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Abstract 

Recent research has demonstrated the importance of global changes to 
the functional organization of brain network following stroke. Resting 
functional MRI (R-fMRI) is a non-invasive tool that enables the 
measurement of functional connectivity (FC) across the entire brain while 
placing minimal demands on the subject. For these reasons, it is a 
uniquely appealing tool for studying the distant effects of stroke.  
However, R-fMRI studies rely on a number of premises that cannot be 
assumed without careful validation in the context of stroke. Here, we 
describe strategies to identify and mitigate confounds specific to R-fMRI 
research in cerebrovascular disease. Five main topics are discussed: 1) 
achieving adequate co-registration of lesioned brains, 2) identifying and 
removing hemodynamic lags in resting BOLD, 3) identifying other vascular 
disruptions that affect the resting BOLD signal, 4) selecting an 
appropriate control cohort, and 5) acquiring sufficient fMRI data to 
reliably identify FC changes. For each topic, we provide evidence-based 
guidelines for steps to improve the interpretability and reproducibility of 
FC-stroke research. We include a table of confounds and approaches to 
identify and mitigate each.  Our recommendations extend to any research 
using R-fMRI to study diseases that might alter cerebrovascular flow and 
dynamics or brain anatomy.   
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Introduction  

In stroke, a disruption to the brain’s vascular supply leads to infarction 
and structural damage (i.e. cell death) of gray/white matter. But stroke 
also produces remote changes in structurally normal brain areas by a 
variety of different mechanisms,1 as well as shifting of brain tissue.  
Remote changes have been reported in metabolism, cerebral blood flow, 
resting neural activity, and evoked neural response.2 Until recently, 
studying the relationship between distant functional disruption and 
cognitive deficits in humans was a nearly impossible task. In the late 
1990- early 2000s human fMRI studies showed that functional 
abnormalities correlate with deficits in language,3,4 attention,5 and motor 
function6 and these abnormalities tend to normalize in parallel with 
recovery of function. These observations suggested that neuroimaging 
can identify altered neural function across many brain regions, and that 
this functional alteration may be valuable for understanding abnormal 
behavior. A limitation of the task fMRI approach to studying stroke is that 
patients must be able to complete the task in order to assess activation. 
Further, the use of multiple compensatory strategies during task 
performance can complicate the interpretation of task fMRI data. 

Around this same time, the study of functional connectivity using resting 
functional magnetic resonance imaging (R-fMRI) was gaining momentum.7 
R-fMRI measures intrinsic fluctuations in the blood oxygenation level 
dependent (BOLD) signal in the absence of a task. The correlation in 
these signals between brain areas is used to infer functional connectivity 
(FC). This approach had substantial appeal as a tool for studying stroke, 
offering a non-invasive and task-free paradigm for studying human brain 
connectivity at high spatial resolution.8 A study in 2007 found that 
hemispatial neglect was strongly correlated with disrupted connectivity in 
the dorsal attention system,9 suggesting the potential of R-fMRI for 
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studying stroke. As evidence has mounted in the past decade, it has since 
become increasingly apparent that understanding behavioral deficits will 
require a complete description not only of lesion topography, but also of 
remote connectivity abnormalities.9–17 Resting functional MRI (R-fMRI) 
remains a promising tool to examine network level changes in stroke and 
recovery in humans.8,18,19 

Interpretation of the correlation of BOLD fluctuations in healthy subjects 
frequently rests on numerous assumptions. For example, a critical 
assumption of most R-fMRI research is that neurovascular coupling is 
relatively consistent across brain areas, across time, and across 
individuals. Though imperfect even in a healthy population, such 
assumptions have enabled reliable mapping of spatial and temporal 
relationships between brain areas.20 When studying cerebrovascular 
disease, a normal hemodynamic response cannot be assumed.21 However, 
if certain additional steps are taken to empirically identify and control for 
relevant confounds, then measured FC-stroke relationships can be 
meaningfully interpreted. 

