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Abstract 

Gene expression profiling by high-throughput sequencing reveals qualitative and 
quantitative changes in RNA species at steady-state but obscures the intracellular 

dynamics of RNA transcription, processing and decay. We developed thiol(SH)-linked 
alkylation for the metabolic sequencing of RNA (SLAM-seq), an orthogonal chemistry-
based epitranscriptomics-sequencing technology that uncovers 4-thiouridine (s4U)-

incorporation in RNA species at single-nucleotide resolution. In combination with well-
established metabolic RNA labeling protocols and coupled to standard, low-input, high-

throughput RNA sequencing methods, SLAM-seq enables rapid access to RNA 
polymerase II-dependent gene expression dynamics in the context of total RNA. When 

applied to mouse embryonic stem cells, SLAM-seq provides global and transcript-
specific insights into pluripotency-associated gene expression. We validated the method 

by showing that the RNA-polymerase II-dependent transcriptional output scales with 
Oct4/Sox2/Nanog-defined enhancer activity; and we provide quantitative and 

mechanistic evidence for transcript-specific RNA turnover mediated by post-
transcriptional gene regulatory pathways initiated by microRNAs and N6-

methyladenosine. SLAM-seq facilitates the dissection of fundamental mechanisms that 

control gene expression in an accessible, cost-effective, and scalable manner. 

 

One Sentence Summary: Chemical nucleotide-analog derivatization provides global 

insights into transcriptional and post-transcriptional gene regulation 
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Introduction 

The regulated expression of genetic information imperatively stipulates cellular 
homeostasis and environmental adaptability and its transformation entails human 

diseases, such as cancer1. Underlying these fundamental biological processes are tightly 
regulated molecular events that control the relative kinetics of RNA transcription, 
processing, and degradation. Understanding the molecular basis for gene regulatory 

circuits demands detailed insights into the relative kinetics of RNAs biogenesis and 
degradation in a transcript-specific and systematic manner2. 

With the advent of high-throughput sequencing technologies, several approaches 
have been developed to globally address the kinetics of gene expression at the genomic 

scale. For example, genome-wide analyses of nascent RNAs engaged with 
transcriptionally active RNA polymerase by high throughput sequencing (e.g. GRO-seq, 

PRO-seq, NET-seq) represent powerful methods to investigate transcriptional activity3-5. 
Despite their utility, these approaches are technically challenging and do not 

discriminate functional and processed RNA molecules from transcriptional by-products. 
On the other hand, RNA decay rates are commonly determined by globally interfering 

with RNA polymerase II (Pol II) activity followed by the relative quantification of RNA 
molecules over time6. But due to the global loss of RNAs, the quantification of absolute 

RNA half-lives remains imprecise. Furthermore, inhibiting polymerase II activity 
compromises cell viability and induces major stress responses, triggering secondary 

effects including the selective stabilization of specific transcripts7-10.  

Metabolic RNA labeling approaches that employ the incorporation of nucleotide 

analogs enable tracking of RNA species over time without interfering with cellular 
integrity. Among these, 4-thiouridine (s4U) represents the most widely used nucleotide 
analog to study the dynamics of RNA expression because it is readily imported into 

metazoan cells by equilibrate nucleoside transporters11, and provides unique 
physicochemical properties for thiol-specific reactivity and affinity, which enables the 

biochemical separation by reversible biotinylation [e.g. through N-[6-(Biotinamido)hexyl]-
3´-(2´-pyridyldithio)propionamide (HPDP-Biotin) or biotin-coupled 
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methanethiosulfonates (MTS-Biotin)]12-16. Affinity-based RNA-purification upon s4U-
labeling has been successfully applied to cultured cells of diverse biological and 

organismal origin, as well as in vivo in yeast and metazoan model organisms, including 
insects and mammals, using either 4-thiouridine or 4-thiouracil upon metabolic 

activation by uracil phosphoribosyltransferase (UPRT)12,13,17-19. However, like any 
biochemical separation method, the underlying protocols are laborious, require ample 

starting material, and typically encounter the problem of low signal-to-noise 
performance, in part because of limited biotinylation efficiency15. Furthermore, the 

analysis of labeled RNA species by sequencing requires extensive controls in order to 
provide integrative insights into gene expression dynamics and fails to report global 

effects unless spike-in strategies are applied 16,20. Alternative concepts for the direct 
identification of nucleotide analogs by sequencing emerge from recent 

epitranscriptomics-technologies that uncover RNA modifications by orthogonal 
chemistry and sequencing, but current methods are incompatible with biologically inert 

nucleotide-analogs (i.e. s4U) and fail to report absolute stoichiometry21,22. 

Here, we report thiol(SH)-linked alkylation for the metabolic sequencing of RNA 

(SLAM-seq), an orthogonal chemistry approach that uncovers s4U-incorporation events 
at single-nucleotide resolution by reverse-transcription-dependent thymine-to-cytosine-

conversions in a high-throughput sequencing-compatible manner. By combining thiol-
linked alkylation with s4U-metabolic RNA labeling in mouse embryonic stem cells 
followed by mRNA 3´ end sequencing, SLAM-seq provides global and transcript-specific 

insights into RNA polymerase II-dependent, pluripotency-associated gene expression 
and its regulation at the transcriptional and post-transcriptional level. SLAM-seq 

provides a powerful tool for the dissection of fundamental biological mechanisms that 
control the implementation of genetic information. 
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Results 

Detection of 4-thiouridine by sequencing 

To provide rapid and direct experimental access to metabolically labeled RNA by 

sequencing, we developed a chemical-derivatization approach for 4-thiouridine (s4U), a 
nucleotide-analog widely used for in vivo and ex vivo RNA labeling (Fig.1). To this end, 

we employed the primary thiol-reactive compound iodoacetamide (IAA), which 
covalently attaches a carboxyamidomethyl-group to s4U by nucleophilic substitution 

(Fig.1a). Quantitative s4U-alkylation was confirmed by a shift in the characteristic 
absorbance spectrum of 4-thiouracil from ~335 nm to ~297 nm (Fig.1b)23. Under optimal 
reaction conditions (Supplementary Fig.1), absorbance at 335 nm decreased 50-fold 

compared to untreated 4-thiouracil, resulting in complete (³98%) alkylation within 15 min 

(Fig.1c and Supplementary Fig.1). Mass spectrometry analysis of thiol-specific alkylation 
in a ribose-context confirmed these derivatization-efficiencies (Fig.1d, e, and 

Supplementary Fig.2). Because quantitative identification of s4U by sequencing 
presumes that reverse transcriptase (RT) passes alkylated s4U-residues without drop-

off, we determined the effect of s4U-alkylation on RT-processivity in primer extension 
assays (Fig.1f). We did not observe a significant effect of s4U-alkylation on RT 

processivity when compared to a non-s4U-containing oligo with identical sequence 
(Fig.1g and Supplementary Fig.3). To evaluate the effect of s4U-alkylation on RT-directed 

nucleotide incorporation, we isolated the full-length products of primer extension 
reactions, PCR-amplified the cDNA and subjected the libraries to high-throughput 

sequencing (Fig.1h, i, and Supplementary Fig.4). While the presence of s4U prompted a 
constant ten to eleven percent T>C conversions already in the absence of alkylation 

(presumably due to base-pairing variations of s4U-tautomeres), s4U-alkylation increased 
T>C conversions by 8.5-fold, resulting in a >0.94 conversion rate (Fig.1i). Importantly, 
iodoacetamide-treatment leaves conversion rates of any given non-thiol-containing 

nucleotide unaltered (Supplementary Fig.4c). We concluded that iodoacetamide 
treatment followed by reverse transcription specifically identifies s4U-incorporations in 

RNA at single-nucleotide resolution by sequencing at >90% efficiency. 
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SLAM-seq quantifies s4U-labeled transcripts in mES cells 

To employ thiol-linked alkylation for the metabolic sequencing of RNA (SLAM-

seq; Fig.2a), we subjected mouse embryonic stem (mES) cells to s4U-labeling at 100 µM, 
a concentration far below the EC50 toxicity value of s4U in mES cells (882 µM after 
repeated exposure of mES cells to s4U in 3h intervals for 24 h; Supplementary Fig.5). 

