ROI-based approach or a brain-wide association 
study (BWAS). This is especially useful for the altered FCs identified in case-control 
studies. At the outset, we make it clear that functional connectivities measured as 
correlations between brain areas are not being computed in the BAT. Instead, we make 
use of the evidence that the FC between two nodes even with resting state fMRI is 
typically correlated with the activation in a particular task of these two nodes 23-27 , 
and it is the latter that the ‘functional connectivity’ analyses in the BAT reflect, as 
follows.  
An image map for the regions that were connected by the FCs and a list of all the FCs 
of interest are required to perform the analysis. First, to measure to what degree two 
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regions connected by a FC are co-activated in a certain term, or task, we defined the 
“co-activation ratio” as the average proportion of activated voxels of these two 
regions for a FC. If one of the two regions had no voxel activated in the activation 
map for the function term, we set the co-activation ratio of the FC as 0. For a 
functional network consisting of multiple FCs, its extent of activation is defined as the 
mean co-activation ratio, i.e., the average of the co-activation ratio of all the FCs in 
the network. In calculating what is described in this paper as ‘functional connectivity’, 
the activity of a node (i.e. a region of interest such as an AAL2 area) for a particular 
search term was calculated by the mean activation of the voxels in that node in that 
task. If in an analysis involving multiple FC links some nodes appear n times, then the 
activity of that node is weighted by the number n of such links so that its annotations 
contribute in this proportion to the annotations for this set of ‘functional connectivity 
links’.  
Further, the significance of the network’s mean co-activation ratio is assessed using 
non-parametric permutation tests. Two methods for randomly selecting the regions 
connected by the FCs are used. The first is suitable for a brain network consisting of a 
moderate number of FCs (e.g., less than 20) and in which the brain regions connected 
by the FCs only occupy a small fraction of the brain (so that we can randomly select 
the same number of non-overlapping regions from the background). Using this 
method, in each permutation run, BAT randomly selects the same number of 
non-overlapping regions consisting of the same number of adjacent voxels as those in 
the resulting list from the background. The second method is suitable for FCs that 
connect regions from whole brain atlases, e.g. the FCs obtained from regional-level 
brain-wide association analysis which produce a network with a large number of FCs 
that cover much of the brain. In such a situation, it is not feasible to randomly select 
the same number of non-overlapping regions from the background.  We then 
randomly select the same number of regions as those in the FC list from the whole 
brain atlas being used. Given the permutation method, the mean co-activation ratio of 
the FCs for each of the functional terms can be calculated based on the randomly 
selected regions. The null distribution of the mean co-activation ratio of the FCs for 
each of the functional terms are constructed after running the permutation multiple 
times. Based on the null distribution of a functional term, we can obtain a p-value for 
our observed mean co-activation ratio as the proportion of permutations in which with 
the randomly produced mean co-activation ratio is larger than the observed mean 
co-activation ratio. 
 
Genetic analysis for the FCs  
BAT can also identify genetic correlates for the given FCs, e.g., finding genes that 
might regulate the functional co-activation between two brain regions. First, the gene 
expression profile for each region involved in the given FCs is obtained (the same as 
for the ‘Genetic analysis for the clusters/regions’). For each FC, the co-expression 
value of a gene is defined as the outer product of its expression in these two regions28 . 
Then, for each gene, we can obtain an average co-expression value, i.e., the mean of 
the gene’s co-expression for all FCs. Permutation analysis was applied to estimate the 
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significance of the average co-expression value for each gene: first, in each 
permutation run, for each region in the FC list, we randomly select the same number 
of AHBA samples from the background as those mapped to the regions of the given 
FCs without repetition, and calculate a new gene expression profile for the region, 
based on which we can obtain the average co-expression values for each gene. A 
p-value for the real average co-expression value was obtained for each gene. 
 
RESULTS 
 

The implementation of BAT 
BAT is implemented as a free and open-source Matlab toolbox. The toolbox provides 
simple commands for users to perform genetic and functional annotation analysis on 
clusters/regions and FC results. A graphical user interface (GUI) is provided for users 
to perform the annotation analysis. A visual interface is also implemented to provide 
3-D interactive visualization for the annotation results. 
BAT provides a flexible setting so that users can choose to meet their requirements. 
BAT comes with a User Manual to describe its use. Before analysis, a background 
mask needs to be specified, which is a binary image describing the areas in which the 
user wishes to perform their analysis for permutation, e.g. the whole brain, cerebral 
cortex, subcortical areas, or a specific region. The user can choose whether or not to 
perform permutation (and to specify the permutation method and number of 
permutations to use). The default settings of the BAT are given in Supplementary 
Table S2.  

