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Abstract:  Understanding how gut microbial species determine their abundances is crucial in 
developing any microbiome-based therapy. Towards that end, we show that the compositions of 
our gut microbiota have characteristic and attractive steady states, and hence respond to 
perturbations in predictable ways. This is achieved by developing a new method to analyze the 
stability landscape of the human gut microbiome. In order to illustrate the efficacy of our method 
and its ecological interpretation in terms of asymptotic stability, this novel method is applied to 
various human cohorts, including large cross-sectional studies, long longitudinal studies with 
frequent sampling, and perturbation studies via fecal microbiota transplantation, antibiotic and 
probiotic treatments. These findings will facilitate future ecological modeling efforts in human 
microbiome research. Moreover, the method allows for the prediction of the compositional shift 
of the gut microbiome during the fecal microbiota transplantation process. This result holds 
promise for translational applications, such as, personalized donor selection when performing 
fecal microbiota transplantations.  

 

One Sentence Summary: A new method for analyzing the stability landscape of the human gut 
microbiome and predicting its steady-state composition is developed. 
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1. Introduction  

Thanks to recent advances in high-throughput sequencing technologies, we now have a good 
understanding of what microbes reside in, and on, our bodies and their relative abundances (1, 
2). Longitudinal studies have shown that the gut microbiome compositions of healthy adults are 
fairly consistent over time (3–5). In addition, the gut microbiome compositions of the same 
individual at different time points are more similar to one another than to the gut microbiome 
compositions of different individuals (4). This temporal stability suggests the existence of 
personalized stable steady states for the human gut microbiome. The landscape of stable states 
for the human gut microbiome is still unknown, however (39,49). It remains unclear if the gut 
microbiome of a healthy adult is just marginally stable (Fig.1a) or, if in addition, it is 
asymptotically stable, i.e., displays the feature of attractivity so that stable states behave as 
attractors (Fig.1b). In other words, we want to know if the landscape of stable states is flat or 
concave. We are also interested in knowing whether true multi-stability exists for the human gut 
microbiome (if there are multiple attractors for any given collection of species). 

 

Addressing these fundamental stability-related questions will help in deciphering the complex 
microbial dynamics underlying the human gut microbiome and will facilitate future ecological 
modeling efforts. Moreover, it will enable us to predict the steady-state composition of human 
gut microbiota based on species collection alone. This has immediate translational implications. 
Consider for instance the case of Clostridium difficile infection (CDI), which accounts for 15 to 
25% of antibiotic-associated diarrhea, and is an increasing health problem in the United States, 
leading to nearly 500,000 diagnoses and approximately 30,000 deaths every year (40). In a 
healthy gut microbiota, C. difficile is out-competed by hundreds of strains of bacteria that are 
normally present. However, after repeated broad-spectrum antibiotic administrations that disrupt 
the healthy microbial community, C. difficile can flourish within the gut and produce potent 
toxins. Because C. difficile can form spores that are not killed by antibiotics, and because the 
normal microbiota is diminished, the infection is often poorly or transiently responsive to 
standard antibiotics such as oral vancomycin or metronidazole and recurs. In contrast, after 
hundreds of treatments in many independent institutions, fecal microbiota transplantation (FMT) 
has been shown to cure over 90% of the most recalcitrant CDI cases that had previously failed 
standard antibiotic therapy (41). A schematic of microbial abundances throughout the FMT 
process is shown in Supplemental Figure S1. Despite these promising findings, long-term safety 
concerns still linger and there is still no clear criterion for personalized donor selection when 
given a pool of healthy donor candidates. Indeed, rather simple questions remain unanswered. 
For example, it is unknown whether the patient’s gut microbiota return to an abundance profile 
similar to his/her pre-antibiotic state, or become more similar to that of the donor’s. The work 
presented here will help us predict the compositional shift of the patient’s gut microbiome during 
FMT, and hence facilitate personalized donor selection.  
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Stability is a fundamental notion in dynamical systems theory. For a general dynamical system 
of n components, the temporal behavior of the system’s n-dimensional state vector x is usually 
described by a set of ordinary differential equations dx/dt = f (x, t), where f (x, t) determines the 
“rules” governing the temporal behavior of this system. In the context of population dynamics, 
the state vector x represents the abundance profile of the present species, and f (x, t) may capture 
the intrinsic growth of the species and the intra- and inter-species interactions. The mathematical 
foundations of stability were given by Lyapunov (7–11). A variety of stability-types exist for a 
general dynamical system. Roughly speaking, if all solutions of the equations dx/dt = f (x, t) that 
start out near an equilibrium point x∗ (which satisfies f (x∗, t)=0) stay near x∗ forever, then x∗ is 
stable. More strongly, if x∗ is stable and all solutions that start out near x∗ converge to x∗ as t → 
∞, then x∗ is asymptotically stable. x∗ is marginally stable if it is stable but not asymptotically 
stable. The key difference between marginal stability and asymptotic stability is that the latter 
has an attractivity feature such that the equilibrium point x∗	is	“attracting”	nearby	states	while 
the former doesn’t have this feature, see Figure 1c and 1d, as well as the methods section for 
more detailed definitions and a discussion about perturbed and unperturbed dynamics, along with 
reference note (55). 

