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Abstract 

Background: Genomic regions of autozygosity (ROA) arise when an individual is homozygous for 

haplotypes inherited identical-by-descent from ancestors shared by both parents. Over the past decade, 

they have gained importance for understanding evolutionary history and the genetic basis of complex 

diseases and traits. However, methods to detect ROA in dense genotype data have not evolved in step 

with advances in genome technology that now enable us to rapidly create large high-resolution genotype 

datasets, limiting our ability to investigate their constituent ROA patterns. 

Results: We report a weighted likelihood approach for identifying ROA in dense genotype data that 

accounts for autocorrelation among genotyped positions and the possibilities of unobserved mutation and 

recombination events, and variability in the confidence of individual genotype calls in whole genome 

sequence (WGS) data. Forward-time genetic simulations under two demographic scenarios that reflect 

situations where inbreeding and its effect on fitness are of interest suggest this approach is better powered 

than existing state-of-the-art methods to detect ROA at marker densities consistent with WGS and popular 

microarray genotyping platforms used in human and non-human studies. Moreover, we present evidence 

that suggests this approach is able to distinguish ROA arising via consanguinity from ROA arising via 

endogamy. Using subsets of The 1000 Genomes Project Phase 3 data we show that, relative to WGS, 

intermediate and long ROA are captured robustly with popular microarray platforms, while detection of 

short ROA is more variable and improves with marker density. Worldwide ROA patterns inferred from 

WGS data are found to accord well with those previously reported on the basis of microarray genotype 

data. Finally, we highlight the potential of this approach to detect genomic regions enriched for 

autozygosity signals in one group relative to another based upon comparisons of per-individual 

autozygosity likelihoods instead of inferred ROA frequencies. 

Conclusions: This weighted likelihood ROA detection approach can assist population- and disease-

geneticists working with a wide variety of data types and species to explore ROA patterns and to identify 

genomic regions with differential ROA signals among groups, thereby advancing our understanding of 

evolutionary history and the role of recessive variation in phenotypic variation and disease.  
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Background 

Genomic regions of autozygosity (ROA) reflect homozygosity for haplotypes inherited identical-by-

descent (IBD) from an ancestor shared by both maternal and paternal lines. Common ROA are a source of 

genetic variation among individuals that can provide invaluable insight into how population history, such 

as bottlenecks and isolation, and "sociogenetic" factors, such as frequency of consanguineous marriage, 

influence genomic variation patterns. Population-genetic studies in worldwide human populations over 

the past decade have found ROA ranging in size from tens of kb to multiple Mb to be ubiquitous and 

frequent even in ostensibly outbred populations [1-28] and to have a non-uniform distribution across the 

genome [7,10,13,18] that is correlated with spatially variable genomic properties [2-4,18] creating 

autozygosity hotspots and coldspots [18]. ROA of different sizes have different continental patterns both 

with regards to their total lengths in individual genomes [12,18,22,24,26-28] and in their distribution 

across the genome [18] reflecting the distinct forces generating ROA of different lengths. Studies of ROA 

in the genomes of ancient hominins [29-31] and early Europeans [32] have provided unique insights into 

the mating patterns and effective population sizes of our early forbearers. In non-humans, ROA patterns 

have provided insights into the differential histories of woolly mammoth [33], great ape [34,35], cat [36], 

canid [37-42], and bird [43] populations, while in livestock breeds they have provided insights into their 

origins, relationships, and recent management [42,44-61] and the lasting effects of artificial section 

[58,61-73], as well as informed the design of ongoing breeding [74,75] and conservation [47,57,76] 

programs [77]. 

In contemporary human populations, increased risks for both monogenic [78-82] and complex 

[83-90] disorders as well as increased susceptibility to some infectious diseases [91-93] have been 

observed among individuals with higher levels of parental relatedness. While the association between 

parental relatedness and monogenic disease risk has been known for more than a century [94], 

observations with complex and infectious diseases potentially reflect elevated levels of autozygosity as a 

consequence of prescribed and unintentional inbreeding [95] that enrich individual genomes for 

deleterious variation carried in homozygous form [96,97]. Indeed, genomic autozygosity levels have been 

reported to influence a number of complex traits, including height and weight [98-101], cognitive ability 

[101-103], blood pressure [104-111], and cholesterol levels [111], as well as risk for complex diseases 

such as cancer [84,85,112-116], coronary heart disease [84,117-119], amyotrophic lateral sclerosis (ALS) 

[120], and mental disorders [121,122]. These observations are consistent with the view that variants with 

individually small effect sizes associated with complex traits and diseases are more likely to be rare than 

to be common [123-126], are more likely to be distributed abundantly rather than sparsely across the 

genome [9,127], and are more likely to be recessive than to be dominant [9,128]. Recent studies 

investigating ROA and human disease risk have identified both known and novel loci associated with 

standing height [129], rheumatoid arthritis [130], early-onset Parkinson's disease [131], Alzheimer’s 

disease [132,133], ALS [120], schizophrenia [4,134], thyroid cancer [116], and Hodgkin lymphoma 

[115,135]. Thus, just as ROA sharing among affected individuals has facilitated our understanding of the 

genetic basis of monogenic disorders [136] in both inbred [137-140] and more outbred [141-143] 
families, it also represents a potentially powerful approach with which to further our understanding of the 

genetic etiology of complex disorders [144] of major public health concern worldwide. 

 In both population- and disease-genetic studies, ROA are frequently inferred from runs of 

homozygous genotypes (ROH) present in genome-wide single nucleotide polymorphism (SNP) data 

obtained using high-density microarray platforms [145]. A popular program for ROH identification is 

PLINK [146], which uses a sliding window framework to find stretches of contiguous homozygous 

genotypes spanning more than a certain number of SNPs and/or kb, allowing for a certain number of 

missing and/or heterozygous genotypes per window to account for possible genotyping errors. While a 

number of more advanced ROA identification approaches have been proposed [147,148], a recent 

comparison found the PLINK method to outperform these alternatives [149]. We recently proposed to 

detect ROA using a sliding-window framework and a logarithm-of-the-odds (𝐿𝑂𝐷) score measure of 

autozygosity [1,150] that offers several key advantages over the PLINK method [18]. First, it is not reliant 
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on fixed parameters for the number of heterozygous and missing genotypes when determining the 

autozygosity status of a window, instead incorporating an assumed genotyping error rate, making it more 

robust to missing data and genotyping errors. Second, it incorporates allele frequencies in the general 

population to provide a measure of the probability that a given window is homozygous by chance, 

allowing homozygous windows to be distinguished from autozygous windows. These important advances 

would be expected to provide greater sensitivity and specificity for the detection of ROA in high-density 

SNP genotype data, particularly in the presence of the higher and more variable genotype error rates in 

next-generation sequence (NGS) data [151,152]. 

A shortcoming of the 𝐿𝑂𝐷 method is that correlations between SNPs within a window that occur 

as a consequence of linkage disequilibrium (LD) are ignored, leading to overestimation of the amount of 

information that is available in the data and potentially false-positive detection of autozygosity signals. In 

addition, the 𝐿𝑂𝐷 method does not account for the possibility of recent recombination events onto very 

similar haplotype backgrounds that might give the appearance of autozygosity when paired with a non-

recombined haplotype [153]. Such a scenario would, for example, arise when ROA are detected in 

microarray-based genotype data that comprises information at only a limited set of positions within a 

genomic interval and is therefore blind to unobserved genetic differences that make the apparently 

identical haplotypes distinct. 

Here, we report an improved 𝐿𝑂𝐷-based ROA detection method that accounts for the non-

independence between SNPs and the likelihoods of unobserved mutation and recombination events within 

a window. We compare the performance of this new method against the original 𝐿𝑂𝐷 method as well as a 

newly reported method implemented in the BCFtools software package [154] in simulated genetic 

datasets. We then evaluate how ROA inference is influenced by the source and density of interrogated 

markers using the 26 worldwide human populations included in Phase 3 of The 1000 Genomes Project 

[155], considering the entire whole-genome sequence (WGS) dataset as well as subsets representing SNPs 

present in the exome and included on two commonly used Illumina BeadChips. We show population 

differences in genome-wide ROA patterns inferred from WGS data using our improved 𝐿𝑂𝐷-based 

method recapitulate those observed in our earlier BeadChip-based study that used the original 𝐿𝑂𝐷 

method [18]. Finally, we highlight the unique ability of our improved 𝐿𝑂𝐷-based method to identify 

genomic regions enriched for autozygosity signals in one group relative to another without first inferring 

ROA through the direct comparison of weighted 𝐿𝑂𝐷 scores, finding nine regions that significantly differ 

in the strength of their autozygosity signals between apparent subgroups within the Asian Indian Gujarati, 

Punjabi, and Telugu populations. Our improved ROA detection method will assist population- and 

disease-geneticists working with a wide variety of data types and species to explore ROA patterns and to 

identify genomic regions with differential ROA signals, thereby facilitating our understanding of the role 

of recessive variants in phenotypic variation and disease. 

Results 

Weighted likelihood autozygosity estimator 

We previously reported an ROA detection approach that was based on a number of earlier methods 

[1,150] in which a likelihood-based autozygosity estimator is applied in a sliding window framework 

where window size is defined as a fixed number of SNPs [18]. In this approach, within window 𝑤 in 

individual 𝑖 from population 𝑗, the 𝐿𝑂𝐷 score of autozygosity is calculated across the 𝐾 SNP markers 

within window 𝑤, where we observe genotype 𝐺𝑘 at the 𝑘𝑡ℎ SNP that has state 𝑋𝑘, which equals 1 if the 

SNP is autozygous and 0 otherwise. 

𝐿𝑂𝐷(𝑤, 𝑖) = ∑ 𝑙𝑜𝑔10 (
Pr(𝐺𝑘|𝑋𝑘 = 1)

Pr(𝐺𝑘|𝑋𝑘 = 0)
)

𝐾

𝑘=1

 (1) 

The per-SNP likelihoods of autozygosity and non-autozygosity are based on Hardy-Weinberg proportions 

(Table 1) and include population-specific allele frequencies and an assumed rate of genotyping errors and 

mutations ε. Missing genotypes are ignored in this algorithm; that is, they have a log-likelihood of zero. 
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The log-likelihood of autozygosity for homozygous SNPs is positive and decreases exponentially as a 

function of allele frequency (Additional File 1: Figure S1A). The log-likelihood of autozygosity for 

heterozygous SNPs is instead negative and equal to log10 (ε), thus acting as a penalty for the presence of 

heterozygous genotypes within a window. 

To address the apparent shortcomings of the 𝐿𝑂𝐷 score method, we developed a weighted 𝐿𝑂𝐷-

based method (𝑤𝐿𝑂𝐷) that accounts for non-independence among SNPs and the probabilities of 

recombination and mutation within window 𝑤. 

𝑤𝐿𝑂𝐷(𝑤, 𝑖) = ∑

[
 
 
 
 𝑙𝑜𝑔10 (

Pr(𝐺𝑘|𝑋𝑘 = 1)

Pr(𝐺𝑘|𝑋𝑘 = 0)
)×Corr(𝑝𝑘 , [𝑝1, 𝑝𝐾])

                                                                            × Pr(𝑛𝑜 𝑟𝑒𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛|[𝑔𝑘−1, 𝑔𝑘])

                                                                     ×Pr(𝑛𝑜 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛|𝜇, [𝑝𝑘−1, 𝑝𝑘]) ]
 
 
 
 𝐾

𝑘=1

 (2) 

Here, we adapt the approach of Chen et al. [156] to incorporate LD information into the 𝑤𝐿𝑂𝐷(𝑤, 𝑖) 

estimator, weighting the log-likelihood of SNP 𝑘 by the reciprocal of the sum of pairwise LD between 

SNP 𝑘 and all other SNPs within window 𝑤 calculated as 

Corr (𝑝𝑘, [𝑝1, 𝑝𝐾]) =
1

∑ 𝐿𝐷𝑘,𝑙
𝐾
𝑙=1

 (3) 

and bounded in the interval [1/𝐾,1]. An intuitive explanation for this correction is that when a number of 

SNPs are highly correlated they provide redundant information. By weighting the log-likelihood for SNP 

𝑘 as a function of its correlation with all other SNPs within window 𝑤 it contributes only the unique 

autozygosity information it possesses to w𝐿𝑂𝐷(𝑤, 𝑖). 

LD reflects historical recombination and mating patterns in a population and is largely insensitive 

to the effects of mating patterns within the last few generations that can, through recombination events 

onto very similar haplotype backgrounds, lead to false-positive autozygosity signals [153]. Thus, we also 

weight the log-likelihood of SNP 𝑘 by the probability of no recombination events having occurred within 

the genomic interval bounded by SNP 𝑘 − 1 and SNP 𝑘 in the last 𝑀 generations, calculated based upon 

their genetic map position 𝑔 (in Morgans) as previously described [10,157] 

Pr(𝑛𝑜 𝑟𝑒𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛|[𝑔𝑘−1, 𝑔𝑘]) = 𝑒−2𝑀(𝑔𝑘−𝑔𝑘−1) (4) 

In a population-genetic context, 𝑀 can be set based upon effective population size estimates and the 

probability that a pair of individuals share a common ancestor 𝑀 generations in the past [158], while in a 

disease-genetic context 𝑀 can instead be set based on known relationships between affected individuals. 

 Finally, we account for the potential presence of unobserved genetic differences within the 

genomic interval bounded by SNP 𝑘 − 1 and SNP 𝑘 by weighting the log-likelihood of SNP 𝑘 by the 

probability of no unobserved mutation events having occurred within the genomic interval in the last 𝑀 

generations, calculated based upon their physical map position 𝑝 (in bp) and a per-base mutation rate 𝜇 

using an approach adapted from MacLeod et al. [159] 

Pr(𝑛𝑜 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛|𝜇, [𝑝𝑘−1, 𝑝𝑘]) = 𝑒−2𝑀𝜇(𝑝𝑘−𝑝𝑘−1) (5) 

As evident in Figure S1B (Additional File 1), the recombination and mutation weightings reduce the log-

likelihood of SNP 𝑘 as a function of its distance from SNP 𝑘 − 1. It can also be seen that as 𝑀 decreases 

the magnitude of the change in the weighting with increasing distance also decreases; thus, 𝑤𝐿𝑂𝐷 scores 

in populations with small effective population sizes or in disease studies where affected individuals share 

a more recent common ancestor (smaller 𝑀) will be adjusted to a lesser extent than those with larger 

effective population sizes or where affected individuals share a more distant common ancestor (larger 𝑀). 

