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Abstract. Microarray technology has unlocked doors to a multitude of open analysis prob-8 

lems that if conceived with efficacy may uncover varied genotypic and phenotypic traits. Al-9 

gorithms belonging to different cultures in computer science have been applied to gene ex-10 

pression data to derive correlation and stratification parameters. While most outcomes are 11 

subject to clinical validation, majority of which get declined, the search for the precisely tar-12 

geted therapeutic agents is still on. This paper is an effort in the similar direction and strives 13 

to delineate genes with significant stromal signatures. We suggest a corroborative indulgence 14 

of a human laterality disorder gene, CCDC11 in the metastasis, in addition to the role of 15 

WDR88 and ARPP21 genes has been further materialized in the analysis. Another standout 16 

aspect of the study has been the associated implications of the genes in rare disorders of male 17 

breast and female prostate cancers. There is also a threshold proposal that stratifies “safe” ex-18 

pression space for genes. Complimentarily, the manuscript serves as an expedient protocol 19 

for anyone seeking microarray data analysis, particularly in R. 20 
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Abbreviations:  24 

ANN Artificial Neural Networks 25 

AR  Androgfen Receptor 26 

DEG Differentially Expressed Genes 27 

ECM Extracellular Matrix 28 

ER  Estrogen Receptor 29 

FDA Fisher Discriminant Analysis 30 

GRN Gene Regulatory Network 31 

GSEA Gene Set Enrichment Analysis 32 

GWAS Genome Wide Association Studies  33 

IHC  Immunohistochemistry 34 

LCM Laser Capture Microdissection 35 

NGS Next Generation Sequencing 36 

PCA  Principal Component Analysis 37 

PCR  Polymerase Chain Reaction 38 

PSO  Particle Swarm Optimization 39 

SVM Support Vector Machines 40 

HER2 Human Epidermal growth factor Receptor 2  41 

PR  Progesterone Receptor 42 

 43 
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1. Introduction  45 

There appears nothing proverbially eerie about the technology at the get go. Microarrays 46 

usage throve with (Schena et al. 1995) and were originally applied to harbour global gene ex-47 

pression (DeRisi et al. 1997; DeRisi et al. 1996) in association with yeast studies. With the 48 

proliferation of data pertaining to medication and that too in the digital proforma, it is crucial 49 

to constantly challenge and update the current configuration of systems that are being used to 50 

analyse it [genomic data] for compliance to the medical care. NGS is one such advancement 51 

that was gullible to the geneticists. Unlike the microarray data that catalogues gene expres-52 

sion values under a predefined probe, the RNA-seq data from NGS documents expression 53 

range in totality (Uziela & Honkela 2013). RNA sequencing technology pictures a compre-54 

hensive view of the transcriptome with the data being reproducible for novel discoveries 55 

yielded by disparate analyses. RNA sequencing is also helpful in detection of structural varia-56 

tions as gene fusions, alternative splicing events, etc. But microarrays still continue to pro-57 

vide a relatively affordable first-foot to genomics, bearing robustness and short turn-around 58 

time. With significant disparities owing to the definite and specific backgrounds of the indi-59 

viduals, the genomic data available via microarray format has shown likewise results when 60 

particular maladies come into question as cancer, diabetes, amongst others. The big question 61 

however is that could the genes be standardized via ontology driven mechanism so that spe-62 

cific drug targets be known and hunted for. Scientists are always looking for particular bi-63 

omarkers that can be universally acclaimed and acknowledged. In the current paper, we at-64 

tempt to underline key players that are actively responsible for representing the metastatic 65 

behaviour and proliferation of oncogenic state in a body induced with breast-type and pros-66 
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tate-type cancers, in cognizance to stromal reaction. The results are based on a comparative 67 

meta-analysis.   68 

Reactive stroma is a response to the aberration into the tissues due to tumor invasion 69 

(Planche et al. 2011). Synonymous to desmoplasia, it has also been recognized that the stro-70 

mal response is exclusive to tumor type. It can be perceived that desmoplastic response is in 71 

tandem to carcinogenesis and subsequent metastasis. Thus, it is unstated that desmoplastic re-72 

action is also a prospective antecedent of premalignant stage, as the growth of connective, fi-73 

brous tissues around the tumor cells commences. Genetic irregularity in the cells compart-74 

mentalized in epithelium represents carcinoma in situ and the lesions initiate cell fibroblasts 75 

as a tackling measure. Functionalities of stromal initiation include homeostasis and tissue 76 

structure restoration. Chronicled is also that cell division govern mechanism is hampered be-77 

cause of the tumor induction and eventual progression. The amount of reactive stroma is pro-78 

portional to the disease state (Martin & Rowley 2013). Once the tumor foray infiltrates 79 

through the ECM into adjoining host tissues, they become potent to further metastasize. Vas-80 

cular structures, blood and lymph vessels, ECM, and fibroblasts constitute the stroma  (Casey 81 

et al. 2009). Diverse studies by (Tuxhorn et al. 2002), (Ayala et al. 2003), (Roepman et al. 82 

2006), and (Finak et al. 2006) implemented LCM to scrutinize gene expression profiles of 83 

tumor stroma (breast) versus normal epithelium and clinched that the alterations in the stro-84 

mal microenvironment is comparative to the tumor progression.  85 

In the following work, we attempt to ascertain genes that are prominent to tumor progres-86 

sion and subsequent stromal response. This may aid identification of key pathways (genes in-87 

stituted) that are liable for the cancer metastasis. As the dataset may reveal, we attempt to an-88 

alyse breast and prostate oncogenes.            89 
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This paper is organized as follows: 90 

First, the developments in the breast cancer and prostate research, over the years, are cata-91 

logued. Various data analysis methodologies that have inferred some very seminal results 92 

have been underlined. We then present our viewpoint and improvements in the domain and 93 

propose a novel algorithm to analyse cancer stroma data. As it would necessitate, the sifted 94 

targets are subjected to validation; but due to accessibility constraints, could only be done via 95 

available erstwhile published research work. Their [genes] analysis can further substantiate 96 

our studies for preventing the spread of cancer to the other tissues through pathway blockage 97 

and rendering them benign through a drug treatment. 98 

The statistical analysis and visualizations are covered with R language (version 3.2.3) (in-99 

terface used is RStudio version 0.99.491) on a desktop computer with 8 Gb RAM and an Intel 100 

i5 CPU with 3.50 Ghz clock speed. For further distillations, MeV version 4.9.0 (Anon n.d.), 101 

and Cytoscape are employed.     102 

 103 

1.1 An Alarming Statistic 104 

 105 

A not so long ago article (Kamath et al. 2013), reports that India is overwhelmed with 2.5 106 

million cancer patients in aggregate and close to a million such augmented annually. To put 107 

things into perspective, there were 1.7 million and 11.4 million cancer incidences in the 108 

South East Asia region and world over, respectively in 2004. According to Globocan data 109 

(International Agency for Research on Cancer), India tops the chart with 1.85 million years of 110 
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healthy life lost due to breast cancer alone. The aftermaths of this malady are equally likely 111 

for the rest of the world too. 112 

 113 

* Healthy life lost is defined by years lost owing to premature death and deterioration of 114 

health standards on account of a disease induction into the body. 115 

 116 

An elucidation from an erstwhile research confirms that after cervical cancer, breast cancer 117 

is highly promulgated amongst Indian women. Also shown is that Indian women are likely to 118 

inhibit breast cancer, a decade earlier than their Western counterparts. The paucity of early 119 

detection and incompetent control mechanism can largely explain the succumbing rate.  Ex-120 

orbitance in breast cancer cases throughout developing nations is proportionate to varying 121 

lifestyle being is unregulated and sporadic, expectancy and delivery of fewer children, and 122 

hormonal intervention exemplified by post-menopausal hormonal therapy. The symptoms are 123 

profound at a later stage of the malignancy and hence pose greater challenge to review the 124 

disease at the initiation. The authors of the study (Kamath et al. 2013) stressed upon the need 125 

to exorcise this “ticking time bomb” and called for apt administrative measures for the same. 126 

Prostate cancer, mostly occurring in elderly men, has similar danger trail and accounts for 127 

second largest cancer causing deaths in U.S. males after lung cancer (Siegel et al. 2016; 128 

Gaylis et al. 2016). 129 

 130 

 131 
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1.2  Provenance 132 

When it comes to being most defiant and stubborn, and not to mention “incurable”, cancer 133 

is christened far and wide for being the malady that poses serious threat to the manhood. 134 

Many of the responsible genes involved in the pathways oriented to oncological disorders 135 

have complex and overlapped functioning. Not to mention, some genes remain dormant at an 136 

instance and are activated by a particular range of expression level of other corresponding 137 

gene[s]. They also tend to become chemotherapy resistant through a self-regulatory mecha-138 

nism. These attributes account for a thorough and complacent inspection of the various pa-139 

rameters involved in gene functioning, mapped and homed-in. 140 

In the exploration of gene expression data, the magnitude of tissue samples is lower with 141 

respect to number of genes that may inevitably lead to overfitting of data and inappropriate 142 

results (Shen et al. 2007). Gene selection is critical to elucidate tissue classification as well as 143 

to model complex genetic and molecular underpinnings, which explain the relation between 144 

genes and varied biological phenomenon. The stability of the analysis model can be accom-145 

plished through it.       146 

BRCA1 and BRCA2 are vehemently recognized for hereditary breast and ovarian cancer 147 

proneness. These are human genes that produce tumor suppressor proteins that implicitly ini-148 

tiate DNA repair mechanism. If a mutation is detected in any of the aforementioned genes, 149 

the susceptibility to espousing tumor inception is high (Anon n.d.). BRCA mutation may lead 150 

to the following probabilities: 151 

  152 

 40%-80% for breast cancer 153 
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 11%-40% for ovarian cancer 154 

 1%-10% for male breast cancer 155 

 Up to 39% for prostate cancer 156 

 1%-7% for pancreatic cancer 157 

 158 

Likewise, if any other relative cancer genes could be deciphered by comprehensively ana-159 

lyzing the gene expression data and establishing their helm in metabolism via clinical valida-160 

tion, we can get closer to disease treatment and increased understanding towards biology. 161 

