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Short Abstract: 15 

The extent to which gene fusions function as drivers of cancer remains a critical open question 16 

in cancer biology.   In principle, transcriptome sequencing provided by The Cancer Genome 17 

Atlas (TCGA) enables unbiased discovery of gene fusions and post-analysis that informs the 18 

answer to this question. To date, such an analysis has been impossible because of 19 

performance limitations in fusion detection algorithms.  By engineering a new, more precise, 20 

algorithm and statistical approaches to post-analysis of fusions called in TCGA data, we report 21 

new recurrent gene fusions, including those that could be druggable; new candidate pan-cancer 22 

oncogenes based on their profiles in fusions; and prevalent, previously overlooked, candidate 23 

oncogenic gene fusions in ovarian cancer, a disease with minimal treatment advances in recent 24 

decades.  The novel and reproducible statistical algorithms and, more importantly, the biological 25 

conclusions open the door for increased attention to gene fusions as drivers of cancer and for 26 

future research into using fusions for targeted therapy. 27 

 28 

Introduction 29 

While genomic instability is a hallmark of human cancers, its functions have only partially 30 

been explained. Point mutations and gene dosage effects result from genomic instability, but 31 

they alone do not explain the origin of human cancers (Martincorena et al., 2015). Genomic 32 

instability also results in structural variation in DNA that creates rearrangements, including local 33 

duplications, deletions, inversions or larger scale intra- or inter-chromosomal rearrangements 34 

that can be processed into mRNAs that are gene fusions.  35 
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Gene fusions are known to drive some cancers and can be highly specific and 36 

personalized therapeutic targets; among the most famous are the BCR-ABL1 fusion in chronic 37 

myelogenous leukemia (CML), and the EML4-ALK fusion in non-small lung cell carcinoma 38 

(Soda et al., 2007; Nowell and Hungerford, 1960). Fusions are among the most clinically 39 

relevant events in cancer because of their use to direct targeted therapy and because of early 40 

detection strategies using RNA or proteins; moreover, as they are truly specific to cancer, they 41 

have promising potential as neo-antigens (Zhang, Mardis and Maher, 2017; Ragonnaud and 42 

Holst, 2013; Liu and Mardis, 2017). 43 

Because of this, major efforts by clinicians and large sequencing consortia attempt to 44 

identify fusions expressed in tumors. However, these attempts are limited by critical roadblocks: 45 

current algorithms suffer from high false positive rates and unknown false negative rates. Thus, 46 

heuristic approaches and filters are imposed, including taking the consensus of multiple 47 

algorithms or imposing priority on the basis of gene ontologies given to fusion partners. These 48 

approaches lead to what third party reviews agree is imprecise fusion discovery and bias 49 

against discovering novel oncogenes (Liu et al., 2015; Carrara et al., 2013; Kumar et al., 2016). 50 

Both shortcomings in ascertainment of fusions by existing algorithms and using recurrence 51 

alone to assess function limit the use of fusions to discover new cancer biology. As one of many 52 

examples, a recent study of more than 400 pancreatic cancers found no recurrent gene fusions, 53 

raising the question if this is due to high false negative rates or this means that fusions are not 54 

drivers in the disease (Bailey et al., 2016).  Recurrence of fusions is currently one of the only 55 

standards in the field used to assess functionality of fusions, but the most frequently expressed 56 

fusions may not be the most carcinogenic (Saramäki et al., 2008); on the other hand, there may 57 

still be many undiscovered gene fusions that drive cancer.  58 

 Thus, the critical question, “are gene fusions under-appreciated drivers of cancer?”, is 59 

still unanswered.  In this paper, we provide several contributions that more precisely define and 60 

provide important advances to answering this question.  First, we provide a new algorithm that 61 

has significant improvements in precision for unbiased fusion detection in massive genomics 62 

datasets. Our new algorithm, sMACHETE (scalable MACHETE), significantly builds on our 63 

recently developed MACHETE algorithm (Hsieh et al., 2017) to discover new gene fusions and 64 

pan-cancer signatures of selection. Its algorithmic advance over MACHETE is to use novel 65 

modeling to account for challenges brought on by “big data”: statistical modeling to identify false 66 

positives and avoid heuristic or human-guided filters that are commonly imposed by other fusion 67 

detection algorithms. We have systematically evaluated sMACHETE’s false positive rate, which 68 

is much lower than other algorithms, and show that sMACHETE has sensitive detection of gold 69 
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standard positive controls. Beyond recovery of known fusions, sMACHETE predicts novel 70 

fusions, the focus of this paper. These fusions include recurrent fusions, two of which we 71 

validate in independent samples, and recurrent 5’ and 3’ partner genes. 72 

The improved precision of sMACHETE has allowed us to address several unresolved 73 

questions in cancer biology. First, until now, a large fraction of ovarian cancers have lacked 74 

explanatory drivers beyond nearly universal TP53 mutations and defects in homologous 75 

recombination pathways. Because TP53 mutations create genome instability, a testable 76 

hypothesis is that TP53 mutations permit the development of rare or private driver fusions in 77 

ovarian cancers, and the fusions have been missed due to biases in currently available 78 

algorithms. We apply sMACHETE to RNA-Seq data from bulk tumors and find that 91% of the 79 

ovarian tumors we screened have detectable fusions and that 54% of the ovarian cancer tumors 80 

express gene fusions involving kinase pathways or known Catalogue of Somatic Mutations In 81 

Cancer (COSMIC) genes (Forbes et al., 2014). We also identify novel although low-prevalence 82 

recurrent fusions in other cancers, including pancreatic cancer, where they have not been 83 

described previously. 84 

Frequent recurrence of gene fusions is a hallmark of a selective event during tumor 85 

initiation, and this recurrence has historically been the only evidence available to support that a 86 

fusion drives a cancer. While private or very rare gene fusions are beginning to be considered 87 

as potential functional drivers (Latysheva and Babu, 2016), the high false positive rates in 88 

published algorithms prevent a statistical analysis of whether private or rare gene fusions 89 

reported exhibit a signature of selection across massive tumor transcriptome databases, such 90 

as TCGA. Signatures of selective advantage of fusion expression include recurrent use of a 5’ 91 

or 3’ partner, or enrichment of gene families such as those in Catalogue Of Somatic Mutations 92 

In Cancer (COSMIC). We formulate and provide the first such analysis. 93 

In sum, sMACHETE is an advance in accuracy for fusion detection in massive RNA-Seq 94 

data sets. The algorithm is reproducible and publicly available, and its results have important 95 

biological implications. sMACHETE, applied to hundreds of TCGA RNA-Seq samples, in 96 

conjunction with new statistical analysis reveals a signature of fusion expression consistent with 97 

the existence of under-appreciated drivers of cancer, including selection for rare or private gene 98 

fusions in human cancers with implications from basic biology to the clinic. 99 

 100 

 101 

Results: 102 

 103 
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sMACHETE is a new statistical algorithm for gene fusion discovery 104 