The goal of this article is to provide evidence for the critical importance 
of these confounds, and explore best practices to manage them.  We will 
first consider issues relating to inter-subject registration – focusing on 
volume-based registration errors caused by stroke and recommending 
surface-based methods to improve registration. We will then consider 
hemodynamic coupling – discussing evidence that vascular disease can 
produce changes in the magnitude and latency of the hemodynamic 
response, and recommending an approach to measure and remove this 
confound.  Finally, we will consider selection of appropriate experimental 
controls and control subject selection.  We cite published data where 
available but also provide additional analyses using data from a cohort of 
stroke patients studied at Washington University.15 This dataset is 
publicly available (see ‘Public Stroke Data’ below). 
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Table 1 summarizes stroke R-fMRI confounds and approaches to identify 
and mitigate each. Many of our recommendations are quite feasible in 
current FC-stroke datasets. Moreover, many of our recommendations are 
not specific to stroke only, but extend to any research using R-fMRI to 
study diseases that might alter cerebrovascular dynamics or brain 
anatomy.   

Registration of the cortical surface and subcortex 

Many previously published FC-stroke research has relied on registration to 
a common atlas space using 6-parameter affine linear 
transformation.12,13,22,23 The limitation with this approach is that a stroke, 
and pathophysiological processes associated with stroke can lead to 
substantial relative displacement of tissue (i.e. the central sulcus might 
move anterior or posterior relative to other brain landmarks). This ‘mass 
effect’ phenomenon is illustrated after volume alignment in data from 33 
cortical stroke patients (Fig. 1). An 8mm radius sphere is placed in the 
angular gyrus - defined based on anatomical landmarks - in each individual 
linearly-aligned brain. A conjunction image shows good overlap in healthy 
individuals (with some voxels showing 100% overlap), but poor overlap in 
patients (with a maximum of 63% overlap). This was the case across the 
cortex. For 156 ROIs that span the cortex,24 ROI overlap was significantly 
lower in patients than controls (t = 9.6, p< 0.001).  Non-linear alignment 
did not substantially improve seed co-localization in the angular gyrus. 
This may be because it uses only tissue contrast and not cortical folding 
patterns. Here, linear and nonlinear were compared using FSL (FMRIB 
Software Library) registration algorithms.25  A variety of linear and 
nonlinear brain registration software packages are available, so results 
may vary somewhat with different software. However, as discussed 
below, non-linear registration should substantially improve alignment of 
subcortical structures.   
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Surface-based registration offers a solution to variability in cortical shape 
and variability in shifting of tissue after stroke.26–30 Surface- and contour-
based alignment approaches provide superior registration. The benefits of 
surface-based registration have been demonstrated in the healthy brain31–

33, and those benefits are magnified by the substantially increased 
heterogeneity resulting from stroke. However, to our knowledge, this is 
the first demonstration of the benefits of a surface-based approach in FC-
stroke analysis.  

For analysis of subcortical nuclei and the cerebellum, nonlinear volume 
alignment (such as FSL FNIRT) may also provide registration that is 
superior to linear registration (Fig. 1, top right). This is because patients’ 
brains often show anatomical shifts as well as enlarged ventricles. Even 
patients with more moderate lesions frequently show substantial 
enlargement of lateral ventricles, causing reduced quality of alignment of 
basal ganglia and thalamus. 

Additional advantages exist to segmentation of tissue compartments 
beyond the important issue of registration. One is that surface 
segmentation enables surface-constrained smoothing, so that gray matter 
signal can be smoothed with minimal contamination by signal from CSF, 
white matter, or opposing gyral walls (Fig. 1, bottom right). Another 
advantage of segmentation is that it allows for high quality definition of 
tissue compartments in the individual that can then be used as nuisance 
regressors (white matter, CSF) in data cleaning approaches such as 
aCompCor.34 

An important caveat of either nonlinear volume alignment or surface-
based registration is that large lesions should be explicitly excluded or 
masked prior to alignment and the results should be carefully assessed for 
quality and feasibility. This is necessary in order to prevent the 
mislabeling of cortical structures.  
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Large lesions can cause distortion or failure of surface segmentation and 
registration. In such instances, we have found that painting over the 
lesion with voxel values from a T1-weighted brain atlas can improve 
landmark and folding based surface alignment approaches. This is 
demonstrated in Figure 2. In the top middle panel, the high contrast lesion 
(blue arrow) has caused massive disruption of the surface segmentation 
(yellow arrows) . This causes errors in surface tessellation as well as 
parcellation (yellow dotted lines). But masking of the lesion enables 
FreeSurfer to properly trace the remaining cortical surface.  The surface 
within the masked area can then be removed from analysis.  An important 
consideration is that, while this fix has enabled segmentation to complete 
in all cases, the resulting segmentation will require visual inspection and 
possibly additional manual editing.  