(Bosdet et al. 2013) take BRCA mutation testing to a whole new level by incorporating the 162 

Second Generation Sequencing and Third Generation Sequencing procedures, collectively 163 

known as NGS, to deal with increasing number of tests that the people are willing to take to 164 

judge their cancer proneness. This era of NGS renders reduced cost, greater efficiency and 165 

high throughput. The assay defined uses automated small amplicon PCR followed by sample 166 

pooling and sequencing with a second-generation instrument. 167 

 168 

1.3 Androgen Receptor: An observable cause commune 169 

 170 

Classically abnormality in males associated with prostate cancer, androgen receptor re-171 

sponse has been apropos (Yu et al. 2000). AR gene isn’t solely responsible to harbor design 172 

and characteristic instructions for sex drive and hair growth, but also facilitate sexual physi-173 

ognomies. Positioned on the long (q) wing of the X chromosome at the 12
th

 position, the AR 174 

gene encompasses cohorts of CAG repeat regions (triplets or trinucleotide repeats). The 175 
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strength of quantifiable occurrences of these DNA segments account for the proneness of the 176 

prostate cancer and breast cancer; while some studies hold more repeats liable, others blame 177 

lesser ones (Yu et al. 2000). Research also depicts that mutations in the AR gene are account-178 

able for prostate cancer instantiation (Nelson 2002) (Giovannucci et al. 1997), albeit somatic 179 

in nature. In women, longer CAG repeats and polymorphisms may increase the risk of endo-180 

metrial and breast cancers (Mehdipour, Pirouzpanah, Kheirollahi, & Atri, 2010).           181 

 182 

1.4 Gene Selection 183 

 184 

While holding candescence to the fact that intergenic regions relegated as “junk DNA” 185 

have long been undermined, numerous follow up studies have unraveled that non-coding 186 

RNAs, amongst other “dark” regions have a profound effect on regulation of gene expression 187 

(Birney et al. 2007) (Carninci et al. 2005) (Cheng et al. 2005) (He et al. 2008). Since microar-188 

rays are designed to study gene measurements, the aforementioned parameters are left dilut-189 

ed. This aspect holds its vitality and is sure to influence the end result. Notwithstanding, it 190 

has been known that Particle Swarm Optimization Technique (PSO) has been meticulously 191 

significant in harnessing gene selection (Shen et al. 2007)  (Yuan & Chu 2007) (Shen et al. 192 

2008) (Chuang et al. 2008) (Lin et al. 2008). Other approaches include Artificial Neural Net-193 

works (ANN) and Fisher Discriminant Analysis (FDA), to name a few. An ensemble meth-194 

odology involving Particle Swarm Optimization (PSO) and Support Vector Machines (SVM) 195 

has been observed to be particularly critical to feature selection and cornering genes of inter-196 

est (Yeung et al. 2009). 197 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 20, 2017. ; https://doi.org/10.1101/178566doi: bioRxiv preprint 

https://doi.org/10.1101/178566


10  

Desmoplastic Retort to Prostate and Breast Carcinomas’ Metastasis. 

1.5 Elucidation of Cancer Subtypes 198 

 199 

Breast cancer is a neoplasm that with distinct subtypes has differently representable histo-200 

pathological features and response to systemic therapies (Dai et al. 2016). Patient age, tumor 201 

size, and axillary lymph node status have been deciding factors as well (Schnitt 2010). Im-202 

munohistochemistry (IHC) biomarkers have been classically deployed to ascertain subtyping. 203 

They entail Estrogen Receptor (ER), Progesterone Receptor (PR), Androgen Receptor (AR), 204 

and Human Epidermal growth factor Receptor 2 (HER2).  Back in the 70’s , there were two 205 

subtypes that became known to us, viz. (luminal epithelial) ER+ and ER- (Perou et al. 2000)  206 

(Sorlie et al. 2003) (Alexe et al. 2007). Triple negative breast cancer is characterized by a 207 

cancer subtype devoid of ER, PR, and HER2 gene expressions. Compounds like tamoxifen 208 

(for ER), and trastuzumab (for HER2), are tactless in dealing with triple-negative breast can-209 

cer. It is chemotherapeutically challenging as it warrants a grouping of disparately rated drugs 210 

to target each of the receptor. Owing to its profile, triple negative breast cancer is revered as a 211 

basal-type. Another recent study (Vici et al. 2015), illumes reasonableness of the triple posi-212 

tive breast cancer. 213 

From prostate cancer viewpoint, gene fusions between TMPRSS2 and ETS hierarchies 214 

have been stressfully documented (Tomlins et al. 2006), and also with ERG genealogy 215 

(Penney et al. 2016). Expression levels of genes MUC1 and AZGP1 were also shown to cate-216 

gorically underline exclusive subtypes of prostate cancer from clinicopathological stance 217 

(Lapointe et al. 2004).  218 
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(Herschkowitz et al. 2007) orchestrated a pioneering work that led to elucidation of a novel 219 

sub-type pertaining to breast cancer disorder. This new subtype, referred to as Claudin-Low 220 

was implicit of low expression genes. Also, traditionally, tumor types could be classified as 221 

basal epithelial-like group (ERs), an ERBB2-overexpressing group, and a normal breast-like 222 

group (Davidson & Liu. 2010). Another feature discovery from a study by (Sorlie et al. 2001) 223 

had confirmed the possible subdivision of the ER+ tumor type into two clusters with distinc-224 

tive gene sets having particular corresponding clinical outcome.         225 

 226 

2. Results and Discussion 227 

 The exegesis is premeditated so as to elucidate a quantifiable threshold that stratifies 228 

gene expression space in conjunction to normal and cancer stromal response states. We delib-229 

erate to identify key transcriptional features that determine the high dimensional feature space 230 

and visualize their inter-linkups via a regulatory network illustration. This is always compli-231 

mentary to ascertain our knowledge about genes and their pathway-occurrence motifs. . . 232 

(Figure 1) 233 

 234 

 235 

 236 

 237 

 238 

 239 

 240 

 241 

 242 
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2.1 Anonymous Genes/ Probes  243 

 244 

We identified 27236 entries, while scrutinizing the annotation fields of the dataset that 245 

eluded ontological reference. There are also considerable amount of genes whose expression 246 

values are catalogued under incongruent probes, resulting in their multiple incidences. This is 247 

a purported case of genes’ splice variants, as the dataset suggests. While we aim to identify 248 

DEG and construct a respective GRN, there is also a prudence of elucidating functionally co-249 

herent genes that may unravel profiling of all or few anonymous genes. Thus, it appears du-250 

teous to abandon blank values to sustain quality of biological interpretation and germaneness. 251 

 252 

2.2 Normality and Data stabilization  253 

 254 

The data appears normalized data sans log transformation. Hence it is log-transformed and 255 

metamorphosed to render mean=0, and standard deviation=1, i.e. it followed normal distribu-256 

tion. Since, the normality isn’t skewed as a result of multiple comparisons problem  (Dunn 257 

1961), as we’re not envisioning multitude of significance values, there is no proliferation of 258 

Type I error occurrence anomalies. . . (Figure 2) 259 

  260 

 261 

 262 

 263 

 264 

 265 
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2.3 Differentially Expressed Genes  266 

 267 

With respect to the assumed significance level (α) to be 0.01 and hence a stern confidence 268 

interval of 99%, we aim to copiously optimize the gene(s) search by postulating as follows: 269 

 270 

(Null hypothesis)𝐻0: Genes are not differentially expressed (equal means) 271 

(Alternate hypothesis)𝐻1: Genes are differentially expressed (unequal means) 272 

 273 

The listing of differentially expressed genes will implicitly catalogue up- and down-274 

regulated genes too. To prudently list them out, a within genes correlation does the job. The 275 

negative numbers represent down-regulated genes and positives up-regulated ones. 276 

(Danielsson et al. 2013) report that maximum of genes en route malignancy, are down regu-277 

lated. This is not for reference, but only to mark. There is also to note that since breast cancer 278 

and prostate cancer find unique origins pertaining sex discrepancy, it’s only logical to work 279 

with bifurcated dataset. We contemplate breast cancer and prostate cancer entries with dis-280 

tinct exegesis and later combine and compare the results owing to significance to biological 281 

interpretation. 282 

The exploration renders 356 probes being differentially expressed in breast stroma and 221 283 

in prostate stroma (with p-value < 0.01) amongst which ADH1B, COL10A1 are most distinct-284 

ly expressed in breast strata, while BMP5, SFRP4 are notable enough in prostate cluster. . . 285 

(Figure 3) . . .  286 

(Figure 4) 287 
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 . . . (Figure 5) 288 

. . . (Table 2) 289 

 290 

We also acknowledge that packages like siggenes (Schwender, 2012), samr are available 291 

that incorporate Significance Analysis of Microarrays (SAM) (Tusher, Tibshirani and Chu, 292 

2001) working procedure, but in view of keeping the analysis more abstract and interactive, 293 

there is a minimum use of readymade library functions.  294 

 295 

2.4 Gene Set Enrichment Analysis 296 

 297 

. . . (Figure 6) 298 

 299 

Gene Set Enrichment Analysis (GSEA) is a scheme to map statistically relevant genes to 300 

pre-known biological profiles, eg. phenotype, to discern their life relevance. The molecular 301 

signatures are updated as the curation cascades. There exist a consortium of metadata librar-302 

ies for cataloguing genes and gene products’ information. To standardize the practice of an-303 

notation in genomics, this bioinformatics initiative is absolutely imperative as we’re riding 304 

the snowball of discoveries in GWAS. (In R language, GWAS is facilitated by Fischer’s ex-305 

act test.) 306 

This method is applied to the resultant set of differentially expressed genes and only those 307 

with a reference in MSigDB (Subramanian, Tamayo, et al., 2005) (with a valid Unigene_ID, 308 

Entrez_ID, and GO_TERM) are selected for further analysis. To accomplish the same, MeV 309 
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and Cytoscape (in parts) are used. The GO listing wasn’t available for 10 probes in prostate 310 

data and 11 in breast data, which led to their discard. At this stage, our dataset has 345 and 311 