We engineered a new statistical algorithm, the scalable MACHETE (sMACHETE), to 105 

discover and estimate the prevalence of gene fusions in massive numbers of data sets. The 106 

major computational infrastructure of sMACHETE includes a fusion-nomination step performed 107 

by the MACHETE. However, sMACHETE includes key innovations mainly focused on 108 

controlling false positives arising from analysis of massive RNA-Seq data sets for fusion 109 

discovery, a problem conceptually analogous to multiple hypothesis testing via p-values but 110 

which cannot be solved by direct application of common FDR controlling procedures. 111 

The workflow of sMACHETE is as follows: MACHETE is first run on a subset of samples 112 

(the “discovery set”) for fusion discovery and modeling.  Models of the effect of sequence 113 

composition and gene abundance in generating false positive fusion nomination are applied 114 

(Supplemental File). Next, the prevalence of the nominated fusions is efficiently tested in the 115 

discovery set along with an arbitrarily large number of added samples (the “test set”), easily 116 

numbering thousands, using Sequence Bloom Trees (SBTs; Solomon and Kingsford, 2016) and 117 

subsequent statistical modeling (see Fig. 1, Methods and Supplemental File). This step further 118 

decreases false positive identification of fusions beyond those decreases achieved by 119 

MACHETE, which are already lower than any other published algorithm (Hsieh et al., 2017), and 120 

increases the precision of fusion prevalence rate estimation. Intuitively, this step checks whether 121 

the prevalence of fusions found by running MACHETE is statistically consistent with the 122 

estimated prevalence using a string-query based approach (such as SBT). We note that 123 

because the SBT searches for fusion-junctional sequences, samples could be positive for a 124 

fusion by a SBT yet negative by MACHETE, which requires spanning reads to nominate fusions 125 

(Hsieh et al., 2017).  126 

Like MACHETE, sMACHETE does not require human guidance and is a fully automatic 127 

pipeline. Moreover, most parts are very portable as they are Dockerized, and most components 128 

of the workflows can be easily exported to many platforms using a description given by the 129 

Common Workflow Language (CWL). sMACHETE can be applied to any RNA-Seq dataset, 130 

including any massive cancer genomics datasets. And, assuming one has access to the secure 131 

TCGA database, the analysis we present in this paper is reproducible. (See Supplemental File; 132 

also, the code used, including CWL code and Dockerfiles, is available at github sites given in 133 

the Supplemental File.) 134 

 135 

sMACHETE improves specificity of fusion detection without sacrificing sensitivity 136 
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Compared to current state of the art fusion callers, sMACHETE reduces false positives, 137 

the most measurable metric for errors. But this rate can only be exactly computed under 138 

simulated conditions where the ground truth is known. As a proxy for ground truth, normal 139 

controls are used under the assumption that fusions detected in normal tissues should be rare, 140 

as is the case for some germline fusions such as TFG-GPR128 (Chase et al., 2010).  We have 141 

adopted the common simplifying assumption that prevalent fusions called in normal samples 142 

that cannot be explained by readthrough transcription are false positives (Lee et al., 2017; 143 

Kumar et al., 2016).  144 

MACHETE, the workhorse of sMACHETE, has been benchmarked on a group of normal 145 

samples and simulated data with the lowest false positive rate and highest positive predictive 146 

value (PPR) of published algorithms (Hsieh et al., 2017, and Supplemental File). Theoretical 147 

analysis of the algorithm formally implies that sMACHETE maintains or improves the already 148 

low false-positive rate of MACHETE. In this paper, we go further and quantify sMACHETE’s 149 

FPR on the Illumina Body Map data set because it is comparable in its age, depth and read 150 

length to TCGA data; further, there are not large numbers of normal samples of the same 151 

vintage as the TCGA data analyzed here, and TCGA samples classified as normal are not 152 

molecularly normal (personal communication with TCGA).  sMACHETE increases specificity on 153 

the Body Map compared to the consensus best existing algorithm tested, ChimerSeq (Lee et al., 154 

2017), which reports significantly more fusions in cancer samples that are also detected in 155 

normals, suggesting they are false positives (Fig. 4). We have used fusions called by 156 

ChimerSeq to compare sMACHETE’s sensitivity and specificity because ChimerSeq entails 157 

performance benchmarking of multiple ‘top performing’ algorithms, and, using a disciplined 158 

procedure for evaluating them, instantiates a meta-caller to produce more reliable calls than any 159 

algorithm independently (Lee et al., 2017) . 160 

Any algorithm’s FPR can be trivially reduced by sacrificing sensitivity. However, we find 161 

that sMACHETE’s precision may in fact improve sensitivity. In primary tumors, no ground truth 162 

is known, so we use well-studied and generally cytogenetically simple tumor types such as 163 

acute myeloid leukemia (LAML) as a best approximation. In a large cohort of LAML samples 164 

investigated through both next-generation sequencing and cytogenetics by a large consortium 165 

(Cancer Genome Atlas Research Network, 2013; Papaemmanuil et al., 2016), sMACHETE 166 

improves the rate of true positive recovery compared to ChimerSeq (Lee et al., 2017), when 167 

using nomination of fusions between homologous genes as a proxy for false positives (Fig. 4C, 168 

and Supplemental File).  169 
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sMACHETE maintains high precision in a variety of solid tumors that have more complex 170 

cytogenetics than LAML. This cytogenetic complexity could result in either more false positives 171 

or false negatives, as occurs with other algorithms (Stransky et al., 2014; Yoshihara et al., 2015; 172 

Van Allen et al., 2016).  As one computational test of this, we used the principle of cancer 173 

biology that the total number of fusions detected should be correlated with an orthogonal 174 

measure of a tumor’s genome stability, as measured by the mutation rate of TP53 (Forment et 175 

al., 2012).  sMACHETE has much higher correlation with TP53 mutation rate and number of 176 

fusions identified per sample compared to the current best performing published fusion caller, 177 

ChimerSeq, across tumor types (Pearson correlation .6 and .06 respectively; Spearman rho .45 178 

and .07 respectively; Fig. 4D); and in general calls more fusions in tumors with high TP53 179 

mutation rates, and fewer than ChimerSeq in less cytogenetically complex tumors while 180 

retaining tight control of false positives in other samples.   181 

ChimerSeq and sMACHETE report similar numbers of fusions in the same TCGA cohort 182 

of the 278 samples that were analyzed in common (Supplemental File). The set of fusions 183 

(counted as unique gene pairs, ignoring splice variants) on this set of samples has little overall 184 

concordance: 660 unique fusions are called by ChimerSeq, 525 unique gene pairs expressed 185 

as fusions are called on this set by sMACHETE, and only 213 are common to both algorithms.  186 

