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Abstract

Barcode swapping results in the mislabeling of sequencing reads between mul-

tiplexed samples on the new patterned flow cell Illumina sequencing machines.

This may compromise the validity of numerous genomic assays, especially for

single-cell studies where many samples are routinely multiplexed together. The

severity and consequences of barcode swapping for single-cell transcriptomic

studies remain poorly understood. We have used two statistical approaches

to robustly quantify the fraction of swapped reads in each of two plate-based

single-cell RNA sequencing datasets. We found that approximately 2.5% of

reads were mislabeled between samples on the HiSeq 4000 machine, which is

lower than previous reports. We observed no correlation between the swapped

fraction of reads and the concentration of free barcode across plates. Further-

more, we have demonstrated that barcode swapping may generate complex but
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artefactual cell libraries in droplet-based single-cell RNA sequencing studies. To

eliminate these artefacts, we have developed an algorithm to exclude individual

molecules that have swapped between samples in 10X Genomics experiments,

exploiting the combinatorial complexity present in the data. This permits the

continued use of cutting-edge sequencing machines for droplet-based experi-

ments while avoiding the confounding effects of barcode swapping.

Introduction

Recent reports have shown that the DNA barcodes used to label multiplexed

libraries can “swap” on patterned flow-cell Illumina sequencing machines, in-

cluding the HiSeq 4000, HiSeq X, and NovaSeq (Sinha et al. , 2017; Costello

et al. , 2017). This results in mislabeling whereby reads assigned to one sam-

ple derive from molecules in another, thus compromising the interpretation of

many -omic assays (Figure 1). Barcode swapping is particularly problematic

for single-cell RNA sequencing (scRNA-seq) experiments, where many libraries

are routinely multiplexed together. For example, barcode swapping could lead

to cells that appear to falsely express particular marker genes, or yield spurious

correlation patterns that may confound clustering and other analyses.

The severity and consequences of barcode swapping in scRNA-seq studies

remain poorly understood. Sinha et al. (2017) estimated swapping rates of “up

to 5-10%” from a plate-based scRNA-seq experiment; however, these estimates

were obtained from only two wells in a single micro-well plate. The lack of

replication makes it difficult to generalize the results to other scRNA-seq studies.

Furthermore, the effect of barcode swapping on high-throughput droplet-based

scRNA-seq protocols (Zheng et al. , 2017) has not been explored. This is a key

consideration due to the increasing use of droplet-based methods for large-scale

single-cell studies (Schiebinger et al. , 2017; Dixit et al. , 2016) where many
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Figure 1: A schematic of the mechanism for barcode swapping, as proposed
by Sinha et al. (2017). On new models of the Illumina sequencing machines,
flow cell seeding and DNA amplification take place simultaneously, without any
washes of the flow cell between steps. As a result, free sample indexing barcodes
remain in solution and can be inadvertently extended using DNA molecules
from libraries with different barcodes as templates. The transfer of mislabeled
molecules between nanowells of the flow cell results in clustering and sequencing
of artefactually labelled DNA molecules.

samples are necessarily multiplexed together for efficient sequencing.

Here, we robustly quantify the fraction of swapped reads in each of two

plate-based single-cell RNA sequencing datasets. We found that approximately

2.5% of reads were mislabeled between samples on HiSeq 4000, and observed

no correlation between the swapped fraction of reads and the concentration of

free barcode across plates. Furthermore, we demonstrate that barcode swapping

can generate complex but artefactual cell libraries in droplet-based scRNA-seq

data. To eliminate these artefacts, we developed a computational method to

exclude swapped reads in 10X Genomics experiments, enabling the continued

use of cutting-edge sequencing machines for droplet-based experiments.
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Barcode swapping in plate-based single cell RNA-

seq experiments

A number of widely-used scRNA-seq library preparation methods isolate and

process individual cells in wells of a microwell plate before performing library

preparation in parallel (Picelli et al. , 2014; Jaitin et al. , 2014; Hashimshony

et al. , 2016). A unique combination of sample barcodes characterises the li-

brary associated with each cell, usually by adding a different barcode to each

end of a cDNA molecule. One barcode typically indexes the row position for

each cell on the microwell plate, while the other barcode indexes the column po-

sition. Swapping of either or both barcodes therefore moves reads between cell

libraries. We used two independent plate-based scRNA-seq datasets to quantify

the swapping fraction, i.e., the fraction of all cDNA reads across all sequencing

libraries multiplexed on a single flow cell lane that were mislabelled.