After metabolic RNA labeling for 24 h, we prepared total RNA followed by thiol-alkylation 
and 3´ end mRNA sequencing (Quant-seq). Quant-seq provides rapid and quantitative 

access to mRNA expression profiles from low quantities of total RNA (0.5-500 ng)24, by 
generating Illumina-compatible libraries of the sequences close to the 3´ end of 

polyadenylated RNA (Fig.2b, Supplementary Fig.6). In contrast to other mRNA-
sequencing protocols, only one fragment per transcript is generated, which corresponds 

to polyadenylated mRNA 3´ end tags (Supplementary Fig.6), rendering normalization of 
reads to gene length obsolete. This results in accurate, highly-reproducible, and strand-

specific gene expression values (Supplementary Fig.6)24. Furthermore, 3´ end 
sequencing enables the cell-type-specific re-evaluation of UTR-annotations to conduct 

mRNA 3´ isoform-specific expression analysis (Supplementary Fig.7). Upon generating 
SLAM-seq libraries through the Quant-seq protocol from total RNA of mES cells 24h 

after s4U metabolic labeling, we observed a strong accumulation of T>C conversions 
when compared to libraries prepared from total RNA of unlabeled mES cells (Fig.2b). 

Transcriptome-wide alignment of reads to mRNA 3´ ends confirmed this observation 
(Fig.2c): In the absence of s4U metabolic labeling, we observed a median rate of ≤0.1% 

for any given conversion, consistent with Illumina-reported sequencing error. Metabolic 
labeling with s4U resulted in a statistically significant (p<10-4, Mann-Whitney test), >50-
fold increase in T>C conversion rates (Fig.2c), which distributed evenly across the 

covered genomic regions (Fig.2d, and Supplementary Fig.8). In contrast, non-T>C 
conversions remained below the expected sequencing error rates (Fig.2c). Importantly, 

treatment of total RNA with iodoacetamide in the absence of metabolic labeling did not 
affect quantitative gene expression analysis (Supplementary Fig.8d). 
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Together with the fact that s4U incorporation measured by mass spectrometry in 
poly(A)-enriched RNA and SLAM-seq were comparable even after shorter labeling times 

(i.e. 6h, Supplementary Fig.9), these analyses confirm that SLAM-seq provides robust 
access to s4U-incorporation events in mRNA following s4U-metabolic RNA labeling in 

cultured cells.  

 

Measuring the polyadenylated transcriptional output in mES cells 

Steady-state gene expression is dictated by the relative contributions of the rate 

of transcription and RNA stability, two parameters that cannot be derived from standard 
RNA sequencing approaches. To test if SLAM-seq provides quantitative access to the 

polyadenylated transcriptional output, we subjected mES cells to 45 min s4U-pulse 
labeling (final conc.:100 µM s4U) followed by total RNA extraction, alkylation, and mRNA 

3´ end library preparation (Fig.3a). We approximated the number of molecules that were 
made within the short timeframe of labeling by inspecting background-error-subtracted 

T>C conversion-containing reads for individual transcripts. Indeed, initial inspection of 
selected transcripts with comparable steady-state abundance (~100 cpm) revealed 

transcript-specific differences in the number of recovered T>C reads (Fig.3b): While high 
levels of T>C reads were recovered for the ES cell-specific transcription factor Sox2, 

and the inherently instable primary microRNA transcript from the miR-290-295 cluster, 
the house-keeping transcript Gapdh associated with fewer T>C reads, presumably 

because its accumulation to high steady-state expression levels is achieved by high 
transcript stability (Fig.3b). (A global overview of transcriptional output measurements by 

SLAM-seq is provided in Supplementary Table 1.)  

Transcriptional output by Pol II is regulated by transcription factors that bind cis-
acting regulatory elements known as enhancers to recruit coactivators and Pol II to target 

genes25. In ESCs the pluripotent state is largely governed by a small number of master 
transcription factors, including Oct4, Sox2, and Nanog, which drive the expression of 

target genes necessary to maintain the ESC state and positively regulate their own 
promoters, forming an interconnected auto-regulatory loop (Fig.3c)26. Transcriptional 
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output measurements by SLAM-seq revealed that Oct4/Sox2/Nanog target genes 
produced overall a larger number of T>C conversion containing reads in the s4U-pulse 

experiment, confirming their high transcriptional activity (Fig.3d, Supplementary Table 
1). To connect these observations to molecular principles of transcriptional gene 

regulation, we correlated the measured transcriptional output to proximal enhancer loci 
(Fig.3e), which were classified by their association with the transcription factors 

Oct4/Sox2/Nanog (OSN enhancer; OSN), as previously described27. Transcripts derived 
from the 2029 expressed genes (>5cpm steady-state) with proximal OSN occupancy 

produced significantly higher levels of T>C reads upon pulse labeling when compared 
to 4994 genes without proximal OSN enhancer (Mann-Whitney test, p<10-4). A subset of 

enhancers in mES cells were previously described to form arrays of concatenated 
regulatory elements (aka “super” or strong enhancer, SE), with unusually strong 

accumulation of transcriptional coactivators, specifically Mediator27,28. In fact, the 156 
genes in the proximity of such strong enhancers exhibited highest transcriptional output, 

significantly off-set from typical enhancers in our SLAM-seq measurements (Mann-
Whitney test, p<10-4, Fig 3e). In contrast, only the genes proximal to strong enhancers 

associated with above average expression at steady-state (Supplementary Fig.10). We 
concluded that SLAM-seq provides a quantitative readout for enhancer activity-

associated transcription in mES cells.  

Together with the fact that the obtained transcriptional output measurements 
significantly correlated with data derived from global nuclear run-on experiments 

(Spearman’s correlation rs=0.41, p<10-15, Supplementary Fig.11)29, we concluded that 
short s4U-pulse labeling in combination with SLAM-seq and mRNA 3´ end sequencing 

enables to uncouple the immediate transcriptional output from stability effects to directly 
measure the functional Pol II-derived transcriptional activity at the genomic scale. The 

method therefore provides a rapid and scalable approach to study transcriptional gene 
regulatory circuits in mammalian cells. 
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Global and transcript-specific mRNA stability in mES cells  

To apply SLAM-seq for direct measurements of mRNA transcript stabilities we 
subjected mES cells to s4U metabolic RNA labeling (100 µM s4U) for 24 h, followed by 

washout and chase using non-thiol-containing uridine, and prepared total RNA at various 
time points along the chase (0h, 0.5h, 1h, 3h, 6h, 12h, and 24h). Total RNA was then 
subjected to alkylation and mRNA 3´ end sequencing (Fig.4a). Inspection of candidate 

genes revealed constant steady-state expression across the whole time-course (Fig.4b, 
all reads). In contrast, T>C-conversion containing reads decreased over time in a 

transcript-specific manner (Fig.4b, T>C reads). After calculating the background-
subtracted, U-content- and coverage-normalized T>C conversion rate for each 

transcript at every time point relative to 0h chase, normalized T>C conversion rates fit 
well to single-exponential decay kinetics, enabling the robust determination of 

polyadenylated transcript half-lives (t½). As expected, RNA stabilities differed by more 
than one order of magnitude among individual transcripts (Fig.4c). A short half-life was 

observed for the primary miRNA transcript of the miR-290-295 cluster (t½=0.8h), most 
certainly because it is subjected to rapid co-transcriptional processing by the RNase III 

enzyme Drosha in the nucleus30. To validate these results globally, we first determined 
the relative steady-state gene expression profiles along the chase experiment and 

detected high overall correlation (Spearman’s correlation rS>0.9), while correlations 
between the abundance of T>C conversion containing transcripts and steady-state 

decreased over time (Fig.4d top). This was expected, since transcript-specific stabilities 
are not dependent on steady-state abundance. By fitting the data of 8405 transcripts 

with a steady-state expression cutoff of >5 reads per million to single-exponential decay 
kinetics, we determined a median mRNA half-life of 3.9h, corresponding to a cell-cycle 
normalized half-life of 4.3h (Fig.4d left, Supplementary Table 2). These measurements 

fall within the range of previously determined mRNA stabilities in mammalian cells, 
ranging in median half-life from 3.4h to 10h, depending on cell type and experimental 

technique6.  
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Previous genome-wide investigations of mRNA stability proposed a close 
relationship between transcript-specific mRNA half-life and its physiological function1,18. 