 

A straightforward approach to studying the stability landscape of the human gut microbiome 
would be to infer and study the underlying ecological dynamics. Yet, this is very challenging, if 
not impossible, given the issues surrounding compositionality of relative abundance data and the 
lack of sufficient variation in existing temporal metagenomics data (6, 28, 29). Collecting 
temporal data with more variation requires well-designed perturbation experiments (56), which 
may raise serious ethical concerns. In this work a new method to characterize the stability 
landscape of the human gut microbiome without inferring the underlying ecological dynamics is 
developed. In particular, through the development of appropriate dissimilarity measures, we 
show that the human gut microbiome actually demonstrates not only stability but also the feature 
of attractivity. In the following sections the attractivity feature of human gut microbiota is 
demonstrated through the visualization of longitudinal data. Asymptotic stability is then verified 
by applying the developed dissimilarity measures to large cross-sectional cohorts (55). Finally, 
we demonstrate our ability to predict patients’ post-FMT microbiota similarity to that of their 
donors by analyzing patients’ pre-FMT stool samples alone, paving the way for personalized 
donor selection in FMT.  

 

2. Method 

2.1 Demonstration of asymptotic stability in longitudinal microbiome data  

The notion of stability in the context of population dynamics and ecological systems has been 
discussed since 1839 (12–15) and are ongoing (16–19,42,51-54). Stability’s importance in the 
context of the human gut microbiome has been recently recognized as well (20–22, 50). Indeed, 
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there can be day-to-day perturbations that drive an individual’s abundance profiles away from 
the unperturbed steady state (25). However, upon closer inspection of the state trajectories in (25, 
Figure 3A) it was found that the trajectories always returned to the same steady region (26). To 
further investigate this attractive feature of the human gut microbiome, the nearly daily 
abundance profiles from male and female subjects in the Moving Pictures Study (MPS) (23) 
were projected onto the principle component space of more than 6,000 samples from the 
American Gut Project (AGP) (27), see Figure 2 and Supplemental Movies 1 and 2. We find that 
over a typical 10 to 20-day window, the abundance profile of each subject stays in the same 
region in the principle component space. Large deviations from that region do occur to the male 
subject, possibly due to external perturbations (e.g., diet change), but then the system quickly 
returns to the same region. This is an illustration of the attractivity feature of a dynamical system 
for which the unperturbed dynamics are asymptotically stable (55). 

 

2.2 Detection of asymptotic stability from cross-sectional microbiome data  

Results from the two individuals shown in Fig. 2 leads to questions best answered by a large 
cohort of longitudinal data. However, this kind of data is simply not available at present. To 
resolve this issue, we now introduce a new method that can be used to analyze cross-sectional 
microbiome samples. The method characterizes how species collection alone affects an 
individual’s microbiota composition. To achieve this, two classes of dissimilarity measures are 
introduced for comparing microbiome samples. 