In the first dataset (referred to as the “Richard dataset”, see Supplementary

File Section 3), two plates of single mouse T cells were multiplexed for sequenc-

ing on a HiSeq 4000 instrument. Each of these plates used entirely different

sets of column and row barcodes: none of the barcodes were reused between

the plates (Figure 2A). As such, there are a set of barcode combinations that

should contain zero reads (“impossible” combinations), as the two sets of bar-

codes for these combinations were never mixed during the experiment. However,

reads mappable to the mouse genome were still present in the impossible com-

binations at approximately 1% of the frequency in the expected combinations

(Figure 2B). This cannot be explained by contamination from free-floating nu-

cleic acids, which can only affect the expected combinations used during library

preparation. Indeed, the number of reads in each impossible combination was

proportional to the number of reads in the real cell libraries that shared exactly
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one barcode with the impossible combination (Figure 2C). This is consistent

with read misassignment to an impossible combination, due to swapping of a

single barcode from the pool of cDNA in the expected combinations.

To estimate the swapped fraction in the Richard dataset, we regressed the

library size of the impossible combinations against the summed library sizes of

the real cells that shared exactly one barcode (see Supplementary File Section

3 for more details). This yielded an estimate of the swapped read fraction of

2.18±0.08%. For comparison, we repeated this procedure on the same libraries

sequenced on HiSeq 2500, yielding a much lower swapped fraction estimate

of 0.22±0.01%. This is consistent with the proposed mechanism of barcode

swapping on the new Illumina machines. Notably, our estimates are calculated

over many wells with impossible combinations, offer an estimate of uncertainty,

and are robust to contamination. This represents an improvement over previous

estimates (Sinha et al. , 2017), which only sought to technically demonstrate

the existence of swapping by considering two wells of a single plate.

In the second dataset (Nestorowa et al. (2016), see Supplementary File Sec-

tion 4), we considered plates of single cells whose libraries had been sequenced

on both the HiSeq 2500 and 4000. We modelled each cell’s gene expression levels

in the HiSeq 4000 data as a linear combination of contributions from the HiSeq

2500 data. Specifically, for each cell, we considered contributions from itself,

cells that share exactly one barcode, and cells that share no barcodes (see Sup-

plementary File Section 4 for details). The relative contribution from other cells

was used to estimate the swapping fraction across all cells in the plate. Across

16 independent plates of single cells (each of which was sequenced separately),

we estimated a range of swapped read fractions with mean 2.275±0.359%, con-

sistent with the first experiment (Figure 2D). We also observed that nearly all

expressed genes were affected by swapping (Supplementary File Section 4.5),
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Figure 2: Characterization of barcode swapping in plate-based scRNA-seq ex-
periments. (A) The experimental design of the Richard dataset. Two 96-well
plates of cells were multiplexed for sequencing. Expected barcode combina-
tions are marked in blue, while impossible barcode combinations are marked in
grey. (B) Distribution of the library sizes (i.e., number of mapped reads) in
the expected and impossible barcode combinations. (C) Library size of each
impossible combination (observed swapped reads), plotted against the sum of
the library sizes of the expected combinations that share exactly one barcode
with that impossible combination (available swapped reads). An example is
illustrated graphically in the inset Figure for one impossible combination (red)
and the contributing expected combinations (orange). The gradient represents
the fraction of available reads from the expected combinations that swap into
each impossible combination. (D) Estimated swapping fractions for different
plates of the Nestorowa et al. (2016) dataset, plotted against the ratio of the
concentration of free barcode to the concentration of cDNA of the correct length
for sequencing. A linear regression fit is shown along with its 95% confidence
interval. The slope of the fitted line is not significantly different from 0 (p =
0.129).
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consistent with its global effects on the pool of sequencable DNA.

Given the range of estimated swapping fractions in the Nestorowa et al.

(2016) data, we reasoned that we could identify the factors driving barcode

swapping by considering the library characteristics of each plate. Specifically,

we investigated the association with the amount of free library barcode, which

has previously been linked to swapping rates (Sinha et al. , 2017). We used Ag-

ilent’s Bioanalyzer Expert 2100 software to quantify the amount of free barcode

(DNA lengths 45-70bp) and the amount of sequencable cDNA (400-800bp) in

the multiplexed library from each plate. However, we did not observe a strong

correlation of swapping fraction estimates with the ratio of free barcode to se-

quencable cDNA (Figure 2D). Similarly, no correlation was observed with the

total amount of free barcode per plate, or the ratio of free barcode concentra-

tion to mappable reads (Supplementary File Section 4.4). This suggests that

the extent of barcode swapping is not primarily determined by the amount of

free barcode, at least not in experiments using typical barcode concentrations.

