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ABSTRACT 

Measuring the essentiality of genes is critically important in biology and medicine. Some 

bioinformatic methods have been developed for this issue but none of them can be 

applied to long noncoding RNAs (lncRNAs), one big class of biological molecules. Here 

we developed a computational method, GIC (Gene Importance Calculator), which can 

predict the essentiality of both protein-coding genes and lncRNAs based on RNA 

sequence information. For identifying the essentiality of protein-coding genes, GIC is 

competitive with well-established computational scores. More important, GIC showed a 

high performance for predicting the essentiality of lncRNAs. In an independent mouse 

lncRNA dataset, GIC achieved an exciting performance (AUC=0.918). In contrast, the 

traditional computational methods are not applicable to lncRNAs. As a public web 

server, GIC is freely available at http://www.cuilab.cn/gic/. 
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INTRODUCTION 

Essential genes constitute a small fraction in a genome of an organism. However, these genes 

underpin numerous core biological processes and are indispensable for cell viability. 

Insufficient expression of essential genes will lead to increased vulnerability and 

loss-of-function mutations of essential genes often cause lethal phenotypes (Korona, 2011; 

Peters, et al., 2016). Hence the classification of genes as either essential or non-essential for 

organism survival has a profound influence on the study of molecular basis of various 

biological process (Wang, et al., 2015), disease genes, drug targets, and genome design (Liu, 

et al., 2015). In recent years, efficient gene knockout or knockdown by CRISPR/Cas9 and 

RNAi have been widely used to systematically evaluate the essentiality of genes and 

lncRNAs(Evers, et al., 2016; Morgens, et al., 2016) in whole organisms (Peters, et al., 2016) 

and human cells (Blomen, et al., 2015; Wang, et al., 2015; Wang, et al., 2014; Zhou, et al., 

2014; Zhu, et al., 2016). These studies provided great helps in identifying functionally 

important genes and thus have great potential in discovering new genes for disease therapy 

and diagnosis (Tzelepis, et al., 2016). However, the problem is that these techniques are 

normally time and labor consuming and hard to be applied to mammals in a large-scale.  

Therefore, computational methods have been developed as an effective complement of the 

experimental approaches. Sequence conservation score measured by comparative genomics 

and degree in a protein-protein interaction (PPI) network were proposed to evaluate gene 

essentiality based on the observation that these metrics show significant correlations with 

gene essentiality (Liang and Li, 2007). In addition, machine learning based method was also 

developed (Cheng, et al., 2013; Deng, et al., 2011; Seringhaus, et al., 2006). Moreover, more 
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complex topology features of PPI network are also be used for the prediction of essential 

genes(del Rio, et al., 2009; Gatto, et al., 2015; Li, et al., 2016; Li, et al., 2015; Peng, et al., 

2015). More recently, a nucleotide-based computational method was developed for the 

prediction of human essential genes(Guo, et al., 2017). These methods provided great helps 

for identifying essential protein-coding genes. Nevertheless, these methods require attributes 

discriminating essential genes, e.g. gene expression, conservation, sequence features, gene 

ontology (GO) annotation, protein domain, protein subcellular location, and interaction 

network topological properties. Therefore, the problem is that these methods often fail to 

predict the essentiality of lncRNAs, a big class of RNA molecules identified recently in 

human genome(Iyer, et al., 2015; Zhao, et al., 2016). The reason is that information needed by 

these methods is usually unavailable for lncRNAs because most lncRNAs show low sequence 

conservation, low expression level, and high specificity (Iyer, et al., 2015). Moreover, for 

most of the lncRNAs, information such as the ontology, subcellular location, and interaction 

network topological properties are still not available (Iyer, et al., 2015). In addition, although 

Pheg(Guo, et al., 2017) is designed based on RNA sequences but it did not work well on 

lncRNAs. The reason could be it is based on the CDS sequences of an mRNA. 

Here, we developed GIC (Gene Importance Calculator), an algorithm that can efficiently 

quantify the essentiality of lncRNAs. In addition, besides lncRNAs, GIC also works on 

protein-coding genes. The results showed that GIC has good performance in predicting 

essential protein-coding genes. More importantly, GIC showed a high performance in 

predicting essential lncRNAs, whereas other methods can not be applied to lncRNAs. 

According to our knowledge, GIC is the first computational method to predict essential 
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lncRNAs. GIC web server and the source code are freely available at 

http://www.cuilab.cn/gic.  