We therefore ranked the 6665 transcripts for which half-life was determined at high 
accuracy (r2>0.6) according to their relative stability and performed gene ontology 

enrichment analysis for the 666 most or least stable mRNAs (Fig.4d right panel). 
Transcripts with short half-life significantly enriched for regulators of Pol II-dependent 

transcription (p<10-3), while stable mRNAs associated with the GO terms translation 
(p<10-14), respiratory electron transport (p<10-9) and oxidative phosphorylation (p<10-12). 

Together with gene set enrichment analyses (Supplementary Fig.12), SLAM-seq 
measurements confirmed that transcripts encoding proteins with house-keeping 

function, such as protein synthesis or respiration, tend to decay at low rates, perhaps 
reflecting the evolutionary adaptation to energy constraints. In contrast, transcripts with 

a regulatory role, such as transcription factors or cell-cycle genes, tend to decay faster, 
most certainly because control over the persistence of genetic information facilitates 

adaptation to environmental changes1.  

We also examined global relationships between transcriptional output, mRNA 

stability, and steady-state gene expression in mES cells as determined by SLAM-seq 
pulse and pulse/chase experiments (Supplementary Fig.13): We found that transcript 

biogenesis rates and mRNA half-life both positively correlated with steady-state gene 
expression with correlation coefficients of 0.57 and 0.43, respectively. In contrast, the 
rates of mRNA biogenesis did not positively correlate with mRNA half-life (r=-0.07), but 

showed high correlation with mRNA decay rates (r=0.66). These results agree with a 
transcript-specific contribution of both mRNA synthesis and decay to the establishment 

of steady-state gene expression in mES cells, hence validates the applicability of SLAM-
seq to studying both transcriptional and post-transcriptional gene regulatory 

mechanisms. 

Together with the fact that mRNA half-life measurements showed an overall good 

correlation with mRNA stabilities determined in mES cells after transcription-inhibition 
using Actinomycin D (r=0.77, Supplementary Fig.14), we concluded that s4U-
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pulse/chase labeling in combination with SLAM-seq and mRNA 3´ end sequencing 
provides rapid access to global and transcript-specific mRNA stability. 

 

SLAM-seq uncovers molecular determinants of mRNA stability 

To further validate SLAM-seq, we performed mechanistic studies on two specific 
post-transcriptional gene regulatory pathways with well-established biological functions 

in mES cells that have previously been implicated in transcript-specific mRNA decay: 

First, we focused on microRNAs (miRNAs), which act as key regulators of gene 

expression in a variety of biological contexts31. In mES cells, they contribute to cell state 
maintenance and transitions by tuning the expression of ES cell transcripts and 

promoting their clearance during differentiation26. At the molecular level, miRNAs act as 
guides for ribonucleoprotein complexes that target complementary sites, usually within 

the 3´ UTR of mRNAs31. Target-binding is primarily mediated via the miRNA seed 
sequence, encompassing nucleotides two to seven or eight when counted from the 

miRNA 5´ end. MicroRNAs elicit their function by repressing translation and/or promoting 
mRNA decay, although the relative contribution of repressive modes remains a matter 

of debate and may vary in different biological contexts (Fig.5a) 32. To estimate the effect 
of miRNAs on mRNA stability in mES cells, we first determined the general association 

of miRNA targets with mRNA stability in wild-type cells by inspecting half-life of 
transcripts harboring in their 3´ UTR target sites for the miR-291-3p/294-3p/295-3p/302-

3p and miR-292a-3p/467a-5p-family (in the following referred to as miR-291a-family) 
(Fig.5b). Members of the miR-291a-family share the same seed sequence and target-

repertoire, and derive from the ESC-specific miR-290-295 cluster that gives rise to more 
than half of all small RNAs expressed in this cell type (Supplementary Fig.15). With a 
median half-life of 2.9h (n=1450), miR-291a-family targets were significantly less stable 

compared to transcripts that contained no target sites (t½=4.0h; n=5095; KS-test, p<10-

15; Fig.5b). Transcripts with conserved sites exhibited even shorter half-life (t½=2.6h; 

n=50; Fig.5b). To confirm the direct contribution of miRNAs to transcript destabilization, 
we determined changes in mRNA half-life by s4U-pulse labeling followed by SLAM-seq 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 17, 2017. ; https://doi.org/10.1101/177642doi: bioRxiv preprint 

https://doi.org/10.1101/177642


 12 

in mES cells depleted of the core miRNA biogenesis factor Exportin-5 (Xpo5) by 
CRISPR/Cas9 genome engineering (Fig.5c, Supplementary Fig.16a, b). Compared to 

wild-type cells, depletion of Xpo5 significantly decreased overall miRNA levels by more 
than 90%, and miR-291a-family members by more than 95%, as determined by small 

RNA sequencing (Student’s t-test p<10-4, Fig.5d) and confirmed by Northern 
hybridization (Supplementary Fig.16c). Consistent with a function of miRNAs in triggering 

mRNA decay, we observed a significant increase in relative mRNA stability for targets of 
the miR-291a-family when compared to transcripts containing no target site (KS-test, 

p<10-15 and p<10-4 for all or conserved sites, respectively; Fig.5e). Notably, the degree 
of de-repression followed previously established rules for miRNA targeting (Fig.5a and 

f)31: While each site-type responded to Xpo5-depletion with a significant increase in 
mRNA stability relative to untargeted transcripts (KS-test, p<10-8), 6mer target sites 

exhibited the weakest effects, followed the two 7mer site types (Fig.5f). 8mer sites 
showed strongest de-repression (Fig.5f). Finally, by inspecting target mRNAs of less 

abundant miRNA families we confirmed that miRNA function, as determined by target 
mRNA stabilities in wild-type mES cells and relief of repression upon depletion of Xpo5, 

is directly dependent on small RNA abundance (Supplementary Fig.17), as described 
previously 33,34. In summary, these data provide quantitative evidence for miRNA-

mediated mRNA decay in mES cells and validate SLAM-seq as a sensitive tool to study 
the molecular basis underlying the fine-tuning of mRNA expression levels by miRNAs.  

Second, we focused on N6-methyladenosine (m6A), the most abundant internal 

modification in mammalian mRNA, implicated in the regulation of various physiological 

processes35,36.  In ESCs, m6A facilitates the resolution of naïve pluripotency towards 
differentiation37,38. At the mechanistic level, the m6A mark impinges on various aspects 

of mRNA processing, including mRNA stability39 (Fig.5g). To estimate the effect of m6A 
on mRNA stability in mES cells, we first determined the general association of m6A 

targets, as mapped previously by m6A-RNA-immunoprecipitation and sequencing37, with 
mRNA stability in wild-type cells. With a half-life of 3.1h, m6A-containing transcripts 

(n=3492) were significantly less stable compared to naïve transcripts (t½=4.6h, n=3173, 
KS-test, p<10-15, Fig.5h). N6-methyladenosine marks do not distribute evenly within 
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mRNAs but are enriched in long exons, near stop codons, and in 3′ untranslated regions 
(UTRs), although m6A also occurs in the coding region (CDS) and 5′ UTR40 (Fig.5i top). 