An approach we have found for easily identifying errors in pial surface 
segmentation is viewing the pial surface segmentation on top of the 
MPRage. In Connectome Workbench, the pial surface can be color-coded 
based on FC values to further assess accuracy. Displaying homotopic FC 
values (which should always be positive) can aid in identifying 
segmentation errors (Fig. 3). 

Following proper segmentation and surface registration, we use post-
FreeSurfer preprocessing pipelines from the Human Connectome Project.30  
Future improvements on the HCP pipeline may enable manual editing of 
FreeSurfer segmentation so that the entire HCP preprocessing pipeline is 
compatible with the approach described above. 

Misalignment can a source of noise or confound in FC-stroke studies. As 
we have quantitatively and qualitatively demonstrated, after automated 
but manually optimized surface segmentation, and nonlinear alignment of 
subcortical nuclei, improved functional alignment is possible. 
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Blood flow and hemodynamics 

Task fMRI studies have shown reduced amplitude21,35–37 and increased 
latency after stroke38–42 - with BOLD responses sometimes peaking 15 
seconds or more after transient neural activation. Changes in amplitude 
and latency have even been demonstrated in both affected and 
unaffected hemispheres and are most prominent in, though not limited to, 
the first three weeks after stroke.35,37 For a more extensive review of 
functional MRI studies in stroke, see.43 Importantly, changes in amplitude 
and latency often seem to co-occur, i.e. hemodynamically compromised 
vasculature shows a BOLD hemodynamic response function that is both 
reduced in amplitude and increased in latency.39–41  

Fortunately, it is possible to identify latency changes. The remainder of 
the section discusses ways in which hemodynamic coupling is altered 
after stroke, means by which such alterations may be identified, and 
strategies to control for these confounds in FC-stroke analyses. 

Hemodynamic lags 

In the last 3 years, a handful of reports have identified regional delays on 
the order of seconds in resting fMRI fluctuations in stroke and 
cerebrovascular disease patients.44–49 These delays are measured by 
cross-correlation (i.e. time shift analysis) of regional BOLD timecourses 
with some reference signal. This technique has been applied with different 
choices of reference signals including gray signal47, homotopic signal from 
the non-lesioned hemisphere45, and a superior sagittal sinus seed.46 Some 
benefits of the cross-correlation approach is that it is fairly robust to the 
choice of reference signal46 and that a hemispheric measure of lag 
severity can be attained from only six minutes of R-fMRI data49 – though 
greater spatial specificity requires longer scans.  
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Importantly, lag can be seen in areas of perfusion deficit as measured by 
contrast enhanced perfusion-weighted imaging44,47 and arterial spin 
labeling49 and also seems to occur in areas with reduced amplitude of 
evoked BOLD response.45 However, studies directly relating latency and 
amplitude of evoked response to lags in resting BOLD are still needed.  

At two weeks post-stroke, the prevalence of patients showing substantial 
hemodynamic lags is above 30%. This number drops close to 15% by 3 
months post-stroke and 10% by 1 year.49 Interestingly, lag severity 
correlates with lesion size as well as severity of deficits.49  

As would be expected, lags systematically alter measurements of FC from 
the affected node. This is easily illustrated by comparing homotopic lags 
to homotopic FC. Homotopic FC provides a useful comparison because it 
is typically strong in the healthy brain, and because it has previously been 
associated with deficit after stroke.9,16,50 In figure 4 each circle represents 
a pair of ROIs in opposite hemispheres (homotopic) in one patient (red) or 
control (blue). The lag between homotopic ROIs is plotted on the x-axis 
while the functional connectivity (zero-lagged Pearson correlation) is 
plotted on the y-axis. This figure was generated using a cohort of 107 
sub-acute stroke patients and 24 age-matched controls described in.49 
This figure is particularly useful because one plot makes multiple 
important points – 1) hemodynamic lags produce a monotonic decrease in 
measured FC values, 2) even in areas with zero lag, homotopic FC is lower 
on average in patients than controls, 3) negative homotopic FC values 
observed in patients are likely (though not definitively) a symptom of 
lags, and 4) lags are common in patients and rare but reliably identified in 
a small minority of risk-matched controls (2/24 with consistent measures 
across scans 3 months apart). 