MATERIALS AND METHODS 

Datasets of RNA sequences. We downloaded human (GRCh37/hg19; Nov 9, 2014) and 

mouse (GRCm38/mm10; Jan 8, 2015) mRNA sequences deposited in the UCSC Table 

Browser (Karolchik, et al., 2004). Human and mouse lncRNA transcripts were downloaded 

from the NONCODE database (Zhao, et al., 2016) (version 4) and the sequences longer than 

200 nt were retained.  

Datasets of essential genes. We retrieved human and mouse essential protein coding genes 

from DEG(Luo, et al., 2014) (version 10). In addition, we collected 7 mouse essential 

lncRNAs and 7 non-essential lncRNAs with experimental evidence as an independent testing 

set. These lncRNAs were annotated according to the Mouse Genome Informatics (MGI) 

database (Bello, et al., 2015; Bult, et al., 2016) 

(http://www.informatics.jax.org/phenotypes.shtml) and the results from Sauvageau et al.'s 

assays (Sauvageau, et al., 2013). Gene CRISPR/Cas9 scores in the KBM7 cell line were 

obtained from Wang et al.’ study (Wang, et al., 2015). 

RNA sequence features. The first feature is RNA sequence length. Then, with a sliding 

window of length 3 and step size of 1, we counted the number of times each of the 64 

nucleotide triplets (e.g., ACT, GCC) occurred ci and converted it to frequency fi by the 

following formula. 

�� � ��

∑ ��
��
���

, � � 1, 2, � , 64   �1�  
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Besides, we used RNAfold (Hofacker, et al., 1994) (version 1.8.5) to predict RNA secondary 

structure with default parameters and calculated the minimum free energy (MFE) of the 

secondary structure. Given that longer RNAs favor lower energy state, we introduced here 

normalized MEF (nMFE) as follows, 

nMFE � MFE


   �2�  

where L is RNA sequence length. We then mapped the RNA sequence features to their 

corresponding genes. For genes with multiple transcripts, we used the mean value in 

subsequent analysis. The ID mapping files was retrieved from the Ensembl database (Yates, et 

al., 2016) (release 83) with the R/Bioconductor package biomaRt (Durinck, et al., 2009) and 

manually curated.  

Logistic regression model and GIC score. To reduce the number of features, especially 

nucleotide triplet features, we ranked the nucleotide triplet features according to their 

individual AUC and retained only the top five nucleotide triplet features (CGA, GCG, TCG, 

ACG, TCA; the same for both human and mouse) without severe co-linearity problem 

(Pearson correlation < 0.8) with other nucleotide triplet features. Moreover, considering that 

negative samples greatly outnumbered positive samples in the training set, a subset of 

negative samples was randomly selected to keep a 1:1 positive-to-negative ratio in the 

training dataset. Nevertheless, all negative samples were retained in the testing datasets in 

order to reflect the realistic performance of GIC score. After that, logistic regression models 

were constructed and cross validated for human and mouse genes and mouse lncRNAs 

separately. The logistic regression model is that 
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���� � �� � ��
 � ��nMFE � � ���� , � � CGA, GCG, TCG, ACG, TCA  �3�  

where ���� � logit��� � ln �
1 � �   �4�  

βs are the coefficients of corresponding model and p is the conditional probability that a gene 

is essential (Y = 1). Accordingly, we defined the GIC score as the probability output p of the 

corresponding logistic regression model. That is 

GIC score � � � �

������	

   �5�   

Correlation analysis between GIC score and well-established measures of essential genes. 

To explore the relationship between GIC score and several known measures of essential genes, 

we downloaded corresponding datasets described in detail below and got the intersections of 

GIC scores and each of them. To assess gene persistence, we counted the homolog number for 

each gene using data from the Homologene database (NCBI Resource Coordinators., 2016) 

(build 68). To evaluate sequence conservation, we retrieved the dN/dS ratio of each 

one-to-one mouse-human (and human-mouse) ortholog pair from the Ensembl database 

(release 83). The interaction network degrees were derived from the protein-protein 

interactions recorded in the BioGRID database (Stark, et al., 2006) (release 3.4.135). At last, 

genes were sorted by GIC score and median-binned into 200 bins for clearer illustration. 