211 rows in breast and prostate data, respectively.  312 

 313 

2.5 Functionally Coherent Genes 314 

 315 

An important aspect that escorts investigation of the differentially expressed genes is the 316 

strength of associativity between their tumor and normal roles. This can be explored using 317 

correlation technique of statistical descent. Commonly known Pearson’s product-moment (or 318 

simply, correlation) coefficient helps establish connect between two linearly distributed vari-319 

ables. In simplified terms, Spearman’s coefficient is a non-parametric version of Pearson’s 320 

coefficient with ranked data  (Hauke & Tomasz 2011). Since, our dataset selection is so, we 321 

would prefer using Pearson’s correlation measure as opposed to Spearman’s or Kendall’s 322 

which is equally effective (or more) for the qualitative data. Kendall’s τ is based on concord-323 

ance and discordance. The question is to establish similarity between two distinct genes, 324 

technically two expression vectors (Saeed et al. 2003). An expression vector spans expression 325 

values vide all featured experimental conditions. Albeit microarrays are not known to cater 326 

isoform expression detection as they are not absolute exhibitors of gene expression and rather 327 

give a relative value (log ratios of hybridization intensities). 328 

The Pearson’s correlation coefficient (r) for class labels X and Y is mathematically repre-329 

sented as follows: 330 

 331 
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r =  
∑(𝑋−�̅�)(𝑌−�̅�)

√∑(𝑋−�̅�)2√∑(𝑌−�̅�)2
 332 

 333 

The resultant genes in breast cancer and prostate cancer were tested for correlation 334 

amongst themselves. With each gene confronting every other gene, a 
𝑛(𝑛−1)

2
 comparisons are 335 

expected in a pairwise matrix format. Since distance measure is hinged around mean values, a 336 

mix of positive and negative integers is likely. It is to note here that notwithstanding the am-337 

plitude of correlation, there is a significance of signs in the correlation matrix. A negative (-) 338 

number indicates that a gene is inhibiting another gene, while a positive (+) marks that the 339 

two are expressing collaterally. To safeguard our conviction to the fullest, the gene list was 340 

filtered with a dual-parameterized statistic. We sifted the genes with low p-value significance 341 

and high correlation measure. The tables catalogue genes from cancer-duos, with correlation 342 

> 0.95 and p-value < 10−7. 343 

 344 

 345 

2.6 Gene Regulatory Networks (GRN) 346 

 347 

Transcriptional activity can be precisely monitored with GRNs  (Chai et al. 2014). A visu-348 

alization of putative pathways and the absolute values that are symbolic of the degree of 349 

strength between two components can bring out some very useful linkage information. After 350 

the elucidation of differentially expressed genes, the inkling is to draw a correlation measure 351 

amongst them to infer a relational matrix with values {-1, 0, 1} with interpretations anti-352 

correlated, no dependence, and correlated, respectively. This notion is certainly not delimited 353 
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to “naivety of adjacency”. The informal theme is the distance measure, but logically it may 354 

falsify the overall outcome due to inherent biases with the chip construction. Therefore, the 355 

notion of correlated transcripts is revered more viable. A gene regulatory network is a visual-356 

ization of a set/part(s) of genes that result in myriad (all) of cell processes, including metabo-357 

lism, cell signaling and transduction, cell growth control etc., which is vital to understand the 358 

dynamics of molecular biology (Karlebach & Shamir 2008).  But, the mechanistic inference 359 

of the architecture is subject to experimental biology, a wet lab gig (Davidson & Levin 2005). 360 

Nevertheless, the disposability of GRNs can’t be disparaged as they provide a blueprint of the 361 

underlying system and tellingly optimize our erudition. 362 

Correlation establishes the linear propensity in-between variables. For pursuit of the same, 363 

we deliberate a Bayesian approach. In continuum to our expedition with R, the packages, 364 

BNArray  (Chen et al. 2006), NATbox (Chavan et al. 2009) deploy probabilistic slant to de-365 

cipher gene interactions, where NATbox shows competitive proficiency (Chavan et al. 2009). 366 

In this treatise, however, we’ve considered Cytoscape as a pliant tool for visualization the 367 

transcriptional network in corroboration with the GeneMania plugin. The output network ma-368 

trix of genes was exported to Cytoscape for visualization and analysis. 369 

Post validation of the transcriptional networks, gene CCDC11, which has traditionally 370 

been revered for human laterality disorder (Perles et al. 2012; Narasimhan et al. 2015), has 371 

been elicited to show strong propensity in both (breast and prostate) cancer profiles. The 372 

Coiled-Coil Domain Containing 11 or CCDC11 is a protein coding gene which is closely 373 

associated with epidermis in amphibians and skin fibroblasts from Homo sapiens 374 

(Narasimhan et al. 2015). Re-annotated as Cilia and Flagella Associated Protein 53 375 

(CFAP53), the mutation in CCDC11 exhibits perturbed left-right asymmetry (Silva et al. 376 
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2016).  As showcased in the particular analysis, it has thorough connectedness at the order of 377 

11 (aggregate) to other genes, which may signify functional co-regulation. From the under-378 

standing, it is proposed that this hub gene could be responsible to stage the process of stromal 379 

response and coordinate in the transcriptional activities of the same. 380 

   WDR88 gene on chromosome 19, revered WD repeat domain 88, is a protein-coding 381 

gene and a branded marker for the onset of prostate cancer (Chinnaiyan et al. 2013). In a top-382 

ical finding, the gene has also been shown to have links with schizophrenia (Richards et al. 383 

2016). 167 organisms have orthologs with human gene WDR88 that is conserved in chim-384 

panzee, Rhesus monkey, dog, cow, mouse, rat, chicken, and frog.  385 

 386 

. . . (Figure 7) 387 

 388 

Another gene ARPP21, located in chromosome 9, has been exceptionally highlighted in 389 

the breast and prostate cancer profiles. It has been duly captured to be frequently deregulated 390 

as is miR-128 (Pellagatti et al. 2010; Li et al. 2013). According to NCBI RefSeq (June 2012), 391 

this gene encodes a cAMP-regulated phosphoprotein. The encoded protein is enriched in the 392 

caudate nucleus and cerebellar cortex. A similar protein in mouse may be involved in regulat-393 

ing the effects of dopamine in the basal ganglia. Alternate splicing results in multiple tran-394 

script variants. It is thence fathomed that these hub genes could be responsible to stage the 395 

process of stromal response and coordinate in the transcriptional activities of the same.  396 

 397 

. . . (Figure 8) 398 

 399 
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From gene ontology, ARPP21 is also attributed to the response to stimulus, triggering cel-400 

lular response to heat; at any temperature higher than the optimal stimulus of that organism.  401 

A deliberation to the current study also entails the exceptional, yet formidable idea of 402 

cross-linkages of breast and prostate cancers. Although the rudiments of breast and prostate 403 

are oriented towards females and males, respectively, nonetheless, an exceptional yet indeli-404 

ble facet of female prostate and male breast profiles has been dimly studied. According to the 405 

American Cancer Society, breast cancer is aggregate 100 times less common in males than 406 

females; that is to calibrate the lifetime risk of a male getting breast cancer is 1 in 1000. Con-407 

trastingly, the skene/ periurethral gland carcinoma (female prostate cancer, in generic terms) 408 

is also found to contribute less than 0.0003 percent towards all genital cancers in women 409 

(Dodson et al. 1994). The numbers aren’t intellectually stimulating, albeit we choose to delve 410 

a little deeper.  411 

 412 

2.7 Female Prostate and Male Breast Carcinomas 413 

 414 

 Female prostate, i.e. Skene gland, named after Alexander Johnston Chalmers Skene, 415 

who was a British gynecologist from Scotland, is a homologue for the male prostate organ 416 

and its adenocarcinoma is a scarce occurrence. Elevated Prostate Specific Antigen (PSA) and 417 

PSA Phosphatase (PSAP) are potent markers for detecting prostate cancer in general (female 418 

as well as male prostate specimens). Owing to the rarity, the female prostate cancer isn’t 419 

thoroughly researched too. With the limited physiological understanding, an older case study 420 

presented a female subject with advanced form of the disease. It was treated with convention-421 
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al surgery (Ueda et al. 2012), to eventually weed out all the spread. Other techniques includ-422 

ing radiotherapy (Korytko et al. 2012) have been sublimely effective as well.  423 

The female prostate is acknowledged as a functional part of the urinary and reproductive 424 

systems in female humans (Zaviacic et al. 2000). It is located on the anterior wall of the vagi-425 

na, around the lower end of urethra, on each side. A chance that skene gland could be a sec-426 

ondary cancer site is also plausible. Estrogen (Estradiol, Estriol, and Estrone) and Progester-427 

one are the two key enzymes/ hormones that regulate the female breast development, 428 

menstrual cycle, and sexual function. They are also luminaries in the prostate region in the 429 

female gerbils. Estrogen is present in both male humans and female humans, and can be 430 

measured for analyzing cancer of the reproductive system subunits, viz. ovaries, testicles, etc. 431 

The cancer of the Skene gland is also more recognized in older females, showing tangible le-432 

sions (Custodio et al. 2010). Additionally, it has also been extensively deliberated that a fami-433 

ly history of breast cancer and prostate cancer engenders augmented jeopardy to a postmeno-434 

pausal woman gestating breast cancer (Robinson et al. 2015), (Beebe-Dimmer et al. 2015). 435 

The abscesses in the gerbils are also shown to be driven by progesterone. A case history of 436 

multiple pregnancies and ageing could be culpable for the female prostate disorder (Oliveira 437 

et al. 2011). 438 

Owing to the limited case studies of Skene gland cancer, the symptoms of the disorder 439 

aren’t well acknowledged and etiology is apparently impervious. As general indications, 440 

bleeding in the urethra, that could also accompanied by sporadic pain, are primarily contin-441 

gent to symptomatic treatments. If the following conditions hold, a quick visit to the physi-442 

cian is often advisable. 443 

 Arduous, frequent, and often difficult urination 444 
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 Bleeding from the urethra 445 

 Painful sexual intercourse and pubic area 446 

 Erratic menstrual cycle 447 

 448 

The causes for Skene gland cancer are diversely plethoric. They can include infection as 449 

prostatitis, some sexually transmitted infections (STIs) as gonorrhea; Polycystic Ovarian 450 