Interestingly, homotopic anti-correlations appear in many FC-stroke 
studies,9,51 suggesting that the studies were likely affected by lag.  
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A few approaches have been proposed to correct for lags in FC analysis. 
Bauer et al., proposed that using the timecourse from voxels within the 
lesion as a nuisance regressor reduced aberrant observations attributable 
to lag in mice with transient MCA occlusions. Another approach that has 
been suggested is to shift timecourses in lagged tissue (backwards in 
time to ‘reverse’ measured lags) prior to FC analysis.46,49 We do not 
endorse either approach for the following reasons. Areas of lag also show 
reduced BOLD signal power in much of the infra-slow FC range (.045-
0.09Hz).49 In affected tissue, two changes occur: 1) a temporal delay, 
and 2) a change in frequency content. We would expect that temporally 
shifting timecourses might correct the first change, but will not correct 
the second change. This may explain the observation that ‘correcting’ 
timecourses reduces FC aberrancy, but does not remove it (see Siegel et 
al., 2015, figure 5).   There is no practical way to correct a change in the 
frequency content of the BOLD signal. Moreover, because other sources 
of unwanted variance (head motion, white matter, CSF signals) may or 
may not be shifted in lag-affected areas, shifting timecourses might 
disrupt nuisance regression in undesirable ways. 

Instead, we recommend that the most extreme lag cases be excluded 
from further analysis and smaller changes be considered after FC is 
calculated. In subjects with severe and widespread lags (for example, 
average homotopic lag >1second i.e. the entire lesioned hemisphere is 
delayed by greater than 1 second relative to the contralesional 
hemisphere) FC data will be so altered as to be unusable in analysis. In our 
opinion, exclusion of such subjects is the only feasible option. While 1 
second is arbitrary, it is a conservative cutoff that should only exclude 
roughly 5% of ischemic stroke subjects (6/119 patients at 2 weeks in our 
dataset). In patients with a constrained area of large magnitude lag (as is 
seen in the example patient in Fig. 4 – area of lag is highlighted with a 
green outline) it may be beneficial to exclude the affected region from FC 
analysis. Since the effects of lags of 1-6 seconds are approximately linear 
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(see Fig 5 of Siegel et al., 2015), more subtle lags can be co-varied out 
of any FC analysis.52,53 Fortunately, this precaution is feasible because lags 
can be calculated using the same data used for canonical FC analysis. 
Researcher investigating FC-stroke data can test for lags using publicly 
available software (nil.wustl.edu/Corbetta/resources/lagsuite.tar.gz).  
Regardless of the approach taken, it is important for investigators to bear 
in mind that aberrant FC in cerebrovascular disease patients may reflect 
both vascular and neuronal changes. 

Neurovascular Coupling 

While identifying lags is important, it may not be a complete fix for the 
challenge of altered neurovascular coupling. In some patients, a decrease 
in amplitude35,54, or a complete loss of the BOLD response37,55 has been 
observed in the absence of lags. On it’s own, it is difficult to interpret 
reduction/absence of a evoked BOLD response – it might reflect a 
decrement in neural activity, loss of neurovascular coupling, or an inability 
of the vasculature itself to adequately increase local 
perfusion.36,37,56(Marshall, 2004; Pineiro et al., 2002; Rossini et al., 2004) 
Thus, approaches to better validate hemodynamic responsiveness to 
neural activity would be of value. 