Properties of the wLOD estimator 

We investigated the properties of the 𝑤𝐿𝑂𝐷 estimator using The 1000 Genomes Project Phase 3 dataset 

that provides phased genotypes for 84,801,880 genetic variants discovered using a low-coverage WGS 

approach in 2,436 unrelated individuals from 26 worldwide human populations (Table 2) [155]. To 
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approximate a typical microarray-based SNP genotyping study, we first developed a subset of this dataset 

that contained 2,166,414 autosomal SNPs that are present on the popular Illumina HumanOmni2.5-8 

BeadChip (“Omni2.5 dataset” henceforth). In all analyses, 𝜇 was set to 1.18×10-8 [160] and ε was set to 

4.71×10-4, the average rate of discordance across samples between genotypes in our Omni2.5 dataset and 

those obtained for 1,693 of the 2,436 individuals directly with the Illumina HumanOmni2.5 BeadChip 

[155]. Unless otherwise stated, 𝑀 was set to seven, a conservative value broadly reflecting the average of 

effective population size estimates for populations included in The 1000 Genome Project [155,158,161]. 

Window size was varied in an arbitrary interval [𝐾0, 𝐾𝑛] in which 𝐾 is increased in 10 SNP increments 

(i.e. 𝐾𝑛 = 𝐾0 + [10×𝑛]). 
The genome-wide distribution of 𝑤𝐿𝑂𝐷 scores for all windows in the Omni2.5 dataset is bimodal 

and centered around 0 (Figure 1A), with 𝑤𝐿𝑂𝐷 scores under the left-hand mode favoring the hypothesis 

of non-autozygosity, whereas those under the right-hand mode favor the autozygosity hypothesis. The 

area under the right-hand mode decreases as a function of window size as ROA are progressively covered 

by fewer but longer windows. In addition, while the location of the right-hand mode does not change 

appreciably with window size, there is a noticeable shift toward lower 𝑤𝐿𝑂𝐷 scores in the left-hand mode 

with increasing window size, likely reflecting the larger number of heterozygous SNPs in non-autozygous 

compared with autozygous regions and their greater cumulative effect on 𝑤𝐿𝑂𝐷 scores with increasing 

window size. This shift progressively increases the distance between the non-autozygous and autozygous 

modes until either the autozygous mode disappears (Figure 1B) or the intermodal distance begins to 

decrease instead (Additional File 1: Figure S2), both potentially reflecting the point above which window 

lengths exceed those of the majority of ROA in the sample set. In this scenario, as window size increases 

autozygous windows increasingly overlap non-autozygous regions flanking shorter ROA leading them to 

encompass greater numbers of heterozygotes within these non-autozygous regions, deflating their 𝑤𝐿𝑂𝐷 

scores. Whether the autozygous mode disappears or shifts toward lower 𝑤𝐿𝑂𝐷 scores is likely 

determined by the abundance of ROA and their levels of support in the sample set: sets with fewer ROA 

and ROA with generally lower 𝑤𝐿𝑂𝐷 scores lose their autozygous mode while those with large numbers 

and higher 𝑤𝐿𝑂𝐷 scores have it shift toward the non-autozygous mode. Nevertheless, the location of the 

minimum between the two modes does shift subtly toward higher 𝑤𝐿𝑂𝐷 scores with increasing window 

size, reflecting the expected increase in scores for autozygous windows as a function of the number of 

SNPs within the window. The periodicity observed in the genome-wide score distribution of the original 

𝐿𝑂𝐷 estimator [18] is absent with the 𝑤𝐿𝑂𝐷 estimator, indicating that this property was a reflection of 

LD among SNPs within the window. 

To evaluate how the improvements incorporated into the 𝑤𝐿𝑂𝐷 estimator (equation 3) influence 

per-window scores as compared to the original 𝐿𝑂𝐷 estimator (equation 1), we compared 𝑤𝐿𝑂𝐷 and 

𝐿𝑂𝐷 scores in the Omni2.5 dataset with a window size of 150 SNPs (Figure 2A), the largest value that 

produced a clear bimodal 𝑤𝐿𝑂𝐷 score distribution in all populations. Across populations, per-window 

𝑤𝐿𝑂𝐷 scores differed from their corresponding 𝐿𝑂𝐷 scores by between -103.87 and 454.07 (Figure 2B) 

with the range and average of 𝑤𝐿𝑂𝐷 and 𝐿𝑂𝐷 score differences increasing as a function of a population’s 

geographic distance from East Africa (ρ=0.8460 with P=5.029×10-6 and ρ=0.8846 with P=4.961×10-7, 

respectively), reflecting increasing LD [162,163] and decreasing genetic diversity [95,164-167]─leading 

to larger inter-SNP distances─with distance from Africa. Among the six admixed populations included in 

Phase 3 of The 1000 Genomes Project, those of mixed African and European ancestry (ACB and ASW) 

had smaller ranges and averages of 𝑤𝐿𝑂𝐷 and 𝐿𝑂𝐷 score differences than those of mixed of Amerindian 

and European ancestry (CML, MXL, PUR, and PEL), consistent with the lower LD [168-170] and higher 

genetic diversity [167,171] of admixed African-European populations compared with Amerindian-

European populations. 

Across populations, 5.15–47.93% of all windows in the right-hand “autozygous” mode with the 

𝐿𝑂𝐷 estimator were present in the left-hand “non-autozygous” mode with the 𝑤𝐿𝑂𝐷 estimator (Figure 

2C) potentially reflecting false-positive autozygosity signals reported by the 𝐿𝑂𝐷 estimator as a 

consequence of non-independence among homozygous SNPs that cumulatively give the mistaken 
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impression of autozygosity. The proportion of windows was lowest in African populations and highest in 

most European populations, increasing incrementally through Central/South Asian and East Asian 

populations. This pattern can be explained by population differences in the location of the autozygous 

mode and its shift toward lower scores with the 𝑤𝐿𝑂𝐷 estimator. Modal 𝐿𝑂𝐷 and 𝑤𝐿𝑂𝐷 scores in the 

autozygous mode are generally smallest and most similar in European populations and highest and least 

similar in African populations (Additional File 1: Figure S3A). Thus, for a given unit decrease in score 

between the 𝐿𝑂𝐷 and 𝑤𝐿𝑂𝐷 estimators, an autozygous 𝐿𝑂𝐷 window has a greater chance of 

transitioning to the non-autozygous 𝑤𝐿𝑂𝐷 mode in Europeans populations than in African populations. 

Consistent with this hypothesis, the magnitude of the difference between modal 𝐿𝑂𝐷 and 𝑤𝐿𝑂𝐷 scores in 

the autozygous mode and the location of the minima between the autozygous and non-autozygous modes 

is significantly negatively correlated with the proportion of autozygous 𝐿𝑂𝐷 windows that transition to 

the non-autozygous 𝑤𝐿𝑂𝐷 mode (r=-0.8654, P=1.156×10-8; Additional File 1: Figure S3B). 

In contrast, across populations only 0.055–5.015% of all windows in the non-autozygous mode 

with the 𝐿𝑂𝐷 estimator were present in the autozygous mode with the 𝑤𝐿𝑂𝐷 estimator (Figure 2D), 

potentially reflecting false-negative autozygosity signals reported by the 𝐿𝑂𝐷 estimator as a consequence 

of heterozygotes in high LD with a larger number of homozygotes that, in one possibility, might reflect 

genotyping errors. The proportion of windows was highest in most African populations and lowest in 

most European populations, with broadly similar values observed in Central/South and East Asian 

populations. This pattern is the opposite of that observed with the putative false-positive windows above, 

and can also be explained by population differences in the location of the autozygous mode and its shift 

toward lower scores with the 𝑤𝐿𝑂𝐷 estimator. The addition of a single heterozygote to an autozygous 

window in the European populations has a greater chance of transitioning it from the autozygous to non-

autozygous mode than in the African populations since the autozygous mode is situated much closer to 

the minima between the two modes (Additional File 1: Figure S3). 

Overall, the much larger numbers of windows transitioning from the autozygous to the non-

autozygous mode than vice versa between the 𝐿𝑂𝐷 and 𝑤𝐿𝑂𝐷 estimators accords with the expectation 

that the 𝐿𝑂𝐷 estimator frequently overestimates the amount of information available in the data leading it 

to falsely report autozygosity signals particularly in genomic regions with higher levels of LD, while it 

underestimates the amount of information much less frequently. 

Evidence of separate endogamic and consanguinity autozygosity signals in Asian Indians 

In four of the five Asian Indian populations─Gujarati (GIH), Telugu (ITU), Punjabi (PJL), and Sri 

Lankan Tamil (STU)─as well as in the East Asian Dai (CDX) population, as window size increased a 

third mode appeared in their 𝑤𝐿𝑂𝐷 score distribution that divided the right-hand autozygous mode in two 

(Figure 3A). While an apparent third mode also appeared in the 𝑤𝐿𝑂𝐷 score distribution of the Bengali 

(BEB) Asian Indian population, it was not as well defined as those of the other populations. As window 

size increased further, the area under both autozygous modes decreased until the left-hand autozygous 

mode disappeared followed sometime later by the right-hand autozygous mode. Notably, the distributions 

of all other populations in our dataset did not develop this third mode, and trimodality was not observed 

in the distribution of 𝐿𝑂𝐷 scores for any of the 26 populations in the Omni2.5 dataset.  

The appearance of a trimodal distribution in these six populations potentially reflects the effects 

of two distinct cultural processes that occur in India and among the Dai: consanguinity [172,173] and 

endogamy [174,175]─the restriction of marriages to within a predefined group of lineages or villages. In 

this scenario, the right-hand autozygous mode represents ROA due to consanguinity that are enriched for 

alleles rare in the general population that segregate within inbred families, while the left-hand autozygous 

mode represents ROA due to endogamy that are enriched for alleles present at low frequency in the 

general population that segregate within specific endogamic groups. Compatible with this hypothesis, the 

three populations with the strongest trimodal pattern (STU, ITU, and DAI) have higher reported 

frequencies of consanguinity (38.2% [173], 30.8% [173], and 21.3% [172]) than those with weaker 

trimodal patterns (BEB, 5.0% [173]; GIH, 4.9% [173]; PJL, 0.9% [173]). For example, the consanguinity-

associated mode of the ITU is much larger than the endogamy-associated mode, while the reverse is true 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 17, 2017. ; https://doi.org/10.1101/177352doi: bioRxiv preprint 

https://doi.org/10.1101/177352
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 
 

for the GIH (Figure 3A), consistent with consanguinity being the primary force generating ROA in the 

ITU while endogamy is the dominant force in the GIH. To the best of our knowledge, none of the other 

populations included in Phase 3 of The 1000 Genomes Project practise endogamy; consequently, we do 

not observe a separate endogamy-associated autozygous mode in their 𝑤𝐿𝑂𝐷 score distributions.  

If trimodal distributions are indeed a reflection of the 𝑤𝐿𝑂𝐷 method being able to disentangle 

autozygosity signals arising from endogamy and consanguinity processes we would expect inferred ROA 

to be delineated predominantly by windows from only one of the two autozygous modes. Conversely, if 

the trimodal distribution is just an idiosyncrasy of the 𝑤𝐿𝑂𝐷 estimator we would instead expect ROA to 

be delineated by a random mix of windows drawn from the two autozygous modes. To investigate how 

windows in the putative endogamy- and consanguinity-associated modes cluster to form inferred ROA, 

separately for each population exhibiting a clear trimodal 𝑤𝐿𝑂𝐷 score distribution, we constructed ROA 

from windows with 𝑤𝐿𝑂𝐷 scores above the minimum between the non-autozygous and left-most 

autozygous modes in their 𝑤𝐿𝑂𝐷 score distribution [18]. Next, for each inferred ROA, we calculated the 

proportion of their underlying autozygous windows that had 𝑤𝐿𝑂𝐷 scores within the right-most putative 

consanguinity-associated mode (i.e. above the minimum between the two autozygous modes). 

Inferred ROA were found to frequently be delineated by windows drawn predominantly from one 

of the two autozygous modes (Figure 3B). A large well-defined peak is observed at low proportions, 

representing those ROA comprised of >90% of windows drawn from the left-hand endogamy-associated 

mode. A more diffuse peak is observed at higher proportions, representing those ROA comprised of 

>80% of windows drawn from the right-hand consanguinity-associated mode. The dispersed appearance 

of the peak representing putative consanguinity-associated ROA can be explained as a reflection of the 

fact that the two autozygous modes are not distinct. At the ends of ROA arising via consanguinity, the 

𝑤𝐿𝑂𝐷 scores of windows will naturally decrease as they increasingly span non-autozygous regions and 

overall support for autozygosity declines, leading them to increasingly fall within the endogamy-

associated mode. Consequently, we would expect ROA arising via consanguinity to contain a small 

proportion of windows in the endogamy-associated mode, with the proportion varying based upon the 

overall strength of the autozygous signal (i.e. ROA conferring generally higher 𝑤𝐿𝑂𝐷 scores will have 

lower proportions of windows in the endogamy-associated mode). Nevertheless, across populations, 

68.9% (PJL) to 84.5% (CDX) of all ROA had >80% of their component windows drawn from a single 

autozygous mode. 

Additional support for trimodality in the 𝑤𝐿𝑂𝐷 score distribution reflecting distinct autozygosity 

signals arising from endogamy and consanguinity processes is provided by a comparison of how the 

proportion of windows drawn from the consanguinity-associated mode changes with ROA length 

(Additional File 1: Figure S4). Almost all ROA longer than 5 Mb are comprised predominantly of 

windows drawn from the consanguinity-associated mode (>90%), while proportions among ROA shorter 

than 5Mb are much more variable. This pattern is consistent with the expectation that ROA arising via 

consanguinity will in general be much longer than those arising via endogamy. 

Overall, the properties of ROA constructed from the trimodal 𝑤𝐿𝑂𝐷 score distributions present in 

the Asian Indian and East Asian Dai populations are compatible with the 𝑤𝐿𝑂𝐷 method being capable of 

disentangling autozygosity signals that arise from different cultural processes at sufficiently large window 

sizes. However, further work in well-defined populations that practise both endogamy and consanguinity 

will be required to fully evaluate this apparent property of the 𝑤𝐿𝑂𝐷 method. 