Syndrome (PCOS) that renders imbalance and frequently abundance of reproductive hor-451 

mones, cysts, and adenofibroma.  452 

 453 

. . . (Figure 9) 454 

 455 

Another malady, although uncommon but not to be belittled as the rate of occurrence in-456 

creases every year, is the Male Breast Cancer (MBC). Mainly, females are more vulnerable to 457 

breast cancer, having stocky breast tissue; however, males have pertinent breast tissue as 458 

well. Scientifically, mutated copies of BRCA1 and BRCA2 genes incubated by male humans 459 

are proverbial causes for MBC. Tamoxifen and anti-hormonal drugs are FDA-approved 460 

chemotherapeutics to treat breast cancer in both male and females. Requisite surgery (mastec-461 

tomy/ lumpectomy) followed by radiation therapy is standardly warranted, although individ-462 

ual therapies could include more aggressive treatment options. The ideology of a male human 463 

incubating breast cancer is largely pondered with ignorance and aversion; this conviction, in 464 

most cases, delays the screening of the disease. Peculiar symptoms of MBC entail ruptured 465 

(and often painful) nipples, puckering and dimpled masses of the breast, decolorized jaggy 466 
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surfaces, etc.  MBC is usually detected as a hard lump underneath the nipple and areola. The 467 

histopathological derivatives in MBC and female breast cancer are homogenous.  468 

 469 

 470 

. . . (Figure 10) 471 

. . . (Figure 11) 472 

 473 

 474 

Gynecomastia is also a disorder in men of benign nature, where the breast tissue becomes 475 

enlarged due to hormonal misbalance (oestrogen to testosterone ratio), especially during pu-476 

berty. Although a natural phenomenon, it is usually conceived with humiliation and anxiety; 477 

however paltry cases have been reported to establish that gynecomastia and MBC are con-478 

comitant. In conjunction, pseudogynecomastia is a condition when adipose tissue (fat) causes 479 

gynecomastia.     480 

Therefore, it can be argued that the denominations of origins, histopathology, causes, 481 

symptoms, and treatments are overlapped for male-breast and female-breast cancer; and like-482 

ly so for male-prostate and female-prostate cancer. The contributing genes and pathways 483 

could be further explored for overlap in disease profile and therapy. 484 

 485 

 486 

 487 
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2.8 Stromal Response Threshold 488 

 489 

The cancer metastasis presents an intriguing case of classical science theory- a medium re-490 

quired for propagation. The carcinogenesis triggers a parallel desmoplastic reaction that 491 

serves as carrier of malignancy (Whatcott et al. 2012). Technically, desmoplasia is the devel-492 

opment of fibrous and connective tissues encompassing tumor cells. Cells like endothelium 493 

and fibroblasts stage all structural and functional profiles from carcinogenesis to metastasis 494 

(Kalluri & Zeisberg 2006) and vitally graded therapeutic targets. Chemo resistance is highly 495 

attributed to mutations in cancer cells as per the Darwinian doctrine of evolution, survival of 496 

the fittest (Fodale, Pierobon, Liotta, & Petricoin, 2011) (Pisco et al. 2013).  497 

We import widely recognized e1071 package library (Meyer et al. 2015) to employ Sup-498 

port Vector Machine (SVM) classification to distill the transcriptional threshold to desmo-499 

plastic response. Although there are four others catalogued in the R library that carry out the 500 

SVM implementation, viz. kernlab, klaR, svmpath, and shogun. Technically, a decision 501 

boundary equation is sought here. Our aim, from epidemiological context, is to aid medicinal 502 

normalization of transcriptional impressions so as to contain tumor invasion trans-organismal 503 

cultures. The one-versus-one favor of classification is evident for 6 class pairs (normal-tumor 504 

duo).  Multiple kernel types were considered and cost functions analyzed before arriving at 505 

the tune() that cross-validates a range of SVM models outputs the optima. 506 

The equation of the hyperplane separating the negative and positive examples is given by: 507 

   𝑤𝑇𝑥 + 𝑏 = 0, 508 
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where w is weight vector, x is input vector, and b is bias.  The decision boundary can also 509 

be deemed as a linear combination of support vectors. As calculated, 8 and 9 support vectors 510 

were rendered from prostate and breast data respectively. The bias vectors from <svm mod-511 

el>$rho are 1.429841 and 4.139861, from prostate and breast data correspondingly. Further 512 

information can be found, as code output, from the supplementary documents. 513 

 514 

. . . (Figure 12) 515 

. . . (Figure 13) 516 

. . . (Table 3) 517 

. . . (Table 4) 518 

 519 

2.9  Conclusion and Future Work 520 

This text has been premeditated to render the most interactive portrayal of working with 521 

gene expression data analysis. As a part of the original work, the authors have carried out 522 

survival analysis too. The treatise however concentrates on the improved biomarker(s) dis-523 

semination.   524 

As an imminent applicability, the study can aid fostering of pertinent therapeutics to deride 525 

proliferation of cancer metastasis from one tissue to another by monitoring the expression 526 

threshold and keeping it checked.      527 

The procedure highlights an illustration of the packages available in the R language and 528 

Bioconductor that duly facilitate the exploratory analysis of the genomic data. While doing 529 

so, certain cohorts of genes were found relevant and were statistically narrowed to seed fur-530 

ther analysis. This aids reducing the search space for biomarkers (broadly explains the doc-531 
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trine of bioinformatics) and the pipeline of wet laboratory testing and validation, proceeds. If 532 

the genes CDCC11, WDR88 and ARPP21 have any causal implications in the stromal re-533 

sponse to the cancer metastasis, can and will only be substantiated through valid laboratory 534 

studies. Researches alike add to the annotations of the known gene functionality. An array of 535 

such explorations is warranted and is indeed happening. This trend over a period of time is 536 

believed to pave way for a precision medicine schedule, when drug compounds’ applications 537 

and the respective gene functions are almost perfectly matched. 538 

 539 

 540 

3. Material and Methods 541 

3.1 Dataset Selection 542 

 543 

The gene expression dataset chosen from the study is derived out of a study based on stro-544 

mal cells and invasive breast and prostate cancer development (Planche et al. 2011) 545 

 546 

… (Table 1)   547 

 548 

The authors have commenced performing log transformation oriented normalization and 549 

moved further with a primary cue gathering via Principal Component Analysis (PCA). It is 550 

also reported that a very few number of overlain genes befall from breast and tumor profiles. 551 

Pearson correlation coefficients exhibit stout propensity of breast stromal genes with breast 552 
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data and prostate stromal genes with prostate data (Figure 1) (Planche et al. 2011). To add to 553 

further consolidation of the outcome, survival analysis was carried out using Univariate Cox 554 

approach that highlighted genes whose expression levels were crucially associated with the 555 

patient survival. The downloaded dataset has no observable missing values in the cells to im-556 

pute; rather the blank entries are subsidiary to gene and probe ids.  557 

Technically deduced from the background meta-analysis of the subject, we may decipher 558 

that cancer will need a host medium (tissue) to proliferate to the other cells/ tissues/ organs. 559 

The metastasis front of cancer would seek for the favorable restructuring of the basal tissue 560 

framework. From the anticancer therapeutic vantage, hence, it renders incumbent that the on-561 

cogenes and stromal response must be equally thrusted.  562 

Through this exemplar multifaceted exegesis, we objectivize to construe the following: 563 

 564 

a) Contrivance of differentially expressed genes (DEG) 565 

b) GRN reconstruction, and 566 

c) Decoding functionally coherent genes (eliciting anonymous genes) in accord to iso-567 

form expression. 568 

d) Designing a classifier (machine learning approach) that embraces a threshold value 569 

of gene expression that triggers ambient oncological desmoplastic response.  570 

 571 

From statistical standpoint, the data concerned is paired, i.e. two different conditions (can-572 

cerous and normal, here) hybridized on the same slide. A recce exhibits noticeable gene en-573 

tries that outlie the tightly stratified expression space, as can be derived from the Fig. 3. The 574 

dataset dimension of 54675 features tacitly conveys the infestation of multiple gene entries 575 
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associated with diverse probes. However, a cursory reconnaissance shall also establish that 576 

there is only one replicate to each experimental condition. 577 

 In recent years, the molecular data has become reverently large. R has evolved as the de-578 

facto tool for genomic data analysis attributable to its IDE, flexibility and workflow control. 579 

Amongst others Python is a viable option too. Biopython is a dedicated version of the lan-580 

guage for biological data analytics. However, R has an edge over other languages in terms of 581 

packages (functionalities) to cope with the multidimensional data. Being open-source and ful-582 

ly distributable adds to the prowess as well. 583 
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Figure 1 Illustration of workflow. 

Figure 2 Box plots depicting sample expressions pre and post- 
normalization. Log 2 transformation is applied for the same and the 
data is rendered more balanced ahead of analysis. The cancer and 
non-cancer bars are rep-resented by red and green color codes. 
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Figure 3 Respective MA plots of prostate and breast subsets. Clearly the 
floating specks demarcate the differentially expressed transcripts. 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 20, 2017. ; https://doi.org/10.1101/178566doi: bioRxiv preprint 

https://doi.org/10.1101/178566


 

 

 

 

 

 

 

Figure 4 Heat map for differentially expressed breast genes. 356 
probes with p-value < 0.01 were unraveled as being significant. 
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Figure 5  Heat map for differentially expressed prostate 
genes. Here, 221 probes with p-value < 0.01 were deemed 
crucial. 
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Figure 6  Illustration of GSEA framework (Subramanian, Tamayo, et 
al., 2005). 

Figure 7  The study fortifies the eminent role of CCDC11 and WDR88 genes that are 
fundamental test genes for cancer diagnosis. The figure portrays a window from the 
prostate cancer GRN. As elicited, CCDC11 is orchestrating other genes, while WDR88 is 
a coveted 
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Figure 8  An excerpt from the Breast cancer GRN analysis shows profound coverage of 
ARPP21 gene with high propensity. 