Comparing the accuracy of human and mouse essential gene prediction. Gene 

essentiality was annotated as a Boolean value based on the corresponding essential gene set 

acquired from DEG. Using the R package pROC (Robin, et al., 2011), the ROC curves were 

plotted and the AUC values for GIC score and the abovementioned measures were calculated 

and compared. Note that only the samples for which all of the above-mentioned measures 
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were available were used during the comparison. 

Cell culture. Human T/G HA VSMC Cells were cultured in DMEM medium supplemented 

with 15% FBS, 2mM L-glutamine, 100 U/mL penicillin, and 10 mg/mL streptomycin. The 

media were renewed twice a week. All experimental procedures were conducted within a CO2 

incubator at a temperature of 37℃, in an atmosphere of 95% air and 5% CO2. 

siRNA knockdown of target mRNAs in T/G HA VSMCs. T/G HA VSMCs (vascular 

smooth muscle cells) with the confluence of 60% were synchronized with serum-free 

starvation for 24 hours, and then transfected with siRNA mixtures against various mRNAs 

(50nM) or scrambled siRNA (50nM) using VigoFect transfection kit (Vigorous Biotechnolog, 

Cat No T001) for 48 hours. The siRNA mixture was transfected into T/G HA VSMC cells 

according to the manufacturer’s siRNA gene silencing protocol. Basically, the siRNAs against 

each target mRNA were the mixture of four sets of sequences according to different part of 

target mRNA. All the siRNA sequences were designed and synthesized by Beijing Biolino Inc. 

All the siRNA sequences against various target mRNAs were provided in Supplementary 

Table S1. The scrambled siRNA was also provided by Beijing Biolino Inc. 

Real time PCR analysis of target mRNAs after siRNA transfection. T/G HA VSMCs were 

transfected with 50nM siRNAs or scrambled siRNAs as detailed above. Forty eight hours 

post transfection, total cellular RNA was extracted using the Trizol reagent according to the 

manufacturer’s instructions. 0.5-1.0μg of total RNA was used for the reverse transcription 

reaction. Quantitative real time PCR was performed using the DNA Engine with Chromo 4 

Detector (MJ Research,Waltham, MA). The relative expression of target genes in various 
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groups were calculated using 2−ΔΔCt methodology. β-actin mRNA was used as housekeeping 

gene in the current study. All primer sequences used for real-time PCR assays were listed in 

Supplementary Table S2. 

Cell viability assay. Cell viability was measured by MTT assay as detailed previously. In 

brief, T/G HA VSMCs were seeded and transfected in 24-well plates. At 48 hours post siRNA 

transfection, MTT was added into the culture medium to the final concentration of 0.5mg/ml, 

and then the cells were incubated for 4 hour at 37°C in incubator. The culture medium was 

removed, and cells were lysed by gently rotating in 250uL DMSO for 30 minutes in darkness 

at room temperature. The absorbance at 490nm was measured using an automatic plate reader. 

In each experiment, 3-4 observations were set and determined for each siRNA mixture. The 

average absorbance reflected cell viability with the data normalized to the control group. 

Flow cytometry analysis of cell apoptosis. At 48 hours post transfection, T/G VSMC cells 

were managed using Apoptosis Detection Kit with 7-AAD according to the manufacturer’s 

protocol (Biolegend). In brief, the cells were washed with ice-cold PBS twice, and then 

resuspended in 100μl of Annexin X binding buffer (10mM HEPES, pH 7.4, 140mM NaCl, 

1mM MgCl2, 5mM KCl, and2.5 mM CaCl2), and then added 1μl FITC Annex V and 1μl 

7-Add viability staining solution. The cells were incubated at room temperature in darkness 

for 15 minutes, and then were analyzed by FACScan analysis with Cellquest software (Becton 

Dickinson). 

Code availability. GIC is implemented in Python and it relies on the external program 

RNAfold. We provide convenient online service on our GIC web server 
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(http://www.cuilab.cn/gic). However, as for large RNAs or batch jobs, we recommend users 

download the source code on this server. Besides, the pre-calculated GIC scores of human and 

mouse genes, including both mRNAs and lncRNAs, are also available on the server. 