Carotid stenosis is perhaps a useful example of a vascular disease because 
it is relatively well characterized in its effects on neurovascular coupling, 
it is common in stroke patients, and it’s effects on FC have been 
reported. Severe carotid stenosis (>70% occlusion) reduces both the 
static and dynamic components of cerebral blood flow.57 This results in 
uncoupling of the hemodynamic response from neural activity.58 Moderate 
stenosis (50-70% occlusion) may not alter coupling,59 though this has not 
been carefully addressed. In a healthy asymptomatic population of adults 
over the age of 70, 4.8% exhibit moderate (>50% occlusion) and 1.6% 
exhibit severe (>70% occlusion) carotid stenosis.60 In a stroke population, 
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prevalence is substantially higher. Based on clinically acquired carotid 
doppler data from our stroke cohort, 20% of patients (13/66) show 
>50% occlusion with 11% (7/66) showing >80% occlusion on the 
affected side. Other studies have reported that as much as 33% of 
ischemic stroke patients exhibit moderate or severe intracranial stenosis, 
and 12% have stenosis on the hemisphere opposite the lesion 61. In most 
such cases, an embolic stroke produces an infarct in only a portion of the 
territory affected by the stenosis. Studies directly measuring FC changes 
in carotid stenosis patients relative to non-stenotic controls have 
explicitly shown large reduction in FC in the affected hemisphere 62,63.  

Though it is intuitive that changes in neurovascular coupling should alter 
FC measurement, the effects are not straightforward.  Relatively small 
decreases in the magnitude of the HDR might have little effects because 
functional connectivity analysis typically relies on correlation (not 
covariance) of the r-fMRI signal.  However, it is also possible that changes 
to neurovascular coupling can alter FC in profound ways. Further studies 
are required to understand the relationships between abnormalities of 
neurovascular coupling and FC. One goal of such studies would be to 
develop better techniques to identify and control for vascular changes in 
FC analysis. This is possible by employing a combination of R-fMRI with 
modalities for vascular imaging and electrophysiology. A challenge in such 
studies will be the fact that relationships between cerebral perfusion, 
cerebral autoregulation, and cerebrovascular coupling in the context of 
ischemia are exceptionally complex (for a review, see 64).  

Some measures can be taken to identify pertinent vascular disruptions in 
FC-stroke analysis.  These include assessment of internal carotid stenosis 
using carotid doppler, or assessment of local neurovascular coupling using 
CO2 or hyperventilation fMRI paradigms.35,65  Other imaging techniques 
capable of identifying clinically silent carotid stenosis include angiography 
(by MR and CT), transcranial doppler (which can be used in combination 
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with arterial blood pressure to assess auto-regulatory impairment),66 and 
possibly measures of static regional cerebral blood flow (though tissue at 
the edge of the autoregulatory range may show normal rCBF but no 
hemodynamic response). 

Pulsed arterial spin labeling (ASL) techniques are frequently used as a 
non-invasive measure of perfusion, though decreased signal cannot be 
interpreted as rCBF change as it may also reflect changes in mean transit 
time67,68 and may not be effective at identifying perfusion deficit in 
stroke.69 However, advances in ASL are making it possible to classify 
multiple features of vascular flow using multi-delay sequences to more 
accurately model cerebral blood flow even in circumstances of altered 
transit time.23 

General Recommendations 

Stroke patients as a population have a significantly elevated prevalence of 
numerous medical comorbidities. These include diabetes, hypertension, 
cardiovascular disease, cerebrovascular disease (such as carotid stenosis), 
white matter disease, and others.70 For these reasons, we give three 
additional recommendations for studies applying R-fMRI in stroke patients.  

1. Choosing an appropriate control population 

While it may be difficult to perfectly match controls on all relevant health 
factors, an approach that can substantially reduce the influence of such 
factors is to use siblings of patients as controls.71 An alternative approach 
that may be equally valid for some experiments is to compare 
performance measures across heterogeneous stroke patients (i.e. 
compare patients with and without a particular deficit). This allays the 
challenge of substantial heterogeneity in any human stroke population. 

2. Acquiring sufficient data 
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In healthy subjects, the reliability of functional connectivity 
measurements increases rapidly up to about 12-15 minutes of good 
data,24,72,73 while high-specificity single subject FC measurement or more 
complex parcellation approaches require even longer scan times, with 
reliability improving steadily up to 30 minutes.74 In-scanner head motion 
and propensity to fall asleep are not significantly different between stroke 
patients and age-matched controls (unpublished data), however in all data 
it is important to exclude corrupted scans.75 Notice that both groups 
increased in head motion somewhat with successive scans (Fig. 5, top 
left). Shorter runs with breaks and opportunities to stretch in between 
may help to mitigate deterioration in data quality.  