Of note, among this list, 8 distinct gene fusions involving HLA or ribosomal protein subunit 187 

genes, proxies for likely false positives due to their high expression, are called by ChimerSeq, 188 

while none are called by sMACHETE. ChimerSeq appears to call no fusions for, and 189 

presumably does not analyze, pancreatic adenocarcinoma (PAAD) tumors. (In our discussion of 190 

other tumor types in this paper, we use abbreviations following TCGA nomenclature. See Fig. 191 

3.) 192 

Because the ground truth is not known for most tumors profiled in the TCGA data, we 193 

have investigated the performance on sMACHETE for a handful of well known recurrent gene 194 

fusions beyond LAML. As an example, TMPRSS2-ERG is the most commonly known recurrent 195 

gene fusion in any solid tumor (Maher et al., 2009). We hand-picked 15 prostate cancer tumors 196 

that were positive for TMPRSS2-ERG, as reported in Sadis et al. (2013), to include in the 197 

discovery set. sMACHETE detected 7 splice variants of TMPRSS2-ERG, increasing the 198 

sensitivity of detecting alternative splice variants of fusions and total prevalence of detected 199 

fusions compared to ChimerSeq (Supplemental File and Lee et al., 2017; Gorohovski et al., 200 

2017).  The prevalence of TMPRSS2-ERG in prostate adenocarcinoma (PRAD) (Tomlins et al., 201 

2008) detected by sMACHETE and ChimerSeq is similar (39% by sMACHETE and 42% by 202 

ChimerSeq).  203 
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 204 

sMACHETE predicts novel recurrent fusions validated in independent clinical samples 205 

Apart from sMACHETE’s rediscovery of well-known recurrent gene fusions, the vast 206 

majority of sMACHETE’s predicted fusions were present in only a small number of tumors (see 207 

Fig. 5 and Supplemental Table 1). While generally low prevalence, several novel fusions were 208 

detected at sufficient frequency that they would be expected to appear in an independent, 209 

moderate number of primary tumor samples that our laboratory could reasonably test. 210 

Using sMACHETE’s predictions from TCGA data, we attempted to validate four novel 211 

and one previously reported recurrent fusions on nine primary ovarian tumor samples, labeled 212 

(A-I). We first tested for two novel fusions: CPSF6-CHMP1A, a fusion consistent with deriving 213 

from interchromosomal rearrangement, and RB1-ITM2B, a rearrangement between two 214 

neighboring genes. Samples (C,E,F) (33%) had PCR products of the expected size for CPSF6-215 

CHMP1A and samples (B,E,F,G,H,I) (>50%) had PCR products of the expected size for RB1-216 

ITM2B. Sanger sequencing of the PCR products produced the expected sequences (see 217 

Figures 6A and 6B, Methods and Supplemental File).  RB1-ITM2B could be explained by a 218 

cancer-specific circular RNA or a local genomic rearrangement (see Fig. 6A); we have not 219 

previously detected this sequence in normal samples (Szabo et al., 2015, Hsieh et al., 2017). 220 

While we did not attempt to distinguish whether an underlying DNA change was responsible for 221 

the RB1-ITM2B fusion, the estimated prevalence of RB1-ITM2B from poly(A) selected TCGA 222 

libraries was only 2%. This is much lower than the 55% prevalence detected by PCR, and is 223 

consistent with the hypothesis that RB1-ITM2B is a circRNA that is depleted in poly(A) selected 224 

libraries.    225 

We tested the same samples for three other fusions detected by sMACHETE: a 226 

previously known germline fusion, TFG-GPR128 (Chase et al., 2010) and two predicted 227 

ovarian-specific recurrent fusions, METTL3-TM4SF1 and RCC1-UBE2D2. Consistent with the 228 

range of previous reports of the prevalence of TFG-GPR128 in the population (3/120 as 229 

reported in Chase et al., 2010, 95% CI: 0.5%-7.1%), sMACHETE estimates its frequency in 230 

TCGA data to be <1% in sarcoma (SARC), 2.2% in PAAD, and 1.4% in ovarian serous 231 

cystadenocarcinoma (OV) (see Supplemental Table 1).  The predicted frequency of METTL3-232 

TM4SF1 and RCC1-UBE2D2 were similarly low (5.9% and 3.8% of OV cases, respectively). All 233 

samples tested by PCR for these three fusions were negative, which is consistent with their 234 

estimated prevalence under a simple binomial sampling model. Because of the low prevalence, 235 

a much larger sample size, greater than one hundred, would be necessary to provide sufficient 236 

statistical power to test if these fusions are recurrent. 237 
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  238 

Fusions identified by sMACHETE are enriched in known oncogenes 239 

 Because we, and the vast majority of researchers, do not have access to TCGA samples 240 

for additional PCR validation, we used orthogonal computational tests of sMACHETE’s novel 241 

fusion predictions to support the assertion that most of sMACHETE’s fusion predictions are not 242 

artifacts. We first investigated the distribution of functional gene ontologies of reported fusion 243 

partners, as these are not used by sMACHETE and so provide an independent test of whether 244 

sMACHETE is identifying a potentially important biological signal. To test whether the putative 245 

fusions identified by sMACHETE are enriched for genes in known cancer pathways, for each 246 

cancer type we tested for enrichment of genes present in the Catalogue of Somatic Mutations in 247 

Cancer (COSMIC) database or that include the word “kinase” in their annotation (Forbes et al., 248 

2014; Methods).  In six of the ten cancer types profiled by sMACHETE, the fraction of samples 249 

with fusions identified and annotated as either COSMIC or kinase exceeds 20%, a rate much 250 

greater than expected by chance (Methods and Fig. 5C).  Among samples with any fusion 251 

reported, the largest enrichment for COSMIC or kinase annotated genes are in PRAD (93%) 252 

and LAML (77%), as expected because the most frequent gene fusions in PRAD involve the 253 

ETS family of transcription factors (COSMIC genes), and LAML is a disease where fusions have 254 

been intensively studied, include known drivers, and whose partners are therefore annotated as 255 

COSMIC genes (Forbes et al., 2014; Fig. 5).  256 

 257 

Ovarian cancers have high fusion prevalence and are enriched kinase and COSMIC 258 

genes 259 

The most common genetic lesion in ovarian cancer is the TP53 mutation, present in 88% 260 

of cases (cBioPortal, retrieved July 18, 2017, see Gao et al., 2013), although there is debate in 261 

the literature that this prevalence is an underestimate. Regardless, other drivers must exist 262 

because, for example, TP53 mutations are not sufficient to cause cancers (Martincorena et al., 263 

