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Abstract

While cancer is a heterogeneous complex of distinct diseases, the common un-
derlying mechanism for uncontrolled tumor growth is due to mutations in proto-
oncogenes and the loss of the regulatory function of tumor suppression genes. In
this paper we propose a novel deep learning model for predicting tumor suppression
genes (TSGs) and proto-oncogenes (OGs) from their Protein Data Bank (PDB)
three dimensional structures. Specifically, we develop a convolutional neural net-
work (CNN) to classify the feature map sets extracted from the tertiary protein
structures. Each feature map set represents particular biochemical properties as-
sociated with the atomic coordinates appearing on the outer surface of protein’s
three dimensional structure. The experimental results on the collected dataset
for classifying TSGs and OGs demonstrate promising performance with 82.57%
accuracy and 0.89 area under the ROC curve. The initial success of the proposed
model warrants further study to develop a comprehensive model to identify the
cancer driver genes or events using TSG and OG as the basis to track the causal
chain.
Keywords: cancer, tumor suppressor gene, oncogene, deep learning, convolu-
tional neural network

1 Introduction

Common themes1 among many different types of cancer at molecular level include (1) mutations
in proto-oncogenes that alter the function of regular cell cycle to uncontrollable cell division, (2)
mutations in cancer suppressor genes that alter their cell regulatory mechanism, and (3) mutations
in DNA-repair genes that cause further mutations in cells instead of repairing them. Traditional
machine learning algorithms such as decision trees, random forest (RF), artificial neural networks
(ANN), support vector machines (SVM) have been successfully applied to build predictive models for
various aspects related to cancer including prognosis of cancer, classification of cancer types from data
sources such as clinical data, SNP’s, gene expressions [1, 2, 3, 4, 5]. Recently, deep learning [6, 7] has
shown remarkable performances for predicting the specificity of DNA and mRNA binding sites [8],
functional classification [9], protein folding pattern [10], and for cancer categorization [11, 12].
Automatic detection and prediction of the either oncogenes or cancer suppressor genes from their
three dimensional features is a big step in discovering their structural characteristics to improve the
state-of-the-art in making a dent in cancer treatments. To our knowledge, there is no or few works

1https://www.cancer.gov/about-cancer
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2 TSG AND OG DATASET PREPARATION

Figure 1: Tertiary structure of protein ‘4CDG’. Cartoon (left) and atomic (right) displays. Downloaded
from https://www.rcsb.org.

done in applying machine learning in identifying oncogenes or cancer suppressor genes from the
three dimensional structures.

Although there exist many different cancer types such that finding a coherent pattern representing
their drivers is a challenging problem, cancer manifests as tissue grows in an uncontrolled manner due
to malfunction in regular cell cycle process. Along with many other factors, it has been documented
through experimentation that mutations in proto-oncogenes and in tumor suppressor genes and their
regulatory mechanism play major roles in tumor growth. The roles played by genes in various types
of cancer fall into one of these following categories: oncogene (OG), tumor suppressor gene (TSG),
fusion or combination of them such as (a) OG and fusion, (b) OG and TSG, (c) OG, TSG and fusion,
(d) TSG and fusion. OGs are referred to the genes that increase the cells while TSGs are referred
to the genes that control the cell growth process. Osborne et al [13] has reviewed popular OG and
TSG malfunctions in human breast cancer. The OG/TSG detection improves the cancer identification
performance as discussed in [14]. They have used genomic data and their variance from the cancer
genomic atlas (TCGA), ICGC, and COSMIC and have applied a random forest model integrating five
statistical tests to detect the cancer genes and specify them as likely OG and TSG. A question arises
that how to classify OGs and TSGs only from their three-dimensional protein structures without extra
statistical tests or other feature extraction modules? Prediction of the functional annotation of proteins
is being improved by various methods such as prediction by sequence similarity [15, 16], evolutionary
relations [17], genetic interactions [18], protein-protein interactions [19], protein structures and
gene-ontology hierarchy [9, 20, 21].

In this paper, we propose a deep convolutional neural network (CNN) to classify TSGs and OGs
based on their PDB structures. CNNs have shown high performances in visual feature extraction and
classification [22, 23]. Additionally, CNNs provide hierarchical feature extraction modules which are
robust against rotation, scale, and local translation. Thus, these types of visual extraction modules
can be used to discover discriminative information of the PDB structures by mapping the biochemical
features annotated with the 3-D atomic coordinates appearing on the outer surfaces to visual feature
maps.