After censoring frames corrupted by motion (framewise displacement > 
0.5),76  we found that approximately 2/3 of fMRI frames were usable (Fig. 
5, top right). Thus, we recommend acquiring at least 20 minutes of R-
fMRI for each stroke patient, as that this is necessary to provide 12-15 
minutes of good data.  

To assess the relationships between scan length and stroke FC:behavior 
relationships, we generated FC estimates on N=96 stroke patients using 
fractions (1-7 individual 4:16 runs) of our 7 run session protocol. We 
compared these FC estimates to behavior using canonical (previously 
published and replicated) relationships – 1) hemispatial neglect and 
reduced interhemispheric FC in the dorsal attention network, and 2) 
hemiparesis and reduced interhemispheric FC in the somatomotor 
network. Using these sub-samples of the data, we found that canonical 
FC:behavior relationships pass significance (p<0.05) when only two 
sessions (~8.5min of BOLD data) are used, but the relationships continue 
to become less noisy as longer scans are included (Fig. 5, bottom). 
Exactly how much R-fMRI data is necessary in stroke patients will depend 
on the goals of the study.  
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For these analyses, we used the following data inclusion/exclusion criteria 
- any frame with FD > 0.5mm was censored, and any run in which >50% 
of frames were censored was excluded entirely, and only patients with at 
least 3 minutes (90 frames) of data were included for FC analysis. Out of 
a total of 96 subjects with imaging and behavioral data, the number 
patients included in FC:behavior correlation was: N1=63 [i.e. number of 
usable subjects using only the first acquired run = 63], N2=74, N3=80, 
N4=80, N5=81, N6=82, N7=83. The increase in number of usable subject 
also contributed to improving p-values for FC:Behavior correlations.  

3. Manual checks on processing steps. 

We emphasize that anatomical and pathophysiological changes specific to 
stroke introduce increased possibility for errors in seemingly trivial 
processing steps that normally proceed without error in healthy subjects. 
Automated processing pipelines may allow such errors to go unnoticed. 
We recommend separate manual assessment of segmentation, 
preprocessing, and FC processing. As an example of how this can be 
done, we provide a set of images that we check in our patients to assess 
data quality (Fig. 6). Images on the left are primarily useful for checking 
surface segmentation. As shown in the right middle panel, we inspect a 
lag map for every subject. In some cases, a spatially constrained area in 
the vicinity of the lesion shows severe lags (green outline). This can be 
masked and excluded from FC analysis.  As described previously, 
visualizing surface homotopic FC on top of an average volumes image can 
serve as an additional way to assess registration of functional and 
structural data.  

We have mainly limited Figure 6 to images especially useful for identifying 
stroke- and comorbidity-related problems. We also use approaches to 
assess head motion, artifact, and BOLD signal quality that are commonly 
used in FC studies of normal populations, but discussion of those issues 
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are beyond the focus of this paper (for a good discussion of those 
measures, see 76). 

The validity and value of functional connectivity stroke 

research  

There are numerous reasons why prior FC-stroke findings represent 
promising advances, and why further FC-stroke research is merited. Post-
stroke FC changes, such as reduced homotopic connectivity, are present 
across species and after careful consideration of confounds such as 
hemodynamic lags,45 are corroborated with other modalities that avoid 
neurovascular issues (such as EEG,77 voltage sensitive dye78 and axonal 
tracers16). Moreover, reported correlations between FC and behavioral 
deficits have proven robust and reproducible. Hemiparesis and hemispatial 
neglect provide useful examples. Hemiparesis is reproducibly associated 
with deficit in interhemispheric motor FC14–16,50 and recovery from 
hemiparesis parallels return of interhemispheric motor FC.13,51,79 
Hemispatial neglect is reproducibly associated with reduced 
interhemispheric FC in attention networks9,50 and recovery from neglect 
parallels return of attention network FC.53 These two FC-behavior 
relationships can be doubly dissociated within a stroke population,52 and 
patients with similar deficits but heterogeneous lesions tend to show 
common patterns of FC disruption.10,14,15, suggesting that functional brain 
imaging provides important information beyond that of structural imaging.  