 
Functional and genetic annotation for well-known brain atlases 
Using BAT, we performed functional and genetic annotation analysis for several 
widely-known brain atlases, including the Brodmann9, AAL2 (Automated Anatomical 
Labeling Atlas 2)10, the new Human Connectome Project (HCP) atlas, and Craddock 
20011 , as detailed in Supplementary Table S3. 
In particular, we highlight here the annotation results for Brodmann areas. We 
manually compared the functional annotation for 32 Brodmann areas (with significant 
annotation results, i.e., the region had at least one significant functional annotation by 
permutation test, p<0.05) with those summarized in Wikipedia (wiki) 
(https://en.wikipedia.org/), to validate our approach. The annotations for all 32 
regions provided by BAT were in agreement with those in Wikipedia, i.e. there was a 
large extent of overlap between the functions we identified in these regions and those 
described in Wikipedia, see Supplementary Table S4. The annotation results for other 
atlases can be found at our website (http://www.dcs.warwick.ac.uk/~feng/BAT). The 
functional and genetic annotations provided by BAT provide a valuable complement 
to these widely-used atlases. 
 
Functional and genetic annotation for the new brain atlas from HCP 
In addition to traditional brain atlas, we also applied BAT to the recent HCP (The 
Human Connectome Project) Brain Atlas12. Using multi-modal data from the HCP, 
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each hemisphere of the human cerebral cortex was parcellated into 180 different 
cortical areas. Among the 180 areas, 83 are consistent with previous reports, and 97 
were newly identified in the HCP. This was an important advance, but did not address 
the genetic features underlying the 180 cortical areas, nor in detail the functions of 
each of the cortical areas13.  
To illustrate the information that BAT makes available for the 180 cortical areas in the 
HCP Brain Atlas, we describe the results for two selected areas: one is the 
hippocampus, and the other is a cortical area newly identified with the HCP Brain 
Atlas, the ‘Middle Insular Area’ (MI). As the functional and genetic annotations for 
the two regions are all available for the left hemisphere, here we focus on the left 
Hippocampus and MI, with details in Figure 2. 
For the Hippocampus, 17 out of 217 functional terms, including ‘memory’, ‘episodic 
memory’, ‘navigation’, ‘recall’, ’learning task’ etc, were found to be significantly 
associated with the hippocampus (p<0.05, permutation test) (Fig. 2 and 
Supplementary Table S5). For genes, 4839 genes were found to be significantly 
overexpressed (i.e. genes expressed in this brain region or cluster or clusters more 
than in the rest of the brain) (p<0.05, Bonferroni corrected). Gene enrichment analysis 
of these genes (using the software Toppgene29) revealed that processes such as 
‘learning or memory’ (p=2.77e-7), ‘learning’ (p=2.16e-5) and ‘memory’ (p=3.68e-5) 
are significantly associated genes. The biological gene pathway “long-term 
potentiation” underlying learning and memory was also found to be significantly 
enriched. These genes are also related to abnormal mouse phenotypes, such as 
‘abnormal synaptic transmission’, ‘abnormal long term potentiation’ and ‘abnormal 
synaptic plasticity’. 
 
Next, we summarize the results for a newly discovered cortical area, the MI, which is 
part of the insular cortex. BAT identified 105 out of 217 functional terms that were 
significantly related to activations produced in the MI area (p<0.05, permutation test). 
Among the 105 functional terms, 12 could survive Bonferroni correction, including 
‘affective’, ’awareness’, ‘reward’, ’self’, ‘salience’, ’pain’, ‘schizophrenia’, 
‘somatosensory’ and so on. For genes, we found that 415 genes were significantly 
over-expressed in the MI area (p<0.05, Bonferroni corrected), significantly enriched 
in pathways that included the ‘dopamine signaling pathway’ (p=5.98e-6) and ‘FGF 
signaling pathway’ (p=2.131e-5). Interestingly, almost all the functional terms 
identified above were related to the dopamine pathway, the same as in the genetic 
annotation, suggesting consistency between the functional and genetic annotation, and 
thus verifying the usefulness of our approach. Detailed results for these two regions 
are provided in Supplementary Table S5. 
 