2 TSG and OG Dataset Preparation

2.1 Protein Structure

The tertiary protein structure is determined by a three-dimensional geometric shape with a single
polypeptide backbone. It contains a variety of bonding interactions between the side chains on the
amino acids. Fig. 1 shows a protein structure in which the colors exhibit its secondary structure.
In this paper, we concentrate on the protein’s atomic coordinates appearing on the outer surfaces
(< x, y, z >) and their associated biochemical properties.
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2.2 biochemical Features 2 TSG AND OG DATASET PREPARATION

1: Cα.inds(x,y,z) = atom.select(pdb, “Cα")
2: Gravity.inds(x,y,z) = mean(Cα.inds(x,y,z))
3: Polar.inds = polar(Cα.inds(x,y,z) - Gravity.inds(x,y,z))
4: Surface.atoms = selectSur(Polar.inds)
5: Surface.cartesian = mapCatesian(Surface.atoms)
6: Surface.cartesian.norm =

Round(2×(Surface.cartesian-min(Surface.cartesian)))
7: Property(x,y,z) = property(Surface.cartesian.norm)

Figure 2: Pseudo-code for PDB feature extraction.

2.2 biochemical Features

Annotated cancer genes are downloaded from COSMIC2 V82 for human (GRCh38). For the purpose
of this machine learning experiment in identifying the genes role in cancer from their 3D structure,
we have focused on tumor suppressor genes and oncogenes. The recent version of the COSMIC
annotated gene lists has 137 TSG and 78 oncogenes. These gene sets are combined together and
are clustered with DAVID Bioinformatics Resources 6.8 [24] using only direct annotation from
gene ontology3 and other functional categories provided by the tool. The gene ontology term [25]
provides a structured vocabulary to annotate genes and their products by providing three orthogonal
ontologies: biochemical process (BP), cellular components (CC), and molecular function (MF), each
of which is modeled as a directed acyclic graph. As expected, the TSGs and the OGs are clustered into
non-overlapping, separate clusters. Therefore, they are appropriate candidates for separate functional
predictive models.

The Ensembl ids of OGs and TSGs are mapped to the PDB ids by using the UniProt web tool [26]4.
The PDB files were downloaded from the protein data bank website5. The PDB format contains a
standard format for macromolecular structure data achieved by X-ray diffraction and NMR stud-
ies [27].

To interpret and distinguish these genes, we provide a feature extraction module to represent bio-
chemical characteristics of their tertiary structure. The feature extraction module has two steps:
1) indexing the surface Cα atoms; 2) extracting the outer surface atoms’ properties. The feature
extraction algorithm is shown in Fig. 2.

2.2.1 Surface Cα Indexing

For each PDB file, the surface Cα atoms are chosen. To find the surface atoms, the Cartesian
coordinates are changed to polar coordinates and then, with 1 degree resolution, the highest radius
atom is selected as the surface atom (Fig. 2 lines 1 through 5). Finally, the surface indices < x, y, z >
are converted to decimal numbers starting from < 0, 0, 0 > (Fig. 2 line 6).

2.2.2 Atom Properties

The PDB files provide information on amino acids placed in the Cα coordinates. In our model,
each PDB file is represented by sixteen features along with their 3-D coordinates. These 16 features
indirectly characterize biochemical property of an amino acid6. Table 1 represents the mapping
between an amino acid to the corresponding feature vector of length 16. These features are used in the
“property" function as shown in Fig. 2 line 7. Note: the feature values of Pka-NH2 and P-Ka-COOH
are normalized in the range [0, 1].

2https://cancer.sanger.ac.uk/census
3http://www.geneontology.org
4http://www.uniprot.org/uploadlists
5https://www.rcsb.org/pdb/download/download
6http://www.proteinstructures.com/Structure/Structure/amino-acids.html
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3 DEEP LEARNING MODEL

Table 1: Amino-acids and their associated properties.

3 Deep Learning Model

In this section, we first explain the data processing steps required for preparing the feature maps feed
into the CNN; and then, the network architecture is explained.

3.1 Input Feature Maps

As mentioned earlier, each PDB file is represented by 16 features associated with the atomic coordi-
nates< x, y, z >. To covert the three dimensional feature space to the feature maps (2-D), we generate
three independent feature sets associated with three atomic projections on < x, y >,< y, z >, and
< x, z > feature spaces. Therefore, each PDB file can be converted to three perpendicular 2-D
feature spaces. In the next step, each projection is converted to 16 feature maps corresponding to the
sixteen feature values computed in the previous section.