FC stroke studies are particularly valuable for understanding the network-
wide effects of stroke, because they provide the simultaneous 
assessment of multiple networks. It remains an open issue if acute FC 
studies can provide information about long-term outcomes, or whether 
they can be used to track the efficacy of therapy. Therefore much work 
lies ahead. This review highlights some of the potential methodological 
pitfalls of this approach and some of the ways to avoid or minimize these 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 17, 2017. ; https://doi.org/10.1101/177618doi: bioRxiv preprint 

https://doi.org/10.1101/177618
http://creativecommons.org/licenses/by-nd/4.0/


confounds. We hope that these recommendation will be helpful to the 
community not only of researchers in stroke, but any other pathology 
(eg. Tumor, neurodegenerative conditions, trauma, etc.) in which 
structural or neurovascular factors can affect the indirect but reliable 
relationship between neural activity and fMRI signals.   

Public Stroke Data 

We have publicly released a stroke functional neuroimaging dataset 
(n=132 patients, n=31 age-matched controls) on the Central 
Neuroimaging Data Archives (available through 
https://cnda.wustl.edu/app/template/Login.vm - Study ID: CCIR_00299). 
This dataset includes structural imaging, functional MRI, 
neuropsychological testing scores across a wide range of behavioral 
assessments, demographics, arterial spin labeling (collected in a subset of 
patients) and carotid doppler ultrasonography classification acquired at 
two weeks post-stroke. Study design is described in its entirety in 
Corbetta et al., 2015.71 All data shown above is from that dataset. 
Figures 2,3 and 5 were generated by our functional connectivity 
processing pipeline available at 
www.nil.wustl.edu/labs/corbetta/resources/ and visualized using 
Connectome Workbench. 
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Figure 

 

Figure 1. Nonlinear registration and surface-based tools improve stroke patient alignment. 
Quality of linear alignment is compared between 33 patients with large lesions (greater than 40 
cm3) on either hemisphere and 24 matched controls. A region in the right central sulcus was 
defined in each subject following surface folding-based registration. Separately, each brain was 
linearly aligned to a reference atlas in Talairach space. The landmark-defined angular gyrus 
region was then projected to the volume coordinates in the linearly aligned brains. Top right: An 
example of registration of subcortical nuclei using linear versus nonlinear registration. Atlas-
defined ROIs are shown for caudate, putamen, globus pallidus, and thalamus. Example patient 
(used in Figure 4) has a cortical lesion in the contralateral hemisphere. Bottom Right: A 
demonstration of surface smoothing enabled by FreeSurfer (Image courtesy of Dr. Douglas N. 
Greve). The green line indicates the full-width half-max boundaries of a 14mm volume-
smoothing kernel. Notice that the smoothing kernel would cause functional data to be smoothed 
across multiple gyral walls. This problem is mitigated with surface smoothing (blue line). 
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Figure 2. FreeSurfer segmentation error caused by a large lesion, and subsequent resolution 
after lesion-masking and manual editing. Top: MPRage illustrating a hyper-intense 
hemorrhagic stroke. Unattended FreeSurfer segmentation (middle) is unable to correctly identify 
the cortex lateral to the lesion. To resolve this, lesion masking with T1 atlas values and manual 
editing using control points is done. In the resulting segmentation (right), FreeSurfer correctly 
identifies and segments the cortical surface. Middle and bottom: The surface and AAL 
parcellation generated by the post-FreeSurfer HCP pipeline show errors in tracing of the cortical 
surface as well as labeling errors (indicated by yellow dotted line). After lesion masking and 
manual editing, these errors are no longer present. 
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Figure 3. Identifying and correcting gray matter segmentation. Top: The FreeSurfer-defined 
pial surface is displayed as a ribbon over the subject’s MPRage. The ribbon is color-coded based 
on Homotopic FC strength at each surface vertex. In locations in which errors of inclusion of dura 
mater have occurred, low or negative homotopic FC is found. Bottom: After manual editing of 
FreeSurfer segmentation pail ribbon accuracy is improved and homotopic FC values are higher.  
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Figure 4. Hemodynamic lags systematically alter functional connectivity. Each circle 
represents a pair of the ROIs on opposite hemispheres (homotopic) in one patient (pale red) or 
control (pale blue). The lag between homotopic ROIs is plotted on the x-axis while the functional 
connectivity (zero-lagged Pearson correlation) is plotted on the y-axis. The LOWESS moving 
average is plotted in bright red and blue lines for patients and controls, respectively. This figure is 
generated using the 107 sub-acute stroke cohort and 24 age-matched controls. A set of 78 left 
hemisphere ROIs (and their right hemisphere mirror image regions) were used for each subject. 
ROIs intersecting a lesion were excluded. Under, a histogram shows the proportion of homotopic 
ROI pairs showing lags. Even in sub-acute patients, the majority of regions show a lag of less 
than 0.5 seconds. 
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Figure 5. More R-fMRI data per subject improves FC-Behavior Correlation. To assess the 
relationships between scan length and FC-behavior correlation, we generated FC estimates using 
fractions (1-7 individual 4:16 runs) of our 7 run session in N=96 stroke subjects. In each sub-
sample, two canonical FC-behavior relationships were estimated across the sub-acute stroke 
cohort. Top Left: Average head motion (framewise displacement) during each of seven 
consecutive runs. Top Right: The blue line shows minutes of data acquired, the green line shows 
average number of usable frames after exclusion of frames with framewise displacement > 
0.5mm. Bottom Left: visual field bias (the deficit of which produces hemi-spatial neglect) was 
correlated with interhemispheric FC in the dorsal attention network. Bottom Right: 
Contralesional motor function is correlated with inter-hemispheric FC in the hand/body 
somatomotor network. Error bars indicate 95% confidence interval of Spearman’s rho between 
FC:behavior. 
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Figure 6. Quality assessment images for a sample subject. Top Left: T1-weighted MRI. For 
this subject, FreeSurfer segmentation failed due to the large hyperintense hemorrhagic stroke. The 
manually identified lesion was temporarily painted over with a T1-weighted atlas (Middle Left), 
allowing brain segmentation to run to completion. Bottom Left: cortical surface ribbon displayed 
on top of the T1-weighted MRI. Yellow denotes vertices included in a surface lesion mask. This 
is particularly useful to determine proper labeling of lesion and exclusion of dura in brain 
segmentaiton. Top Right: results of FreeSurfer segmentation - this can be compared to reference 
AAL parcellation to ensure proper labeling of structural features such as superior temporal sulcus, 
superior frontal sulcus. Middle Right: Lag map using homotopic reference (code available at 
nil.wustl.edu/labs/corbetta/resources). Areas of substantial lags are identified dorsal to the lesion 
boundaries and will be corrected or excluded in FC analysis. Bottom Right: homotopic FC 
overlaid on an average of aligned functional MRI volumes. Useful for checking alignment of 
functional volumes with MPR and surface segmentation. 
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Table 1 