2015). In OV, such explanatory driving events are as yet unknown (Bowtell et al., 2015). The 264 

prevalence of TP53 mutations generates the hypothesis that the resulting genome instability 265 

could generate fusions responsible for driving some fraction of these cancers, but which have 266 

been missed because of shortcomings in other available algorithms; we sought to test this 267 

hypothesis. 268 

sMACHETE reports 91% of all ovarian cancers in its discovery set to have a gene 269 

fusion, the highest rate of any disease we profiled. 54% of ovarian tumors contain a fusion 270 

involving a kinase or COSMIC gene, a higher frequency than any other profiled disease (see 271 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 18, 2017. ; https://doi.org/10.1101/178061doi: bioRxiv preprint 

https://doi.org/10.1101/178061
http://creativecommons.org/licenses/by/4.0/


 

9 

Fig. 5). Prevalent recurrent fusions were not detected, with the exception of one that is most 272 

parsimoniously explained by being circRNA: a putative fusion between C10orf68 and CCDC7, a 273 

pair of genes with overlapping transcriptional boundaries and shared exons, one of only two 274 

fusions called in both our Body Map and tumor samples (Supplemental Table 1). This fusion is 275 

also reported in LAML by a separate group, and is consistent with the fusion being a circular 276 

RNA (Cancer Genome Atlas Research Network, 2013).  277 

Recurrent fusions of low prevalence involving genes on different chromosomes, unlikely 278 

to be circRNA, were detected as described above: 3.8% of tumors were estimated to have the 279 

fusion RCC1-UBE2D2. RCC1 is a regulator of chromosome condensation and UBE2D2 is an 280 

ubiquitin conjugating enzyme. RCC1-UBE2D2 is predicted to be specific to ovarian tumors. The 281 

fusion METTL3-TM4SF1 of METTL3, a methyltransferase-like protein involved in splicing, and 282 

TM4SF1, a transmembrane protein of unknown function, was seen in 5.9% of tumors and also 283 

specific to ovarian cancer.  284 

sMACHETE predicts that the rate that fusions are present in ovarian cancer is higher 285 

than previously reported by other analyses of TCGA data (Yoshihara et al., 2015; Earp et al., 286 

2017).  To be called by sMACHETE, a fusion must be nominated by MACHETE. Thus, the 287 

comprehensive tests of MACHETE’s false positive rates in Hsieh et al. (2017) imply a low false 288 

positive rate for sMACHETE. This, together with the results in this paper, argue against the 289 

possibility that sMACHETE’s discoveries are due to ‘lax controls‘ on false positive rates and 290 

instead strongly suggest a biological differentiation of ovarian cancer fusion expression from 291 

other cancers we profiled.  The enrichment of COSMIC genes in fusion partners further 292 

supports this.    293 

Further, our discovery of a high fraction of gene fusions in ovarian cancer is consistent 294 

with an orthogonal metric of genome instability in this disease, its TP53 mutation rate of 88% 295 

(Methods; TCGA, 2011). This, along with sMACHETE’s specificity on normal controls, supports 296 

the interpretation that fusions, perhaps relatively rare or private events, could be an 297 

unappreciated driver of ovarian cancers (see Fig. 5). Functional tests of this hypothesis are 298 

important but beyond the scope of this paper, and there is an important clinical implication that if 299 

rare or low prevalence fusions are common, and if some are potentially druggable, then 300 

‘personalized’ tumor profiling would be needed to inform treatment.  301 

 302 

Statistical analysis of private fusions predicts new oncogenes 303 

 Fusions that recur with relatively high frequencies across cases are appreciated to have 304 

a selective advantage for tumors, because recurrence has historically been used as a proxy for 305 
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function in cancer biology. However, statistical signals in rare fusions, including private fusions 306 

that are observed only once, could still have statistical features that distinguish them from 307 

molecular events deemed ‘passengers’. While intuition for this idea has been appreciated (Lin et 308 

al., 2016; Latysheva et al., 2016), statistical formalism has been missing. Mathematical 309 

modeling shows that such private fusion expression is, somewhat counter-intuitively, to be 310 

expected in the 739 cases we profiled if a moderate fraction of human genes could function as 311 

oncogenes when participating in fusions (Supplemental File). Intuitively, this is because of 312 

quadratic growth in the number of possible combinations of fusions if a group of genes can 313 

serve as oncogenic 5’ or 3’ partners, which implies very high sampling may be required to 314 

observe recurrence.  315 

A large number (660) of the 1006 gene fusions (760 unique gene fusions, as some occur 316 

multiple times) identified by sMACHETE in the TCGA tumor set are observed only once in our 317 

set of profiled tumors (i.e., they are private).  (The number 660 is a numerical coincidence with 318 

the 660 reported earlier regarding fusions called by ChimerSeq.) We tested whether the 5’ or 3’ 319 

partners reappeared on the list of private fusions more often than would be expected compared 320 

to a null distribution using a statistical model that is a generalization of the well-known “birthday 321 

problem” (Henze, 1998,  Supplemental File). We omitted recurrent fusions in the analysis of 322 

enrichment for 5’ and 3’ partners as a conservative measure to prevent a bias for re-discovering 323 

known oncogenic fusions and enriching a statistical signal, because many gene fusions that are 324 

recurrent have had functional assignments as oncogenes because there is bias towards 325 

studying them. 326 

This analysis establishes both the excess or ‘effect size’ for the number of genes 327 

recurrently present in a 5’ and 3’ fusion and statistical significance (Supplemental File). 328 

sMACHETE reports 38 recurrent 5’ partners and 33 recurrent 3’ partners, with both having 329 

corresponding p-values << 10-5, which are highly statistically significant findings. Moreover, this 330 

is a finding with a large effect size: sMACHETE predicts tens of novel oncogenic fusion partners 331 

from this analysis, which is based on profiling completely private gene fusions; deeper 332 

sequencing or larger sample sizes and more cases or cancer types could further increase this 333 

number.   334 

In principle, any gene fusion, including recurrent gene fusions, may be expressed due to 335 

a predisposition for genomic rearrangement between two loci rather than RNA expression 336 

conferring a particular advantage to the tumor. Thus, in addition to the above statistical 337 

evidence, we investigated the gene ontology of genes with multiple partners using the logic that 338 

gene fusions can activate oncogenes through a variety of mechanisms, for example those that 339 
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result in omission of a functional domain through truncation (Shirole et al., 2016) that could have 340 

similar effects to point mutations. If our analysis is identifying a real signal, we expect some 341 

known oncogenes should be reidentified and enriched as gene partners identified in the above 342 

analysis.  343 

 We find that known oncogenes are amongst the most significantly enriched 5’ and 3’ 344 

partners in private gene fusions.  For example, RALA, a Ras-family G-protein and known 345 

oncogene (Lim et al., 2005), has three distinct partners found in OV and GBM; to our knowledge 346 

it has not been previously reported as a recurrent fusion partner, a feature suggesting that it 347 

functions as an oncogene through gene fusion.  A fourth fusion involving RALA, RALA-YAE1D1, 348 

was identified by sMACHETE as a recurrent gene fusion in OV (see Supplemental Table 1), and 349 

hence did not contribute to RALA’s score by this method.  ZBTB20, a known oncogene (Lim et 350 

al., 2005; Zhao, Ren, and Tang, 2014), was also recovered purely on the basis of participating 351 

in private fusions.  SORL1 (Uren et al., 2008), a putative oncogene, had the highest diversity of 352 