Accuracy of the wLOD estimator 

To evaluate the sensitivity and specificity of the 𝑤𝐿𝑂𝐷 method to detect ROA in dense genotype data, we 

simulated 50 independent replicates of genetic data under two demographic scenarios that are broadly 

representative of situations in which inbreeding and its effect on fitness are of interest as previously 

described [176] except that we considered a non-uniform distribution of recombination rates across the 

simulated chromosomes and allowed all base pairs to be mutatable (see Methods). Scenario 1 considered 

a small partially isolated population of constant effective size (Ne=75) that receives approximately one 

migrant per generation, simulated for 150 generations (4,350 years for a generation time of 29 years 
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[177]). Scenario 2 considered a medium sized closed population (Ne=500 simulated for 100 generations 

[2,900 years]). Each simulated dataset consisted of a single 250 Mb chromosome upon which ~750,000 

polymorphic single-nucleotide variants (SNVs) segregate, consistent with the SNV density and length of 

chromosome 1 in The 1000 Genomes Project Phase 3 WGS data. The simulated WGS datasets used in 

downstream analyses contained 50 randomly chosen individuals from the final generation with genotypes 

for 709,862-746,963 SNVs in scenario 1 and 737,957-748,572 SNVs in scenario 2. 

To better mimic real genetic datasets, we randomly introduced genotyping errors separately into 

each simulated dataset at a rate of 0.001, a conservative value that is similar to but slightly higher than the 

average rate of genotype discordance across 1,693 individuals between genotypes in their WGS data and 

those obtained at the exact same SNVs with the Illumina HumanOmni2.5 BeadChip [155], and we set ε to 

this value in all analyses. Analysis of the simulated pedigrees found the parents of individuals in the final 

generation to have a common ancestor on average three generations in the past for scenario 1 (all between 

1 to 5 generations) and four generations in the past for scenario 2 (all between 1 to 7 generations) and 𝑀 

was set to these average values when analyzing their respective datasets. 

Separately for each simulated dataset, we applied the 𝑤𝐿𝑂𝐷 estimator considering windows of 

between 50 and 500 SNPs (in 10 SNP increments), count estimates of allele frequencies calculated using 

all 75 individuals, and the genetic and physical map positions of each genotyped position returned by the 

simulation program. All windows with 𝑤𝐿𝑂𝐷 scores higher than the location of the minimum between 

the non-autozygous and autozygous modes in the 𝑤𝐿𝑂𝐷 score distribution were considered autozygous 

[18]; overlapping autozygous windows were joined to define ROA. Here, we varied the proportion of 

overlapping windows that must be called as autozygous when defining ROA between 0 and 50 percent (in 

1% increments). As each SNV is included in multiple windows (i.e. an SNV is included in 50 different 

windows at a window size of 50), near the edges of a true ROA some SNV will be included in both 

autozygous and non-autozygous windows as the sliding window enters and leaves the ROA. Requiring an 

SNV to be covered by a certain proportion of autozygous windows before it is placed within an ROA can 

improve the accuracy of ROA inferences when using a sliding-window approach [146]. 

For each simulated dataset, we then calculated three measures of how well inferred ROA agreed 

with true ROA reported by the simulation program. First, we calculated the power of the 𝑤𝐿𝑂𝐷 method 

to detect true ROA, defined here as the total length of true ROA that is overlapped by inferred ROA 

divided by the total length of true ROA. Second, we calculated its false positive rate as the total length of 

inferred ROA that does not overlap with true ROA divided by the total length of inferred ROA. Finally, 

for all true ROA detected with the 𝑤𝐿𝑂𝐷 method, we calculated the ratio of inferred ROA length and true 

ROA length for all ROA. Here, ratios greater than one indicates a tendency to overcall ROA by falsely 

including non-autozygous regions near the boundaries of the true ROA, while ratios below one indicate a 

tendency to instead undercall an ROA by falsely excluding true autozygous regions near the boundaries 

of the true ROA [178]. 

As can be seen in Figure 4A, large numbers of false positive ROA calls are made by the 𝑤𝐿𝑂𝐷 

method with a window size of 50 SNPs, decreasing markedly as the window size and the proportion of 

overlapping windows required during ROA construction increases. These patterns are consistent with the 

observation that false positive ROA calls are very small―on average 16.97 kb (standard deviation [SD] = 

3.85) with a window size of 50 SNPs―and therefore delineated by a few erroneous autozygous windows 

that progressively fail to meet the required threshold during ROA calling as the window overlap fraction 

increases. Once window size reaches ~90 SNPs, the 𝑤𝐿𝑂𝐷 estimator is able to distinguish autozygosity 

from homozygosity-by-chance with great precision. Conversely, numbers of false negative ROA calls 

increase as a function of window size and overlap fraction (Figure 4B). These patterns are consistent with 

the expectation that as window size increases smaller ROA increasingly go undetected (Additional File 1: 

Figure S5A), likely as a result of them being spanned by progressively fewer but larger windows and 

their autozygosity signal being increasingly masked by the inclusion of non-autozygous flanking regions 

in the 𝑤𝐿𝑂𝐷 score calculation. Similarly, higher overlap fractions also lead to small ROA spanned by just 

a small number of autozygous windows increasingly going undetected (Additional File 1: Figure S5D) as 

they fail to meet the required threshold. Nevertheless, overall power to detect ROA with the 𝑤𝐿𝑂𝐷 
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method only decreases slightly as window size and overlap fraction increase (Figure 4C), consistent with 

the expectation that at larger window sizes (Additional File 1: Figure S5B) and overlap fractions 

(Additional File 1: Figure S5E) the sliding window approach will have increasing difficulty in detecting 

smaller ROA but nonetheless retains high power to detect longer ROA. Finally, ratios of inferred to true 

ROA length increase as a function of window size and decrease as a function of overlap fraction (Figure 

4D), reflecting the tendency of the 𝑤𝐿𝑂𝐷 method to overcall the boundaries of smaller ROA at larger 

window sizes (Additional File 1: Figure S5C) and smaller overlap fractions (Additional File 1: Figure 

S5F) with those of longer ROA affected to a much lesser extent. All together, these patterns suggest that a 

suitable point within the parameter space at which to evaluate the sensitivity and specificity of the 𝑤𝐿𝑂𝐷 

method will be the smallest window size and overlap fraction combination at which no false-positive 

ROA are inferred and the average ratio of inferred to true ROA length is approximately one (Table 3), 

striking a balance between sensitivity to detect smaller ROA and the overall accuracy of ROA calls. 

To evaluate how SNV density influences the sensitivity and accuracy of ROA inference with the 

𝑤𝐿𝑂𝐷 method we created three subsets of the simulated WGS datasets that reflect the SNV densities of 

commonly used human microarray-based genotyping platforms: Illumina’s HumanOmni2.5-8 (125,000 

SNVs) and OmniExpress-24 (50,000 SNVs) BeadChips and Affymetrix’s Genome-Wide Human SNP 6.0 

Microarray (80,000 SNVs). In addition, we included subsets with SNV densities consistent with the 

genotyping platforms used by ROA studies in cattle and dogs: Illumina’s Bovine HD (80,000 SNVs) and 

Canine HD (18,000 SNVs) BeadChips. After the removal of monomorphic SNVs, the 125K, 80K, 50K, 

and 18K subsets contained between 117113-123766, 74953-79211, 46846-49507, and 16865-17823 

polymorphic SNVs, respectively, for scenario 1, and between 121833-122815, 77973-78602, 48733-

49126, and 17544-17686 polymorphic SNVs for scenario 2. ROA were inferred and evaluated exactly as 

described above for the WGS datasets containing ~750K SNVs, with the optimal window size and 

overlap fraction determined separately for each SNV density and demographic scenario (Table 3). 

Interestingly, optimal window size varied only slightly across the different SNV densities, lying between 

60–130 SNPs and 70–120 SNPs for scenarios 1 and 2, respectively, but nevertheless increasing as a 

function of SNV density. The optimal window overlap fraction did however vary more widely, increasing 

as a function of SNV density and lying between 7–37% and 5–32% for scenarios 1 and 2, respectively. 

As would be expected, the power of the 𝑤𝐿𝑂𝐷 method to detect ROA increases as a function of 

ROA length and the density of SNV in the genetic dataset (Figure 5). While ROA longer than 1 Mb are 

captured extremely well (>99.7%) at all SNV densities explored, the detection of ROA shorter than ~1 

Mb decreases appreciably as a function of SNV density. Nevertheless, even with only ~18,000 SNVs (1 

SNV every ~14 kb) the 𝑤𝐿𝑂𝐷 method is able to capture 96.3% and 89.0% of ROA under scenarios 1 and 

2, respectively, with this increasing to 99.9% for both scenarios with 750,000 SNVs (1 SNV every ~333 

bp). However, false discovery rates do increase dramatically with decreasing SNV density, particularly 

for smaller ROA (Figure 5) where they jump from 0.0045 and 0.0069 with 750,000 SNVs to 0.0445 and 

0.1362 with 18,000 SNVs for scenarios 1 and 2, respectively, while longer ROA are much less affected: 

0.0010 and 0.0001 with 750,000 SNVs increasing to 0.0200 and 0.0495 with 18,000 SNVs for ROA ≥ 5 

Mb, respectively. It should be noted that these false discovery rates are solely the result of overcalling 

true ROA and not erroneous ROA calls. This is reflected in the ratios of inferred to true ROA length 

(Figure 5) that increase with decreasing SNV density, particularly for smaller ROA, and approach―but 

never quite reach―one with increasing ROA length. 

Overall, these findings indicate that the 𝑤𝐿𝑂𝐷 method is well powered to detect ROA with high 

sensitivity and good specificity at a wide range of SNV densities that are consistent with WGS as well as 

popular microarray-based platforms that are commonly used in human and non-human studies of ROA, 

and in particular long ROA that are of interest in studies of Mendelian and complex diseases and traits. In 

the simulations, both the optimal window size and the optimal overlap fraction increased logarithmically 

as a function of SNV density (R2=0.9814 and R2=0.8868, respectively, when considering their averages 

across scenarios). Fitting these averages against the natural logarithm of average SNV density 𝐷 across all 

50 replicates of their respective SNV subset, this suggests that as a rule of thumb future studies apply the 

𝑤𝐿𝑂𝐷 method at a window size equal to 16.400×𝑙𝑜𝑔𝑒(𝐷) + 218.020 and an overlap fraction equal to 
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0.0736×𝑙𝑜𝑔𝑒(𝐷) + 0.8063. Based upon these equations, and calculating SNV density as the number of 

autosomal SNPs on the microarray divided by the total length of the target species’ autosomal genome, 

guideline settings for window size and overlap fraction with the commonly used human and non-human 

genotyping microarrays are: 111 SNPs (33%), 103 SNPs (29%), 85 SNP (21%), 81 SNPs (19%), and 59 

SNP (9%) for Illumina’s HumanOmni5, HumanOmni2.5, Bovine HD, OmniExpress, and Canine HD 

BeadChips, respectively, and 85 SNPs (21%) for the Affymetrix Genome-Wide Human SNP 6.0 

Microarray. Considering the range of autosomal SNVs observed in the WGS data available for the 26 

worldwide populations in Phase 3 of The 1000 Genomes Project (12–24 million SNV [155]) a window 

size of 128–140 SNPs and an overlap fraction of 40–45% would be recommended for WGS datasets. 

Nevertheless, the modest effect window size has on power to detect longer ROA across the simulated 

SNV densities (Additional File 1: Figure S6) would suggest that the use of more conservative (i.e. larger) 

window sizes will not greatly impact the ability of future studies to detect longer ROA of interest 

regardless of the source and density of the SNV data being analyzed. The window overlap fraction used in 

ROA construction can then be tailored to meet the needs to detect shorter ROA (Additional File 1: Figure 

S7) and to accurately place ROA boundaries (Additional File 1: Figure S8), where less restrictive (i.e. 

smaller) fractions can greatly improve the detection of shorter ROA without significantly impacting the 

accuracy of longer ROA inferences. 

Performance of 𝒘𝑳𝑶𝑫 against existing ROA detection methods 

We have shown the 𝑤𝐿𝑂𝐷 method to be well powered to detect ROA in genetic datasets consistent with 

WGS and microarray-based genotyping. We next evaluated how the power and false discovery rate of the 

𝑤𝐿𝑂𝐷 method compared with those of the original 𝐿𝑂𝐷 method as well as the naïve genotype counting 

method implemented in PLINK [146] and the recently reported hidden Markov model (HMM) method 

implemented in the RoH function of BCFtools [154] using the datasets simulated above. We do not 

consider here the ROA detection methods of GERMLINE [148] and Beagle [179] as they have been 

previously shown to underperform compared with the method implemented in PLINK [149]. Since the 

false discovery and boundary placement properties of the sliding-window-based 𝐿𝑂𝐷 and PLINK 

methods would be expected to differ from those of the 𝑤𝐿𝑂𝐷 method due to their different underlying 

models, separately for each dataset we identified the optimal window size and overlap fraction for the 

𝐿𝑂𝐷 method (Additional File 2: Table S1) and PLINK (always a window size of 50 SNPs and an overlap 

fraction of zero) as described above. For PLINK we allowed at most 2% of SNPs to have heterozygous 

genotypes and 5% of SNPs to have missing genotypes for a window to be inferred to be autozygous 

[149]. The 𝐿𝑂𝐷 method and BCFtools/RoH were applied using the same allele frequency estimates and 

error rate ε as the 𝑤𝐿𝑂𝐷 method, while BCFtools/RoH additionally incorporated genetic map positions 

and performed Viterbi training with initial transition probabilities between autozygous and non-

autozygous states and vice versa of 6.6×10-8 and 5.0×10-9, respectively, to optimize its underlying model 

prior to ROA calling [154]. 

 For both scenario 1 and 2, all four methods were able to detect >99.5% of ROA on average with 

750,000 SNVs (Figure 6A and 6D, respectively), representative of the density of SNVs observed in WGS 

data. Nevertheless, the 𝑤𝐿𝑂𝐷 method outperformed both the original 𝐿𝑂𝐷 method as well as PLINK and 

BCFtools/RoH, particularly at shorter ROA lengths. Interestingly, power with BCFtools/RoH became 

increasingly erratic at longer ROA lengths, most noticeably in scenario 1 (small isolated populations), for 

reasons that remain enigmatic. However, while the 𝑤𝐿𝑂𝐷 method had a lower false discovery rate than 

the 𝐿𝑂𝐷 method, it was notably higher than that of BCFtools/RoH and PLINK. Again, it should be noted 

that this elevated false positive rate solely reflects the overcalling true ROA due to the sliding-window 

approach employed and not erroneous ROA calls, with such overcalling easily reduced through the use of 

a more stringent overlap fraction but at the expense of power to detect short ROA. Nevertheless, average 

ratios of inferred to true ROA length were broadly similar across the w𝐿𝑂𝐷, 𝐿𝑂𝐷, and BCFtools/RoH 

methods, where they are highest for extremely short ROA and decrease exponentially with increasing 

ROA length until they approach―but never quite reach―one, although ratios with BCFtools/RoH were 

marginally lower than those with the 𝑤𝐿𝑂𝐷 and 𝐿𝑂𝐷 methods in scenario 2. Conversely, average ratios 
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with PLINK decreased noticeably as a function of ROA length―reaching 0.47 in scenario 1 and 0.81 in 

scenario 2―consistent with the expectation that as a consequence of its naïve model, PLINK will have a 

tendency to undercall ROA or return fragmented ROH calls across their span as a function of the 

distribution of heterozygous genotypes within the ROA, which would be expected to be most numerous 

near its boundaries. Overall, these observations would suggest that model improvements implemented in 

the 𝑤𝐿𝑂𝐷 estimator (equation 2) that account for the confounding effects of LD, recombination, and 

mutation in the autozygosity likelihood calculation provide improved sensitivity and specificity in ROA 

calling over the original 𝐿𝑂𝐷 estimator (equation 1). Additionally, they indicate that the 𝑤𝐿𝑂𝐷 method’s 

sliding window approach, which combines evidence for autozygosity across multiple SNVs, provides 

improved sensitivity to detect ROA compared with the HMM method of BCFtools/RoH, albeit with 

slightly decreased accuracy in ROA boundary placement. 