This approach converts a 3-D structure to three feature map sets with dimensions of 200× 200× 16
pixels (16 feature maps of 200 × 200). Processing the projections is much faster than processing
the 3-D structures while not losing information considerably due to the PDB’s sparse structure.
Furthermore, each feature map set of a projection denotes specific features of the protein while
preserving its spatial information. Fig. 3 shows an example of these feature maps (here, < x, y >
projection of a TSG). Later, the three feature map sets are used for TSG/OG classification as explained
in Section 3.2.

3.2 CNN Architecture

The deep learning model, in this study, develops a parallel CNN with three branches followed by a
multi-layer fully connected neural network. Fig. 4 shows this deep CNN’s architecture. The model
consists of four convolution and pooling layers and three fully connected layers including the final
classifier. The convolution kernel size (p), pooling strides (si), number of hidden neurons (h1, h2),
convolution pad (γ), and the number of generated feature maps (di) are shown in Table 2. These
parameters have been set up after a number of control experiments and initial evaluations.

As shown in Fig. 4, the CNN receives three 200× 200× 16 feature maps in parallel and performs a
binary (TSG/OG) classification. Each layer is equipped by the rectified linear unit (ReLU) activation
function. We used 30% dropout in the fully connected layers to control probable over training. More
details about the network’s training process is discussed in the next section (Experiments). The
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4 EXPERIMENTS AND RESULTS

Figure 3: Sixteen feature maps obtained from the < x, y > projection of protein ‘4CDG’ (a TSG).
Each map illustrates one biochemical feature calculated in the previous section. The row-wise order
of the maps is analogous to the order of the features shown in Fig. 4

Table 2: The CNN’s parameters.
Parameter Value Parameter Value
d1 32 s1 4
d2 32 s2 2
d3 64 s3 2
d4 64 s4 2
p 3-9 γ 2
h1 100 h2 50

biochemical properties utilized for generating the feature maps are shown on the left side of the
network (Fig. 4). The convolution/pooling layers extract 108 × 64 = 6912 visual features. The
number of trainable parameters are shown on the right side of the network. If we consider p = 5, we
will have 888, 250 trainable parameters.

4 Experiments and Results

The proposed model is evaluated on the dataset that we collected in Section 2. The dataset consists of
2379 PDB files (1191 TSG and 1188 OG) that is converted to 7137 feature maps with 16 channels.
The 2379 feature map sets, each representing one particular protein structure, are randomly divided
into separate training and testing sets with 2029 training and 350 testing samples. This dataset
division method is repeated three times using different random seeds. Finally, the model is trained
and evaluated over 100 iterations.

We implemented the model using the Torch library [28]. The implementation codes for
data preparation and CNN training are available on GitHub https://github.com/tavanaei/
Cancer-Suppressor-Gene-Deep-Learning.
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4.1 Results 4 EXPERIMENTS AND RESULTS

Figure 4: The deep CNN’s architecture for TSG/OG prediction. For simplicity, the convolution and
pooling layers are shown as one module. The red expressions calculate the number of trainable
parameters for each layer.

Table 3: Perormance of the CNNs in terms of accuracy, precision, recall, and area under ROC
(AUROC). Learning rate µ = 0.05.

p 5 7 9
Accuracy (%) 81.71 82.57 79.43
Recall (%) 85.80 81.87 80.70
Precision (%) 78.38 82.35 77.97
AUROC 0.881 0.887 0.869

4.1 Results

We ran four experiments on the CNNs with different convolution kernel sizes (p = {3, 5, 7, 9}) to
find a proper patch size for extracting discriminative visual features. Fig. 5a illustrates the CNNs’
accuracy rates over 100 training iterations. It is shown that the 3× 3 patch is not capable to discover
the visual features well. The best accuracy belongs to the networks equipped by convolution kernels
with p = {7, 9} patch sizes. Table 3 shows the detailed performance measures of the proposed model.
The best performed model reported the accuracy rate of 82.57% and the area under the ROC curve
(AUROC) of 0.89. The test sets used to generate Fig. 5a and Table 3 were slightly different (fewer
test samples were used for the plot).
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4.2 Summary and Discussion 4 EXPERIMENTS AND RESULTS

(a) (b)

Figure 5: Accuracy of the networks with (a): p = {3, 5, 7, 9} convolution patch sizes; µ = 0.05 and
(b): p = 7, over training.

Table 4: Perormance of the CNNs in terms of accuracy, precision, recall, and area under ROC
(AUROC). Convolution patch size p = 7.