RESULTS AND DISCUSSION 

The construction of GIC 

In brief, we managed to construct a logistic regression model (GIC) by integrating several 

features that can be derived from RNA sequences or predicted RNA secondary structures for 

measuring gene essentiality. First of all, the length of a RNA sequence was considered as a 

feature of gene essentiality based on the observation that RNAs encode conserved proteins are 

longer than those encode proteins with less conservation(Lipman, et al., 2002). And then we 

integrated the frequencies of some specific nucleotide triplets into the model. In addition, we 

found mRNA products of essential genes often form more stable structures, which are found 

to influence gene expression (Wan, et al., 2014). Thus, we utilized RNAfold (Hofacker, et al., 

1994) to predict RNA secondary structure and its minimum free energy (MFE). Given that 

longer RNAs normally have lower MFE than shorter RNAs, we normalized MFE by 

sequence length in the model. Finally, given the serious imbalance between the numbers of 

essential genes and non-essential genes, we randomly selected a subset of negative samples 

(non-essential genes) to keep a balanced positive-to-negative ratio in the training dataset and 

trained the logistic regression model based on the balanced dataset. GIC score was defined as 

the probability output of the model.  

Comparison of GIC method with previous computational methods and experimental 
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methods on protein-coding genes 

We first tested GIC score on protein-coding genes. Because we aim to develop a method for 

predicting essential lncRNAs, we did not compare GIC with each existing methods. For 

simplicity, we only tested GIC score with three well established scores, protein network 

degree, dn/ds score, and homolog number score. We observed significant correlations 

between human GIC scores and other computational scores (Figure 1a-c; Spearman ρ = 0.67, 

P = 6.17�10-27 with homolog number, Spearman ρ = �0.92, P = 0 with dN/dS, Spearman ρ = 

0.69, P = 4.51�10-30 with protein interaction network degree, respectively). For mouse genes, 

we got similar results (Figure 2a-c).  

Furthermore, we took the human and mouse essential genes stored in the DEG database as the 

benchmarks to evaluate the accuracy of GIC score. First, we ranked the human and mouse 

genes by GIC score and simply divided them into ten equal groups, respectively. Indeed, 

essential genes were enriched in groups of genes with higher GIC scores for both human 

(Figure 1d; P = 1.31�10-69, Pearson's Chi-squared test) and mouse (Figure 2d; P = 

7.80�10-68, Pearson's Chi-squared test).  

In addition, in recent years, genetics-based methods such as CRISPR/Cas9 have been used for 

identifying essential genes in a specific condition, for example some cancer cell line. To test 

whether CRISPR/Cas9 scores in one condition can be useful in other conditions, we also 

compared GIC score with CRISPR/Cas9 scores. As a result, in terms of performance on the 

area under the receiver operator characteristic (ROC) curve (AUC), GIC score has an AUC of 

0.675), whereas CRISPR/Cas9 scores in KBM7 cell line (Wang, et al., 2015) has an AUC of 
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0.568 (Figure 3a), suggesting that CRISPR/Cas9 scores in one condition could be not useful 

for evaluating the essentiality of genes in other conditions. Moreover, GIC score showed 

competitive performance compared with the three well-established computational scores 

including homolog number (AUC = 0.622, P = 2.76�10-11, bootstrap test), the dN/dS score of 

mouse-human 1-to-1 homolog (AUC = 0.639, P = 2.57�10-5, bootstrap test) and protein 

interaction network degree (AUC = 0.647, P = 1.14�10-3, bootstrap test).  

Performance of GIC method on predicting the essentiality of lncRNAs 

Next, we directly tested if GIC score is feasible to predict essential lncRNAs. To this end, we 

gleaned 14 mouse lncRNAs, of which seven were essential and the others were non-essential 

in mutagenesis assays, as an independent testing dataset (Methods). On this testing lncRNA 

dataset, GIC score showcased an AUC of 0.918 (Figure 3b and Supplementary Table S3). 

The outcome again verified the viability of GIC score. Currently, there is no specific tool for 

essential lncRNA prediction, mainly due to the special characteristics of lncRNAs. Our GIC 

score can measure lncRNA essentiality with RNA sequence only and will serve as a 

promising tool to prioritize functionally important lncRNAs. Given that Pheg also only needs 

sequences as the input data, here we compared GIC with Pheg. For each lncRNA, we first 

inputed its whole lncRNA sequence. Because Pheg works on mRNA CDS regions, we run 

Pheg using the putative maximum CDS sequence, which was predicted using ORF Finder 