 When we consider simulated datasets consistent with those of genotyping microarrays we observe 

similar patterns to those observed with 750,000 SNVs (Figures 6 and S9 [Additional File 1]). For both 

scenarios 1 and 2, the 𝑤𝐿𝑂𝐷 method consistently outperforms the 𝐿𝑂𝐷 method as well as BCFtools/RoH 

and PLINK in terms of power, particularly at shorter ROA lengths. False discovery rates with the 𝑤𝐿𝑂𝐷 

method are consistently lower than those with the 𝐿𝑂𝐷 method but remain slightly higher than those with 

BCFtools/RoH, while ratios of inferred to true ROA length remain similar across the 𝑤𝐿𝑂𝐷 and 𝐿𝑂𝐷 

methods and BCFtools/RoH. As SNV density decreases from 750,000 SNVs down to 18,000 SNVs 

several patterns emerge. First, the difference in power between the 𝑤𝐿𝑂𝐷 and 𝐿𝑂𝐷 methods decreases as 

a function of SNV density (Additional File 1: Figure S9B and S9D), disappearing faster under scenario 2 

(large closed populations) than under scenario 1 (small partially isolated populations). These patterns are 

consistent with the view that in datasets containing fewer SNVs, LD confounds the inference of ROA 

appreciably less than in datasets containing many SNVs. Consequently, the LD correction implemented in 

the 𝑤𝐿𝑂𝐷 estimator (equation 2) increasing becomes less important as SNV density decreases, leading 

the 𝐿𝑂𝐷 and 𝑤𝐿𝑂𝐷 estimators to provide broadly similar autozygosity likelihoods. Nevertheless, false 

discovery rates with the 𝑤𝐿𝑂𝐷 method are consistently lower than those with the 𝐿𝑂𝐷 method, in 

agreement with the expectation that as SNV density decreases the probabilities of unobserved 

recombination and mutation events between genotyped SNVs increases, with the recombination and 

mutation corrections implemented in the 𝑤𝐿𝑂𝐷 estimator (equation 2) enabling it to better account for 

these events than the 𝐿𝑂𝐷 estimator (equation 1). Second, ratios of inferred to true ROA length with the 

PLINK method become more similar to those of the other three methods with decreasing SNV density. 

This pattern is consistent with the expectation that as SNV density decreases, the number of heterozygous 

genotypes within ROH will also decrease, allowing PLINK to increasingly detect the entire ROA. Finally, 

the performance of BCFtools/RoH decreases as a function of SNV density, although an appreciable loss 

of power only manifests when we reach 18,000 SNVs and is more pronounced in scenario 2 than in 

scenario 1 (Additional File 1: Figure S9B and S9D), suggesting that its HMM is sensitive to the effects of 

extended LD among sparsely distributed SNVs, a situation frequently encountered in closed populations 

due to elevated levels of general inbreeding. It should be noted, however, that BCFtools/RoH was 

designed for next-generation whole-genome and -exome data analysis and not for sparser microarray-

derived genotype datasets, so its decline in performance in such datasets is to be somewhat expected. 

Contrary to expectations based on frequent discrepancies in the autozygosity status of windows 

with the 𝑤𝐿𝑂𝐷 and 𝐿𝑂𝐷 estimators in The 1000 Genomes Project Phase 3 populations (Figure 2), in our 

simulated datasets the 𝑤𝐿𝑂𝐷 method only provided modest improvements in power and false discovery 

rate over the original 𝐿𝑂𝐷 method (Figures 6 and S9). How can we reconcile the high similarity of ROA 

calls with the 𝐿𝑂𝐷 and 𝑤𝐿𝑂𝐷 methods in the simulated datasets with the appreciable differences in per-

window autozygosity inferences made by their underlying estimators in The 1000 Genomes Project Phase 

3 data? Considering the simulated datasets containing ~125,000 SNVs, which have a comparable SNV 

density to that of The 1000 Genomes Project Phase 3 Omni2.5 dataset investigated in Figure 2, and the 

same window size of 150 SNPs, across the 50 replicates for scenario 1 0.519% (SD=0.496) of windows 

were autozygous with the 𝐿𝑂𝐷 estimator but not the 𝑤𝐿𝑂𝐷 estimator, while 2.808% (SD=1.260) were 
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autozygous with the 𝑤𝐿𝑂𝐷 estimator but not the 𝐿𝑂𝐷 estimator; for scenario 2 the values were 0.153% 

(SD=0.169) and 5.364% (SD=1.594), respectively. While the proportion of windows autozygous with the 

𝑤𝐿𝑂𝐷 estimator but not the 𝐿𝑂𝐷 estimator in the simulated datasets is similar to that observed in The 

1000 Genomes Project Phase 3 populations (Figure 2D), the proportion of windows autozygous with the 

𝐿𝑂𝐷 estimator but not the 𝑤𝐿𝑂𝐷 estimator is about two orders of magnitude lower than the values 

observed in The 1000 Genomes Project Phase 3 populations (Figures 2C). Thus, while we observe the 

expected gain in sensitivity through a reduction in the contribution of occasional heterozygotes within 

ROH with the 𝑤𝐿𝑂𝐷 estimator that enables improved detection of shorter ROA comprised of common 

haplotypes, we do not observe the expected inflation in 𝐿𝑂𝐷 scores due to the confounding effects of LD 

among genotyped positions that leads to increased false positive ROA calls.  

Based on their underlying models, we would expect the 𝐿𝑂𝐷 (equation 1) and 𝑤𝐿𝑂𝐷 (equation 2) 

estimators to provide highly similar inferences in situations where autozygosity patterns align almost 

perfectly with LD patterns among genotyped SNVs and are investigated with a sufficiently high density 

of SNVs that the probabilities of unobserved mutation and recombination events are effectively zero. The 

most parsimonious explanation for the surprisingly high similarity of ROA calls made by the 𝐿𝑂𝐷 and 

𝑤𝐿𝑂𝐷 methods in the simulated datasets is therefore that LD patterns in these simulated datasets do not 

faithfully recapitulate the complexity of those found in real populations who have experienced much more 

complex histories than those simulated here, limiting the impact of the LD correction (equation 3) 

incorporated into the 𝑤𝐿𝑂𝐷 estimator. We therefore expect to observe appreciably greater improvements 

in the sensitivity and specificity of ROA calls with the 𝑤𝐿𝑂𝐷 method compared with the 𝐿𝑂𝐷 method in 

real genetic data than in our simulated datasets.  

Effect of genotyped SNV density on ROA detection in real data 

We have shown the 𝑤𝐿𝑂𝐷 method to be well powered to detect ROA in genetic datasets consistent with 

WGS and microarray-based genotyping, and to outperform a number of existing methods in terms of 

power although overcalling of ROA due to the sliding window approach it employs creates slightly higher 

rates of false discovery than a recently reported HMM model approach. While our simulations suggest 

that the 𝑤𝐿𝑂𝐷 method has >99.8% power to detect ROA longer than 1 Mb across SNV densities that are 

consistent with those frequently used in human population- and disease-genetic studies (Figure 6), they 

do not capture the diversity of historical events and sociogenetic processes that have influenced genomic 

autozygosity patterns in contemporary worldwide human populations. Thus, we next sought to evaluate 

how robust ROA inferences are among genotype datasets created via WGS and whole-exome-sequencing 

(WES) as well as with the popular Illumina HumanOmni2.5-8 and OmniExpress-24 BeadChips using The 

1000 Genomes Project Phase 3 data. 

 We first developed a WGS dataset comprised of all 75,071,695 SNVs that passed our quality 

control criteria (see Methods). Next, we developed a subset of the WGS dataset that was restricted to 

only the 1,830,512 SNVs that are located within the genomic regions captured by the Roche Nimblegen 

SeqCap EZ Human Exome Library v3.0 system to mimic a whole-exome-sequencing (WES) dataset 

(“WES dataset” henceforth). Finally, we developed a subset of the Omni2.5 dataset that was comprised of 

the 676,445 SNPs that are also present on the Illumina OmniExpress-24 BeadChip (“OmniExpress 

dataset” henceforth). As the 𝑤𝐿𝑂𝐷 method explicitly accounts for LD among genotyped positions within 

a given window (equation 3) we do not consider LD pruned datasets. Similarly, since homozygosity for 

minor alleles at low to rare frequencies in the population is most informative for autozygosity inference 

with the 𝑤𝐿𝑂𝐷 estimator (Additional File 1: Figure S1A), we also do not consider a minor allele 

frequency (MAF) pruned datasets. 

 For the WGS, Omni2.5 and OmniExpress datasets we applied the 𝑤𝐿𝑂𝐷 method at the window 

size and overlap fraction suggested by our simulation analyses given their average SNV density across 

populations: 125 SNPs (40%), 95 SNPs (25%), and 80 SNPs (18%), respectively. As the SNV density of 

the WES dataset closely resembles that of the WGS dataset in the genomic regions it covers, we used the 

same window size and overlap fraction settings in both the WES and WGS datasets. For all datasets, 𝜇 

was set to 1.18×10-8 [160] and 𝑀 was set to seven, a conservative value broadly reflecting the average of 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 17, 2017. ; https://doi.org/10.1101/177352doi: bioRxiv preprint 

https://doi.org/10.1101/177352
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 
 

effective population size estimates for populations included in The 1000 Genome Project [155,158,161]. 

For the Omni2.5 and OmniExpress datasets ε was set to 4.71×10-4, the average rate of discordance across 

samples between genotypes in our Omni2.5 dataset and those obtained for 1,693 of the 2,436 individuals 

directly with the Illumina HumanOmni2.5 BeadChip [155], while in the WGS and WES datasets ε was 

instead set separately for each genotype as one minus its reported likelihood. This has the potential to 

improve the accuracy of ROA calls in NGS datasets by incorporating the uncertainty of each genotype 

call into the 𝑤𝐿𝑂𝐷 score calculation, an important potential source of erroneous ROA calls in the context 

of their often higher and more variable per-genotype error rates compared with microarray-derived 

datasets [151,152]. As such, autozygous windows comprised of SNVs with low quality genotypes have a 

greater chance of being false-positive signals than those with higher quality genotypes, while low quality 

heterozygous genotypes―that in one possibility may be genotype calling errors―located in runs of 

higher quality homozygous genotypes have the potential to mask true autozygous signals. 

 For each dataset and population, we defined a 𝑤𝐿𝑂𝐷 score autozygosity threshold as the location 

of the minimum between the non-autozygous and autozygous modes in its 𝑤𝐿𝑂𝐷 score distribution [18]. 

Sample size was not observed to appreciably influence the location of the minimum between the non-

autozygous and autozygous modes (Additional File 1: Figure S10). However, across 100 random samples 

of individuals greater consistency in its determination was observed with increasing sample size, 

particularly compared with sample sizes of less than 10 individuals, indicating that 10 or more individuals 

should be used to ensure a robust estimate of the threshold is obtained. All windows with 𝑤𝐿𝑂𝐷 scores 

above threshold were considered autozygous [18], and overlapping autozygous windows were joined to 

define ROA contingent on the window overlap fraction used for that dataset. 

 Comparing ROA identified in the WGS and Omni2.5 datasets, we find Omni2.5 ROA to be 

frequently longer than their corresponding WGS ROA and in most cases to completely encompass the 

WGS ROA (Figure 7A). The magnitude of their length discrepancies decreases with increasing ROA 

length, consistent with the expected effects of decreased SNV density on the accuracy of inferred ROA 

boundaries. In addition, while all Omni2.5 ROA are present in the set of WGS ROA, the reverse is not 

true (Figure 7B). Many short ROA (<500 kb) detected in the WGS dataset are not found in the Omni2.5 

dataset, with the fraction of missing ROA decreasing with increasing distance from Africa, reflecting the 

effect of increasing LD [162,163] on our ability to detect shorter ROA with the sparser set of SNVs in the 

Omni2.5 dataset. Concordance between the WGS and Omni2.5 datasets for intermediate (500 kb to 1.5 

Mb) and long (>1.5 Mb) ROA is generally high, although in many populations the fraction of WGS ROA 

missing in the set of Omni2.5 ROA remains nontrivial. These fractions generally increase as a function of 

distance from Africa, likely reflecting the reduction in haplotype diversity with decreasing genetic 

diversity [95,164-167] decreasing our ability to distinguish autozygosity from homozygosity-by-chance, 

particularly over extended genomic regions when genotypes are only available for a fixed set of SNVs 

that were selected for their generally high level of polymorphism worldwide. 

 Similar patterns are observed when we compare ROA identified in the Omni2.5 and OmniExp 

datasets, where almost all OmniExp ROA are present in the set of Omni2.5 ROA (Additional File 1: 

Figure S11B) and encompass their generally shorter corresponding Omni2.5 ROA (Additional File 1: 

Figure S11A). While many short ROA detected in the Omni2.5 dataset are not found in the OmniExp 

dataset, both intermediate and long ROA are captured extremely consistently between the two datasets 

despite their different SNV densities. Likewise, when we compare ROA identified in the WGS and WES 

datasets, almost all WES ROA are present in the set of WGS ROA (Additional File 1: Figure S12B) and 

tend to encompass their generally shorter corresponding WGS ROA (Additional File 1: Figure S12A). 

However, while numbers of short and intermediate ROA identified in the WGS dataset but not the WES 

dataset are much higher than in the same comparison between the WGS and Omni2.5 datasets (Figure 7), 

the numbers of long ROA identified in the WGS dataset but not the WES dataset are instead similar. This 

indicates that the non-uniform and often sparse distribution of SNVs in the WES dataset does not impact 

the detection of long ROA more than would be expected following a general reduction in SNV density. 