5’ and 3’ partners. UVRAG, a tumor suppressor with activating oncogene activity (He and Liang, 353 

2015), was also found to have multiple partners and has previously not been reported as 354 

participating in fusions. Many other genes on sMACHETE’s list had statistical signal consistent 355 

with being novel oncogenes (see Supplemental Table 1).  356 

 357 

Pan-cancer analysis reveals novel rare recurrent fusions expressed in multiple cancer 358 

types 359 

Classically, recurrent gene fusions have been considered to be specific to particular  360 

tumor-types, such as BCR-ABL1 fusions in CML, EWSR1-FLI1 fusions in Ewing’s sarcoma, and 361 

TMPRSS2-ERG fusions in prostate cancers. Next-generation sequencing has revealed 362 

exceptions to these initial findings, such as the existence of BCR-ABL1 fusions in LAML and the 363 

surprising discovery of EWSR1-FLI1 fusions in pancreatic neuroendocrine tumors (Scarpa et 364 

al., 2017).  365 

These examples raise the possibility that within a single cancer type (in the above 366 

example, LAML or pancreatic neuroendocrine tumors) low-prevalence recurrent gene fusions 367 

could be drivers of these specific tumor cases above, and more generally that recurrent fusions 368 

that are rare within a tumor type could drive some cancers. In this scenario, either very high 369 

sample sizes or pan-cancer analysis would be necessary to detect them.  Further, if some of 370 

these fusions were recurrent across a pan-cancer panel, but had low overall prevalence, 371 

surveys of the TCGA datasets by consortia studying a single tumor may have missed them 372 

because such analysis typically involves profiling only one disease. We sought to test if, like 373 
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private fusions, sMACHETE identified rare recurrent fusions that were observed at rate higher 374 

than expected by chance and that would be consistent with being under selection 375 

(Supplemental File). 376 

sMACHETE predicted 100 recurrent gene fusions, indeed far more than would be 377 

expected by chance (Supplemental File). This list includes fusions detected in more than one 378 

cancer and those that involve partners with annotations indicating potential druggability, such as 379 

kinases, chromatin remodeling complexes, and other signaling molecules (e.g., Strawberry 380 

Notched Homolog, SBNO2, in the putative fusion product SBNO2-SERINC2; Supplemental 381 

Table 1).  Another example is a fusion involving the ribosomal protein kinase RPS6KB1-VMP1, 382 

previously identified as a recurrent fusion in breast invasive carcinoma (BRCA) (Inaki, et al., 383 

2011), which was detected for the first time in other cancer types, such as lung adenocarcinoma 384 

(LUAD) and OV (Supplemental Table 1). PAAD, which had previously lacked reports of 385 

recurrent fusions, was found to harbor a group of low-prevalence recurrent fusions when all 386 

cancer types were used to estimate recurrence. Some of these rare recurrent gene fusions were 387 

present across tumor types in addition to PAAD; for example, ERBB2-PPP1R1B was detected 388 

in two total tumors across TCGA including once in PAAD. The examples above represent 389 

fusions that in principle, could conceivably be targetable with current drugs (Supplemental Table 390 

1), pending further tests. They show the potential for fusions, and not just point mutations, to 391 

stratify patients clinically. 392 

 393 

Discussion 394 

Some of the first oncogenes were discovered with statistical modeling that linked 395 

inherited mutations and cancer risk (e.g. Knudson, 1971). The advent of high-throughput 396 

sequencing has promised the discovery of novel oncogenes which can inform basic biology and 397 

provide therapeutic targets or biomarkers (Cibulskis et al., 2013; Lawrence et al., 2014).   398 

However, unbiased, sequencing-based, methodologies for discovery of novel oncogenic 399 

gene fusions have been only partially successful.  Many likely driving, and druggable, gene 400 

fusions have been identified by high-throughput sequencing, but studies reporting them have a 401 

non-tested or non-trivial false positive rate even using heuristic or ontological filters, making 402 

them unreliable for clinical use. These problems also limit their sensitivity in unbiased screens of 403 

massive data sets to discover fusions, novel oncogenes or signatures of evolutionary advantage 404 

for rare or private gene fusions.  405 

 In this paper, we present sMACHETE, a unified, reproducible statistical algorithm to 406 

detect gene fusions in RNA-Seq data set without human-guided filtering. sMACHETE has 407 
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significantly lower false positive rates than other algorithms. These filters have not sacrificed 408 

detection of known true positives. Further, sMACHETE assigns a statistical score that can be 409 

used to prioritize fusions on the basis of statistical support, rather than the absolute read counts 410 

supporting the fusion.  Because of this, like any statistical test, by adjusting the threshold on 411 

scoring, sMACHETE’s discovery rate can be tuned to adjust the trade-off between sensitivity 412 

and specificity, a feature unavailable in other algorithms but of potential scientific and clinical 413 

utility (Hsieh et al., 2017). 414 

The sMACHETE algorithm improves detection of gene fusions that have been missed by 415 

other algorithms’ list of “high confidence” gene fusions. Analysis of these gene fusions uncovers 416 

new cancer biology: evidence that gene fusions are more prevalent than previously thought in 417 

high grade serous ovarian cancers, which lack explanatory oncogenic events, and perhaps are 418 

a contributing driver of these cancers. Unlike other algorithms, sMACHETE finds an enrichment 419 

of fusions in ovarian cancers that is consistent with the extremely high representation of TP53 420 

mutations in these tumors. 421 

Also, sMACHETE allows for the first rigorous and unbiased quantification of gene 422 

fusions in solid tumors, and for tests of whether partners in gene fusions are present at greater 423 

frequencies than due to chance. We find positive results, suggesting that gene fusions, even if 424 

not recurrent themselves, are under selection by the tumor.  Many fusion partners are detected 425 

in more than one cancer type, which suggests that fusions may be lesions like point mutations, 426 

present across tumors rather than tumor-defining, and suggests that by focusing on one tumor 427 

type to detect recurrence, some important cancer biology is lost. Finally, it is also possible that 428 

some fusions identified by sMACHETE, especially those that are local, could be germline 429 

fusions, passengers or perhaps markers of genetic predisposition for cancer risk, topics we 430 

intend to explore further in other work. 431 

While sMACHETE has increased the accuracy of fusion detection, there are two obvious 432 

extensions of this work. First, we could include all samples with known, clinically validated 433 

fusions in sMACHETE’s discovery set, enabling a strictly higher chance of discovering clinically 434 

actionable events.  This might further extend the list of potentially druggable fusions that 435 

sMACHETE finds.  Above, we described fusions between genes where one gene can be 436 

drugged by existing therapies, including ERBB2 (HER2/neu). Further work with a clinical focus 437 

is needed to determine the extent of potentially druggable fusions identified by sMACHETE, 438 

including determinations of whether protein domains targeted by these drugs are included in the 439 

fusion. Second, we have limited our analysis to fusion RNAs that occur at annotated exon-exon 440 

boundaries; we believe that extending the statistical approaches used to discover gene fusions 441 
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may allow us to relax the requirement that gene fusions be detected at annotated exonic 442 

sequences, without sacrificing the false positive rate.  Doing so will provide a more powerful test 443 

of whether genomic instability in cancers results in gene fusions that are a “passenger” of this 444 

instability or that have currently under-appreciated functional and perhaps clinical importance. 445 