(https://www.ncbi.nlm.nih.gov/orffinder/). As a result, Pheg did not achieve a comparable 

performance for both whole sequences (AUC =0.531) and CDS sequences (AUC =0.653, 

Figure 3b). 
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A case study of using GIC to select genes essential in cancer but non-essential in other 

cells 

Genome-level gene knockout in cancer cell lines provides great helps in identifying essential 

genes in given cells (Wang, et al., 2015). These essential genes could be candidate targets for 

cancer therapy. For specificity of therapy, one ideal condition is that these essential genes are 

non-essential in other types of normal cells. This makes it important to identify these genes 

that are essential in given cancer cells but non-essential in other cells, and also those 

non-essential in cancer genes and essential in other cells. To test GIC for such studies, we 

randomly selected 10 genes, which include 5 GIC-predicted essential (among the top 25% 

GIC scores) but CRISPR/Cas9 non-essential genes in the KBM7 cell line (among the bottom 

25% CRISPR/Cas9 scores) (RIMKLA, ATF7IP, PFN3, HIST1H3J and DDIT4, these genes 

were named as GICessential-Cas9nonessential genes here) and 5 GIC-predicted non-essential (among 

the bottom 25% GIC scores) but CRISPR/Cas9 essential genes (among the top 25% 

CRISPR/Cas9 scores) (CBWD3, SLC35B1, CCDC33, DPH6 and ZMAT2, these genes were 

named as GICnonessential-Cas9essential genes here). Because blood vessel is a basic tissue for 

cancer cell survival, we evaluate the effects of the ten genes on VSMCs, which one class of 

key cells for blood vessel. The efficacy of siRNAs treatment on target mRNA levels were 

first determined by real time PCR assays, revealing that siRNAs treatment significantly 

reduced the target mRNA levels by about 60-90% (Figure 4a). For evaluating the essentiality 

of the 10 target mRNAs on cell survival, they were randomly divided into two groups for 

siRNAs transfection to reduce experimental errors. It is also noteworthy that the person who 

performed the experimental validation was blind to the essentiality of these genes during the 
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experiments. MTT assays indicated silencing GICessential-Cas9nonessential genes RIMKLA, 

ATF7IP, PFN3, HIST1H3J and DDIT4 significantly reduced cell viability by 30-50% (Figure 

4b-c). In contrast, among the GICnonessential-Cas9essential genes, silencing of DPH6 reduced cell 

viability by only about 10%, whereas silencing of CBWD3, SLC35B1, CCDC33 and ZMAT2 

had no significant effect on cell viability as evaluated by MTT assays (Figure 4b-c). siRNAs 

against HIST1H3J and SLC35B1 mRNAs exhibited the highest repression efficacy among all 

siRNAs. Silencing GICessential-Cas9nonessential gene HIST1H3J significantly reduced cell viability, 

whereas silencing GICnonessential-Cas9essential gene SLC353H had no significant effect on cell 

viability of human T/G HA VSMCs. siRNAs against other eight target mRNAs exhibited 

comparable silencing efficacy (Figure 4a). Overall, these results strongly indicated that the 

significant reduction in cell viability after silencing GICessential-Cas9nonessential genes is not due 

to repression efficacy of siRNAs (Figure 4a-c). 

To further validate the essentiality of GICessential-Cas9nonessential and GICnonessential-Cas9essential 

genes on cell survival, flow cytometry was performed to analyze the impacts of silencing of 

two GICessential-Cas9nonessential genes, RIMKLA and ATF7IP, and two GICnonessential-Cas9essential 

genes, CBWD3 and CCDC33, on the apoptosis of human T/G HA VSMCs. Silencing 

RIMKLA and ATF7IP markedly increased the proportions of apoptotic cells (51.48±9.38% 

versus 8.08±1.23% (Control) for RIMKLA, and  40.72±7.37% versus 8.08±1.23% (Control) 

for ATF7IP, respectively, P<0.01) (Figure 5a-b). In contrast, silencing CBWD3 slightly 

increased apoptotic cells (14.67±1.02% versus 8.08±1.23%, P<0.05), and silencing CCDC33 

had no statistically significant effect on cell apoptosis when compared with control cells 

(13.43±3.12% versus 8.08±1.23%, P>0.05) (Figure 5a-b). Importantly, there is also 
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significant difference between GICessential-Cas9nonessential and GICnonessential-Cas9essential genes 

(Figure 5b), confirming the results of the above cell viability assays. 