Removing the effects of barcode swapping in plate-

based experiments

The most obvious solution for barcode swapping is to use a sequencing machine

that does not use a patterned flow cell, which we have shown reduces the swap-

ping rate by an order of magnitude. Where this is not possible, an approach for

computationally “unmixing” the expression profiles has been described (Larsson

et al. , 2017), although the user must specify the swapping fraction for accurate

correction. Unfortunately, our results indicate that the swapping rate varies

across plates of a scRNA-seq experiment (Figure 2D), so it is unlikely that a

single estimate of the swapping fraction is appropriate for all experiments.
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For general plate-based scRNA-seq experiments, we recommend the use of

an experimental design similar to that in the Richard dataset (Figure 2A). By

leaving a fraction of possible barcode combinations unoccupied, a researcher can

robustly estimate the swapped fraction of reads. This serves as a useful quality

control metric for individual experiments, whereby datasets with high swapping

rates can be flagged and discarded to avoid generating misleading biological

results. The swapping fraction estimate for each experiment can also be used to

improve the accuracy of any computational correction (Larsson et al. , 2017).

Unique dual indexing represents another experimental solution to barcode

swapping (Costello et al. , 2017). Under this scheme, two unique barcodes are

used for each sample in a multiplexed sequencing experiment. A single barcode

swap will move reads to barcode combinations that are not used by any other

sample, thus avoiding any mixing of libraries between samples. However, the

need for unique indexes greatly restricts the number of libraries that can be

multiplexed for a given number of barcodes (see Supplementary File Section

7 for scalability calculations). This is particularly problematic for single-cell

studies where large numbers of cell libraries need to be multiplexed for efficient

sequencing. To use unique dual indexing in such cases, a researcher must have

a large number of available barcodes, which may not be practical.

Barcode swapping in droplet-based single-cell RNA-

seq experiments

New single-cell RNA-seq protocols use microfluidic systems to massively mul-

tiplex library preparation by capturing individual cells in droplets (Macosko

et al. , 2015; Zheng et al. , 2017). These methods enable the efficient genera-

tion of thousands of single-cell libraries in a single experiment. Cell labelling
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is achieved by the incorporation of a cell barcode in the reverse transcription

step that occurs in each droplet. Each cell barcode is selected randomly from a

large pool of possible sequences. A single sample barcode is then used to label

different batches of single cells for multiplexed sequencing. The cell barcode is

never free in solution; only the sample barcode is expected to swap.

We consider two major effects of barcode swapping in droplet-based experi-

ments. Firstly, it is possible that the same cell barcode is used in two or more

multiplexed samples. Between these samples, swapping will mix transcriptomes

of different cells labelled with the same cell barcode, similar to the effect ob-

served in plate-based assays. The second effect arises when a “donor” sample

contains a cell barcode that is not present in another “recipient” sample. Swap-

ping of molecules labelled with this donor-only barcode will produce a new

artefactual cell library in the recipient sample. This new library will have a

similar expression profile to the original cell in the donor sample and may be

identified as a real cell. Indeed, swapping from cell libraries that are especially

large may generate artefactual libraries in recipient samples that are as large

and complex as real cells, making it difficult to find and remove them.

We demonstrated the existence of artefactual cell libraries in real data by

testing whether samples from droplet-based experiments shared more cell bar-

codes than expected by chance. We obtained 10X Genomics data for human

breast tumour cells and mouse epithelial cells, sequenced separately on the HiSeq

4000. In both of these experiments, at least one sample comparison exhibited

excess sharing according to a hypergeometric test (Supplementary Figures 29-

30, Supplementary File Section 5.2). We also obtained 10X Genomics data

for mouse embryonic cells sequenced on a HiSeq 2500, and resequenced the

aforementioned mouse epithelial cells on the HiSeq 2500. In both of these ex-

periments, no excess sharing was observed (Supplementary Figures 31-32). This
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is again consistent with barcode swapping on the new Illumina machines.

Removing the effects of barcode swapping

One obvious solution to mitigate the effect of barcode swapping is to discard any

cell libraries with shared cell barcodes across multiplexed samples. This removes

both homogenised and swap-derived artefactual libraries from further analysis,

thus avoiding misleading conslusions driven by barcode swapping. However, cell-

based removal is not appropriate when many cells are captured across many

samples for a single multiplexed sequencing run. This is because many cells

will share cell barcodes by chance, even in the absence of barcode swapping.

Removal of these cells will result in unnecessary loss of data (Figure 3A). For

example, applying this strategy to 30 multiplexed samples of 20,000 cells each

would exclude over 50% of cell libraries. An alternative approach is necessary for

high-throughput droplet scRNA-seq datasets that are now routinely generated

(Stoeckius et al. , 2017; Schiebinger et al. , 2017; Dixit et al. , 2016).