Overall, these findings are consistent with the higher density of SNVs in the WGS dataset and the 

presence of many more rare and low-frequency SNVs detected by NGS compared with microarray-based 
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genotyping platforms―which are particularly informative about autozygosity under our likelihood model 

(Additional File 1: Figure S1A)―greatly improving our ability to detect ROA. Nevertheless, many long 

ROA that are of interest in Mendelian and complex disease studies are well captured by the sets of SNVs 

included on Illumina’s HumanOmni2.5-8 and OmniExpress-24 BeadChips. However, the sparse and non-

uniform genomic distribution of SNVs in the WES dataset creates difficulties when inferring short and 

intermediate ROA with the 𝑤𝐿𝑂𝐷 method, despite the presence of rare and low-frequency SNVs, while 

long ROA are instead captured almost as well as with genotyping microarrays. We therefore do not 

recommend using the 𝑤𝐿𝑂𝐷  method to detect ROA in WES datasets generated by future studies. 

Classification of ROA 

ROA of different lengths reflect homozygosity for haplotypes inherited IBD from common ancestors at 

different depths in an individual’s genealogy: longer ROA most likely arise due to recent ancestors and 

shorter ROA due to more distant ancestors. We previously advocated that ROA be classified into G 

length-based classes using the Gaussian mixture model approach applied on their physical map lengths (in 

bp) that groups ROA based upon their supposed ages [18]: (A) short ROA that measure tens of kilobases 

and that are of the length at which baseline patterns in LD in a population produce autozygosity through 

the pairing of two copies of the same ancient haplotype, (B) intermediate length ROA that measure 

hundreds of kilobases to several Mb and that are likely the result of background relatedness─recent but 

unknown kinship between parents due to limited effective population sizes─and (C) long ROA that 

measure multiple megabases and are likely the result of recent parental relatedness. The choice of G = 3 

was motivated by the observation that at G > 3, the additional classes were not discrete; that is, they were 

encompassed by one of the existing classes (Additional File 1: Figures S13A and S13C). 

 This classification approach is limited by the imperfect correlation between physical map lengths 

and genetic map lengths (Additional File 1: Figure S14), a more accurate representation of the 

relationship between ROA length and age [180,181] that is not biased by the non-uniform genomic 

distribution of recombination rates [182]. If we instead classify ROA based on their genetic map length 

(in cM) using a Gaussian mixture model we find that regardless of the number of classes considered they 

are always discrete (Additional File 1: Figures S13B and S13D). This would suggest that the original loss 

of discreteness when classifying based upon physical map length may reflect the confounding effects of 

physically long but genetically short (and vice versa) ROA on the overall length distribution. 

Nevertheless, regardless of whether physical or genetic map lengths are used the overall pattern of fit with 

increasing class number remains highly similar (Additional File 1: Figures S13A and S13B, 

respectively), where Bayesian Information Criterion (BIC) likelihoods plateau at around G = 5 with the 

WGS and Omni2.5 data and at around G = 4 classes with the OmniExpress data (not shown). The smaller 

class number for the OmniExpress dataset compared with the WGS and Omni2.5 datasets is consistent 

with the expectation that smaller ROA will be poorly captured by its sparser set of SNVs, ultimately 

leading to the loss of the shortest ROA class detected in the WGS and Omni2.5 datasets. Note that for all 

populations the maximum BIC likelihood is reached at G > 5. Future studies investigating fine scale ROA 

patterns may wish to consider values of G at which BIC is maximized, however for illustrative purposes 

we consider G = 5 here since the increase in BIC at G > 5 is small. 

When considering a five class classification scheme, the longest class (G = 5) contains ROA that 

likely arise from recent parental relatedness and the penultimate longest class (G = 4) contains ROA that 

likely arise from recent population processes, while the shortest classes (G = 1-3) contain ROA arising 

through the pairing of two copies of much older haplotypes that have common ancestors at different times 

in the distant past. Sample size was observed to have a greater effect on ROA classification (Additional 

File 1: Figure S15) than on 𝑤𝐿𝑂𝐷 score threshold (Additional File 1: Figure S10), with the proportion of 

ROA whose classification differed from that assigned when all available individuals are used decreasing 

as a function of sample size. Importantly, the proportion of misclassified ROA decreases with increasing 

ROA class, with those in the longest class (G = 5) infrequently misclassified (mean=0.052 with SD=0.029 

across all 26 populations at a sample size of 25) while those in shorter classes were more frequently 

affected (mean=0.092 with SD=0.046, mean=0.091 with SD=0.045, mean=0.083 with SD=0.045, and 
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mean=0.068 with SD=0.042, for G = 4 to 1, respectively). These observations indicate that sample size is 

an important factor when classifying ROA using a Gaussian mixture model, but in general samples sizes 

of at least 25 individuals should provide reasonably robust classification of ROA using this approach, 

particularly longer ROA that are of interest in genetic studies on Mendelian and complex diseases.  

Geographic patterns in ROA 

We have shown the 𝑤𝐿𝑂𝐷 method to be well powered to detect ROA in genetic datasets consistent with 

WGS and microarray-based genotyping, while our investigation of a Gaussian mixture model approach 

for ROA classification based upon their genetic map lengths indicates the presence of five ROA classes in 

The 1000 Genomes Project Phase 3 populations, a higher number than was used in our earlier study of the 

Human Genome Diversity Panel (HGDP) and International HapMap Project (Phase 3) populations that 

used a microarray-derived dataset and classified ROA based upon their physical map lengths [18]. To 

evaluate how genome-wide patterns in ROA inferred with the 𝑤𝐿𝑂𝐷 method and classified into five 

classes via a Gaussian mixture model applied to their genetic map lengths compared with those of earlier 

studies, we performed the first high-resolution survey of ROA patterns in The 1000 Genomes Project 

Phase 3 populations based upon ROA inferred in the WGS dataset as described above. 

Consistent with previous studies [12,18,22], ROA of different lengths have different continental 

patterns among the 26 populations included in Phase 3 of The 1000 Genomes Project both with regards to 

their total lengths (Figure 8) in individual genomes as well as in their non-uniform distributions across 

the genome (Figure 9) that are correlated with spatially variable genomic properties such as 

recombination rate (Additional File 1: Figure S16) and signals of natural selection (Additional File 1: 

Figure S17), reflecting the distinct forces generating ROA of different lengths. Total lengths and numbers 

of ROA in the shortest (G = 1-3) and to some extent intermediate (G = 4) classes increase with distance 

from Africa, rising in a stepwise fashion in successive continental groups (Figures 8), in agreement with 

the observed reduction in haplotype diversity with increasing distance from Africa [162,183-185]. Those 

of the longest class (G = 5) do not show a similar stepwise pattern, instead exhibiting higher and more 

variable values in populations where consanguinity in more frequent (Table 2) and inbreeding coefficient 

estimates are generally higher [186]. Notably, the East Asian Dai have remarkably high total lengths of 

short ROA (G = 1-3), potentially reflecting their small population size―~1.2 million in Yunnan province, 

China [187], where The 1000 Genomes Project samples were collected―and complex evolutionary 

history [188,189]. 

Recombination and natural selection 

The strength of the correlation between the genomic distribution of ROA and recombination rate 

decreases with increasing ROA class (Additional File 1: Figure S16), consistent with the expectation that 

the patterns of genetically shorter ROA will be determined by recombination to a greater extent than 

longer ROA, which due to their more recent origins have had fewer opportunities for recombination 

events to systematically influence their patterns. Conversely, the correlation between ROA patterns and 

signatures of natural selection is strongest for class 2-3 ROA, and to some extent intermediate class 4 

ROA, while it is very weak for the shortest (G = 1) and longest (G = 5) ROA classes (Additional File 1: 

Figure S17). These patterns are compatible with natural selection having primarily influenced genomic 

diversity patterns in the distant past, with autozygosity for the relics of the haplotypes that arose during 

those events manifesting as class 1-4 ROA, dependent upon how long ago the event occurred. 

The long term effects of natural selection on patterns of ROA might be expected to be most 

evident in genomic regions encompassing genes implicated in one or more Mendelian diseases, where 

purifying selection acting on strongly deleterious alleles, which may occur more frequently in such genes 

due to their apparent importance for human health, would be expected to increase levels of homozygosity 

relative to genes much less frequently subjected to purifying selection. Using the union of two previously 

reported lists of genes associated with autosomal dominant (669) and recessive (1130) diseases in the 

Online Mendelian Inheritance of Man (OMIM) database [190-192], we created a list containing genes not 

associated with autosomal dominant or recessive diseases (24,260; “non-OMIM” henceforth); genes 
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associated with both autosomal dominant and recessive diseases were ignored. For each individual, we 

then calculated the fraction of the total lengths of all autosomal dominant, autosomal recessive, or non-

OMIM transcribed regions that are overlapped by ROA based on their genomic positions in build HG19 

of the University of California – Santa Cruz (UCSC) reference genome assembly. Strikingly, regardless 

of the ROA length class considered, the fraction for OMIM dominant genes was almost always higher 

than that of non-OMIM genes (P<10-16 in all comparisons; Wilcoxon signed rank test), while the opposite 

was true for OMIM recessive genes (P<10-16 in all comparisons; Additional File 1: Figure S18). 

Nevertheless, the pattern is strongest for intermediate length ROA classes (G = 2−4) and weakest for the 

shortest (G = 1) and longest (G = 5) classes. Together, these results are compatible with deleterious alleles 

occurring less frequently in non-OMIM genes than in OMIM dominant genes, where they are efficiently 

removed from the population via purifying selection acting on both their homozygous and heterozygous 

forms, creating increased autozygosity at lengths consistent with population-level processes rather than 

inbreeding. One possible explanation for the decreased autozygosity around OMIM recessive genes 

compared with non-OMIM genes would be increased embryonic lethality and/or childhood mortality with 

individuals homozygous for deleterious recessive mutations in OMIM recessive genes, leading to reduced 

autozygosity in genomic regions encompassing them in the extant population. 

 Genes that have been the target of positive selection might be expected to reside within genomic 

regions that are more frequently autozygous in the general population than those harboring genes that 

have not. Considering the fraction of each gene’s transcribed region that is in a ROA in each individual’s 

genome, we compared their median fraction across individuals in each population (Additional File 1: 

Figure S19). While most genes have a median fraction of about zero, a number of genes that lie within 

genomic regions spanned by ROA in more than 90% of individuals in a population. Across populations, 

we observe 54 such instances with long class 5 ROA that represent seven distinct genomic regions 

(Additional File 2: Table S2), 159 with intermediate length class 4 ROA (22 distinct regions; Additional 

File 2: Table S3), and 31 (nine distinct regions; Additional File 2: Table S4), seven (five distinct regions; 

Additional File 2: Table S5), and 480 (46 distinct regions; Additional File 2: Table S6) with short class 

1–3 ROA, respectively. While most genes in these regions fall within the non-OMIM group, two of the 

genes enriched for class 4 ROA (CFC1 and SMN1) and nine of the genes enriched for class 1 ROA 

(SLC25A20, NDUFAF3, LAMB2, GPX1, NPRL2, ACY1, MRPS16, LCAT, and COX4I2) are from the 

OMIM recessive group, while one gene enriched for class 1 ROA is from the OMIM dominant group 

(THAP1). Future investigation of genes that are unusually frequently overlapped by ROA in the general 

population may provide new insights into the role of recessive variation in human phenotypic diversity 

and common disease risk as well as the genes within which such variation acts. 

Genomic distribution  

Genomic distributions of shorter ROA (G = 1-4) are similar among populations from the same geographic 

region (Additional File 1: Figures S20B-E) and closely mirror the patterns of pairwise FST among 

populations (Additional File 1: Figure S20A; Procrustes similarity statistic t0>0.803), while those of the 

longest ROA class (G = 5) vary more widely among populations (Additional File 1: Figure S20F; 

t0=0.466). Overall, these patterns are consistent with the interpretation that shorter ROA (G = 1-4), for 

which neighboring populations have similar patterns, reflect autozygosity that arises through population 

processes on different evolutionary timescales, while longer ROA (G = 5), for which neighboring 

populations do not necessarily have similar patterns, reflect autozygosity that instead arises through more 

recent cultural processes such as inbreeding [18]. 

Autozygosity hotspots 

The non-uniform genomic distribution of the different ROA classes and their variability among 

populations creates autozygosity hotspots that are in some instances shared among subsets of the 

populations. For example, there is a hotspot for class 4 ROA on the q-arm of chromosome 2 that is 

common to three of the five European populations and encompasses the human lactase gene (LCT; 

Figure 10) that was not detected in our original study of the HGDP and HapMap populations that 

included 10 from Europe [18]. In this genomic region, we observe high frequencies of intermediate length 
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class 4 ROA in the Northern European FIN and GBR populations as well as the European American 

(CEU) group, but not in the Southern European TSI and IBS populations or any other population in the 

dataset. The presence and absence of this hotspot broadly reflects worldwide patterns in lactase 

persistence frequency [193,194]. Lactase persistence is most frequent in Northwestern Europe [195,196] 

where it is caused primarily by a single mutation in LCT that rose to high frequency as a consequence of 

natural selection in response to the rise of milk consumption and pastoralism [194,197,198]. It decreases 

in frequency through Eastern and Southern Europe and Central/South Asia reaching near-zero frequencies 

in East Asia and the Americas [193,196,199-201], while it is present to varying degrees in admixed 

Mestizo [202-204] and African American [199,204] populations as a consequence of their recent 

European ancestry. Thus, we observe high levels of autozygosity around LCT in the GBR, FIN, and CEU 

populations and markedly lower but noticeable levels in the IBS, but no observable signal in the TSI or 

any of the Asian or admixed populations. While lactase persistence is present at moderately high 

frequency in sub-Saharan Africa it is caused by several different mutations [194,205] and the African 

populations included in The 1000 Genomes Project are located predominantly in historically non-milking 

areas of the continent [197]. Consequently, we do not observe a similar autozygosity signal in the African 

populations as we do in the Northern European populations. 

Interestingly, we also observe a hotspot for the longest ROA class (G=5) at the same location in 

the Northern European CEU and GBR populations ~770kb downstream of the LCT gene (Figure 10), 

while a weaker spike in class 5 ROA frequency is seen  in the FIN population. This hotspot encompasses 

four genes within its core region (chr2:135,375,000-135,775,000) that encode a transmembrane protein 

(TMEM163), an aminocarboxymuconate semialdehyde decarboxylase (ACMSD), cyclin T2 (CCNT2), and 

a mitogen-activated protein kinase kinase kinase (MAP3K19). The maximum normalized haplotype-based 

selection statistic nSL [206] score observed in the CEU, GBR, and FIN populations within the core region 

is 4.980, 4.818, and 4.962, respectively, suggesting that this ROA hotspot potentially reflects the outcome 

of recent positive selection. However, none of the genes within this hotspot are known to have functional 

consequences when mutated, leaving the cause of this ROA hotspot and its putative signals of positive 

selection enigmatic. 