Figure 9  MRI scans of the cysts of the Skene glands. Multiplanar 
MRI T2-weighted (A,B) and contrast- enhanced T1-weighted (C,D) 
sequences identifying distal periurethral cysts (Ur) (arrows) locat-ed 
between the urethra and the vagina 
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Figure 10 An illustration detailing radical mastectomy. Credit: 
http://www.cancer.gov 

Figure 11 An illustration detailing breast-conserving surgery. Credit: 
http://www.cancer.gov 
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Figure 12 Breast Genes Regulatory Network 
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Figure 13 Prostate Cancer Regulatory Network. 
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Table 1 Dataset Profile 

S. No. Parameter Value 

1 Sample Count 24 

2 Value Type Transformed 

Count 

3 Channel Count 1 

4 Platform Organism Homo sapiens 

5 

 

Platform 

Technology 

In situ 

oligonucleotide 

6 Sample Type RNA 

7 Feature Count 54675 

8 Dataset Platform GPL570 

 

9 Dataset 

identification 

GDS4114 

10 Series GSE26910 
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Table 2 Intersecting transcripts in breast and prostate data. 

S.No. ID_REF Gene Symbol Gene Title 

1 1552509_a_

at 

 

CD300LG CD300 

molecule-like 

family member g 

 

2 203407_at PPL Periplakin 

 

3 208891_at DUSP6 dual specificity 

phosphatase 6 

 

4 208892_s_a

t 

DUSP6 dual specificity 

phosphatase 6 

    

5 209426_s_a

t 

AMACR /// 

C1QTNF3 

alpha-

methylacyl-CoA 

racemase /// C1q 

and tumor 

necrosis factor 

related protein 3 

 

6 209793_at GRIA1 glutamate 

receptor, 
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ionotropic, 

AMPA 1 

 

7 210556_at NFATC3 nuclear factor of 

activated T-cells, 

cytoplasmic, 

calcineurin-

dependent 3 
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Table 3 Breast cancer network visualization ready tabulation. 

Source/From 

Gene 

Target/To 

Gene 

Correlation P-value 

    

PAX8 PAX8 -0.96158 6.18E-07 

DDR1 AFG3L1P -0.96217 5.72E-07 

ZDHHC11 ALG10 0.965852 3.45E-07 

C15orf40 PRSS33 0.957133 1.06E-06 

TTC39C TIRAP -0.96351 4.79E-07 

PXK MSI2 -0.95376 1.54E-06 

CORO6 FAM71A -0.95738 1.03E-06 

GIMAP1 GAPT 0.967306 2.78E-07 

SPATA17 TSSK3 0.974818 7.64E-08 

ENTHD1 CLEC12A 0.955864 1.22E-06 

CENPBD1 C15orf27 0.970408 1.70E-07 

WFDC2 CALML6 0.962181 5.72E-07 

EYA3 DEFB106A /// 

DEFB106B 

0.953635 1.56E-06 

CCDC65 DEFB106A /// 

DEFB106B 

0.970579 1.65E-07 

MFAP3 C10orf25 0.958966 8.55E-07 

TMEM106A ETV3 0.955541 1.27E-06 

KLHL10 KLHL10 0.969253 2.06E-07 

RFC2 TM2D3 -0.95251 1.76E-06 

SLC39A13 TM2D3 -0.96026 7.30E-07 

C19orf26 TM2D3 -0.95676 1.11E-06 

PRSS33 ANKAR 0.956311 1.16E-06 

SLC39A13 SCGB1C1 0.952224 1.81E-06 
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CCDC65 SCGB1C1 -0.96076 6.86E-07 

FAM122C SCGB1C1 0.972535 1.18E-07 

ADAM32 RAPH1 -0.96305 5.10E-07 

PLCD3 SMCR8 -0.96539 3.69E-07 

ARMCX4 BNC1 -0.95534 1.30E-06 

LACTB MPP4 0.958924 8.59E-07 

DDR1 LACE1 0.952876 1.69E-06 

SLC39A13 LACE1 -0.95083 2.08E-06 

BRF1 LACE1 0.950253 2.21E-06 

ZNF485 LACE1 0.975724 6.37E-08 

TTLL12 IDI2 0.951264 1.99E-06 

ARMCX4 CYP11B1 0.972441 1.20E-07 

RAX2 TAF8 -0.95835 9.20E-07 

TMEM106A BRSK1 -0.95993 7.61E-07 

TTC39C KCNE4 0.965008 3.90E-07 

CILP2 KCNE4 -0.95681 1.10E-06 

RAX2 KCNE4 -0.95326 1.62E-06 

COBL KCNE4 0.950202 2.22E-06 

CCL5 HIPK1 0.952769 1.71E-06 

C19orf26 MTBP 0.966859 2.98E-07 

ACAP2 MTBP 0.95023 2.21E-06 

C19orf26 TMEM74 0.970411 1.70E-07 

ZNF485 TMEM74 -0.98251 1.25E-08 

IDI2 TMEM74 -0.97575 6.34E-08 

IDI2 C21orf67 0.950287 2.20E-06 

TMEM74 C21orf67 -0.95852 9.02E-07 

ZDHHC11 NLRP11 0.950934 2.06E-06 

BRSK1 NLRP11 -0.9579 9.70E-07 
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CCDC11 ATP6V1C2 -0.95934 8.17E-07 

BRF1 ATP6V1C2 -0.95839 9.16E-07 

RAPH1 TAGAP -0.95451 1.42E-06 

TM2D3 PRSS36 0.977508 4.37E-08 

KCNE4 ZDHHC15 0.966886 2.97E-07 

ATP6V1E2 CDK15 0.958811 8.71E-07 

PRSS33 CDK15 -0.96044 7.14E-07 

GAPT CDK15 0.956134 1.19E-06 

IDI2 CDK15 0.950309 2.19E-06 

ZSCAN20  0.956726 1.11E-06 

TMEM74  0.952653 1.73E-06 

WFDC9 RTP3 0.950728 2.10E-06 

RFC2 MIPOL1 0.951615 1.93E-06 

SPATA17 MIPOL1 0.953921 1.51E-06 

MEGF11 MIPOL1 0.954858 1.37E-06 

PRSS33 MYO3B -0.95153 1.94E-06 

MEGF11 TRIML2 0.951737 1.90E-06 

C8orf47 ABCC13 0.950995 2.05E-06 

C21orf67 IL12RB1 -0.97209 1.27E-07 

CILP2 GTF2A1L 0.956402 1.15E-06 

PRSS33 GTF2A1L 0.953581 1.57E-06 

MEGF11 GTF2A1L 0.952955 1.68E-06 

TIGD4 GTF2A1L -0.97121 1.48E-07 

GTF2A1L GTF2A1L 0.972378 1.21E-07 

ACAP2 PXT1 0.951524 1.94E-06 

LETM2 PXT1 0.950738 2.10E-06 

PRUNE2 CDC42SE2 -0.97319 1.04E-07 

NCRNA00204 CDC42SE2 0.95647 1.14E-06 
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ZNF485 RFWD2 -0.95757 1.01E-06 

TMEM74 RFWD2 0.969177 2.08E-07 

DDR1 STX6 -0.96476 4.03E-07 

KCNE4 STX6 -0.95893 8.59E-07 

RFC2 ANLN -0.96962 1.94E-07 

KLHL10 ANLN 0.954726 1.39E-06 

FAM71A TMEM163 -0.95918 8.33E-07 

ZSCAN20 HERPUD2 -0.95071 2.11E-06 

KLK8 JMJD6 0.953033 1.66E-06 

CATSPER1 MAP3K6 0.983465 9.47E-09 

CILP2 PTPN11 0.961084 6.58E-07 

PRSS33 PTPN11 0.95872 8.81E-07 

TTLL10 PTPN11 0.951342 1.98E-06 

MEGF11 PTPN11 0.957441 1.02E-06 

MIPOL1 PTPN11 0.953438 1.59E-06 

ABCC13 PTPN11 0.975157 7.15E-08 

RDH10 KLHDC7B 0.960543 7.05E-07 

CCDC65 PHC3 0.976601 5.31E-08 

GIMAP1 TNFRSF10A 0.976163 5.82E-08 

FLJ30901 TNFRSF10A 0.971343 1.45E-07 

KLHL10 RFFL 0.950583 2.14E-06 

NEXN RFFL 0.955226 1.31E-06 

NEXN HPS4 0.97026 1.74E-07 

HPS4 HPS4 0.970347 1.72E-07 

CCL5 UHMK1 0.972703 1.14E-07 

HIPK1 UHMK1 0.955461 1.28E-06 

CLEC12A TXNDC2 0.96067 6.94E-07 

CCL5 C5orf22 0.956595 1.13E-06 
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IDI2 PCDHGB7 0.950937 2.06E-06 

GPBAR1 ERC1 0.958682 8.85E-07 

KLHL10 FLCN 0.950509 2.15E-06 

SPRR4 FLCN 0.970464 1.68E-07 

GUCA1A SLC9A7 0.956361 1.16E-06 

PRUNE2 DIRC1 0.967442 2.73E-07 

NCRNA00204 DNAJB7 0.953422 1.60E-06 

ETV3 CASC5 0.950507 2.15E-06 

DDR1 C20orf152 -0.95261 1.74E-06 

CORO6 C20orf152 0.957301 1.04E-06 

GAPT C20orf152 -0.96149 6.25E-07 

IDI2 C20orf152 -0.96458 4.14E-07 

TMEM74 C20orf152 0.966728 3.04E-07 

TMEM106A CASKIN1 0.985543 4.85E-09 

BSND CACNA2D4 -0.95795 9.65E-07 

ERC1 MGC16703 0.954553 1.41E-06 

ERC1 CARD16 /// 

CASP1 

0.954911 1.36E-06 

IDI2 DUSP19 0.951786 1.89E-06 

ZNF570 DUSP19 0.9683 2.39E-07 

LACE1 CYB5D1 0.976222 5.75E-08 

C19orf26 CREG2 0.967519 2.70E-07 

ETV3 CREG2 0.957063 1.07E-06 

TM2D3 RXFP1 0.969355 2.02E-07 

KLHL10 SPEF2 -0.95268 1.73E-06 

DEFB106A /// 

DEFB106B 

DTD1 0.951094 2.03E-06 

ABCC13 DTD1 0.957523 1.01E-06 
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VPS18 CASC4 -0.96446 4.21E-07 