We therefore investigated the relationship between the position of m6A within targeted 
mRNAs and its impact on RNA decay. We found that mRNAs containing m6A exclusively 

in the CDS (n=545) or in the 3´ UTR (n=2093) were significantly less stable compared to 
naïve transcripts (KS-test, p<10-15, Fig.5i bottom). In contrast, mRNAs that contained 

m6A exclusively in the 5´ UTR (n=88) were not less stable compared to naïve transcripts 
(KS-test, p>0.05, Fig.5i). To confirm the causal contribution of m6A to transcript 

destabilization we determined changes in mRNA half-life by s4U-pulse labeling followed 
by SLAM-seq in mES cells depleted of Mettl3, the catalytic subunit of the m6A RNA 

methylation complex, which resulted in the co-depletion of its RNA-binding partner 
protein Mettl14 (Fig.5j and Supplementary Fig.16d, e)39. Consistent with a direct and 

position dependent impact of m6A on mRNA decay, we observed a significant increase 
in relative mRNA stability for transcripts containing m6A in the CDS or 3´ UTR (KS-test, 

p<10-15) but not in the 5´ UTR (p>0.05; Fig.5k). Similar results were obtained when re-
investigating recently described m6A profiling data in mES cells (Supplementary Fig.18)41. 

Taken together, our results provide quantitative evidence for m6A-mediated mRNA 
decay in mES cells and validate SLAM-seq as a sensitive method to study the function 

of chemical RNA modifications in RNA decay. 
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Discussion 
 

Recent efforts in decoding RNA modifications led to the emergence of 
epitranscriptome sequencing technologies profiling ribonucleotide modifications on a 
genomic scale 21,22. Here, we present a novel orthogonal chemistry-based sequencing 

strategy for the identification of 4-thiouridine (s4U), which is widely used as synthetic 
nucleotide-analog for in vivo, ex vivo and in vitro RNA labeling and represents a natural 

base modification in eubacterial and archaeal tRNA12-16,42. We show that chemical 
derivatization of s4U by thiol-linked alkylation induces reverse-transcriptase-dependent 

T>C conversions in sequencing data at single-nucleotide resolution and with a recovery 
rate of ≥90% (Fig.1 and Supplementary Fig. 9). At the same time, error rates in high-

throughput sequencing approaches, e.g. using the Illumina platform, are low (<10-3, Fig. 
2c), resulting in an overall signal-to-noise ratio of >900:1, which represents a significant 

improvement over previously described chemistries that are typically employed for 
chemo-selective s4U-enrichment by reversible biotinylation15. 

By combining thiol-linked alkylation with s4U-metabolic RNA labeling in mouse 
embryonic stem cells, we show that SLAM-seq provides rapid access to intracellular 

kinetics of RNA biogenesis and decay in a global and transcript-specific manner (Fig.3,4 
and 5). To this end we combined SLAM-seq with mRNA 3´ end sequencing (Quant-seq), 

a rapid workflow for the profiling of polyadenylated RNA polymerase II transcripts24. This 
approach provides several advantages with important practical and conceptual 

implications: (1) The specific sampling of poly-adenylated RNA species enables to assign 
kinetics to functional, fully processed RNA polymerase II transcripts (Fig.2 and 
Supplementary Fig.6). (2) In combination with Quant-seq, SLAM-seq provides access to 

mRNA 3´ isoform-specific expression-dynamics depending on polyA-site usage that 
may vary in different cell types (Supplementary Fig. 7). (3) Because mRNA 3´ end 

sequencing produces one fragment per transcript, downstream data analysis is 
facilitated by eliminating the requirement to normalize for transcript length 

(Supplementary Fig.6). (4) Quant-seq produces highly reproducible results from as little 
as 100 pg total RNA without requirement for rRNA depletion, hence provides access to 
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cellular systems for which starting material is limiting24. (5) High sequencing coverage 
across inherently U-rich 3´ UTRs facilitates the robust quantification of T>C conversions. 

Note, that Quant-seq restricts gene expression analysis to RNA polymerase II transcripts 
and fails to differentiate transcript variants such as splice-isoforms. In future, alternative 

sequencing methods may augment the applicability of SLAM-seq, because s4U-
identification by sequencing is in principle compatible with any RNA library preparation 

method that involves a reverse transcription step.  
Studying intracellular RNA kinetics by s4U-metabolic RNA labeling requires general 

and method-specific considerations to be taken into account: While s4U is absent from 
metazoan cellular RNA and biologically inert unless exposed to UV-light, s4U-

incorporation was previously linked to rRNA processing defects in human cancer cells 
43. Because s4U-uptake can vary between cell types, careful assessment of cell-type-

specific toxicity is imperative to meet s4U-labeling conditions that do not affect gene 
expression or cell viability (Supplementary Fig.5)13,44. In mES cells non-toxic 

concentrations of 100 µM s4U result in a median s4U-incorporation of 2.29% across 8408 
transcripts upon long-term metabolic labeling (i.e. 24h), corresponding to one s4U 

incorporation in every 43 uridines at steady-state labeling conditions (Fig. 2c and 
Supplementary Fig. 8c). Considering the U-content of mRNA 3´ UTRs (~31% in mES 

cells), SLAM-seq recovers each s4U-labeled transcript at a probability of up to 35% or 
70% in single-read 50 or 100 sequencing reactions, respectively, which enables labeled-
transcript identification even in short s4U pulse labeling conditions (Fig.3). Furthermore, 

the ability to differentiate labeled from unlabeled transcripts in the context of total RNA 
provides rapid access to transcript-specific labeling stoichiometry, hence circumvents 

the need for spike-in strategies to determine biogenesis and turnover rates16,20. Note, 
that the ability to determine de novo synthesized transcripts will depend on (1) the s4U 

uptake kinetics of the chosen cellular system, (2) the overall transcriptional activity of the 
cell type and (3) the library sequencing depth. Hence, these parameters need to be taken 

into account when designing a SLAM-seq experiment, particularly when employing short 
s4U pulse labeling, where sequencing depth demands adjustments to the given cellular 

parameters. Furthermore, s4U-tagging approaches (i.e. 4sU-seq or TT-seq) may provide 
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some advantage over SLAM-seq when analyzing transient RNA species that escape 
detection by standard RNA sequencing approaches16.  

Finally, we compared SLAM-seq extracted rates to existing published estimates. We 
compared transcriptional output measurements generated by SLAM-seq to GRO-seq 

data and found a significant correlation for RNA polymerase II transcripts in mES cells 
(Supplementary Fig. S11)29. Median mRNA half-life in mES cells (4.3 h; Figure 4d) falls 

within the range of previously determined mRNA stabilities in mammalian cells, ranging 
in median half-life between 3.4h and 10h, depending on cell type and experimental 

technique (Tani et al., 2012). Furthermore, mRNA stabilities derived from SLAM-seq 
measurements exhibit an overall good correlation with half-life determined by global 

transcriptional inhibition (Supplementary Fig.14), and recapitulate previously proposed 
relationships between mRNA stability and its physiological function (Fig. 4d and 

Supplementary Fig.12)1.  
In summary, SLAM-seq enables cost-effective insights into intracellular RNA kinetics 

at unprecedented accessibility, efficiency and scalability, hence represents a powerful 
tool for the dissection of fundamental biological mechanisms that control metazoan gene 

expression. 
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Online Methods 

 

Carboxyamidomethylation of s4U 

If not indicated otherwise, carboxyamidomethylation was performed under standard 
conditions (50% DMSO, 10 mM iodoacetamide, 50 mM sodiumphosphate buffer pH8, 

for 15 min at 50˚C) using either 1 mM 4-thiouracil (Sigma), 800 µM 4-thiouridine (Sigma), 
or 5 – 50 µg total RNA prepared from s4U metabolic labeling experiments. The reaction 

was quenched by addition of excess DTT. 
 

Adsorption measurements 

1mM 4-thiouracil was incubated under optimal reaction conditions (10mM 

iodoacetamide, 50% DMSO, 50 mM sodiumphosphate buffer pH8, for 15 min at 50˚C) if 
not indicated otherwise. Reaction was quenched by the addition of 100 mM DTT and 
adsorption spectra were measured on a Nanodrop 2000 instrument (Thermo Fisher 

Scientific), followed by baseline subtraction of adsorption at 400 nm. 
 