Overall, frequency patterns in this genomic region of the different ROA classes in the Northern 

European CEU, GBR, and FIN populations are consistent with positive selection having occurred at two 

different time-points. The extended haplotypes created by historical positive selection acting on the single 

LCT mutation that arose in ancestral Northern Europeans have, over subsequent generations, decreased 

appreciably in length, but due to the marked reduction in haplotype diversity in the surrounding region 

commonly create intermediate length class 4 ROA through background population processes. Conversely, 

the presence of extended IBD haplotypes creating longer class 5 ROA in a genomic region ~770 kb away 

from LCT would be compatible with positive selection acting much more recently, in agreement with the 

atypically high nSL scores observed within this region in these populations. 

Statistical inference of enrichment of autozygosity signals between groups 

A unique feature of the 𝑤𝐿𝑂𝐷 ROA detection approach is the availability of log-likelihoods of 

autozygosity for each window in each individual examined. It is therefore possible to directly compare the 

strength of autozygosity signals between two or more groups of individuals to identify those windows that 

have significantly greater evidence for shared autozygosity signals in one group compared with the others 

[150]. In one possibility, such an approach could be used to identify genomic regions that have stronger 

signals of autozygosity in affected versus unaffected individuals and thus may harbor disease-associated 

mutations. Similarly, genomic regions with significantly stronger signals of autozygosity in one subset of 

a population compared to another other may reflect founder effects if there is limited gene flow between 

them or the presence of adaptive alleles in one subset but not the other that have risen to high frequency. 

We demonstrate the principle of this approach using three of the five Central/South Asian groups 

included in Phase 3 of The 1000 Genomes Project who represent subpopulations within the larger Indian 

population: BEB, GIH, ITU, PJL, and STU. Genetic diversity patterns in these five groups support the 

presence of two genetically distinguishable clusters within the GIH, ITU, and PJL (Additional File 1: 
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Figure S21). When instead compared pairwise, the larger of the two ITU clusters lies intermediate 

between the smaller ITU cluster and the larger of the two GIH, PJL, or STU clusters, while the largest of 

the PJL clusters overlaps significantly with the smaller GIH cluster (not shown). The GIH individuals 

were sampled in Houston, TX, while the BEB, ITU, PJL, and STU individuals were all sampled in the 

UK. Given the intermediate locations of the larger ITU and PJL clusters in the pairwise comparisons, they 

may potentially reflect admixed individuals within these sample sets. However, both clusters are tightly 

bunched arguing against this possibility given the normal dispersion of admixed individuals in such 

analyses owing to their continuum of admixture levels [207,208]. In another possibility, these distinct 

clusters might represent the unintentional sampling of distinct endogamic communities whose restrictive 

marital practices under the long-established Indian caste system has made them distinguishable 

genetically [209]. 

Because we would expect differential autozygosity signals among groups to have arisen relatively 

recently through population or cultural processes, window size is not constrained by our power to detect 

shorter, more ancient, ROA. A natural window size to use when searching for differential autozygosity 

signals between groups is therefore the one whose 𝑤𝐿𝑂𝐷 score distribution can best discriminate between 

autozygous and non-autozygous windows. In one possibility, this can be defined as the window size that 

maximizes the distance between the autozygous and non-autozygous modes―measured here as the 

distance between the modal score in each mode (Figures 1B and S2 [Additional File 1]). Using the WGS 

dataset and optimal window sizes of 450, 580, and 610 SNVs for the GIH, PJL, and ITU, respectively, we 

compared the 𝑤𝐿𝑂𝐷 scores of individuals present in each of their two clusters (Additional File 1: Figure 

S21) and evaluated the significance of their observed differences with the permutation-based approach 

described in Wang et al. [150] except that here we use a Wilcoxon rank-sum test instead of the two 

sample t-test suggested by Wang et al. as it is much less sensitive to the presence of outliers but has 

similar power to detect a location shift [210]. Briefly, separately for each group, we first create a 

distribution of test statistics under the null hypothesis of no difference in 𝑤𝐿𝑂𝐷 scores between clusters 

using 1,000 permutations of cluster labels, recording for each permutation the maximum observed test 

statistic across all windows genome-wide. Next, separately for each window, a genome-wide adjusted P-

value for the significance of the observed differences in 𝑤𝐿𝑂𝐷 scores between clusters is then calculated 

as the proportion of the maximum genome-wide test statistics observed in the 1,000 permutations that 

exceeded the test statistic obtained with the true labels for that window. Finally, for each cluster, genomic 

regions enriched for autozygosity signals in that cluster compared with the other were defined by joining 

together overlapping windows with a permutation P-value (Pperm) ≤ 0.05. 

Intriguingly, while we would not a priori expect to observe significant differences in the strength 

of autozygosity signals between the two apparent clusters within the GIH, ITU, and PJL sample sets, we 

did identify one genomic region significantly enriched for autozygosity signals in cluster A compared 

with cluster B in both the ITU and PJL (Figures 11B and 11C; Table 4); no regions were identified in the 

GIH (Figure 11A). The genomic region in the ITU lies within the transcription elongation regulator 1 like 

(TCERG1L) gene that has been associated with regulation of plasma levels of the adipokine adiponectin 

[211], a modulator of glucose regulation and fatty acid oxidation [212] implicated in obesity, diabetes, 

coronary artery disease and Crohn’s disease risk [213-215]. The genomic region in the PJL encompasses 

the transmembrane phosphoinositide 3-phosphatase and tensin homolog 2 (TPTE2) gene, a paralog of the 

phosphatase and tensin homolog (PTEN) tumor suppressor [216] implicated in hepatic carcinogenesis 

[217] that has been found to harbor SNPs with significant allele frequency differences between males and 

females in European and African populations [218]. While the underlying basis for these differential 

autozygosity signals remains enigmatic in the absence of more detailed information on these individuals, 

their identification highlights the potential of our approach to identify genomic regions with differential 

autozygosity signals between groups that may reflect the presence of variants that have experienced 

differential selection histories or that influence differences in their predisposition to disease. Moreover, 

these findings highlight the need for further investigations among well-defined endogamic groups from 

India to facilitate our understanding of the genomic consequences of the long-established caste system. 
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Discussion 

We have reported an improved likelihood-based estimator for the detection of ROA in genome-wide SNV 

genotype data derived from either microarray platforms or WGS that accounts for autocorrelation among 

genotyped positions and variability in the confidence of individual genotype calls as well as the 

probabilities of unobserved mutation and recombination events. Fully accounting for LD among SNVs in 

a given window is important, because in genomic regions of high LD many pairs of individuals will share 

common haplotypes that are homozygous identical-by-state but not ROA in the sense defined here (i.e., 

inherited IBD from a common ancestor). Thus, including such spurious windows would add noise when 

looking for ROA for the purpose of autozygosity mapping. The incorporation of LD in our model reduces 

false-positive ROA detection, affording us the ability to identify smaller ROA segments with greater 

fidelity. An alternative approach to accounting for LD is to prune the dataset prior to its analysis. 

However, such an approach first requires those SNV with MAF less than 5% to be removed, which would 

significantly reduce the power of the 𝑤𝐿𝑂𝐷 method to detect ROA by removing those low-frequency and 

rare variants whose homozygosity is most indicative of autozygosity under its likelihood model 

(Additional File 1: Figure S1A). Further, such pruning cannot completely remove LD from the dataset 

being analyzed, with a pairwise r2 threshold of 0.5 typically applied [149]. The incorporation of LD into 

the model therefore better controls for the autocorrelation of autozygosity signals among nearby SNV 

than is attainable with LD pruning, thereby improving the specificity of the ROA it detects particularly in 

regions of moderate to high LD. 

Similarly, accounting for the probabilities of unobserved recombination and mutation events in 

the genomic interval spanned by the window becomes increasingly important as a function of inter-

marker distance, particularly in situations where these probabilities become nontrivial such as in lower-

density microarray-derived genotype datasets. By modeling these probabilities based on the assumed 

number of generations since the last common ancestor of the apparent autozygous haplotypes, which we 

have set here based on the reported effective sizes of the populations included in The 1000 Genomes 

Project [155,158,161], we minimize the number of false positive ROA that can be erroneously inferred 

when recombination and mutations events onto very similar haplotype backgrounds give the appearance 

of autozygosity when paired with a non-recombined haplotype. An alternative approach would be to set 

an arbitrary maximum inter-marker distance allowed when calling ROA; dividing into two any inferred 

ROA that spans an inter-marker interval greater than that maximum. However, this has the potential to 

erroneously break-up long ROA, potentially impacting downstream analyses that use ROA length one of 

their filtering criteria. By incorporating mutation and recombination weightings into the 𝑤𝐿𝑂𝐷 model we 

therefore take a more informed and less-biased approach to this issue, thereby improving the detection of 

longer ROA particularly in datasets containing sparser sets of SNVs. 

  We have shown the 𝑤𝐿𝑂𝐷 ROA detection method to be well-powered to infer ROA in genetic 

datasets consistent with those generated by WGS and microarray-based genotyping. We recommend 

using this method together with a model-based ROA classification approach [18] based on genetic map 

lengths to distinguish ROA arising from population-level LD patterns on different evolutionary 

timescales (classes G = 1-4) from those arising from more recent cultural processes such as inbreeding 

(class G = 5). Our findings suggest that our detection approach is robust for analyses of as few as 10 

individuals. However, model-based classification requires at least 25 individuals to provide a robust 

classification solution. Moreover, to ensure allele frequency and LD estimates used with the 𝑤𝐿𝑂𝐷 

estimator are close to their true value in the population, at least 30 unrelated individuals should ideally be 

used in their estimation [219,220]. Intriguingly, our observation of trimodal 𝑤𝐿𝑂𝐷 score distributions for 

a subset of the 26 populations analyzed here, all known to practise both endogamy and consanguinity to 

varying degrees, suggests that this method may be able to distinguish autozygosity arising from different 

cultural processes that act on different time scales. Future work within well-defined endogamic and non-

endogamic groups that practice consanguinity, as well as within simulated datasets exploring the breadth 

of possible isolation and inbreeding parameters observed in human populations, will be required to clarify 

this apparent property of the 𝑤𝐿𝑂𝐷 method and evaluate its potential human genetics applications. 
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Comparisons of the ROA inferred using the 𝑤𝐿𝑂𝐷 method on different microarray-derived and 

NGS datasets created from The 1000 Genomes Project Phase 3 WGS data suggest that long and to some 

extent intermediate length ROA are captured consistently by WGS and microarray-derived datasets. 

However, detection of shorter ROA does vary substantially among the different datasets as a consequence 

of the decreasing resolution and sensitivity attainable as the genome-wide density of genotyped positions 

decreases. An observation reflected in the notable lack of consistency between ROA inferred in the WES 

dataset and those identified in the WGS dataset. Nevertheless, population-genetic analyses of genomic 

ROA patterns among the 26 populations included in The 1000 Genomes Project on the basis of WGS data 

are consistent with our previous findings in the 64 worldwide populations included in the HGDP 

[221,222] and International HapMap Project [223] on the basis of ~600,000 microarray-derived SNP 

genotypes [18]. These observations would therefore suggest that ROA studies using microarray-derived 

genotype data have similar power to detect genomic ROA patterns, and in particular those of longer ROA 

that are of interest to the disease genetic community due to their enrichment of deleterious variation 

carried in homozygous form [96,97], as those using WGS data. 

We have compared the 𝑤𝐿𝑂𝐷 method against a commonly used naïve genotype counting method 

implemented in the software PLINK, as well as the recently reported HMM method of the BCFtools 

software package, under two demographic scenarios in which ROA will be of interest in population- and 

disease-genetic studies. In our genetic simulations the PLINK approach performed surprisingly well, 

potentially reflecting their relatively short duration which limited the opportunities for new mutations to 

arise on the IBD haplotypes that ultimately underlied ROA in the final generation. Indeed, only ~4.01% 

and ~14.36% of SNVs in our simulated datasets were de novo mutations not present in the founder 

individuals under scenarios 1 and 2, respectively, while just ~2.14% and ~2.91% of SNVs had MAF < 

5%. Conversely, across the 26 populations in The 1000 Genomes Project Phase 3 WGS data on average 

56% of SNVs had MAF < 5%. Nevertheless, the 𝑤𝐿𝑂𝐷 method had greater power to detect ROA versus 

PLINK across all SNV densities considered here. This difference reflects the very limited ability of the 

PLINK approach, which allows for only occasional missing or heterozygous genotypes when determining 

the status of a window to account for possible genotyping errors and mutations, to distinguish genomic 

regions that are homozygous-by-chance from those that are autozygous. In contrast, the 𝑤𝐿𝑂𝐷 method 

incorporates population allele frequency and LD estimates and an assumed genotyping error rate as well 

as accounts for the probabilities of unobserved mutations and recombination events when inferring the 

autozygosity status of a window, enabling more rigorous assessments of the possibility of genotyping 

errors and the loss of information caused by missing data. In addition, it provides a more precise measure 

of the probability that a given window is truly autozygous rather than simply homozygous by chance. 

Thus, the greater power of the 𝑤𝐿𝑂𝐷 method compared with PLINK reflects the greater number of false 

negative ROA expected under the naïve autozygosity model implemented in PLINK. 

Comparisons of the 𝑤𝐿𝑂𝐷 method with the recently reported RoH function of BCFtools have 

consistently shown it to have improved power to detect ROA, and smaller ROA in particular, across all 

SNV densities considered here, which are representative of WGS and microarray-based genotyping 

platforms. However, false discovery rates of the 𝑤𝐿𝑂𝐷 method are slightly higher than those of 

BCFtools/RoH, wholly reflecting a more permissive placement of ROA boundaries marginally outside of 

their true locations as a consequence of the sliding window approach employed. While the underlying 

likelihood models of the 𝑤𝐿𝑂𝐷 and BCFtools/RoH approaches are similar, there are two aspects of the 

𝑤𝐿𝑂𝐷 method that explain its higher power. First, by summing over all SNVs within a given window, the 

𝑤𝐿𝑂𝐷 method is better able to detect the autozygosity signals of ROA comprised of older (shorter) 

haplotypes whose constituent SNVs individually provide only weak to modest autozygosity support than 

the pointwise HMM employed by BCFtools/RoH. Second, the 𝑤𝐿𝑂𝐷 method adjusts each SNV’s log-

likelihood by the probabilities that no unobserved recombination and mutation events have occurred in 

the interval between it and the preceding SNV in the last M generations (equation 2), where M is set based 

on the expected time since the most recent common ancestor in an individual’s maternal and paternal 

lineages given the effective size of the population. BCFtools/RoH does not account for unobserved 

mutations in its inference model, and only allows for up to a single recombination event to have occurred 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 17, 2017. ; https://doi.org/10.1101/177352doi: bioRxiv preprint 

https://doi.org/10.1101/177352
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 
 

within a given interval [154]. Thus, for longer ROA and those comprised of older haplotypes inherited 

IBD from an ancient ancestor, we would a priori expect BCFtools/RoH to have greater difficulty in 

making inferences as it will underestimate the number of recombination events that may have occurred as 

these haplotypes segregate in the general population. This may potentially underlie the noticeably erratic 

patterns observed with its power to detect ROA greater than 1.5 Mb in the higher SNV density simulated 

datasets (Figure 6). 