As a comparison, Pheg predicted one of the 5 GICessential-Cas9nonessential genes as essential genes 

and three of the GICnonessential-Cas9essential genes as non-essential genes (Supplementary Table 

S4). 

Discussion 

Predicting gene essentiality is an important issue in bioinformatics but computational methods 

for predicting the essentiality of lncRNAs are still not available. For doing so, here we 

defined GIC (Gene Importance Calculator) score on the basis of sequence information. 

Overall, our data validated the high accuracy of GIC score for predicting essential and 

non-essential genes and lncRNAs. Given that the functions of many human protein-coding 

genes and lncRNAs are still awaiting exploration, our new method provides an effective 

strategy for identifying and characterizing new genes and lncRNAs with important functions, 

which definitely will shed light on the pathogenesis, diagnosis, and therapy of human 

diseases. 

microRNAs (miRNAs) are one class of important small noncoding RNAs. We also tried to 

test GIC on miRNAs. When evaluating GIC score on miRNAs base on two types of 

previously presented scores, miRNA conservation score (Wang, et al., 2010) and miRNA 

disease spectrum width (DSW) score(Qiu, et al., 2012), we found that GIC did not work any 

more, suggesting the GIC method is not feasible for miRNAs. The reason could be miRNA 

sequences are very small, so the nucleotide features derived from protein-coding genes are 
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not feasible for miRNAs any more. Finally, because miRNAs also have many species 

(especially human) specific miRNAs and the number of miRNAs with DSW score is still 

small, the above two scores for miRNAs are not feasible for all miRNAs. So, it is also 

important to develop new computational methods to predict essential miRNAs. 
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Figure Legends 

 

Figure 1. Correlation of GIC score with known measurements of essentiality in human genes. 

(a) Genes with higher GIC scores tend to have more homologs across species. (b) Genes with 

higher GIC scores tend to have slower evolutionary rate as measured by dN/dS ratio. (c) 

Proteins encoded by genes with higher GIC scores tend to have higher degrees in protein 

interaction network. (d) The percentage of human essential genes increases with GIC score. 
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Figure 2. Correlation of GIC score with known measurements of essentiality in mouse genes. 

(a) Genes with higher GIC scores tend to have more homologs across species. (b) Genes with 

higher GIC scores tend to have slower evolutionary rate as measured by dN/dS ratio. (c) 

Proteins encoded by genes with higher GIC scores tend to have higher degrees in protein 

interaction network. (d) The percentage of human essential genes increases with GIC score. 
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Figure 3. Validation of GIC score. (a) ROC curves illustrating the results from human 

essential gene prediction analysis. (b) ROC curves illustrating the results of essentiality 

prediction in an independent mouse lncRNA dataset. 
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Figure 4. siRNA-mediated silencing of target mRNAs on the cell viability of human T/G 

HA VSMCs. (a) The efficacy of siRNA treatment on the repression of target mRNA levels. 

The target mRNA levels were analyzed by real time PCR assays at 48 hours post siRNA 

transfection. N=6, *P<0.05 versus control cells transfected with scrambled siRNAs. (b-c) 

Silencing of target mRNAs on the cell viability. At 48 hours post siRNA transfection, cell 

viability was determined using MTT assay as described in experimental procedure. In every 

experiment, 3-4 parallel observations were set for each siRNA mixture. In panels b and c, 

GIC-predicted essential genes but CRISPR/Cas9 non-essential genes were presented as fill 

bars, whereas GIC-predicted non-essential genes but CRISPR/Cas9 essential genes were 

presented as blank bars. N=4, *P<0.05,**P<0.01 versus control cells transfected with 

scrambled siRNAs. 
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Figure 5. Flow cytometry analysis of apoptosis of human T/G HA VSMCs.  The 

essentiality of two GIC-predicted essential genes but CRISPR/Cas9 non-essential genes and 

two GIC-predicted non-essential genes but CRISPR/Cas9 essential genes in cell survival were 

selected for further validation, respectively. The cells were transfected with siRNAs against 

target mRNAs or scrambled siRNA, and the apoptosis was determined by flow cytometry 

analysis at 48 hours later. (a) Representative images of flow cytometry analysis. (b) 

Quantitative data of apoptosis determined by flow cytometry. N=4, *P<0.05, **P<0.01 versus 

control cells treated with scrambled siRNAs or between two indicated groups. 
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