 

The first class of dissimilarity measures quantify the Fraction of Unique Taxa (FUT) between 
two samples. This is similar to the classic Jaccard distance, however this method uses a different 
denominator for normalization, because the normalization used in Jaccard is biased towards large 
sets (i.e., samples with more present OTUs), see the Methods Section. We use two functions to 
quantify FUT: sFUT(x, y) and aFUT(x, y). The distance metric sFUT(x, y) is symmetric and is 
simply the total number of unique taxa between two samples x, y normalized by the total number 
of taxa in both samples (note that this is not the union). The quasi-metric aFUT(x, y) is 
asymmetric and is defined as the total number of unique taxa in x relative to y, normalized by the 
average number of taxa in the pair (x, y). For rigorous definitions see the Methods Section. The 
dissimilarity measure aFUT(x, y) is designed specifically for the analysis of pre-FMT patient and 
donor stool samples. In that case, we only account for the unique taxa in x (the patient’s pre-
FMT sample), because after FMT the taxa within the donor that were unique have now been 
introduced to the patient. With the use of aFUT(x, y) one can predict post-FMT similarity 
between donor and patient from pre-FMT fecal sample analysis alone, offering a simple practical 
tool for donor selection. 
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The second class of dissimilarity measures is motivated by our renormalization technique applied 
in (6), where spurious correlations due to the compositionality of genomic survey data are 
removed. Given a sample pair (x, y) we first exclude all taxa not shared by the samples x and y. 
Then we renormalize the abundances of the shared taxa and quantify the dissimilarity between 
two renormalized abundance profiles using  any classical measures, e.g., Euclidean, Jensen-
Shannon Divergence (JSD), root of JSD (rJSD), Bray-Curtis, Yue-Clayton, etc.. (In this work, 
rJSD is used, simply because it is a distance metric.) The important step here is the 
renormalization procedure. To emphasize this point, we use rrJSD to denote the rJSD over 
renormalized abundance profiles. For more details on rrJSD see the Methods Section.  

 

Using the above two measures it is then possible to assess the relationship between collection 
and abundance. If collection is a dominant factor in determining abundance, then there will be a 
strong degree of correlation between sFUT and rrJSD. Interpreting this relationship then allows 
one to make claims regarding the stability characteristics of the human gut microbiome, as is 
done in the following section.  

 

3. Results 

3.1 Healthy human gut microbiota  

In Fig. 2 we showed how the longitudinal data of two human subjects qualitatively supports the 
notion of asymptotic stability. Here we try to add more quantitative support to this claim by 
analyzing cross-sectional data from large healthy cohorts of subjects. After applying sFUT and 
rrJSD distances to all sample pairs in three large cross-sectional cohorts (The Human 
Microbiome Project [HMP], the Student Microbiome Project [SMP], and the AGP), we observe 
a strong correlation between sFUT and rrJSD as illustrated by Figure 3, and Supplemental Figure 
S3.  This strong correlation suggests that the more similar two samples are in terms of taxa, the 
more similar their renormalized abundance profiles are. For a system that is asymptotically stable 
we would expect this strong correlation, but for a marginally stable system that does not have 
this attractivity feature this trend is not expected, see Supplemental Figure S4.  

 

These results also suggest that for each collection of taxa in the human gut microbiome there is a 
unique stable state (that is, in the absence of perturbations there is a unique fixed point, but what 
we observe is a constantly perturbed system near the unperturbed fixed point). If each fixed 
collection could support multiple stable states (i.e., true multi-stability exists), then sFUT and 
rrJSD would not be strongly correlated. Indeed, alternative stable states for the same collection 
of taxa would behave as different attractors of the microbial dynamics, and present as a multi-
modal distribution for low values of sFUT. Those samples taken from the same attractor would 
be very similar in rrJSD and those samples taken between two attractors would be less similar in 
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rrJSD. Note that after altering the collection of microbes, for instance through antibiotic or 
probiotic administration (24), the microbiome can settle into a new steady abundance profile. 
This does not imply the existence of true multi-stability or alternative stable states, however. 
When new species are introduced into an ecosystem, the dimension of the state space increases, 
see Supplemental Figure S2. The higher dimensional system could have a unique stable state, 
which will look like an alternative stable state in the lower dimensional projected state space. 
Therefore, it is important to take species collection into account when discussing the stability 
landscape of the human microbiome, a factor that has not always been accounted for, even 
though it is fundamental to the issue.  