 Finally, the 𝑤𝐿𝑂𝐷 method distinguishes itself from BCFtools/RoH and PLINK through its ability 

to directly detect genomic regions enriched for autozygosity signals in one population or group compared 

with one or more others without requiring the inference of ROA first. We have applied this approach 

within the Gujarati (GIH), Punjabi (PJL), and Telugu (ITU) Asian Indian groups, comparing 𝑤𝐿𝑂𝐷 

scores in two distinct clusters of individuals identified via multidimensional scaling of allele sharing 

dissimilarities (Additional File 1: Figure S21). We identified two genomic regions enriched for 

autozygosity signals in one of the two clusters, one in the ITU and another in the PJL, that contain genes 

implicated in the regulation of metabolism and the risk for developing liver cancer, respectively (Table 

4). If we instead set a more permissive threshold of Pperm ≤ 0.1 when defining enriched regions, we 

identify an additional seven genomic regions marginally enriched for autozygosity in one cluster 

compared with the other (Additional File 2: Table S7). One of the seven regions was identified on 

chromosome 2 in ITU cluster A and contains two genes: G6PC2, a pancreatic glucose-6-phosphatase 

implicated in the modulation of fasting plasma glucose levels [224] that is a major target of cell-mediated 

autoimmunity in diabetes [225], and the ATP-binding cassette transporter gene ABCB11, mutations in 

which cause autosomal recessive progressive familial intrahepatic cholestasis [226,227]. In addition, a 

region on chromosome 17 also identified in ITU cluster A contains seven genes that include USH1G, 

mutations in which cause autosomal recessive deafness in both humans [228,229] and mice [230,231]. 

Finally, a region on chromosome 16 identified in PJL cluster A contains four genes including the 

mechanically-activated ion channel gene PIEZO1, mutations in which cause autosomal recessive 

generalized lymphatic dysplasia [232,233] as well as autosomal dominant hemolytic anemia [234,235]. 

The presence of genes that cause autosomal recessive diseases in three of the seven marginally 

significant regions―a highly unlikely observation (P<0.008 across 1,000 random draws of genomic 

regions of equivalent size)―suggests the intriguing possibility that, if these clusters do indeed represent 

distinct endogamic communities, they may be the hallmark of cultural and selection processes related to 

the differential presence of deleterious genetic variants in these genes. Future comparative autozygosity 

analyses of well-defined endogamic communities within the different subpopulations of India considering 

much larger sample sizes than were available here will facilitate our understanding of the genomic 

consequences of the long-established caste system and further clarify its potential role in contributing to 

genetic predisposition in complex disease risk and negative health outcomes. 

Conclusions 

To facilitate community adoption of the 𝑤𝐿𝑂𝐷 ROA detection method as well as classification based on 

genetic map length via a Gaussian mixture model, we have implemented these approaches in the software 

GARLIC (Genomic Autozygosity Regions Likelihood-based Inference and Classification) [178] that can 

be downloaded at https://github.com/szpiech/garlic. As a guide, analysis of the 97 individuals in the CEU 

population on a Dell Precision T7600 workstation running RedHat Enterprise Linux (v.7.3) with multi-

threading support enabled (16 2.60 GHz threads total) took ~2½ minutes for the OmniExp dataset, ~6½ 

minutes for the Omni2.5 dataset, and ~40 minutes for the WGS dataset, and occupied at most ~3 Gb, ~7 

Gb, and ~20 Gb of RAM, respectively. Future enhancements planned for GARLIC’s core engine are 

expected to significantly reduce its runtime and memory usage. We also provide a searchable online 

database of ROA identified in The 1000 Genomes Project Phase 3 populations as well as a ROA genome 

browser based on the JBrowse browser interface [236] in which to explore their genomic distribution with 

respect to various genomic features and properties available at <link will be added during post-initial-

review revision>. 
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Methods 

Genotype datasets 

Release v5a of Phase 3 of The 1000 Genomes Project (accessed March 29th, 2015) provides phased 

genotypes at 84,801,880 genetic variants in 2,504 individuals from 26 worldwide human populations 

discovered using a low-coverage WGS approach [155]. During the genotype phasing, occasional 

positions with missing genotypes were imputed; consequently, our datasets contain no missing data. We 

first developed a subset of this WGS dataset in which to perform individual-level quality control prior to 

developing different subsets in which to evaluate the performance of the 𝑤𝐿𝑂𝐷 method. In all subsets 

we applied a common set of quality-control procedures described in Pemberton et al. [237] to remove 

low-quality variants (Additional File 1: Figure S22). 

Individual-level quality control 

To independently verify the putative unrelatedness and population labeling of individuals reported by The 

1000 Genomes Project Consortium, we developed a preliminary Omni dataset comprised of the 2,165,831 

autosomal, 48,458 X-chromosomal, and 543 Y-chromosomal SNPs in The 1000 Genomes Project data 

that are present on the Illumina HumanOmni2.5-8 BeadChip (stage 1; Additional File 1: Figure S22). 

Across the 1,693 individuals for which genotypes derived using the HumanOmni2.5-8 BeadChip were 

also available, genotype concordance between the WGS- and BeadChip-derived genotypes lay between 

0.99431 and 0.99986 (mean=0.99953, SD=0.00041). We identified intra- and inter-population pairs of 

individuals related closer than first cousins as well as those individuals whose reported sex or population 

labels were likely to be erroneous as described in Pemberton et al. [237]. Using these approaches, we 

identified six individuals whose reported sex is likely to be erroneous, 47 individuals who did not cluster 

genetically with other individuals sharing the same population label, and 14 intra-population and one 

inter-population pairs of close relatives (Additional File 2: Table S8). 

Preparation of final datasets 

Removing one individual from each intra-population relative pair, both individuals from the inter-

population relative pair, and the 53 individuals whose reported sex or population labels were suspected to 

be erroneous (68 total individuals; Additional File 2: Table S8), we developed four subsets of The 1000 

Genomes Project data that were restricted to the 2,436 unrelated individuals and autosomal biallelic 

variants (stage 2; Additional File 1: Figure S22). 

First, we developed a WGS dataset comprised of 75,071,695 SNVs. Second, we developed a 

WES dataset comprised of the 1,830,512 SNVs that are present within the regions captured by the Roche 

Nimblegen SeqCap EZ Human Exome Library v3.0 system. Third, we developed an Omni2.5 dataset 

comprised of the 2,166,414 SNPs that are present on the Illumina HumanOmni2.5-8 BeadChip. Fourth, as 

~96% of all markers present on the Illumina HumanOmniExpress-24 BeadChip are also present on the 

HumanOmni2.5-8 BeadChip, we developed an OmniExpress dataset comprised of the 676,445 SNPs in 

the Omni2.5 dataset that are present on the HumanOmniExpress-24 BeadChip. 

Geographic distances 

The geographic distance of each population from Addis Ababa, Ethiopia, was calculated as in Rosenberg 

et al. [238] with the use of waypoint routes, based on the sampling location reported by The 1000 

Genomes Project [155]. 

Simulation of genetic datasets 

For two demographic scenarios, we generated 50 independent replicates of genetic datasets using a 

forward-in-time process as previously described [176]. In their original approach, prior to performing the 

simulation steps Kardos et al. placed N predetermined polymorphic SNV onto the chromosome’s genetic 

map by randomly sampling N unique genetic map positions in the range 0 to 𝑔𝑚𝑎𝑥 (the user-defined 

genetic map length of the simulated genome), only converting genetic map positions to physical map 

positions based upon a fixed user-defined recombination rate to physical map distance relationship when 

writing the simulated datasets to file. Here, we modified their approach to instead create a non-uniform 
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distribution of recombination rates across the simulated chromosome and allow any base pair to mutate 

during the simulation. 

If we let 𝑔𝑝 represent the genetic map position assigned to physical map position 𝑝, which is 

equal to the base pair count from the beginning of the chromosome. Based on the user-defined values for 

𝑔𝑚𝑎𝑥 and recombination rate 𝜃, all values of 𝑔 lie within the interval [0, 𝑔𝑚𝑎𝑥] and all values of 𝑝 lie 

within the interval [1 . . (𝑔𝑚𝑎𝑥/𝜃)×1,000,000]. To begin, we created a backbone of genetic and physical 

map positions onto which we will place all other positions, randomly drawing (𝑔𝑚𝑎𝑥/𝜃) + 1 values of 𝑔 

and assigning them in increasing order to 𝑝 in the range [1 . . (𝑔𝑚𝑎𝑥/𝜃)] (i.e. every Mb). Next, we 

randomly chose N values of 𝑝 to be predetermined polymorphic SNVs, and then randomly assigned each 

a value of 𝑔 based upon the backbone interval in which it was located, again ensuring that values of 𝑔 

always increase as a function of 𝑝.  Finally, all values of 𝑝 that were not among the set of predetermined 

SNVs were assigned a value of 𝑔 through interpolation onto the construct created by the values of 𝑝 and 

𝑔 assigned to the predetermined SNVs. This approach created a non-uniform relationship between 

physical and genetic map distance along the simulated chromosome that is similar to that observed on real 

human chromosomes (not shown). 

 To extend the method of Kardos et al. to enable any base pair on the simulated chromosome to 

mutate, for each individual in each generation, the number of mutations that occur during each meiosis 

was drawn from a Poisson distribution with mean 𝜇×[(𝑔𝑚𝑎𝑥/𝜃)×1,000,000], where μ is mutation rate. 

The base pairs to be mutated were then chosen at random from all (𝑔𝑚𝑎𝑥/𝜃)×1,000,000 possible 

positions without replacement. Mutations were tracked and then incorporated into the genotypes of 

individuals in the analyzed dataset; all monomorphic positions were removed during dataset construction.  

In all simulations, we set 𝑔𝑚𝑎𝑥 to 325 cM, 𝜃 to 1.3 cM/Mb [239], and 𝜇 to 1.18×10-8 [160], and 

scaled 𝜃 and 𝜇 by a factor of 10 to increase genetic diversity in the final generation [240]. N was chosen 

separately for each simulated scenario such that the final number of polymorphic SNVs in the dataset 

(both predetermined and de novo) was ~750,000; N=725,000 for scenario 1 and N=650,000 for scenario 

2. Because predetermined polymorphic SNVs can become fixed over the course of the simulation, their 

numbers in the analyzed datasets lay between 679,256-717,855 (25,788-31,503 de novo SNVs) for 

scenario 1 and between 633,582-638,675 (103,871-110,077 de novo SNVs) for scenario 2. 

Calculation of 𝑳𝑶𝑫 𝐚𝐧𝐝 𝒘𝑳𝑶𝑫 estimators 

To minimize the number of variables that varied in within-dataset comparisons, we used a single set of 

allele frequencies when calculating 𝑤𝐿𝑂𝐷 and 𝐿𝑂𝐷 scores at all window sizes considered. To account for 

sample-size differences among populations, we used a resampling procedure to estimate the allele 

frequencies, sampling 100 non-missing alleles with replacement and calculating allele frequencies from 

these 100 alleles. As a consequence of the resampling procedure, it was possible for an individual to 

possess an allelic type whose frequency was estimated to be 0 in the sample of 100 alleles. SNV positions 

at which this scenario was encountered were treated as missing when calculating 𝑤𝐿𝑂𝐷 and 𝐿𝑂𝐷 scores 

for all windows containing the positions in individuals that had the allelic type of frequency 0. 

As our datasets contained phased genotypes, in the LD correction applied in the 𝑤𝐿𝑂𝐷 estimator 

(equation 3) LD was estimated with the correlation coefficient r2 [241] using a resampling procedure to 

account for the possible influence of sample size on homozygosity-based LD statistics [219]. For each 

pair of SNPs, we randomly sampled 55 individuals─the smallest population sample size in our dataset 

(Table 2)─without replacement and the LD computation was performed using those 55 individuals. Note 

that we used a single set of LD estimates when calculating 𝑤𝐿𝑂𝐷 scores at all window sizes considered. 

In the recombination rate correction applied in the 𝑤𝐿𝑂𝐷 estimator (equation 4), the genetic map 

position of each marker in the Omni2.5 dataset and its subsets were downloaded from the Laboratory of 

Computational Genetics at Rutgers University (http://compgen.rutgers.edu). The genetic map position of 

each marker in the WES and WGS datasets was determined by interpolation onto the Rutgers linkage-

physical map [242] based on their UCSC Build hg19 physical map position. 

Due to computer memory requirements for Gaussian kernel density estimation, the 𝑤𝐿𝑂𝐷 score 
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distributions used to determine the autozygosity score thresholds in the WGS dataset considered only 

twenty individuals chosen at random. Based on our investigation into the effect of sample size on score 

threshold (Additional File 1: Figure S10), we do not expect this approach to have biased our detection of 

ROA in the WGS dataset. All genome-wide windows were, however, considered when determining 

optimal window sizes in the Omni2.5, OmniExpress, and WES datasets. 

Classification of ROA 

We ran unsupervised Gaussian fitting of the ROA length distribution using the mclust package (v.5.2) 

[243] in R v.3.3.3 [244], allowing component magnitudes, means, and variances to be free parameters. 

BIC likelihoods with increasing number of components (G) were calculated using the function mclustBIC, 

while final classification under the five component model was performed using the function Mclust. 

Genomic distribution and geographic patterns of ROA 

The frequency at which each SNV was present in ROA in each population was calculated as described in 

Pemberton et al. [18]. To compare the genomic distribution of ROA across populations, we calculated 

mean ROA frequencies in non-overlapping 50 kb windows across all SNVs polymorphic in that 

population that were within the window, and excluding windows that lay within the centromere and 

telomeres. To evaluate the similarity of ROA frequency patterns among populations, we performed 

classical (metric) multidimensional scaling (MDS) separately for each ROA length class based on a 

matrix of ROA frequency dissimilarities between all pairs of populations, calculated as one minus the 

Pearson correlation coefficient (r) of their mean ROA frequencies across windows. We then applied MDS 

to this matrix using cmdscale in R. 