Functional and genetic annotations for abnormal clusters identified in Autism 
To illustrate how BAT can help to gain insight into the biological meaning of 
neuroimaging results, we performed a functional and genetic annotation analysis for 
the clusters obtained in a brain-wide association analysis (BWAS) of functional 
connectivity for autism30, in which a statistical map is obtained by meta-analysis (with 
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the Liptak-Stouffer Z-score approach) that integrates BWAS results from 16 imaging sites 
(418 patients and 509 controls). Then, Gaussian random field correction (cluster 
defining threshold: absolute Z=5.5, cluster size p<0.05) was performed and 23 
clusters consisting of voxels that had significant functional connectivity changes were 
obtained. 
We then fed these clusters to BAT, and found they are functionally enriched in ‘autism’ 
and autism-related functional terms including ‘communication’, ‘self’, ‘social’, 
‘theory of mind’ etc. For genetic analysis, 1117 genes were found to be significantly 
over-expressed in the above clusters (p<0.05, Bonferroni corrected), which were also 
significantly enriched in ‘autism’ (q=1.17e-07, Bonferroni corrected) and biological 
processes closely related to autism, such as ‘synaptic signaling’31, ‘neurogenesis’32 etc. 
Interestingly, these clusters were functionally and genetically enriched in several other 
psychiatric diseases such as schizophrenia and depression, indicating common genetic 
factors underlying these mental disorders33, detailed in Supplementary Table S7. All 
the above functional and genetic annotation results are summarized in Figure 3. 
 
Functional and genetic annotations for altered functional connectivities and 
networks in schizophrenia 
To illustrate BAT’s capability in helping to analyze neuroimaging results in the form 
of functional connectivity (or a brain network defined by a set of FCs), we further 
used BAT to perform functional and genetic analysis on the significantly different 
functional connectivity links identified in chronic schizophrenia patients34. A 
resting-state brain-wide functional connectivity analysis was performed on multiple 
sites (with a total of 789 participants including 360 patients)34, and the results were 
integrated by meta-analysis. We performed BAT on the 89 FCs that were significantly 
increased in chronic schizophrenia compared to controls. 
We found that this dysregulated network of 89 FCs is significantly enriched in 43 
functional terms (permutation test, p<0.05), including ‘schizophrenia’ (p=0.0349) and 
‘hallucination’ (p=0.0081). Interestingly, these significantly increased FCs were also 
found to be significantly correlated with hallucination34, which is an item in the 
Positive subscale of the PANSS score. In addition, several other terms related to 
cognitive processes were also found to be significantly enriched, including “attention” 
and “memory”, detailed in Supplementary Table S8. These cognitive functions are 
known to be impaired in patients with schizophrenia35, 36. Finally, of all the identified 
functional terms, “sleep” was the most significant (p<1e-4). Disturbed sleep is 
frequently encountered in patients with schizophrenia and is an important part of its 
pathophysiology37. 
 
For the genetic analysis, we selected those FCs whose associated brain regions had 
more than 5 AHBA samples, and this left 47 of the 89 FCs for genetic analysis. In 
total, 1523 genes were identified to be significantly co-expressed (p<0.05, Bonferroni 
corrected) in the regions connected by these 47 FCs. These genes were significantly 
enriched in biological terms such as “brain development” (p=2.987e-9), and 
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“neurogenesis”（ p=2.258e-8, which are known to underlie the pathology of 

schizophrenia. Importantly, these genes were significantly enriched in the disease 
term “schizophrenia” (Bonferroni correction, p=8.892e-7), and were enriched in the 
mouse phenotypes involving ‘abnormal sleep behavior’ (p=3.352e-3), ‘sleep disorders’ 
(p=5.635e-4) and ‘sleep disturbances’ (p=1.973e-3), see Figure 4. 
 
In summary, the functional and genetic terms identified from the dysregulated 
network were both cross-validated, and highly consistent with the current 
understanding of schizophrenia, providing further evidence for the validity of the 
approach described here. 
 