Mass Spectrometry 

40 nmol 4-thiouridine were reacted in the absence or presence of 0.05, 0.25, 0.5 or 5 

µmol iodoacetamide under standard reaction conditions (50 mM sodiumphosphate 
buffer, pH 8; 50 % DMSO) at 50°C for 15 minutes. The reaction was stopped with 1% 

acetic acid. Acidified samples were separated on a Ultimate U300 BioRSLC HPLC 
system (Dionex; Thermo Fisher Scientific), employing a Kinetex F5 Pentafluorophenyl 

column (150 mm x 2.1 mm; 2.6 µm, 100 Å; Phenomenex) with a flow rate of 100 µl/min. 
Nucleosides were on-line analyzed using a TSQ Quantiva mass spectrometer (Thermo 

Fisher Scientific) after electrospray ionization with the following SRMs: 4-Thiouridine m/z 
260 → 129, and alkylated  4-Thiouridine m/z 318 → 186. Data were interpreted using the 

Trace Finder software suite (Thermo Fisher Scientific) and manually validated. 

To determine s4U incorporation events in polyadenylated or total RNA by Mass 
Spectrometry, total RNA was either subjected to oligo(dT) enrichment using 

Dynabeads® Oligo(dT)25 (Ambion) following manufacturer’s instructions to purify 
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polyadenylated RNA or directly enzymatically degraded to monomeric ribonucleosides 
as described previously prior to Mass Spectrometry analysis45. 

 

Primer extension assays 

Primer extension assays were essentially performed as described previously46. Briefly, 
template RNA oligonucleotides (5L-let-7-3L or 5L-let-7-s4Up9-3L; Dharmacon; see 

Supplementary Table 3 for sequences) were deprotected according to the instructions 

of the manufacturer and purified by denaturing polyacrylamide gel-elution. 100 µM 
purified RNA oligonucleotides were treated with 10 mM iodoacetamide (+IAA) or EtOH 

(-IAA) in standard reaction conditions (50 % DMSO, 50 mM sodiumphosphate buffer, 
pH8) for 15 min at 50˚C. The reaction was stopped by addition of 20 mM DTT, followed 

by ethanol precipitation. RT primer (see Supplementary Table 3 for sequence) was 5´ 

radiolabeled using g-32P-ATP (Perkin-Elmer) and T4-polynucleotide kinase (NEB), 

followed by denaturing polyacrylamide gel-purification. 640 nM g-32P-RT primer was 

annealed to 400 nM 5L-let-7-3L or 5L-let-7-s4Up9-3L in 2 x annealing buffer (500 mM 

KCl, 50 mM Tris pH 8.3) in a PCR machine (3 min 95˚C, 30 sec 85˚C Ramp 0.5˚C/s, 5 min 
25˚C Ramp 0.1˚C/s). Reverse transcription was performed using Superscript II 

(Invitrogen), Superscript III (Invitrogen), or Quant-seq RT (Lexogen) as recommended by 
the manufacturer. For dideoxynucleotide reactions, a final concentration of 500 µM 

ddNTP (as indicated) was added to RT reactions. Upon completion, RT reactions were 
resuspended in formamide loading buffer (Gel loading buffer II, Thermo Fisher Scientific) 

and subjected to 12.5% denaturing polyacrylamide gel electrophoresis. Gels were dried, 
exposed to storage phosphor screen (PerkinElmer), imaged on a Typhoon TRIO variable 

mode imager (Amersham Biosciences), and quantified using ImageQuant TL v7.0 (GE 
Healthcare). For analysis of RT drop-off, signal-intensities at p9 were normalized to 

preceding drop-off signal intensities (bg, Supplementary Fig.3b) for individual reactions. 
Values reporting the change in drop off signal (+IAA/-IAA) for s4U-containing and non-
containing RNA oligonucleotides were compared for the indicated reverse 

transcriptases. 
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HPLC analysis of s4U-labeled RNA 

Analysis of s4U-incorporation into total RNA following metabolic labeling was performed 
as previously described45. 

 

Cell viability assay 

5000 mES cells were seeded per 96 well the day before the experiment. After onset of 
the experiment, media containing the indicated concentration of s4U was replaced every 

three hours for a total of 12 h or 24 h. Cell viability was assessed by CellTiter-Glo® 
Luminescent Cell Viability Assay (Promega) according to the instructions of the 
manufacturer. Luminescent signal was measured on Synergy (BioTek) using Gen5 

Software (v2.09.1). 
 

Cell culture 

Mouse embryonic stem (mES) cells (clone AN3-12), derived from C57BL/6x129 F1 

females, were obtained from IMBA Haplobank (U. Elling et al., accepted for publication 
in Nature) and cultured in 15 % FBS (Gibco), 1x Penicillin-Streptomycin solution (100 

U/ml Penicillin, 0.1 mg/ml Streptomycin, Sigma), 2 mM L-Glutamine (Sigma), 1x MEM 
Non-essential amino acid solution (Sigma), 1 mM sodium pyruvate (Sigma), 50 µM 2-

Mercaptoethanol (Gibco) and 20 ng/ml LIF (in-house produced). Cells were maintained 
at 37°C with 5% CO2 and passaged every second day. Cell doubling time of AN3-12 

mES in presence of s4U cells as determined by cell counting was 14.7h. Prior to 
metabolic labeling experiments, mES cells were stained with Hoechst33342 and FACS-

sorted to obtain a pure diploid population47. 
 

SLAM-seq in mES cells 

mES cells were seeded the day before the experiment at a density of 105 cells/ml. s4U-

metabolic labeling in mES cells was performed by incubating mES cells in standard 
medium but adding s4U (Sigma) to a final concentration of 100 µM and media exchange 

every 3 hours for the duration of the pulse. For the uridine chase experiment, cells were 
washed twice with 1x PBS and incubated with standard medium supplemented with 10 
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mM uridine (Sigma). At respective time points, cells were harvested followed by total 
RNA extraction using TRIzol (Ambion) following the manufacturer’s instructions but 

including 0.1mM DTT (final conc.) during isopropanol precipitation. RNA was 
resuspended in 1 mM DTT. For a typical SLAM-seq experiment, 5 µg total RNA were 

treated with 10 mM iodoacetamide under optimal reaction conditions and subsequently 
ethanol precipitated and subjected to Quant-seq 3´ end mRNA library preparation. 

 

RNA library preparation 

Standard RNA seq libraries were prepared using NEBNext® Ultra™ Directional RNA 
Library Prep Kit for Illumina® (NEB) following the instructions of the manufacturer. Cap-

seq libraries were prepared as previously described48. mRNA 3´ end sequencing was 
performed using the Quant-seq mRNA 3´ end library preparation kit (Lexogen) according 

to the instructions of the manufacturer. Small RNA libraries were generated as described 
before49, but adding total RNA from Arabidopsis thaliana unopened floral buds as spike-

in before initial size-selection. Sequencing was performed on Illumina HiSeq 2500. 
Libraries were sequenced in SR50 mode except for transcriptional output measurements 

(Fig.3), which were sequenced in SR100 mode. 
 

Transcriptional inhibition by Actinomycin D 

3 x 105 AN3-12 mES cells were seeded per 35 mm plate and grown over night. To block 

transcription, actinomycin D (Sigma) was added to the medium at the concentration of 
5 µg/ml. Cells were harvested at 0, 0.25h, 0.5h, 1h, 3h and 10 h after addition of 

actinomycin D by directly lysing them in TRIzol® (Ambion). RNA was extracted following 
the manufacturer instructions and libraries were prepared using Quant-seq mRNA 3´ end 

library preparation kit (Lexogen) according to the instructions of the manufacturer. 
 