CACNG5 CASC4 0.953388 1.60E-06 

FAM122C FGF1 0.953203 1.63E-06 

ALG10 ARPP21 0.961554 6.20E-07 

BRF1 ARPP21 0.958093 9.49E-07 

ZNF485 ARPP21 0.964801 4.01E-07 

IDI2 ARPP21 0.984576 6.70E-09 

TMEM74 ARPP21 -0.96692 2.95E-07 

CLDN19 ARPP21 -0.95236 1.78E-06 

ZNF570 ARPP21 0.956583 1.13E-06 

C21orf29 ARPP21 0.956154 1.19E-06 

HPS4 ARPP21 0.95544 1.28E-06 

CASKIN1 ARPP21 -0.95654 1.14E-06 

NEDD1 ADAMTS17 0.965781 3.49E-07 

GIMAP1 ADAMTS17 -0.95222 1.81E-06 

BSND ADAMTS17 -0.96552 3.62E-07 

ARL11 ADAMTS17 0.964328 4.28E-07 

ADAMTS17 ADAMTS17 0.953315 1.61E-06 

EPHB3 DHH -0.95225 1.80E-06 

EPHB3 KLHDC1 -0.96504 3.88E-07 

SERPINA12 RICTOR 0.957731 9.90E-07 

ARPP21 RICTOR -0.95717 1.06E-06 

C8orf47 PCDHGA4 -0.96422 4.35E-07 

NCRNA00161 PCDHGA4 -0.96077 6.85E-07 

C21orf67 NETO1 -0.95729 1.04E-06 

C5orf22 NETO1 0.9569 1.09E-06 

LACTB ST7L -0.95159 1.93E-06 
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Table 4 Prostate cancer network visualization ready tabulation. 

Source/From 

 Gene 

Target/To 

 Gene 

Correlation P-value 

    

BEST4 TMEM106A -0.96094 6.70E-07 

CYP2A6 ALG10 0.959298 8.22E-07 

C15orf40 C15orf40 0.982069 1.42E-08 

TTC39C CCDC11 -0.95256 1.75E-06 

CYP2A6 TRIOBP -0.95726 1.05E-06 

C15orf40 CRYZL1 -0.95591 1.22E-06 

TRIOBP LEAP2 0.951457 1.96E-06 

TIRAP LEAP2 0.970564 1.66E-07 

FAM122C SCIN -0.97165 1.38E-07 

TIRAP FAM18B2 -0.95748 1.02E-06 

MSI2 FAM18B2 -0.97047 1.68E-07 

PRR22 FAM71A 0.957059 1.07E-06 

PXK FAM71A 0.957061 1.07E-06 

CCDC65 FAM71A -0.95069 2.11E-06 

SCIN GAPT 0.960974 6.68E-07 

DDR1 C8orf47 0.953643 1.56E-06 

TIMD4 C1orf65 -0.95672 1.11E-06 

CCDC11 CLEC12A -0.95066 2.12E-06 

CCDC11 CALML6 -0.96175 6.05E-07 

CCDC11 CALML6 -0.97601 6.01E-08 

BRF1 CALML6 0.957768 9.85E-07 

GIMAP1 DEFB106A /// 

DEFB106B 

0.960782 6.84E-07 

CCDC65 DEFB106A /// 0.951651 1.92E-06 
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DEFB106B 

RDH10 DEFB106A /// 

DEFB106B 

0.968938 2.16E-07 

VPS18 WFDC9 -0.95189 1.87E-06 

CCDC11 ZNF485 0.968029 2.49E-07 

BRF1 ZNF485 -0.97176 1.35E-07 

NLRP5 ZNF485 -0.95257 1.74E-06 

CCDC11 CDH23 -0.96333 4.91E-07 

CYP2A6 DNAJC5G 0.960958 6.69E-07 

CCDC11 DNAJC5G -0.95102 2.04E-06 

WDR17 DNAJC5G -0.95322 1.63E-06 

CCDC11 WDR88 -0.96017 7.38E-07 

CATSPER1 WDR88 -0.97324 1.03E-07 

BRF1 WDR88 0.954811 1.38E-06 

NLRP5 WDR88 0.963964 4.50E-07 

WDR17 WDR88 -0.96062 6.98E-07 

WDR88 WDR88 0.978602 3.41E-08 

CYP2A6 MBD3L2 -0.96108 6.59E-07 

CCDC11 MBD3L2 0.971062 1.52E-07 

CATSPER1 MBD3L2 0.981525 1.64E-08 

WDR17 MBD3L2 0.965176 3.80E-07 

ANKAR MBD3L2 -0.96971 1.91E-07 

WDR88 MBD3L2 -0.95909 8.42E-07 

WDR88 MBD3L2 -0.96537 3.70E-07 

PAX8 ADAMTSL1 0.950173 2.22E-06 

TMEM106A ADAMTSL1 -0.96193 5.91E-07 

ODF4 MBD3L1 -0.95259 1.74E-06 

CCDC11 MBD3L1 0.988363 1.65E-09 
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NLRP5 MBD3L1 -0.95047 2.16E-06 

CCDC11 FAM46D 0.950902 2.07E-06 

ADAM32 SERPINB11 -0.96303 5.11E-07 

NEDD1 DSCR10 0.957306 1.04E-06 

CYP2A6 ABHD11 -0.95662 1.13E-06 

CATSPER1 ABHD11 0.965901 3.43E-07 

WDR88 ABHD11 -0.96721 2.82E-07 

WDR88 ABHD11 -0.96596 3.40E-07 

ADAMTSL1 ABHD11 0.953065 1.66E-06 

MBD3L1 GAMT -0.95202 1.85E-06 

TMEM106A PTPRC -0.9591 8.41E-07 

TMEM106A RAPH1 -0.95232 1.79E-06 

MAN1A2 RAPH1 0.993202 1.13E-10 

MAN1A2 SMCR8 0.993981 6.16E-11 

SMCR8 SMCR8 0.998425 7.62E-14 

PDE7A LACTB 0.95717 1.06E-06 

BNC1 BNC1 0.951039 2.04E-06 

ODF4 TAF8 0.951929 1.86E-06 

KLK8 SLAMF6 -0.96746 2.72E-07 

SCARB1 ZSCAN20 -0.95303 1.66E-06 

C4orf33 RHBDL2 -0.95553 1.27E-06 

SERPINB11 RHBDL2 0.951318 1.98E-06 

ARMCX4 CRB2 -0.95373 1.55E-06 

FAM122C WBP2NL -0.97404 8.89E-08 

TMEM106A TMEM74 -0.95533 1.30E-06 

CATSPER1 TIGD4 0.960038 7.50E-07 

FAM18B2 C21orf67 0.989391 1.04E-09 

FAM71A NLRP11 0.966506 3.14E-07 
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CLEC4F NLRP11 0.965087 3.85E-07 

C21orf67 ATP6V1C2 0.957045 1.07E-06 

PTPRC CLDN19 -0.96369 4.68E-07 

TIMD4 KIF6 0.952698 1.72E-06 

DDR1 TAGAP 0.95111 2.03E-06 

PRR22 TAGAP 0.956625 1.12E-06 

HIPK1 TAGAP 0.96528 3.75E-07 

KLHL10 LETM2 -0.96726 2.80E-07 

ESX1 BSND 0.965532 3.62E-07 
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Stromal Data Analysis: R Script file. 
 

# Installing GEOquery 

 

source("http://www.bioconductor.org/biocLite.R") 

biocLite("GEOquery") 

 

# Loading GEO file with GEOquery 

 

library(Biobase) 

library(GEOquery) 

 

#Download GPL file, put it in the current directory, and load it: 

gpl570 <- getGEO('GPL570', destdir=".") 

 

#Or, open an existing GPL file: 

gpl570 <- getGEO(filename='GPL570.soft') 

 

# Handpicked description (three columns: ID, Gene Symbol, Gene Title). 

 

Table(gpl570) [c("ID","Gene Symbol","Gene Title")] 

IDs <- attr(dataTable(gpl570), "table")[, c("ID", "Gene Symbol", "Gene Title")] 

 

 

# Extract the expression values from the dataset 

# line 64 contains field names 

DS_Main <- read.table("GSE26910_series_matrix.txt.gz", skip = 63, header = TRUE, sep = "\t", fill = TRUE) 

 

# Remove the last line from the matrix that says "!series_matrix_table_end" 

DS_Main <- DS_Main[-54676, ] 
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# Merging the annotation information to the expression values matrix and rejecting null entries. 

 

names(IDs)[1] <- "ID_REF" 

DS <- merge(IDs,DS_Main, by = "ID_REF") 

DS[DS == ""] <- NA 

DS <- na.omit(DS) 

 

# Reordering of respective breast cancer and prostate cancer datsets. 

# Prostate Normal [1:6], Prostate Tumor [7:12], Breast Normal [13:18], Breast Tumor [19:24] 

 

WorkDS <- DS [c(4,6,8,10,12,14, 5,7,9,11,13,15, 16,18,20,22,24,26, 17,19,21,23,25,27)] 

 

# RowMeans calculation 

 

ProstateNormalMean <- rowMeans(log2(WorkDS[,1:6])) 

ProstateTumorMean <- rowMeans(log2(WorkDS[,7:12])) 

BreastNormalMean <- rowMeans(log2(WorkDS[,13:18])) 

BreastTumorMean <- rowMeans(log2(WorkDS[,19:24])) 

 

# MA-Plot 

 

par(mfrow=c(1,2)) 

ProstateMean <- rowMeans(log2(WorkDS[, 1:12])) 

BreastMean <- rowMeans(log2(WorkDS[, 13:24])) 

plot(ProstateMean, ProstateTumorMean-ProstateNormalMean, main="MA Plot for Prostate data", pch=16, 

cex=0.35) 

hold() 
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plot(BreastMean, BreastTumorMean-BreastNormalMean, main="MA Plot for Breast data", pch=16, cex=0.35) 

 

# Rough draft of extreme probes 

 