We have developed a computational method that removes individual swapped

reads from 10X Genomics data, avoiding the exclusion of entire cell libraries.

Specifically, we considered molecules across multiplexed samples that contain

the same combination of unique molecular identifier, cell barcode, and aligned

gene. Due to combinatorial complexity, these molecules are extremely unlikely

to arise by chance, and are almost certain to be generated by barcode swap-

ping. For each observed combination of these labels, we calculated the fraction

of reads that were present in each sample. Where one sample contained the

majority of all reads for a molecule (≥ 80%), we considered this as the sample-

of-origin, and removed the molecule count from all other samples. Where this

was not the case, we removed the molecule from all samples (Figure 3B), as an

unambiguous determination of the sample-of-origin was not possible.
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Figure 3: Characterization of barcode swapping in droplet-based scRNA-seq
experiments. (A) The expected number of cells with shared cell barcodes in
10X samples that have been multiplexed for sequencing, for different numbers
of samples and different numbers of captured cells per sample. (B) A schematic
of our method to remove swapped reads from droplet data. Reads found in
different samples with the same combination of UMI, cell barcode, and aligned
gene were considered to have swapped. If most reads (≥ 80%) were present
in one sample, we excluded the molecule from all other samples (i). If reads
were more evenly spread across samples, we excluded the molecule from all
samples (ii). Reads in one sample only were retained (iii). (C) t-SNE plot
of the expression profiles of mouse epithelial cells (Maaten & Hinton, 2008).
Each point represents a cell that is coloured by sample. Letters correspond to
different experimental conditions while numbers represent biological replicates.
(D) The distribution of the library sizes for called cells in each sample. Cells
were called using emptyDrops (Lun, 2018), with an FDR threshold of 1% and a
minimum of 1,000 UMIs. (E) The number of called cells for each sample, before
and after application of our swapped read exclusion algorithm.
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We applied our method to the aforementioned mouse epithelial cell dataset

sequenced on the HiSeq 4000. In one experiment, two samples (B1, B2) ap-

peared to contain many cells with expression profiles that were distinct from

those of the cells in the other samples (Figure 3C). We observed that cells in

these samples had smaller library sizes than in other samples (Figure 3D). Fur-

ther inspection revealed that many cell barcodes in B1 and B2 were also present

in other samples (Supplementary File Section 5.3). We hypothesised that the

majority of cell libraries in samples B1 and B2 derived from barcode swapping.

Exclusion of swapped reads resulted in the loss of nearly all called cells from

these samples (Figure 3E, Supplementary File Section 6.2.3), indicating that

they consisted almost entirely of artefactual swapped libraries.

These results demonstrate the importance of excluding swapped reads prior

to further analysis. Failure to do so would have resulted in misleading biological

conclusions if the artefactual cells were used in analyses such as clustering and

detection of differentially expressed genes. Indeed, the artefactual cells form

their own cluster in Figure 3C, and could be misinterpreted as a cell type ex-

clusive to samples B1 and B2. We also observed that 2.5% of cell libraries from

the other samples were no longer called as cells after removal of swapped reads.

While this represents the removal of a smaller number of artefactual cells, it

may be important in studies involving rare cell types where the presence of a

few cells can affect the interpretation of the results.

As a control, we applied our method to two 10X Genomics experiments us-

ing mouse epithelial cells that were not multiplexed together. Here, our method

removed a negligible number of molecules (<0.0005%, Supplementary File Sec-

tion 6.2.4). This demonstrates that our method is able to specifically exclude

swapped reads. Our method is implemented in the DropletUtils Bioconductor

package for 10X Genomics experiments, and can be easily applied in a conven-
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tional analysis pipeline.

Conclusion

Using plate-based scRNA-seq datasets, we have reproducibly estimated the frac-

tion of barcode-swapped reads on the HiSeq 4000 to be approximately 2.5%,

which is lower than previously reported (Sinha et al. , 2017). Different amounts

of free DNA barcode did not affect our swapping fraction estimates, suggest-

ing that free barcode concentration is not the primary factor determining the

variation in barcode swapping rates across experiments. We recommend that

plate-based scRNA-seq experiments that reuse cell barcodes should continue

to be sequenced on non-patterned flow-cell machines such as the HiSeq 2500 to

minimise barcode swapping. We have also implemented a compuational method

for removing swapped reads from 10X Genomics data without removing en-

tire cell libraries. This permits the cost-effective use of the highest-throughput

sequencing machines (e.g., the HiSeq 4000) for large-scale droplet scRNA-seq

experiments while avoiding the confounding effects of barcode swapping.
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