Stroke R-fMRI 
Consideration/Confound 

Approaches to identify and 
mitigate confound 

Stroke causes displacement of 
brain tissue resulting in poor 
linear alignment to atlas 

Cortical surface-based atlas 
registration and non-linear 
alignment of subcortical structures 
and cerebellum 

Large lesions cause failure of 
surface segmentation and 
registration 

Lesions can be masked prior to 
segmentation and registration. 
Inspect segmentation and 
registration results. 

Hemodynamic delays in the 
territory around the stroke  

‘Hemodynamic lag’, measured via 
cross-correlation of BOLD data, can 
be used to identify local 
hemodynamic delays. We suggest 
that patients with severe lags 
(average >1s in the affected 
hemisphere) be excluded. Moderate 
or localized lags can be controlled 
for in FC analysis. 

Altered or absent 
neurovascular coupling (seen in 
severe carotid stenosis or 
other conditions of 
hypoperfusion that are 
common in cerebrovascular 
disease) 

Consider including a second 
modality to identify hypoperfusion 
and neurovascular decoupling: 
• Carotid and transcranial doppler  
• Hyperventilation or CO2 fMRI 

paradigm 
• Arterial Spin Labeling 
• Perfusion scan (e.g. diffusion 

susceptibility contrast MRI, Time-
of-flight MRI) 

Lack of an appropriately 
matched control populations  

• Use an age- and comorbidity-
matched control cohort (e.g. 
patient siblings) 
• In some study designs, it may be 
possible to primarily compare 
differences across stroke patients  

R-fMRI confounds such as head 
motion and sleeping may 
obscure FC:behavior 
relationships 

We recommend acquiring at least 
20 minutes of R-fMRI, leaving room 
for scrubbing of bad frames/runs.  
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