Learning Rate Accuracy Recall Precision AUROC
0.005 78.29 86.98 73.13 0.880
0.010 77.71 81.66 74.59 0.871
0.020 80.00 85.80 75.92 0.876
0.030 79.14 83.43 75.81 0.878
0.040 80.57 80.00 80.00 0.872
0.050 82.57 81.87 82.35 0.887
0.060 82.00 85.12 79.01 0.883
0.070 79.14 79.29 77.91 0.877
0.080 82.00 82.84 80.46 0.880
0.090 78.57 85.21 74.23 0.871
0.100 80.00 81.66 77.97 0.874

To asses the model’s convergence speed, Fig. 5b shows the model’s performance with respect to
different learning rates. The models trained by the learning rates µ > 0.03 reached the accuracy rates
higher than 75% after 20 training iterations. The best performed models were trained by the learning
rates of 0.05 and 0.06. Table 4 also shows high performances for the CNNs trained by these learning
rates (0.05 and 0.06) while they were evaluated by a slightly different test set (same as Table 3)

4.2 Summary and Discussion

The raw input data for the positive and negative examples are obtained from the 3D structures of
proto-oncogenes and cancer suppressor genes. The function and the biochemical processes of a
protein are dependent on the outer surface configuration and their chemical properties. We have
developed an algorithm to identify atoms located on the outer surface and have used the selected
sixteen properties of amino acids as shown in Table 1. The 3D configuration of the outer surface is
mapped onto three orthogonal planes. Each property becomes a channel in the feature map of the
CNN as illustrated in Fig. 4. The proposed CNN model with the 16 channel feature map achieved
high performance of 82.6% accuracy rate and 0.89 AUROC. The model becomes very useful in
annotating uncharacterized PDB structures into either the TSG or the OG structures. This model and
the approach of utilizing the outer surface structure and the chemical properties of the amino acids
are novel for predicting protein function from their PDB structures.
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Table 5: AUROC of OG/TSG identification using the statistical methods reported by [14] and our
model.

Method Description AUROC
Truncation Rate Rate of truncating events* 0.922

Unaffected Residues Intra-gene mutation
clustering/recurrence* 0.479

VEST Mean Functional impact bias* 0.71
Patient Distribution Bias in patient labels* 0.556
‘Cancer Type Distribution Cancer type bias* 0.612

Oncodrive-fm Gonzalez-Perez and
Lopez-Bigas [30] 0.725

OncodriveCLUST Tamborero et al.,
[31] 0.597

Random Forest Ensemble on the
first 5 methods (*) 0.924

Our Model DCNN applied to
the PDB structure 0.887

Furthermore, this performance of our model compares favorably with the statistical methods studied
by [14] on pan-cancer genome sequencing data [29] which consists of very rich genomic information.
The datasets we used for evaluating our model is different from their dataset. However, Table 5
compares the AUROC value reported in our study with the AUROC values reported by the state-of-
the-art statistical methods for OG versus TSG identification. Our model outperforms the six out of
eight methods and is close to the best AUROC, 0.924.

5 Conclusion

A deep learning approach was proposed in this paper to classify the cancer genes: proto-oncogenes
and tumor suppressor genes. When either the proto-oncogenes mutate and become uncontrollable
cell divisor, or cancer suppressor genes mutate and lose their function, cancer progresses. By having
a model that confidently identifies proto-oncogene or cancer suppressor genes from the structure,
we are opening a new tool to discover a new set of cancer suppressor genes or proto-oncogenes that
may not have been identified in the literature of having such functionality. By activating the dormant
cancer suppressor gene through drugs, we improve the chances of controlling tumor growth. Of
course, the identified potential cancer suppressor genes have to be verified through testing with rat or
mouse models which resemble human gene content.

This investigation was established by two folds: 1) protein feature extraction from the PDB tertiary
structure; 2) modeling the gene patterns using a parallel deep convolutional neural network (CNN).
As the protein function is associated with the atoms activated on the surface of protein structure, we
extracted sixteen amino-acid features corresponding to each 3-D coordinates. This new dataset is
converted to three orthogonal projections of atomic features to generate three feature map sets that
each consists of 16 feature maps. These feature maps were applied to the DCNN to classify the OG
and TSG proteins. The proposed DCNN preserves the spatial information of the tertiary structure
while modeling the protein structure/features via three parallel, independent visual feature extraction
modules. Finally, the fully connected neural network of the DCNN classifies the combined visual
features.

The experimental results showed high performance of 82.57% and 0.887 accuracy rate and area
under the ROC curve, respectively. The reported performance is comparable with the state-of-the-art
models classifying OG/TSG to identify the cancer proteins. The initial success of our model warrants
our future study to apply the same deep learning approach to new datasets for predicting different
cancer types to identify the cancer drivers.
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