CRISPR/Cas9 genome engineering 

gRNAs were designed using WTSI Genome Editing50. gRNA oligonucleotides (see 

Supplementary Table 3) were cloned into pLenti-CRISPR-v2-GFP vector as described51, 
but modified by replacing the puromycin resistance cassette with GFP. Prior to gRNA 
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transfection targeting Xpo5 or Mettl3, wildtype An3-12 mES cells were FACS sorted for 
haploid cells as described previously47. 3 x 105 cells were seeded per 6 well and 

transfected the next day with 3 µg pLenti-CRISPR-v2-GFP using Lipofectamine 2000 as 
recommended by the manufacturer. 48h after transfection, GFP positive cells were 

sorted by fluorescence-activated cell sorting (FACS) and 1500 cells were subsequently 
seeded per 15 cm plate. Single colonies were picked after 10 days. DNA isolation, PCR 

amplification (for oligonucleotide sequences see Supplementary Table 3) of the targeted 
locus and Sanger sequencing was performed to genotype the clonal cell lines. Protein 

depletion was confirmed by Western blot analysis. 
 

Western Blotting 

Protein lysates were separated on 10% SDS PAGE and transferred to PVDF membrane 

(BioRad). Antibodies were used at a dilution of 1:500 for anti-Exportin-5 (H-300, sc-
66885, rabbit), 1:3,000 for anti-Mettl3 (15073-1-AP, Proteintech, rabbit), 1:5,000 for anti-

Mettl14 (HPA038002, Sigma, rabbit) and 1:10,000 for anti-Actin (A2066, Sigma, rabbit) 
and detected by secondary HRP-antibody-conjugates G21040 (Invitrogen; dilution 

1:10,000). Primary antibodies were incubated at room temperature for three hours and 
secondary antibodies were incubated at room temperature for two hours. Images were 

acquired on a ChemiDoc MP Imaging System (BioRad) using ImageLab v5.1.1 (BioRad) 
or by Amersham Hyperfilm ECL (GE Healthcare).  

 

Northern Blotting 

Northern hybridization experiments were performed as described previously52. For 
Northern probes see Supplementary Table 3.  

 

Bioinformatics and Data analysis 

Gel images were quantified using ImageQuant v7.0a (GE Healthcare). Curve fitting was 
performed according to the integrated rate law for a first-order reaction in Prism v7.0 

(GraphPad) or R (v2.15.3) using the minpack.lm package. Statistical analyses were 
performed in Prism v7.0a (GraphPad), Excel v15.22 (Microsoft) or R (v2.15.3 and v3.3).  
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For sequencing analysis of synthetic RNA samples (Fig.1i and Supplementary Fig.4) 
barcoded libraries were demultiplexed using Picard Tools BamIndexDecoder v1.13 

allowing 0 mismatches in the barcode. Resulting files were converted to fastq using 
picard-tools SamToFastq v1.82. Cutadapt v1.7.1 was used to trim adapters (allowing for 

default 10% mismatch in adapter sequence) and filter for sequences of 21nt length. 
Resulting sequences were aligned to aligned to mature dme-let-7 sequence 

(TGAGGTAGTAGGTTGTATAGT) using bowtie v0.12.9 allowing for 3 mismatches and 
converted to bam using samtools v0.1.18. “N” containing sequences were filtered from 

alignment. Remaining alignments were converted to pileup format. Finally, fraction of 
each conversion per position were extracted from pileup. Output table was analyzed and 

plotted in Excel v15.22 (Microsoft) and Prism v7.0a (GraphPad). 
For standard RNA sequencing data analysis, barcoded libraries were demultiplexed 

using Picard Tools BamIndexDecoder v1.13 allowing 1 mismatch in the barcode. 

Adapters were clipped using cutadapt v1.5 and reads were size-filter for ³ 15 

nucleotides. Reads were aligned to mouse genome mm10 using STAR aligner v2.5.2b53. 

Alignments were filtered for alignment scores ³ 0.3 and alignment identity ³ 0.3 was 

normalized to read length. Only alignments with ³ 30 matches were reported and 

chimeric alignments with an overlap ³ 15 bp were allowed. 2-pass mapping was used. 

Introns < 200 kb were filtered and alignments containing non-canonical junctions were 

filtered. Alignment with a mismatch to mapped bases ratio ³ 0.1 or with a max. number 

of 10 mismatches were excluded. The max number of gaps allowed for junctions by 
1,2,3,N reads was set to 10 kb, 20kb, 30kb and 50 kb, respectively. The minimum 
overhang length for splice junctions on both sides for (1) non-canonical motifs, (2) GT/AG 

and CT/AC motif, (3) GC/AG and CT/GC motif, (4) AT/AC and GT/AT motif was set to 20, 
12, 12, 12, respectively. “Spurious” junction filtering was used and the maximum number 

of multiple alignments allowed for a read was set to 1. Exonic reads (Gencode) were 
quantified using FeatureCounts54. 

For Cap analysis gene expression (Cap-Seq), barcoded libraries were demultiplexed 
using Picard Tools BamIndexDecoder v1.13 allowing 1 mismatch in the barcode. The 

first 4nt of the reads were trimmed using seqtk. Reads were screened for ribosomal RNA 
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by aligning with BWA (v0.6.1)55 against known rRNA sequences (RefSeq). The rRNA 
subtracted reads were aligned with TopHat (v1.4.1)56 against the Mus musculus genome 

(mm10). Maximum multihits was set to 1, segment-length to 18 and segment-mismatch 
to 1. Additionally, a gene model was provided as GTF (Gencode VM4). 

For analysis of mRNA 3´ end sequencing (Quant-seq) datasets, reads were 
demultiplexed using Picard Tools BamIndexDecoder v1.13 allowing 1 mismatch in the 

barcode. Quant-seq data was processed using Digital Unmasking of Nucleotide 
conversion-containing k-mers (DUNK), SLAM-DUNK v0.2.4, a T>C aware alignment 

software package based on NextGenMap57 developed to recover T>C conversions from 
SLAM-seq data sets (Neumann T., et al., in preparation). Briefly, adapter-clipped reads 

were trimmed 12 bp from the 5´ end (-5 12) and poly(A) stretches (>4 subsequent As at 

the 3´ end) were removed. Trimmed reads were aligned to the full reference genome 
(mm10) using local alignment scoring and up to 100 alignments were reported for 

multimapping reads (-n 100). In the filtering step, alignments with a minimum identity of 
95% and a minimum of 50% of the read bases mapped were retained. Among 
multimappers, reads mapping to no or ambiguously to > 1 annotated UTR sequence 

(bed files provided in GEO datasets) were discarded (-fb). If a multimapping read mapped 
>1 time to the same annotated UTR sequence, one alignment was randomly picked. 

SNPs exceeding a coverage cutoff of 10x and a variant fraction cutoff of 0.8 were called 
using VarScan2.4.1 using default parameters58. Non-SNP overlapping T>C conversions 

with a base quality of Phred score >26 were identified.  T>C containing reads and total 
reads aligning within the custom defined counting windows (bed files provided in GEO 

datasets) were reported. T>C conversion rate was determined for each position along 
the custom defined counting windows by normalizing to genomic T content and 

coverage of each position and averaged per UTR. 