 446 

Methods 447 

An enhanced statistical framework for large scale genomics 448 

We ran MACHETE on a discovery set of 739 samples from 22 cancers in the TCGA, 449 

consisting of a large fraction of LAML (n=65, 37% of individuals represented in the TCGA 450 

database), serous ovarian cancer (n=82, 19% of individuals with primary tumors in the 451 

database), pancreatic cancer (n=101, 57% of individuals with primary tumors) and glioblastoma 452 

(n=92, 59% of individuals with primary tumors) and a small fraction of the other cancers (399 in 453 

18 cancers, 6% of individuals with primary tumors profiled by the TCGA). The remaining 454 

samples were designated and used as “testing” data (see Table 1, Supplemental Table 2, Fig. 3 455 

and Supplemental File). As negative controls, we analyzed Illumina Human Body Map data sets 456 

(Table 2) because, as described by the TCGA consortium, samples classified as “Solid Tissue 457 

Normal” in the TCGA data sets are not consistently molecularly normal.  In the discovery step, 458 

due to cost limitations, we deeply sampled a subset of tumors; OV, GBM, and PAAD were 459 

selected as diseases where early detection or new drug targets could have great impact, and 460 

LAML was selected due to its extensively studied cytogenetics.  461 

We constructed Sequence Bloom Trees (SBTs) for the Illumina Body Map data and for 462 

the RNA-Seq data from each primary tumor from ten cancers with the TCGA dataset: LAML, 463 

BRCA, cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), colon 464 

adenocarcinoma (COAD), GBM, LUAD, OV, PAAD, PRAD, and SARC. We queried the SBT 465 

with all fusions nominated in the discovery step that passed a statistical threshold 466 

(Supplemental File).  467 

We used the discovery set to generate a list of fusions passing MACHETE’s statistical 468 

bar (see Supplemental Table 3, Fig. 1), including those fusions nominated by running 469 

MACHETE on negative controls from the Body Map. We then queried all data sets for any 470 

fusions found in any discovery set (see Fig. 1). We estimated the incidence of each fusion in 471 

each sample type (each TCGA disease or Body Map) with SBTs. Next, we used standard 472 

binomial confidence intervals to test for consistency of the rate that fusions were present in the 473 

samples used in MACHETE’s discovery step and the rate that they were found in the SBT. 474 

Fusion sequences that were more prevalent across the entire data set than is statistically 475 
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compatible with the predicted prevalence from the discovery set were excluded from the final list 476 

of fusions (see Fig. 1).  477 

For intuition on why this step is important, consider the scheme in Figure 1: given an 478 

exon-exon junction query sequence that could be generated by sequencing errors convolved 479 

with gene homology or ligation artifacts, SBTs will not consider the alignment profile of all reads 480 

aligning to this junction as MACHETE does, e.g., reads with errors or evidence of other artifacts, 481 

because reads with mismatches with the query sequence are by definition censored by the 482 

SBT.  As a result, the SBT, like other algorithms, can have a high false positive rate due to: (a) 483 

false positives intrinsic to the Bloom filters used in the SBT (Solomon and Kingsford, 2016); (b) 484 

false positive identification of putative fusions due to events such as depicted in Figure 1, even 485 

in the presence of a null false positive rate by the SBT itself (Szabo et al., 2015; Hsieh et al., 486 

2017). False positives as in (b) can arise as follows: if a single artifact (e.g. a ligation artifact 487 

between two highly expressed genes) in a single sample passes MACHETE’s statistical 488 

threshold in the discovery step, this artifact will be included as a query sequence, and the SBT 489 

could detect it a high frequency because the statistical models employed by MACHETE are not 490 

used by the SBT (see Fig. 1). Testing for the consistency of the rate of each sequence being 491 

detected in the discovery set with its prevalence as estimated by SBTs controls for the multiple 492 

testing bias described above (see below and Fig. 1).   493 

See the Supplemental File for more detail about the statistical framework. 494 

 495 

Data availability statement 496 

 497 

Access to the data used in this paper is controlled by the NCI and can be requested by following 498 

the instructions located at https://gdc.cancer.gov/access-data/obtaining-access-controlled-data .  499 

 500 

MACHETE methodology and Cloud Computing Implementation 501 

The MACHETE algorithm was run on 739 samples from the TCGA database using the 502 

Seven Bridges Cancer Genomics Cloud (CGC) platform. For details, see the Supplemental File.   503 

 504 

sMACHETE Methodology: Post-processing of MACHETE output and generation of SBT 505 

queries 506 

 507 

Technical details of the algorithm and analysis are described in the Supplemental File, and the 508 

Supplemental File lists the github sites where the code is available. 509 
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 510 

Calculations for fusion, COSMIC and kinase fusion prevalence. 511 

 512 

For reporting of COSMIC and kinase fusion prevalence in tumors profiled by sMACHETE, SBT 513 

reports, for each query sequence passing sMACHETE thresholds, were generated on a per-514 

tumor basis, with a matrix of sample by fusion presence/absence statistics.  Samples were 515 

included if they were present in the SBT and in the MACHETE discovery set. COSMIC genes 516 

and genes annotated as “involved in a kinase pathway” were defined by the annotations in the 517 

cancer_gene_consensus.csv file downloaded from the COSMIC website and hg19 RefFlat 518 

respectively, implying the chance that a randomly chosen gene would be be annotated with the 519 

word ‘kinase’ or found in the COSMIC file is <3%.  A gene was defined as having the term 520 

“kinase” if its refFlat description included the word “kinase”: 4590 out of 207194 distinct 521 

transcript names with products annotated with the word kinase were identified in this refFlat file; 522 

there are 595 COSMIC genes, out of all human genes. 523 

 524 

Calculations for expected number of recurrent 5’ and 3’ partners. 525 

 526 

As a test of the likelihood of observing our results, we employ a statistical model of the 527 

probability of observing at most the number of repeated genes that we do observe, under the 528 

assumption that the genes in each fusion pair are randomly chosen. For the technical statistical 529 

framework, see the Supplemental File. 530 

 531 

File downloads: 532 

The following files were downloaded on 12/5/2016 from  533 

http://cancer.sanger.ac.uk/cosmic/download 534 

using sftp to download it from: /files/grch38/cosmic/v77/cancer_gene_census.csv 535 