We compared population patterns in the MDS based on ROA frequencies to an MDS based on a 

matrix of pairwise FST among populations calculated with our WGS dataset and the method of Hudson et 

al. [245] according to the recommendations of Bhatia et al. [246]. The similarity of patterns in our MDS 

of ROA dissimilarities and those in the MDS of FST was evaluated with the Procrustes method [247]. 

Relationship between ROA and genomic variables 

For each ROA length class, we investigated recombination rate and haplotype-based nSL selection scores 

[206] for correlations with ROA frequency across the autosomes. Population-based recombination-rate 

estimates were obtained from Phase 3 of The 1000 Genomes Project [155] (downloaded July14th, 2014), 

and nSL values for each of the 26 populations were calculated in the WGS dataset considering only SNVs 

with MAF > 0.05 and normalization of unstandardized scores in 100 genome-wide frequency bins with 

selscan [248]. Comparisons between ROA frequency and recombination rate and nSL were performed as 

described in Pemberton et al. [18] considering the mean value of each variable in non-overlapping 50 kb 

windows, excluding windows within the centromere and telomeres, calculated across all SNV within the 

window for which the variable was available. Admixed Afro-European (ASW and ACB) and Mestizo 

(CLM, MXL, PEL, and PUR) populations and the geographically imprecise CEU (Utah residents of 

Northwestern European ancestry) group were omitted from geographic analyses but were included in the 

scatterplots. 

List of Abbreviations Used 
ASW, African American; ACB, Afro-Caribbean; BEB, Bengali; bp, base-pair; CEU, European American; 

CDX, Dai; CHB, Northern Han; CHS, Southern Han; CLM, Colombian; cM, centimorgan; ESN, Esan; 

FIN, Finnish; GIH, Gujarati; GWD, Gambian; GBR, British; HGDP, Human Genome Diversity Panel; 

HMM, hidden Markov model; IBD, identical by descent; IBS, Iberian; Indel, insertion/deletion variant; 

ITU, Telugu; JPT, Japanese; kb, kilobase; KHV, Kinh; LD, linkage disequilibrium; 𝐿𝑂𝐷, logarithm of the 

odds; 𝑤𝐿𝑂𝐷, weighted logarithm of the odds; LWK, Luhya; MAF, minor allele frequency; Mb, 

megabase; MSL, Mende; MXL, Mexican American; NGS, next-generation sequencing; OMIM, Online 

Mendelian Inheritance of Man; PEL, Peruvian; PJL, Punjabi; PUR, Puerto Rican; RAM, random access 

memory; ROA, regions of autozygosity; ROH, runs of homozygosity; SNP, single-nucleotide 
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polymorphism; SNV, single-nucleotide variant; STU, Sri Lankan Tamil; TSI, Toscani; WES, whole-

exome sequencing; WGS, whole-genome sequencing; YRI, Yoruban. 
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Figure 1. Distribution of genome-wide  scores in European Americans. (A) Each line 
represents the Gaussian kernel density estimates of the pooled  scores from all 97 individuals in the 
European American (CEU) population at window sizes between 40 and 200 SNPs in 10 SNP increments 
in the Omni2.5 dataset. The largest window size that produced a clear bimodal distribution (150 SNPs) is 
shown in black. (B) The change in intermodal distance with increasing window size in the CEU 
population. These patterns are representative of those observed in all other populations in the dataset. 
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Figure 2. Difference in per-window scores between the  and  estimators. (A) Scatterplot 
comparing per-window  and  scores across all individuals in the European American (CEU) 
population at a window size of 150 SNPs in the Omni2.5 dataset. The 2,675,059 windows that were in the 
autozygous mode with both  and  are shown in blue. The 9,885 windows that were in the non-
autozygous mode with  but the autozygous mode with  are shown in green. The 2,462,843 
windows that were in the autozygous mode with  but the non-autozygous mode with  are 
shown in red. All windows that were in the non-autozygous mode with both  and  are shown 
in black. (B) Violin plots representing the change in per-window score between  and  across 
all individuals in each population for 150 SNP windows in the Omni2.5 dataset. Each ‘‘violin’’ contains a 
vertical black line (25%–75% range) and a horizontal white line (median), with the width depicting a 90º-
rotated kernel density trace and its reflection, both colored by the geographic affiliation of the population 
[249]. Bar plots showing for each population the proportion of 150 SNP windows that are (C) in the 
autozygous mode with the  estimator but are in the non-autozygous mode with the  estimator 
or (D) in the non-autozygous mode with the  estimator but are in the autozygous mode with the 

 estimator.  
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Figure 3. Influence of cultural processes on the distribution of  scores. (A) Gaussian kernel 
density estimates of the pooled  scores from all individuals in the Asian Indian Gujarati (GIH) and 
Telugu (ITU) populations at window sizes 200 and 220 SNPs, respectively. These patterns are 
representative of those observed in the Asian Indian Punjabi (PJL) and Sri Lankan Tamil (STU) 
populations as well as the East Asian Dai (CDX) population. (B) Gaussian kernel density estimates of the 
proportion of windows comprising each inferred ROA that are present in the right-most autozygosity 
mode in the Asian Indian GIH, ITU, PJL, and STU populations. ROA in the CDX population are almost 
exclusively in the left-most mode and it was excluded for clarity. The Asian Indian Bengali (BEB) 
population was excluded as we could not robustly distinguish between the two autozygous modes. 
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Figure 4. Performance of the  method across different window sizes and overlap fractions. 
For scenario 1 and the 750,000 polymorphic SNV datasets, a three dimensional (3D) bar graph depicting 
the average number of falsely discovered ROA (A) as well as 3D scatterplots depicting the average 
number of false negative ROA (B), average power (C), and average ratio of inferred and true ROA 
lengths (D) reported by the  method for each window size and overlap fraction across the 50 
replicates are shown. In each graph, the point representing the smallest combination of window size and 
overlap fraction that had an average number of falsely discovered ROA of 0 and an average ratio of 
inferred and true ROA lengths of about 1 is shown in black.  
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Figure 5. Performance of the  method at different SNV densities. Lines graphs showing how 
average power (top), false discovery rate (middle), and ratio of inferred and true ROA length (bottom) 
across 50 replicate genetic simulations change with increasing ROA length for each SNV subset under 
(A) scenario 1 and (B) scenario 2. Each comparison was performed at the optimal combination of window 
size and overlap fraction for that scenario and SNV subset (Table 3). The grey vertical lines denote 500 
kb (dashed) and 1.5 Mb (dotted), frequently applied length thresholds used to categorize ROA arising due 
to LD (< 500kb) and inbreeding (> 1.5 Mb) in humans [9]. Note that in scenario1, power to detect ROA 
>1 Mb with 18,000 SNVs surpasses that with 50-125,000 SNVs as a consequence of the optimal overlap 
fraction used: the overlap fraction of 0 used for the 18,000 SNV dataset is much lower than the 0.15–0.22 
fractions used for the 50-125000 SNV datasets. Consequently, greater power to detect ROA >1Mb is 
achieved with 18,000 SNVs than is possible with 50-125,000 SNVs through less stringent placement of 
ROA boundaries, but at the expense of more frequent overcalling of ROA (inflated false discovery rate). 
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Figure 6. Performance of the  method compared with existing methods. Line graphs showing 
for scenarios 1 (A-C) and 2 (D-F) and subsets consistent with WGS (750,000 SNV; A & D) and the 
Illumina HumanOmni2.5-8 (125,000 SNV; B & E) and HumanOmniExpress-24 (50,000 SNV; C & F) 
BeadChips how average power (top), false discovery rate (middle), and ratio of inferred and true ROA 
length (bottom) across 50 replicate genetic simulations change with increasing ROA length. The grey 
vertical lines denote 500 kb (dashed) and 1.5 Mb (dotted), frequently applied length thresholds used to 
categorize ROA arising due to LD (< 500kb) and inbreeding (> 1.5 Mb) in humans [9].  
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Figure 7. Concordance of ROA inferred in the WGS and Omni2.5 datasets. (A) A scatterplot 
comparing the length of each WGS ROA with that of its corresponding Omni2.5 ROA in the European 
American (CEU) population. Each point is shaded according to the proportion of the WGS ROA that 
overlaps the Omni2.5 ROA. (B) Bar plots representing the proportions of short (<500 kb; shown in red), 
intermediate (500 kb to 1.5 Mb; shown in green), and long (>1.5 Mb; shown in blue) ROA in the WGS 
(upper) and Omni2.5 (lower) datasets that overlap (darkest shade) or are absent from (lightest shade) the 
other dataset in each population.  
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Figure 8. Population-specific distributions of the total length of ROA per individual. Data are shown 
as violin plots [249], representing the distribution of total ROA length across all individuals in each of the 
26 populations for (A) class 1, (B) class 2, (C) class 3, (D) class 4, (E) class 5, and (F) all five ROA 
classes combined. Populations are ordered from left to right by geographic region and within each region 
by increasing geographic distance from Addis Ababa.  
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Figure 9. Distribution of worldwide ROA frequencies across the genome. For each autosome, the 
figure shows for each ROA length class the average proportion of individuals in the WGS dataset who 
have an ROA overlapping SNVs within non-overlapping 50 kb windows. Each row represents an ROA 
class, and each column represents a window. The intensity of a point increases with increasing average 
ROA frequency, as indicated by the color scale below the figure. The SNV density of each window and 
an ideogram of chromosome banding are shown in the bottom tracks, with average recombination rate in 
each window represented by a vertical black line below the ideogram, where line heights proportional to 
average recombination rate.  
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Figure 10. Per-population ROA frequencies within a ROA hotspot on chromosome 2. For each ROA 
class, for each population, the average proportion of individuals in that population who have an ROA 
overlapping SNVs within non-overlapping 50 kb windows from 132,500,000 to 140,200,000 bp on the q-
arm of chromosome 2 is shown. Each row represents a population, and each column represents a window. 
Populations are ordered from top to bottom by geographic affiliation, as indicated by the color of their 
label, and within regions from top to bottom by increasing geographic distance from Addis Ababa (in the 
same order as in Figure 8). Average ROA frequency, average SNV density, chromosome banding, and 
recombination rates are shown as in Figure 9. The black vertical box demarks the location of the LCT 
gene, while the vertical grey box demarks the location of the class 5 ROA hotspot in the CEU and GBR. 
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Figure 11. Distribution of differential ROA signals between subgroups in the GIH, ITU and PJL. 
Manhattan plots showing for each window the 10( ) of pairwise comparisons of per-individual  
scores in the two subgroups present in the (A) GIH (450 SNV window), (B) ITU (580 SNV window), and 
(C) PJL (610 SNV window). In each plot, P-values for the comparison testing whether  scores in 
cluster A are greater than those in cluster B (Additional File 1: Figure S22) are shown on top with P-
values for the reverse comparison is shown below. P-values represent the proportion of genome-wide 
maximum Wilcoxon rank-sum test statistics observed in 1,000 permutations of group labels that exceed 
the Wilcoxon rank-sum test statistic obtained with the true labels [150]. Windows with P>0.05 are shown 
in black and those with P≤0.05 are shown in orange. The horizontal grey dashed line denotes P=0.05 and 
while the grey dotted line denotes P=0.01.  
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Table 1. Per-SNP likelihoods of autozygosity and non-autozygosity. 

𝑮𝒌 𝐏𝐫(𝑮𝒌|𝑿𝒌 = 𝟏) 𝐏𝐫(𝑮𝒌|𝑿𝒌 = 𝟎) 

AA (1 − 𝜀)𝑓𝐴,𝑗 + 𝜀𝑓𝐴,𝑗 𝑓𝐴,𝑗
2  

AB 2𝜀𝑓𝐴,𝑗𝑓𝐵,𝑗 2𝑓𝐴,𝑗𝑓𝐵,𝑗 

BB (1 − 𝜀)𝑓𝐵,𝑗 + 𝜀𝑓𝐵,𝑗 𝑓𝐵,𝑗
2  

Missing 1 1 

Frequencies of alleles A and B in population 𝑗 are denoted by 𝑓𝐴,𝑗 and 𝑓𝐵,𝑗, respectively, and the assumed 

rate of genotyping errors and mutations by 𝜀.  
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Table 2. Populations included in Phase 3 of The 1000 Genomes Project. 

Population 
Geographic 

region 
N 

 
Consanguinitya 

ID Name 
 

Frequency Reference(s) 

ESN Esan Africa 94  − − 

GWD Gambian Africa 109  − − 

LWK Luhya Africa 96  − − 

MSL Mende Africa 80  − − 

YRI Yoruban Africa 107  51.20% [250] 

GBR British Europe 89  0.40% [251] 

CEU European American Europe 97  0.20% [252] 

FIN Finnish Europe 98  0.17% [253] 

IBS Iberian Europe 107  1.99% [254-258] 

TSI Toscani Europe 104  − − 

BEB Bengali Central/South Asia 84  5.00% [173] 

GIH Gujarati Central/South Asia 101  4.90% [173] 

PJL Punjabi Central/South Asia 96  0.90% [173] 

STU Sri Lankan Tamil Central/South Asia 96  38.20% [173] 

ITU Telugu Central/South Asia 101  30.80% [173] 

CDX Dai East Asia 92  21.30% [172] 

JPT Japanese East Asia 103  4.80% 
 

KHV Kinh East Asia 94  − − 

CHB Northern Han East Asia 101  1.16% [172,259,260] 

CHS Southern Han East Asia 102  3.43% [172,260] 

ASW African American Admixed 55  − − 

ACB Afro-Caribbean Admixed 94  − − 

CLM Colombian Admixed 89  2.83% [252,254,261] 

MXL Mexican American Admixed 62  0.80% [252,254] 

PEL Peruvian Admixed 84  1.90% [252,261,262] 

PUR Puerto Rican Admixed 101  3.30% [257] 

aConsangunity frequencies were obtained from http://www.consang.net.  
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Table 3. Optimal window size and overlap proportion in the simulated datasets. 

SNV subset 
Scenario 1  Scenario 2 

Window size % overlap  Window size % overlap 

18,000 60 7  70 5 

50,000 70 18  80 19 

80,000 80 28  90 22 

125,000 80 29  100 26 

750,0000 130 37  120 32 
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Table 4. Genomic regions enriched for autozygosity signals in the ITU and PJL subgroups. 

Population  
 

Genomic region Number of 

windows 

Minimum

𝑷𝒑𝒆𝒓𝒎 
RefSeq 

genes ID Name Group Chr Begin (bp) End (bp) Length (bp) 

ITU Telugu 1  10 132,953,074 133,048,305 95,232 189 0.013 TCERG1L 

PJL Punjabi 1  13 20,001,572 20,181,691 180,120 28 0.044 TPTE2 
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