For extended mRNA 3¢ end annotation, we assembled a pipeline to annotate 3¢ ends of 

mRNA transcripts using Quant-seq datasets 

(https://github.com/AmeresLab/UTRannotation). Quant-seq data was pre-processed as 

described above. To determine exact priming sites, reads with continuous 3¢ terminal A 

stretches (> 4) and a length of at least 23 nts long were retained. Polymeric A-stretches 
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were trimmed from the 3¢ ends of reads and mapped to mm10 using SLAM-DUNK’s map 

and filter module as described above but using global alignment scoring. Priming sites 
were identified based on mapping of >= 10 reads to genomic positions and consecutive 

positions were merged. Genomic A content of >= 0.36 and >=0.24 was used to identify 
internal priming events (for polyA site-containing and no-polyA site-containing priming 

sites respectively, see Supplementary Fig.7 for PAS sequences). Priming sites 

overlapping with RefSeq and ENSEMBL 3¢ UTR annotations were considered for further 

analysis (UTRends). RNA-seq signal, mapped as described above, was used to identify 

intergenic ends. RNA-seq coverage was calculated using bedtools multicov in 200nt 
bins separated by 20nts starting from the last 200nts of gene annotations. Bins were 

extended until RNA-seq coverage dropped below 10% compared to the first bin or until 
the bin overlapped another gene annotation. Priming sites overlapping identified 

counting bins were retained (intergenicEnds). For each gene, all identified 3¢ ends were 

ranked by underlying counts and ends that did not exceed 10% of the total signal were 

removed. RefSeq-annotated mRNA 3¢ ends were then included and 250nt counting 

windows were created upstream of 3¢ ends. Overlapping counting windows were 

merged. Beyond protein coding mRNAs, counting windows were added for the following 
classes of non-coding RNAs: antisense, bidrectional_promoter_lncRNA, lincRNA, 

macro_lncRNA, processed_transcript, sense_intronic, sense_overlapping and primary 

miRNAs. To annotate 3¢ UTR start positions for de-novo annotated 3¢ ends, each 3¢ end 

was assigned to the most proximal 3¢ UTR start annotation (RefSeq). 

For comparison of Quant-seq and RNA-seq, we employed RefSeq transcripts of mm10 
from UCSC’s table browser (downloaded 2017-02-14) consisting of 35,805 transcripts 

which we mapped to 24,440 Entrez genes. All transcripts for a given gene were merged 
using bedtools59.  Stranded coverage tracks for Quant-seq and RNA-seq samples were 

created using deeptools’ bamCoverage command60, using a binSize of 1 and normalizing 

to RPKM. Next, the density matrix was calculated separately for + and – strand genes, 
with static windows 500 bp in both directions at TSS and TTS and dynamic binning for 

the remaining gene body. Stranded signal from the density matrix was plotted in 
composite plots. 
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For transcriptional output analysis, the number of normalized reads (in cpm; “Steady-

state Expression”) and the number of normalized reads containing ³1 T>C conversion 

(in cpm; “Transcriptional Output”) were obtained for every gene after aligning SLAM-seq 

data with SLAM-DUNK to the mouse genome mm10. Background T>C reads (T>C reads 
observed without s4U labeling) were subtracted from the T>C reads in the 45min time-

point and an expression threshold of >5 cpm for the mean of “Steady-state Expression” 
was set. Genes were classified as proximal to “no”, “OSN” or “strong/super” enhancer 

according to Whyte et al.27. 
GRO-seq data from mES cells was downloaded from GEO (GSE27037)29. Reads were 

mapped to mm10 using bowtie allowing for uniquely mapping reads with at most 2 
mismatches. Unmapped reads were reiteratively trimmed by one nucleotide and 

remapped until reaching a minimum length of 20 nucleotides. GRO-seq signal was 
assessed using featureCounts54 for the full length gene omitting the first kilobase. 

Transcriptional output as determined by SLAM-seq was then compared to GRO-seq for 
all genes that are expressed above 5cpm in Quant-seq datasets and detected in GRO-

seq datasets. 
To calculate RNA half-lives, T>C conversions were background-subtracted (no s4U 
treatment) and normalized to chase-onset. Curve fitting was performed according to the 

integrated rate law for a first-order reaction in R (v2.15.3) using the minpack. lm package. 
RNA half-lives > 24h were set to 24h. If not stated otherwise an R2 cutoff of > 0.6 was 

applied. To calculate RNA half-lives normalized to cell cycle length, T>C conversions 
were multiplied by 2(timepoint/14.7h). 

To calculate RNA stabilities measured by polymerase II inhibition (ActD treatment), reads 
from the Actinomycin D-treated samples were aligned to mm10 using SLAM-DUNK. 

Transcripts were extracted that were expressed > 5cpm in the SLAM-seq experiment. 
To correct for the relative increase in stable transcripts following global transcriptional 

inhibition, data was normalized to the 50 most stable transcripts. Half-lives were 
calculated by fitting data to a single-exponential decay model as described above.  

GO terms-enrichment analysis was performed using PANTHER database with a custom 
reference set consisting of genes expressed > 5cpm in mES cells (n=8533)61. For gene-
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set enrichment analysis, gene-association with GO terms “Regulation of Transcription” 
(GO:0006357), “Cell cycle” (GO:0007049), “Translation” (GO:0006412) and “Extracellular 

Matrix” (GO:0031012) were derived from AmiGO62.Transcripts were pre-ranked based 
on the difference half-life to the mean half-life after log2-transformation. GSEAPreranked 

was performed using GSEA v.2.2.463,64. 
MicroRNA targets were predicted using Targetscan v765. Briefly, we provided a 60-way 

multiple genome alignment against mm10 and our custom 3ʹ-end annotation to create a 
tailored database of conserved miRNA targets. The output was then intersected with our 

data, filtered, and grouped according by site type. To determine site conservation, 
cutoffs for branch length score were set to ≥ 1.6 (“7mer-1a”), ≥ 1.3 (“7mer-m8”) and ≥ 

0.8 (“8mer”). 
Relative RNA stabilities were determined by performing SLAM-seq after 3h and 12h s4U 

pulse labelling in wildtype or knock-out cell lines. The background subtracted T>C 
conversion rates at 3h were normalized to 12h and relative stabilities for control (treated 

with non-targeting gRNA51) and knockout cells were assessed from the following 
equation: ln(2) / ln(1-(T>C conversion [3h] / T>C conversion [12h]))/3. 

N6-methyladenosine-targets were extracted from Batista et al., 201437 and batch 
coordinate conversion (liftOver) from mm9 to mm10 (UCSC) was performed, or from Ke 

et al., 201741. Tags in 3ʹ UTRs were refined by overlapping the genomic coordinates with 
the custom mES cell annotation.  
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Accession code: Sequencing data associated with this manuscript is available at GEO 

under the accession number GSE99978. 

 

Note: Supplementary information is attached to this manuscript. 
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Figure legends 

Figure 1| Detection of 4-thiouridine (s4U) by chemical derivatization and sequencing. (a) 

4-thiouridine (s4U) reacts with the thiol-reactive compound iodoacetamide (IAA), 

attaching a carboxyamidomethyl-group to the thiol-group in s4U as a result of a 

nucleophilic substitution (SN2) reaction. (b) Absorption spectra of 4-thiouracil (s4U) before 

and after treatment with iodoacetamide (IAA). Absorption maxima of educt (4-thiouracil; 

s4U; lmax ≈ 335 nm) and product (carboxyamido-methylated 4-thiouracil; *s4U; lmax ≈ 297 

nm) are indicated. Data represents mean ± SD of at least three independent replicates. 

(c) Quantification of absorption at 335 nm as shown in (b). Data represents mean ± SD 

of at least three independent replicates. P-value (two-tailed Student’s t-test) is indicated. 

(d) Normalized LC-MS extracted ion chromatograms of s4U (black) and alkylated s4U 

(red) at the indicated iodoacetamide concentrations.  (e) Quantification of two 

independent experiments shown in (d). Fraction alkylated s4U at indicated IAA 
concentrations represent relative normalized signal intensities at peak retention times of 

s4U and alkylated s4U. Data represent mean ± SD of two independent experiments 

measured in two technical replicates. (f) The effect of s4U-alkylation on reverse 

transcriptase-processivity was determined by primer extension assay. (g) Quantification 

of three independent replicates of experiment shown in (f). Ratio of drop off signal (+ vs 

– IAA treatment) at s4U-position after normalization to preceding background drop off 
signal was determined for control and s4U-containing RNA. Data represent mean ± SD. 