 
Discussion 
Advanced neuroimaging techniques such as fMRI have generated gigantic 
neuroimaging data crucial for understanding the neural basis of behavior and for 
exploring the pathology of psychiatric disease. However, the results obtained in 
neuroimaging analysis, usually in the forms of clusters of voxels/ brain regions or 
functional connectivities / networks, often remain hard to explain. In this research, we 
presented a toolbox that can provide functional and genetic annotations for brain atlas 
or neuroimaging results in the form of activation maps or functional connectivity, 
which is expected to shed insights into the biological meaning underlying these 
results.   
In the field of bioinformatics, such an annotation analysis, gene functional enrichment 
analysis has already been employed to systematically dissect large ‘interesting’ gene 
lists from the high-throughput studies, and furthermore identify the most relevant 
biological processes21, based on the large amount of biological knowledge 
accumulated in public databases, i.e. Gene Ontology. During the past decades, 
hundreds of gene functional enrichment analysis tools have been developed and 
employed by tens of thousands of high-throughput studies, providing valuable 
insights into the underlying biological meaning of the gene analysis results.  
In sharp contrast, in the neuroimaging field, large databases such as Neurosynth7 and 
AHBA16, have only recently been developed to provide functional / genetic 
knowledge for the human brain at the voxel level. However, tools for “enrichment 
analysis” of neuroimaging results are still lacking. Inspired by gene enrichment 
analysis, we developed the BAT toolbox, which employs brain voxel-level functional 
and genetic knowledge to help systemically explore the region-level neuroimaging 
results (i.e. clusters / regions, or FCs).  
BAT provides a novel method to harness the data from the Neurosynth and AHBA to 
perform functional and genetic annotation analysis for clusters/regions and FCs 
results, respectively. A user-friendly Matlab GUI and 3-D visual interface are also 
provided for users’ convenience. We present four examples (for clusters/regions and 
FCs) in the Results to illustrate the reliability of our annotation approach and to 
illustrate how to use BAT to search for the underlying biological meaning of the real 
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neuroimaging results. It is noted that “Neurosynth” also employed AHBA to identify 
the molecules that may participate in specific psychological or cognitive processes 
( “Neurosynth-Gene”: http://neurosynth.org/genes/)38. However, it differs 
significantly from our approach in the following aspects: 1. The goal of 
“Neurosynth-Gene” is to map individual cognitive phenomena to molecular processes, 
while the goal of BAT is to provide functional and genetic annotations for extensive 
neuroimaging results not necessarily confined to cognitive processes, e.g., from 
case-control studies. 2. BAT can provide functional and genetic annotations and 
corresponding p values for neuroimaging results in the form of functional 
connectivity or networks generated by whole-brain network analysis, which is widely 
used in the neuroimaging communities. This is not provided by “Neurosynth-Gene”. 
One attractive function of BAT is to help explore the newly discovered regions 
identified by neuroimaging technology, with unknown functions and genetic basis. We 
use the new parcellation of the human cortex provided by HCP as an example12. The 
180 cortical areas in the parcellation are distinguished by multi-modal data including 
anatomical measurements, task-related functional magnetic resonance imaging (fMRI) 
of 7 tasks, and resting-state functional connectivity in a subject cohort of 210 healthy 
young adults. This parcellation for the human cortex is at the highest resolution to 
date, but neither the function nor the genetic characterization of the 180 regions, 
especially for the 97 newly discovery regions, are clearly known. BAT can partly 
solve the problem: it can provide a complementary functional and genetic 
interpretation for the parcellation, and researchers using the new brain parcellation in 
their studies can use BAT to help explore the biological meaning of their results. 
We now explain why functional and genetic annotations contain similar items for a 
number of brain regions. Previous investigations have identified the similarity 
between the gene co-expression network and resting-state functional network across 
regions, suggesting that the functional brain network is underpinned by the gene 
co-expression network39, 40. To further validate our functional and genetic annotation 
we used regions selected from the Brodmann, HCP, AAL2 and Cradock atlases and 
computed similarity matrices between all pairs of regions for the genetic and for the 
functional annotations. We found that these two similarity matrices corresponded 
significantly, as described next. We compared the following two networks: region by 
region coactivation networks, and region by region gene co-expression networks, for 
a given brain atlas. The former was constructed by calculating the Pearson correlation 
coefficient between the activation ratios (of all 217 search terms or tasks) for each 
pair of brain regions; and the latter was obtained by calculating the Pearson 
correlation between the gene expression profile for each pair of brain regions. We 
found that the functional and genetic similarity matrices were significantly correlated, 
and this was found for all the brain atlases (see Figure 5; AAL2: r=0.310, 
p=2.9947e-78; BA r=0.4229, p=2.87e-30; CRAD r=0.2715, p=7.90e-121; HCP 
r=0.2635, p= 7.44e-78) adopted in this work, indicating that two brain regions with 
similar genetic expression profiles are more likely to have similar activation patterns. 
BAT has a few limitations. Currently, the functional annotation analysis of BAT is 
based on the 217 selected functional terms for Neurosynth, which cannot capture all 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 20, 2017. ; https://doi.org/10.1101/178640doi: bioRxiv preprint 

https://doi.org/10.1101/178640
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 