DS[which.min(BreastTumorMean-BreastNormalMean), ] ### most negatively expressed breast gene 

DS[which.min(ProstateTumorMean-ProstateNormalMean), ] ### most negatively expressed prostate gene 

DS[which.max(ProstateTumorMean-ProstateNormalMean), ] ### most positively expressed prostate gene 

DS[which.max(BreastTumorMean-BreastNormalMean), ] ### most positively expressed breast gene 

 

 

# Standard Deviation calculation for t-test 

 

install.packages(genefilter) 

library(genefilter) 

ProstateNormalSD <- rowSds(log2(WorkDS[,1:6])) 

ProstateTumorSD <- rowSds(log2(WorkDS[,7:12])) 

BreastNormalSD <- rowSds(log2(WorkDS[,13:18])) 

BreastTumorSD <- rowSds(log2(WorkDS[,19:24])) 

 

# t-test calculation and histogram plot 

 

par(mfrow=c(1,2)) 

Prostate_ttest <- (ProstateTumorMean-ProstateNormalMean)/sqrt(ProstateTumorSD^2/6 + 

ProstateNormalSD^2/6) 

hist(Prostate_ttest,nclass=100) 

hold() 

Breast_ttest <- (BreastTumorMean-BreastNormalMean)/sqrt(BreastTumorSD^2/6 + BreastNormalSD^2/6) 

hist(Breast_ttest, nclass=100) 
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# p-value calculation and histogram plot 

 

Prostate_pval <- 2*(1-pt(abs(Prostate_ttest),5)) 

Breast_pval <- 2*(1-pt(abs(Breast_ttest),5)) 

par(mfrow=c(1,2)) 

hist(Prostate_pval, nclass=100) 

hold() 

hist(Breast_pval, nclass = 100) 

 

# volcano Plot 

 

par(mfrow=c(1,2)) 

plot(ProstateTumorMean-ProstateNormalMean, -log10(Prostate_pval), main ="Volcano Plot@Prostate tissue", 

xlab= "Sample Mean Difference", ylab= "-log10(p value)", pch=16, cex=0.35) 

hold() 

plot(BreastTumorMean-BreastNormalMean, -log10(Breast_pval), main ="Volcano Plot@Breast tissue", xlab= 

"Sample Mean Difference", ylab= "-log10(p value)", pch=16, cex=0.35) 

 

 

# Boxplots for the normal data and its log transformed version.(Log2 transformation applied) 

 

par(mfrow = c(1, 2)) 

boxplot(WorkDS, col = c(2,3,2,3,2,3,2,3,2,3,2,3), main = "Expression values pre-normalization",  

        xlab = "Slides", ylab = "Expression", las = 2, cex.axis = 0.7) 

hold() 

boxplot(log2(WorkDS), col = c(2,3,2,3,2,3,2,3,2,3,2,3), main = "Expression values post-log-transformation",  

        xlab = "Slides", ylab = "Expression", las = 2, cex.axis = 0.7) 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 20, 2017. ; https://doi.org/10.1101/178566doi: bioRxiv preprint 

https://doi.org/10.1101/178566


 

abline(0, 0, col = "black") 

 

 

# Check Normality 

 

par(mfrow=c(1,2)) 

qqnorm(Prostate_ttest, main = "QQ Plot@Prostate Data") 

qqline(Prostate_ttest) 

 

hold() 

 

qqnorm(Breast_ttest, main = "QQ Plot@Breast Data") 

qqline(Breast_ttest) 

 

 

# Elucidating genes with particular p-values. 

 

for (i in c(0.01, 0.05, 0.001, 1e-04, 1e-05, 1e-06, 1e-07))  

  print(paste("genes with p-values smaller than",i, length(which(Prostate_pval < i)))) 

for (i in c(0.01, 0.05, 0.001, 1e-04, 1e-05, 1e-06, 1e-07))  

  print(paste("genes with p-values smaller than",i, length(which(Breast_pval < i)))) 

 

 

# Plot heatmap of differentially expressed genes: Genes are differentially expressed if its p-value is under a 

given threshold, which must be smaller than the usual 0.05 or 0.01 due to multiplicity of tests 

 

BreastDEGenes <- data.frame(which(Breast_pval < 0.01)) 

ProstateDEGenes <- data.frame(which(Prostate_pval < 0.01)) 
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ProstateDEGenesData <- ProstateDEGenes[ ,1] 

BreastDEGenesData <- BreastDEGenes[ ,1] 

 

ProstateData <- as.matrix(WorkDS[ProstateDEGenesData, 1:12]) 

heatmap(ProstateData, col = topo.colors(100), cexRow = 0.5) 

 

BreastData <- as.matrix(WorkDS[BreastDEGenesData, 13:24]) 

heatmap(BreastData, col = topo.colors(100), cexRow = 0.5) 

 

 

# List of differentially expressed genes. 

 

#Breast Data 

BDEG <- matrix(nrow = nrow(BreastDEGenes), ncol = 1) 

for(i in 1:nrow(BreastDEGenes))  BDEG[i,]<- paste(DS[BreastDEGenes[i,], "ID_REF"]) 

BDEG <- as.data.frame(BDEG) 

names(BDEG)[1] <- "ID_REF" 

FinalBDEG <- merge(BDEG,DS) 

BDEG <- merge(BDEG, IDs, by = 'ID_REF') 

view(BDEG) 

 

#Prostate Data 

PDEG <- matrix(nrow = nrow(ProstateDEGenes),ncol = 1) 

for(i in 1:nrow(ProstateDEGenes))  PDEG[i,] <- paste(DS[ProstateDEGenes[i,], "ID_REF"]) 

PDEG <- as.data.frame(PDEG) 

names(PDEG)[1] <- "ID_REF" 

FinalPDEG <- merge(PDEG,DS) 

PDEG <- merge(PDEG, IDs, by = 'ID_REF') 
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view(PDEG) 

 

 

##Intersecting transcripts in breast and prostate cancer types as marked in the dataset 

 

BDEG$match <- match(BDEG$location, PDEG$location, nomatch=0) 

 

 

# Reordering of respective breast cancer and prostate cancer datsets. 

# Prostate Normal [1:6], Prostate Tumor [7:12], Breast Normal [13:18], Breast Tumor [19:24] 

 

FinalPDEG <- FinalPDEG [c(4,6,8,10,12,14, 5,7,9,11,13,15, 16,18,20,22,24,26, 17,19,21,23,25,27)] 

WorkFinalPDEG <- FinalPDEG[1:12] 

 

 

FinalBDEG <- FinalBDEG [c(4,6,8,10,12,14, 5,7,9,11,13,15, 16,18,20,22,24,26, 17,19,21,23,25,27)] 

WorkFinalBDEG <- FinalBDEG[13:24] 

 

 

##Prostate data regrerssion analysis(linear model) 

 

par(mfrow=c(1,6)) 

plot(log2(WorkFinalPDEG$GSM662756),log2(WorkFinalPDEG$GSM662757),  pch = 16, cex = 1.3, col = 

c("blue","red")) 

abline(lm(log2(WorkFinalPDEG$GSM662756) ~ log2(WorkFinalPDEG$GSM662757)), col= 1) 

plot(log2(WorkFinalPDEG$GSM662758),log2(WorkFinalPDEG$GSM662759),  pch = 16, cex = 1.3, col = 

c("blue","red")) 

abline(lm(log2(WorkFinalPDEG$GSM662758) ~ log2(WorkFinalPDEG$GSM662759)), col= 1) 
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plot(log2(WorkFinalPDEG$GSM662760),log2(WorkFinalPDEG$GSM662761),  pch = 16, cex = 1.3, col = 

c("blue","red")) 

abline(lm(log2(WorkFinalPDEG$GSM662760) ~ log2(WorkFinalPDEG$GSM662761)), col= 1) 

plot(log2(WorkFinalPDEG$GSM662762),log2(WorkFinalPDEG$GSM662763),  pch = 16, cex = 1.3, col = 

c("blue","red")) 

abline(lm(log2(WorkFinalPDEG$GSM662762) ~ log2(WorkFinalPDEG$GSM662763)), col= 1) 

plot(log2(WorkFinalPDEG$GSM662764),log2(WorkFinalPDEG$GSM662765),  pch = 16, cex = 1.3, col = 

c("blue","red")) 

abline(lm(log2(WorkFinalPDEG$GSM662764) ~ log2(WorkFinalPDEG$GSM662765)), col= 1) 

plot(log2(WorkFinalPDEG$GSM662766),log2(WorkFinalPDEG$GSM662767),  pch = 16, cex = 1.3, col = 

c("blue","red")) 

abline(lm(log2(WorkFinalPDEG$GSM662766) ~ log2(WorkFinalPDEG$GSM662767)), col= 1) 

 

 

##Gene Set Enrichment Analysis 

 

library(genefilter) 

library(GSEABase) 

Breast_GSEA <- GeneSetCollection(WorkFinalBDEG, setType = KEGGCollection()) 

Prostate_GSEA <- GeneSetCollection(WorkFinalPDEG, setType = KEGGCollection()) 

 

 

##Correlation Analysis 

##Breast 

 

WorkFinalBDEG <- read.csv("WorkFinalBDEG_GSEAFiltered.csv") ## Import filtered annotation file from 

MeV. 

btemp <- WorkFinalBDEG 
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btemp$ID_REF <- NULL 

btemp <- log2(btemp) 

pairs(btemp) 

BreastCorrelationMatrix <- cor(t(as.matrix(btemp))) 

BreastCorMat <- as.data.frame(BreastCorrelationMatrix) 

rownames(BreastCorMat) <- WorkFinalBDEG$ID_REF 

colnames(BreastCorMat) <- WorkFinalBDEG$ID_REF 

 

##Prostate 

 

WorkFinalPDEG <- read.csv("WorkFinalPDEG_GSEAFiltered.csv") ## Import filtered annotation file from 

MeV. 

ptemp <- WorkFinalPDEG 

ptemp$ID_REF <- NULL 

ptemp <- log2(ptemp) 

pairs(ptemp) 

ProstateCorrelationMatrix <- cor(t(as.matrix(ptemp))) 