 536 

Hg19 gene annotations were downloaded from the UCSC genome browser using the refFlat 537 

annotation and link:  https://genome.ucsc.edu/cgi-538 

bin/hgTables?hgsid=502825941_NQQWFDm7G51vKlIgkPhbm9a4N3N4&hgta_doSchemaDb=539 

hg19&hgta_doSchemaTable=refLink 540 

 541 

The list of COSMIC fusions is at http://cancer.sanger.ac.uk/cosmic/fusion . 542 

 543 
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Files from ChimeraDB (Lee et al., 2016) were downloaded from  544 

http://203.255.191.229:8080/chimerdbv31/mdownload.cdb on 12/11/2016. 545 

 546 

Mutation rates of the TP53 locus found in each available cancer subtype (51 subtypes) of the 547 

Cancer Genome Atlas database were accessed through the cBioPortal cancer genomics portal 548 

(http://www.cbioportal.org), accessed on July 18, 2017. A subset of this data was used to 549 

generate Figure 4C, a comparison of TP53 mutation rates to fusion/sample for each cancer 550 

subtype.  551 

 552 

Sequence Bloom Tree Methodology 553 

 554 

Sequence Bloom Trees (SBTs, Solomon and Kingsford, 2016), data structures developed to 555 

quickly query many files of data of short-read sequences from RNA-Seq data (and other data) 556 

for a particular sequence, were employed. These structures build on the concept of Bloom 557 

filters. The authors published software, which was subsequently Dockerized and wrapped in the 558 

Common Workflow Language (CWL) for use on the Seven Bridges Cancer Genomics Cloud 559 

pilot (Lau et al.; 2017). The supplemental file contains technical details about the methodology 560 

used. 561 

 562 

Ovarian Tumor Specimen Collection 563 

Ovarian cancer samples were collected following procedures approved by the IRB from the 564 

Fred Hutchinson Cancer Research Center (FHCRC). Samples were (1) collected at initial 565 

debulking surgery using standardized protocols and (2) reviewed by a gynecological research 566 

pathologist to confirm the histological characteristics of the tissue; all tumor samples used in this 567 

article contained at least 70% malignant epithelium. Clinical data for RT-PCR screened samples 568 

are shown in Supplemental Table 4. 569 

 570 

RT-PCR Validation of fusions 571 

  572 

Reverse transcription of RNA  was performed (600 ng of each Ovarian cancer sample and 1 ug 573 

for neg. control HeLa and K562 total RNA) using Moloney Murine Leukemia Virus Reverse 574 

Transcriptase (M-MLV RT) enzyme (Promega) according to manufacturer’s recommendations. 575 

See Supplemental Table 4te for sample information. The reverse transcription was primed with 576 

equal parts of random N6 (PAN facility, Stanford University) at 2 .5 mM final concentration. 577 
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cDNA reaction was diluted 1:10 and used 1 mL/10 mL PCR reaction and run for 40 cycles.  578 

Reactions were run on a 1x TBE 1.75% Agarose gel and imaged using Alpha Innotech 579 

AlphaImagerTM (San Leandro, CA) gel imaging system. PCR-validated fusion transcripts were 580 

further confirmed using Sanger sequencing. PCR primers used and validated PCR sequences 581 

can be found below.  582 

 583 
Primers used and Sanger sequences obtained 584 

For details and primers used, see Supplemental File.  585 

 586 
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Figure 1: Origin of false positives from MACHETE running on hundreds of data sets.  Top left: 767 
MACHETE is designed to use all reads, including those censored by other algorithms, to 768 
generate an empirical p value for each candidate fusion, computed for each data set separately 769 
(Hsieh et al., 2017). Multiple hypothesis testing will result in some fusions passing statistical 770 
thresholds under the null. If a single fusion in a single sample has a significant p-value, the 771 
sequence will be queried by a SBT which does not use statistical models, and the fusion could 772 
be falsely found to be very prevalent. Using confidence intervals based on sampling depth in the 773 
discovery and testing sets, analysis of the the SBT can identify false positives (Supplemental 774 
File). 775 
 776 
Figure 2: cDNA or mapping artifacts result in inclusion of exon-exon junctions from all 777 
permutations of exons within a fixed genomic radius of X1 with all exons in the radius of Y3 in 778 
the MACHETE index.  Some such exon junctions will include degenerate sequences (left). 779 
Because degenerate sequences cannot be mapped uniquely, sMACHETE blinds itself to 780 
detection of fusion RNA containing such highly degenerate sequences (for example, due to Alu 781 
exonization) or with poly(A) stretches at the 5’ end. 782 
 783 
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Figure 3: Left panel: Total runs per cancer type in the sMACHETE discovery set. Right panel: 784 
Number of cancers in discovery set and in Sequence Bloom Trees for those cancers with 785 
Sequence Bloom Trees built. 786 
 787 

Figure 4: (A) and (B): 9 unique fusions called by ChimerSeq are also detected in Body Map 788 
samples by a SBT query, some in all Body Map samples, whereas only 3 fusions are called by 789 
sMACHETE in TCGA tumors, and then found in Body Map samples by a SBT query, and only 790 
one in each sample. All three of these fusions are intrachromosomal, a feature not true of six of 791 
the fusions called by ChimerSeq; (C): Performance of sMACHETE compared to ChimerSeq in 792 
LAML: Each algorithm identifies the same number of gold standard LAML fusions, but among 793 
likely false positives,  ChimerSeq detects 8 while sMACHETE detects none (Supplemental File);  794 
(D): Unique fusions identified across all samples in each TCGA disease type per total samples 795 
analyzed by sMACHETE.  While achieving a significantly lower false positive rate, sMACHETE 796 
has improved sensitivity in some diseases with fractions of fusions detected that are more 797 
consistent with fraction of TP53 mutations in each disease as reported by cBioPortal (Gao et al., 798 
2013). 799 
 800 
Figure 5: (A) and (B:) Relationship between estimated fusion prevalence between discovery set 801 
and test set as quantified by SBT: (A) all fusions and (B): only fusions in ovarian cancer. (C): 802 
Rate of fusion detection in discovery set including those fusions annotated to include COSMIC 803 
genes and the term kinase; (D) more detailed analysis of highly sampled tumors. ~90% of 804 
ovarian cancers in our discovery set have a sMACHETE-called fusion.    805 
 806 
Figure 6: (A) In the reference genome, ITM2B is upstream of RB1 and both genes are 807 
transcribed in the sense orientation.  In Model 1 (L), a genomic change, such as a tandem 808 
duplication, puts the genomic sequence of RB1 upstream of exons of ITM2B. Transcription from 809 
the RB1 promoter results in a pre-mRNA that is spliced into a fusion mRNA.  In Model 2 (R), no 810 
DNA rearrangement occurs, but readthrough transcription from the ITM2B promoter results in a 811 
pre-mRNA that is back-spliced into a circRNA containing exons of RB1 and ITM2B. The 812 
sequenced junction contains 262 nt of RB1 and 78 nts of ITM2B; (B) CPSF6 is transcribed from 813 
chr12 and CHMP1A from chromosome 16. Model for the fusion CPSF6-CHMP1A; sequenced 814 
junction contains 91nt upstream of and 90nt downstream of the fusionf junction. 815 
 816 
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Note that, per correspondence with TCGA, we do not publish positions of the fusions found; 829 
these can be shared with researchers upon establishing, in conversation with TCGA, the correct 830 
protocols. Pan_cancer denotes the total number of samples in which the splice variant of the 831 
fusion is found by the SBT, summing over all SBTs. AbsPos1Pos2Diff is the absolute value of 832 
the difference between position 1 and position 2. MaxFreq denotes the frequency at which the 833 
splice variant appears in the SBT for the disease type. MaxCount is the number of samples in 834 
which the splice variant is found in the SBT for the disease. maxMAFreq and maxCompFreq 835 
refer, respectively, to the frequency of the splice variants as estimated by the SBT per disease 836 
type, in the discovery and test sets, respectively. Note that some fusions could be discovered in 837 
disease A and then found only in the test set for disease B. 838 
 839 