P-value (two-tailed Student’s t-test) is indicated. (h) RNA with or without 4-thiouridine 

(s4U) incorporation at a single position (p9) was treated with iodoacetamide (IAA) and 

subjected to reverse transcription and gel-extraction of full-length product followed by 

PCR amplification and high-throughput (HTP) sequencing. (i) Conversion rates for each 

position of a s4U-containing RNA before or after iodoacetamide (IAA) treatment. Average 
conversion rates ± SD of three independent replicates are shown. Number of sequenced 

reads in each replicate (r1-r3) are indicated. Nucleotide identity at s4U site (p9) is shown. 

Figure 2| Thiol-linked alkylation for the metabolic sequencing of RNA (SLAM-seq). (a) 

Workflow of SLAM-seq. Working time for alkylation and Quant-seq library preparation 
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are indicated. (b) Representative genome browser screen shot for three independent 

mRNA libraries generated from total RNA of mES cells, prepared using standard mRNA 
sequencing (top panel), Cap-seq (middle panel) and mRNA 3´ end sequencing (bottom 

panel; RPM, reads per million,). A representative area in the mouse genome encoding 
the gene Trim 28 is shown. Bottom shows zoom into 3´ UTR of Trim28. Unnormalized 
coverage plots of Quant-seq libraries prepared from untreated mES cells or mES cells 

subjected to s4U-metabolic labeling using 100 µM s4U for 24 h followed by SLAM-seq. 
A subset of individual reads underlying the coverage plots are depicted. Asterisks 

indicate T>C conversions (red) or any conversion other than T>C (black). (c) Conversion 

rates in 3´ UTR-mapping reads of Quant-seq libraries, prepared from mES cells before 

(no s4U) and after metabolic labeling for 24 h using 100 µM s4U (+s4U). Dashed line 
represents expected background sequencing error rate.  Median conversion rate across 

the indicated number of transcripts (n) is indicated. P-value (Mann-Whitney test) is 

indicated. (d) Relative coverage across transcripts for mRNA-seq and Quant-seq. T>C 

conversion rate (Conv.) distributes evenly within Quant-seq-covered areas. 

Figure 3| Quantitative description of the polyadenylated transcriptional output in mES 

cells. (a) Experimental setup for determining transcriptional mRNA output by SLAM-seq, 

coupled to short (45 min) s4U-pulse labeling using 100 µM s4U. (b) Genome browser 

plots of the indicated genes show SLAM-seq data prepared from mES cells, subjected 

to s4U-metabolic RNA labeling as shown in (a). Black reads represent all mapped reads 
(steady-state, in RPM); red reads represent T>C conversion-containing reads (de novo 

transcribed; trx output, in RPM). (c) Model of genes involved in maintenance of stem cell 

state (adapted from26). (d) Relative transcriptional output for 7179 genes in mES cells. 

T>C reads represent abundance of de novo transcripts in counts per million (cpm); 
Steady-state represents sum of T>C- and non-T>C-containing reads. Core pluripotency 

transcription factors are highlighted in red, a subset of primary target genes (see c) in 

blue and a gene with house-keeping function in light-blue. (e) Transcriptional output, as 

measured in number of T>C conversion containing reads, for expressed genes (steady-
state >5cpm) without adjacent OSN enhancer (no, n=4994), proximal to canonical 
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Oct4/Sox2/Nanog enhancer (OSN, n=2029) or proximal to strong enhancers (SE, n=156). 
Outliers are not shown. P-values determined by Mann-Whitney test are indicated. 

Figure 4| Global and transcript-specific mRNA stability in mES cells. (a) Experimental 

setup for profiling mRNA stability by SLAM-seq. mES cells were subjected to metabolic 
labeling with s4U (100 µM final conc.) in 3h intervals for a total of 24 h, followed by a 
chase with unlabeled uridine (10 mM final conc.) for 0, 0.5, 1, 3, 6, 12, and 24 h, followed 

by total RNA preparation and SLAM-seq. (b) Genome browser plots of the indicated 

genes represent SLAM-seq data prepared from mES cells subjected to s4U-pulse/chase 
labeling as shown in (a). All mapped reads (steady-state, in RPM) are black; T>C 

conversion-containing reads (labeled, in RPM) are red. (c) Transcript stability for the 

indicated genes. T>C-conversion rates were determined for each timepoint of the s4U-

pulse/chase and fit to a single-exponential decay model to derive half-life (t½). Values are 

mean ± SD of three independent experiments. (d) Global analysis of mRNA stability in 

mES cells. Top: Correlation of steady-state gene expression (all reads) or T>C 
conversion containing reads at the indicated time with steady-state expression at time 

0. Left bottom: RNA half-life for 8405 transcripts in mES cells determined as described 
in (c). Median half-life before (t½) or after (tccn

½) normalization to cell divisions. Right 

bottom: Cumulative distribution of ranked transcript stabilities for 6665 transcripts. 
Enriched gene ontology (GO) terms for the 666 most unstable (blue) or most stable (red) 

are indicated. Enrichment factor (EF) and p-value (p-Val.) are indicated.   

Figure 5| Molecular determinants of mRNA stability in mES cells. (a) Schematic 

representation of microRNA (miRNA)-mediated gene regulation. Target site-types with 

increasing (top to bottom) repressive function are shown. (b) Cumulative distribution of 

ranked mRNA stabilities. Plotted are distributions for transcripts that do (rose, n=1450) 
or do not (black, n=5095) contain at least one miR-291a-family target site or contain at 

least one conserved miR-291a target site (red, n=50). miR-291a-family members as 

defined in Supplementary Fig.17a. P-value was determined by KS-test. (c) Western blot 

analysis for Exportin-5 (Xpo5) and Actin in wild-type (wt) mES cells and a cell line 
depleted of Xpo5 by CRISPR/Cas9-induced frameshift in the first coding exon (see 
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Supplementary Fig.16). (d) MicroRNA ratio determined by spike-in-controlled small RNA 

sequencing in xpo5ko mES cells relative to wild-type cells. Ratio for all miRNAs (black) or 

miR-291a-family members (red) are shown. (e) Cumulative distribution of mRNA stability 

changes in xpo5ko relative to wt mES cells. Plotted are distributions for transcripts that 

do (rose, n=1450) or do not (black, n=5095) contain at least one miR-291a target site or 
that contain at least one conserved miR-291a target site (red, n=50). P-value was 

determined by KS-test. (f) Cumulative distribution of mRNA stability changes in xpo5ko 

relative to wt mES cells. Plotted are distributions for transcripts that contain exclusively 

one 6mer (blue, n=493), 7mer-A1 (green, n=95), 7mer-m8 (yellow, n=325), or 8mer site 
(red, n=63). Black shows transcripts without any miR-291a target site (n=5095). P-value 

was determined by KS-test. (g) Schematic representation of adenosine (A) conversion 

into N6-methyladenosine (m6A) by the methyltransferase complex Mettl3/14. (h) 

Cumulative distribution of ranked mRNA stabilities. Plotted are distributions for 
transcripts that do (red, n=3492) or do not (black, n=3173) contain the m6A mark, as 

previously mapped by m6A-RIP-seq37. P-value was determined by KS-test. (i) Top: 

Schematic distribution of m6A within mRNA (adapted from40). Bottom: Cumulative 

distribution of ranked mRNA stabilities. Plotted are distributions for transcripts that do 
not (black, n=3173) or do contain m6A exclusively in the 5´ UTR (grey, n=88), the coding 

sequence (CDS, green, n= 545) or the 3´ UTR (red, n=2093). P-value was determined by 

KS-test. (j) Western blot analysis for Mettl3, Mettl14 and Actin in wild-type (wt) mES cells 

and a cell line depleted of Mettl3 by CRISPR/Cas9-induced frameshift in the first coding 

exon (see Supplementary Fig.16). (k) Cumulative distribution of mRNA stability changes 

in mettl3ko relative to wt mES cells. Plotted are distributions for transcripts that do not 

(black, n=3173) or do m6A exclusively in the in the 5´ UTR (grey, n=88), the coding 
sequence (CDS, green, n= 545) or the 3´ UTR (red, n=2093). P-value was determined by 

KS-test. 
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