ProCorMat<- as.data.frame(ProstateCorrelationMatrix) 

rownames(ProCorMat) <- WorkFinalPDEG$ID_REF 

colnames(ProCorMat)<- WorkFinalPDEG$ID_REF 

 

 

### Feature Selection: Clustering of robustly entwined genes. 

 

install.packages("gplots") 

install.packages("Hmisc") 

library(Hmisc) 

library(gplots) 
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heatmap.2(ProstateCorrelationMatrix, main="Hierarchical Cluster", 

dendrogram="column",trace="none",col=greenred(10)) 

heatmap.2(1-abs(ProstateCorrelationMatrix), distfun=as.dist, trace="none") 

heatmap.2(BreastCorrelationMatrix, main="Hierarchical Cluster", 

dendrogram="column",trace="none",col=greenred(10)) 

heatmap.2(1-abs(BreastCorrelationMatrix), distfun=as.dist, trace="none") 

 

##Prostate Data 

 

library(caret) 

HighlyCorrelated <- findCorrelation(ProstateCorrelationMatrix, cutoff = 0.95, verbose = TRUE, names = 

FALSE) 

print(HighlyCorrelated) 

WorkFinalPDEG[HighlyCorrelated,1] 

IDs[WorkFinalPDEG[HighlyCorrelated,1],c(2,3)] 

 

 

for(i in 2:nrow(BreastCorMat)) 

{ 

  for(j in 1:ncol(BreastCorMat)-1) 

  { 

     if(i>j) 

      { 

      out <- c (rownames(BreastCorMat[i,]), colnames(BreastCorMat[j]), BreastCorMat[i,j]) 

      write.table(out, file="output.txt", append=TRUE, sep= " ") 

      } 

     else 
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     break 

  } 

} 

 

 

#Network Ready Matrix Format (Function) // Credit: http://www.sthda.com 

 

flattenCorrMatrix <- function(cmat, pmat) { 

  ut <- upper.tri(cmat) 

  data.frame( 

    row = rownames(cmat)[row(cmat)[ut]], 

    column = rownames(cmat)[col(cmat)[ut]], 

    cor  =(cmat)[ut], 

    p = pmat[ut] 

  ) 

} 

 

library(Hmisc) 

 

btemp <- as.matrix(btemp) 

rownames(btemp)<- WorkFinalBDEG$ID_REF 

BreastNet <-rcorr(t(btemp)) 

BreastNetworkInputMatrix<- flattenCorrMatrix(BreastNet$r, BreastNet$P) 

 

#lets map the gene names to row and column entries 

BreastNetworkInputMatrix$row <-IDs[WorkFinalBDEG[BreastNetworkInputMatrix$row,1],2] 

BreastNetworkInputMatrix$column <-IDs[WorkFinalBDEG[BreastNetworkInputMatrix$column,1],2] 
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ptemp <- as.matrix(ptemp) 

rownames(ptemp)<- WorkFinalPDEG$ID_REF 

ProstateNet <-rcorr(t(ptemp)) 

ProstateNetworkInputMatrix <- flattenCorrMatrix(ProstateNet$r, ProstateNet$P) 

ProstateNetworkInputMatrix$row <-IDs[WorkFinalPDEG[ProstateNetworkInputMatrix$row,1],2] 

ProstateNetworkInputMatrix$column <-IDs[WorkFinalPDEG[ProstateNetworkInputMatrix$column,1],2] 

 

symnum(BreastCorrelationMatrix) 

symnum(ProstateCorrelationMatrix) 

 

install.packages("corrplot") 

library(corrplot) 

corrplot(BreastCorrelationMatrix, type="upper", order="hclust", tl.col="black", tl.srt=45) 

corrplot(ProstateCorrelationMatrix, type="upper", order="hclust", tl.col="black", tl.srt=45) 

 

install.packages("PerformanceAnalytics") 

library(PerformanceAnalytics) 

chart.Correlation(BreastCorrelationMatrix, histogram= TRUE, pch= 19) 

chart.Correlation(ProstateCorrelationMatrix, histogram= TRUE, pch= 19) 

 

col<- colorRampPalette(c("blue", "white", "red"))(20) 

heatmap(x = BreastCorrelationMatrix, col = col, symm = TRUE) 

heatmap(x = ProstateCorrelationMatrix, col = col, symm = TRUE) 

 

## Optimize network ready correlation and p-values matrix 

## top candidates which manifest low p-value and high correlation. 
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BreastFinal <- BreastNetworkInputMatrix[which(abs(BreastNetworkInputMatrix$cor) > 0.95 | 

BreastNetworkInputMatrix$p < 0.0000001), c(1,2,3,4)] 

ProstateFinal <- ProstateNetworkInputMatrix[which(abs(ProstateNetworkInputMatrix$cor) > 0.95 | 

ProstateNetworkInputMatrix$p < 0.0000001), c(1,2,3,4)] 

write.csv(BreastFinal, "BreastFinalTest.csv") 

write.csv(ProstateFinal, "ProstateFinalTest.csv") 

 

 

##Intersecting transcripts in breast and prostate cancer types as marked in the dataset 

 

BDEG$match <- match(BDEG$location, PDEG$location, nomatch=0) 

 

 

# Reordering of respective breast cancer and prostate cancer datsets. 

# Prostate Normal [1:6], Prostate Tumor [7:12], Breast Normal [13:18], Breast Tumor [19:24] 

 

FinalPDEG <- FinalPDEG [c(4,6,8,10,12,14, 5,7,9,11,13,15, 16,18,20,22,24,26, 17,19,21,23,25,27)] 

WorkFinalPDEG <- FinalPDEG[1:12] 

 

 

FinalBDEG <- FinalBDEG [c(4,6,8,10,12,14, 5,7,9,11,13,15, 16,18,20,22,24,26, 17,19,21,23,25,27)] 

WorkFinalBDEG <- FinalBDEG[13:24] 

 

##Prostate data regrerssion analysis(linear model) 

 

par(mfrow=c(1,6)) 

plot(log2(WorkFinalPDEG$GSM662756),log2(WorkFinalPDEG$GSM662757),  pch = 16, cex = 1.3, col = 

c("blue","red")) 
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abline(lm(log2(WorkFinalPDEG$GSM662756) ~ log2(WorkFinalPDEG$GSM662757)), col= 1) 

plot(log2(WorkFinalPDEG$GSM662758),log2(WorkFinalPDEG$GSM662759),  pch = 16, cex = 1.3, col = 

c("blue","red")) 

abline(lm(log2(WorkFinalPDEG$GSM662758) ~ log2(WorkFinalPDEG$GSM662759)), col= 1) 

plot(log2(WorkFinalPDEG$GSM662760),log2(WorkFinalPDEG$GSM662761),  pch = 16, cex = 1.3, col = 

c("blue","red")) 

abline(lm(log2(WorkFinalPDEG$GSM662760) ~ log2(WorkFinalPDEG$GSM662761)), col= 1) 

plot(log2(WorkFinalPDEG$GSM662762),log2(WorkFinalPDEG$GSM662763),  pch = 16, cex = 1.3, col = 

c("blue","red")) 

abline(lm(log2(WorkFinalPDEG$GSM662762) ~ log2(WorkFinalPDEG$GSM662763)), col= 1) 

plot(log2(WorkFinalPDEG$GSM662764),log2(WorkFinalPDEG$GSM662765),  pch = 16, cex = 1.3, col = 

c("blue","red")) 

abline(lm(log2(WorkFinalPDEG$GSM662764) ~ log2(WorkFinalPDEG$GSM662765)), col= 1) 

plot(log2(WorkFinalPDEG$GSM662766),log2(WorkFinalPDEG$GSM662767),  pch = 16, cex = 1.3, col = 

c("blue","red")) 

abline(lm(log2(WorkFinalPDEG$GSM662766) ~ log2(WorkFinalPDEG$GSM662767)), col= 1) 

 

 

##Gene Set Enrichment Analysis 

 

library(genefilter) 

library(GSEABase) 

Breast_GSEA <- GeneSetCollection(WorkFinalBDEG, setType = KEGGCollection()) 

Prostate_GSEA <- GeneSetCollection(WorkFinalPDEG, setType = KEGGCollection()) 

 

 

# Support Vector Machine Implementation 

## Prostate 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 20, 2017. ; https://doi.org/10.1101/178566doi: bioRxiv preprint 

https://doi.org/10.1101/178566


 

 

install.packages("e1071") 

library(e1071) 

temp1 <- WorkFinalPDEG 

temp1$ID_REF <- NULL 

temp1 <- log2(temp1) 

temp1 <- t(temp1) 

ClassLabels1 <- c(rep(1,6),rep(-1,6)) 

DataFrame1 <- data.frame(Gene=temp1,ClassLabels=as.factor(ClassLabels1)) 

SVMModel1 <- svm(ClassLabels1~., data=DataFrame1, kernel="linear", cost=10, scale = FALSE) 

GeneWeights1<-t(SVMModel1$coefs)%*%SVMModel1$SV 

sort.list(GeneWeights1) ## Genes 212 and 129 have highest and second highest weights, respectively.  

plot(SVMModel1,DataFrame1, Gene.212 ~ Gene.129) 

 

##Breast 

 

temp2 <- WorkFinalBDEG 

temp2$ID_REF <- NULL 

temp2 <- log2(temp2) 

temp2 <- t(temp2) 

ClassLabels2<- c(rep(1,6),rep(-1,6)) 

DataFrame2 <- data.frame(Gene=temp2,ClassLabels=as.factor(ClassLabels2)) 

SVMModel2 <- svm(ClassLabels2~., data=DataFrame2, kernel="linear", cost=10, scale = FALSE) 

GeneWeights2<-t(SVMModel2$coefs)%*%SVMModel2$SV 

sort.list(GeneWeights2) ## Genes 346 and 133 have highest and second highest weights, respectively.  

plot(SVMModel2,DataFrame2, Gene.346 ~ Gene.133) 
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install.packages("kernlab") 

library(kernlab) 

x <- as.matrix(temp1) 

y <- matrix(c(rep(1,6),rep(-1,6))) 

svp <- ksvm(x,y,type="C-svc", prob.model= TRUE) 

predict (svp, x, type= "probabilities") 
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