Supplemental Table 2: Sample IDs and Metadata for Samples Analyzed with MACHETE  840 

 841 

Supplemental Table 3: MACHETE outputs used as input to sMACHETE statistical models and 842 
SBT. Note that, per correspondence with TCGA, we do not publish any sample IDs or positions 843 
of the fusions found; these can be shared with researchers upon establishing, in conversation 844 
with TCGA, the correct protocols. AbsPos1Pos2Diff is the absolute value of the difference 845 
between position 1 and position 2.  846 
 847 
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(higher = more mappable)

no more than 6 ‘A’s in the first 
8 bases of downstream exon

prevalence in full data  ≤ upper 
C.I. of prevalence in MACHETE 

subset

sMACHETE 

final fusion junctions

X Y5’ 3’
rationale:

this junction filtered out, “POU5F1” part is unmappable 
(Alu repetitive sequence).
POU5F1:RTCA
CTGAGTAGCTGGGATTACAG :GTGTAAATGCAGACAAAGTT

this junction filtered out, likely due to poly(A) tail rather 
than fusion.  TMEM141:KIAA1984-AS1
GGTAAGATGATGACAGGTCA :AAAAAAAAAGGCGAGAATGT

 many reads for the junction have mate-reads that don’t 
map in a consistent way (“anomaly reads”).

highly expressed genes are more likely to have reads with 
sequence error that, by chance, match as a fusion.

MACHETE assesses likelihood of false match due to read 
quality, junction coverage, etc.

frequency of specific fusion junction sequences can be 
rapidly analyzed in full TCGA dataset using Bloom filter; if 
much higher than prevalence seen in the subset analyzed 
by MACHETE, sequence is likely a false positive (see Fig 1)
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Investigation Disease Type
blca TCGA-BLCA Bladder Urothelial Carcinoma 27 408 NA
brca TCGA-BRCA Breast Invasive Carcinoma 55 1095 1095

cesc TCGA-CESC 27 304 304
coad TCGA-COAD Colon Adenocarcinoma 17 458 458

dlbc TCGA-DLBC 30 48 NA
esca TCGA-ESCA Esophageal Carcinoma 24 184 NA
gbm TCGA-GBM Glioblastoma Multiforme 92 155 155

hnsc TCGA-HNSC 15 502 NA
kich TCGA-KICH Kidney Chromophobe 16 66 NA

kirc TCGA-KIRC 18 533 NA

kirp TCGA-KIRP 18 290 NA
laml TCGA-LAML Acute Myeloid Leukemia 65 178 178
lgg TCGA-LGG Brain Lower Grade Glioma 27 514 NA
lihc TCGA-LIHC Liver Hepatocellular Carcinoma 15 371 NA
luad TCGA-LUAD Lung Adenocarcinoma 22 516 516
lusc TCGA-LUSC Lung Squamous Cell Carcinoma 16 501 NA

ov TCGA-OV 82 422 422
paad TCGA-PAAD Pancreatic Adenocarcinoma 101 178 178
prad TCGA-PRAD Prostate Adenocarcinoma 17 497 497
sarc TCGA-SARC Sarcoma 15 259 259
skcm TCGA-SKCM Skin Cutaneous Melanoma 23 103 NA
stad TCGA-STAD Stomach Adenocarcinoma 17 416 NA
body BodyMap BODYMAP 15 NA 16

Table 1: Number of Samples Analyzed by Machete and sMACHETE, and Total
Number of Cases and Samples in TCGA Data Set

Investigation
Types

Machete
Counts

Number of
Cases with
Primary or

Blood Tumors

Number of
Samples used for

Building Sequence
Bloom Tree

Cervical Squamous Cell
Carcinoma and Endocervical
Adenocarcinoma

Lymphoid Neoplasm Diffuse
Large B-cell Lymphoma

Head and Neck Squamous Cell
Carcinoma

Kidney Renal Clear Cell
Carcinoma
Kidney Renal Papillary Cell
Carcinoma

Ovarian Serous
Cystadenocarcinoma
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Table 2: List of All Body Map Samples Used

Gender Investigation Ethnicity Primary Site Sample Id
60 RNA-Seq female BodyMap Caucasian thyroid ERR030872
19 RNA-Seq male BodyMap Caucasian testis ERR030873
47 RNA-Seq female BodyMap African American ovary ERR030874
58 RNA-Seq male BodyMap Caucasian leukocyte ERR030875

77 RNA-Seq male BodyMap Caucasian ERR030876
73 RNA-Seq male BodyMap Caucasian prostate ERR030877
86 RNA-Seq female BodyMap Caucasian lymph node ERR030878
65 RNA-Seq male BodyMap Caucasian lung ERR030879
73 RNA-Seq female BodyMap Caucasian adipose ERR030880
60 RNA-Seq male BodyMap Caucasian adrenal ERR030881
77 RNA-Seq female BodyMap Caucasian brain ERR030882
29 RNA-Seq female BodyMap Caucasian breast ERR030883
68 RNA-Seq female BodyMap Caucasian colon ERR030884
60 RNA-Seq female BodyMap Caucasian kidney ERR030885
77 RNA-Seq male BodyMap Caucasian heart ERR030886
37 RNA-Seq male BodyMap Caucasian liver ERR030887

Age at
Diagnosis

Experimental
Strategy

skeletal
muscle
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