 

the functional terms associated with all brain areas. For the genetic annotation 
analysis, the samples from the AHBA do not cover the whole brain. Therefore, for 
regions/clusters or FCs that do not have enough AHBA samples (e.g. less than 5 
samples) mapped to them, genetic analysis is not possible. Further effort should 
involve integrating activation maps from all available meta-analysis databases (such 
as Brainmap41) and gene expression profiles (such as that from Gene Expression 
Omnibus42), to provide a more comprehensive and reliable functional and genetic 
annotation for neuroimaging analysis. An advantage of BAT is that the Matlab source 
code is provided with the toolbox, allowing users to understand what is being 
computed, and to enable users to develop further enhancements. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 20, 2017. ; https://doi.org/10.1101/178640doi: bioRxiv preprint 

https://doi.org/10.1101/178640
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 

 

Figure Captions 
Figure 1. Flow chart of functional and genetic annotation analysis. 
(A) Upper panel: The activation maps in MNI space for the 217 functional terms from 
the Neurosynth database. Bottom panel: 3695 Allen Human Brain Atlas (AHBA) 
samples with gene expression were employed and mapped to MNI space first.  (B) 
Upper panel: The 217 activation maps in the MNI space were then mapped to the 
surface-based space by registering to the Conte69 Human surface-based Atlas. 
Bottom panel: The 3695 ABHB samples were mapping to the Conte69 Human 
surface-based Atlas as well. (C, D) Two general forms of neuroimaging analysis 
results, i.e., clusters/regions (C) and functional connectivities (D) (either in 3D MNI 
space or the 2D surface space) can be analyzed by the BAT. (E) BAT can perform 
functional annotation analysis for user-provided neuroimaging results and provide the 
most-related functional terms. (F) BAT can perform genetic annotation analysis for 
the user-provided neuroimaging results and identify the most correlated genetic 
correlates. 
 
Figure 2. Illustration of the functional and genetic annotations of two cortical areas in 
the Human Connectome Project (HCP) Brain Atlas. (A) Left Hippocampus: seventeen 
functional terms, including memory-related ones such as ‘memory’, ‘recognition 
memory’,’ Semantic memory’, were found to be significantly associated with the left 
hippocampus (p<0.05). For genes, 4839 genes were found to be overexpressed 
including the BDNF. Gene enrichment analysis shows that these genes are enriched in 
memory and learning related Gene Ontology (GO) biological processes such as 
‘Learning’, ’Memory’ and ’Long term potentiation’. (B) Left Middle Insular (MI) 
Area: 105 functional terms were found to be significantly related to the MI area 
(p<0.05), ‘affective’, ‘awareness’ ‘reward’, ‘self’, ‘salience’, ’pain’ ‘schizophrenia’, 
‘somatosensory’ are among the 12 that can survive the Bonferroni correction. 415 
genes were over-expressed in the MI area and enriched in the Dopamine signaling 
pathway and FGF signaling pathway. 
 
Figure 3. The functional and genetic annotation for clusters obtained from the Autism 
BWAS results. 83 functional terms were found to be significantly related to the 
clusters, including ‘Autism’ and several Autism-related symptoms such as 
‘autobiographical memory’, ‘communication’, ‘self-referential’, ‘theory of mind’ and 
so on. Several Neurosynth terms for mental diseases, e.g. ‘Bipolar disorder’,’ 
Schizophrenia’ and ‘Depression’ were also found to be significant. For genetic 
analysis, 1117 genes were identified to be over-expressed, which are also functionally 
enriched in the disease terms ‘Autistic Disorder’ and ‘Autism Spectrum Disorders’, 
and several autism-related GO biological processes and pathways. The gene 
enrichment analysis was performed using the Toppgene software.   
 
Figure 4 Functional and genetic annotation results for the significantly increased 
functional connectivity identified from chronic schizophrenia. The 89 increased FCs 
are significantly enriched in 43 functional terms including ‘schizophrenia’ and 
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‘hallucination’, “attention” and “memory”. 1523 genes were identified to be 
significantly co-expressed in the regions connected by these FCs. These genes were 
significantly enriched in biological terms such as “brain development” and 
“neurogenesis”. 
 
Figure 5. A high correlation was found between the region by region co-activation 
network, and the region by region gene co-expression network for A. the Brodmann 
atlas, B. the AAL2 atlas, C. the Craddock atlas, D. the HCP atlas. Each dot in the 
figure represents an edge in the region by region network. The coactivation network 
was obtained by calculating the correlation coefficient between the activation ratios 
(of all 217 terms or tasks) for each pair of brain regions in a given atlas, and the gene 
co-expression was obtained by calculating the correlation between the gene 
expression profile for each pair of brain regions in the same atlas. 
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