 

3.2 Perturbed Human Gut Microbiota  

The large cross-sectional studies provide indirect yet quantitative evidence for the asymptotic 
stability of the gut microbiome of healthy adults. In order for this result to be useful, and to 
further illustrate evidence for asymptotic stability in the human gut microbiome, the strong 
correlation seen in the healthy cross-sectional cohorts should also hold when perturbations are 
applied directly to the collection of taxa. One important feature of an asymptotically stable 
ecosystem is robustness in terms of initial abundances and convergence to the steady state of the 
system. In other words, the specific initial abundances of the present taxa will not be as 
important as the actual presence or absence of the taxa in the community, see Figure 1b. In the 
following sections we will continue to illustrate the asymptotic stability of human gut microbiota 
by analyzing perturbed microbiomes. The perturbations analyzed are: antibiotic administration, 
probiotic supplementation, and FMT. Regarding FMT, we are also able to predict the similarity 
of a patient’s post-FMT microbiome to that of the donor by analyzing the patient’s pre-FMT 
fecal samples.  

 

3.2.1 Perturbation by Antibiotics. The distance functions are now applied to a longitudinal cohort 
of subjects who received antibiotics. In (24) three patients were followed for 10 months while 
antibiotics (ciprofloxacin) were administered at the two-month time point and again shortly after 
the beginning of the eighth month. Our concern is the change in steady state of those individuals, 
and thus we are only interested in the three stable phases: the time period prior to the first dose of 
antibiotics (phase 1), the time period one week after the end of the first round of antibiotics, up 
until the second round of antibiotics was administered (phase 2), and then the time period 
starting one week after the last round of antibiotics ended, up until the end of the experiment 
(phase 3). The three phases correlate to Pre Cp, Interim, and Post Cp respectively in the original 
study (24). Difference in collection using sFUT versus abundance dissimilarity using rrJSD 
between all sample pairs in the three phases described above is shown in Figure 4. In Figure 4a 
data for all sample pairs is shown with the intra-patient samples highlighted in blue and the inter-
patient samples highlighted in orange. The intra-patient pairs are more similar in terms of taxa, 
which is to be expected, and consistent with what we know already: within patient variation is 
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smaller than between patient variation (4, 23, 24). The trend that rrJSD is strongly correlated 
with sFUT for all sample pairs is also consistent with the cross-sectional data analysis in Figure 
3. In Figure 4b, only intra-patient samples are shown, with the sample pairs highlighted by 
patient. The correlation between rrJSD and aFUT is thus independent of the patient. While the 
patient’s response to the antibiotics is indeed personalized in terms of the specific taxa lost 
during each round of antibiotic administration (24), the correlation between the sample pairs is 
preserved. 

 

Hence, even if we are not able to predict what taxa will be removed during each round of 
antibiotics, knowing which taxa are present enables the prediction of a patient’s abundance 
profile (either from a cross-sectional cohort or from their own longitudinal samples). This 
process of prediction will be demonstrated with FMT samples in a later section.   

 

3.2.2 Perturbation by Probiotics. Next, we discuss two longitudinal cohorts that received 
probiotics (30, 31). In (30) the commercial product Enterolactis Plus was used, which contains 
the single strain Lactobacillus paracasei DG. In (31) a non-commercial probiotic was used 
which contained the single strain Bifidobacterium bifidum Bb. In each of the original studies 
there are two groups: A and B. A pre-probiotic administration fecal sample is obtained, sample 
v1, followed by 4 weeks of probiotics for group A and 4 weeks of placebo for group B. At the 
end of the four weeks, another fecal sample is obtained, v2. Then there is a 4-week wash out 
period, another sample is taken, v3, then the placebo and probiotic are switched between the 
groups (crossover study design) with four weeks of application, and then a final sample v4 is 
taken. For each study, clustering analysis was performed on all fecal samples and then projected 
into the first two principal components, see Figures 5a1 and 5b1. The labeled data in the same 
two-dimensional projection is shown in Figures 5a2 and 5b2. Note that the probiotic samples are 
equally distributed throughout the projection space and are also equally distributed between the 
two clusters in both studies. More interestingly, the strong correlation between rrJSD and sFUT 
that was observed in the cross-sectional cohorts and the antibiotics study are observed here again 
for the probiotics studies. This suggests that similarity in collection implies similarity in 
abundance for each individual throughout the experiments, see Figures 5a3 and 5b3. Note that 
here, instead of computing sFUT and rrJSD between all sample pairs within a patient, we 
compared the three different phases of the trials to the initial condition of the respective patients, 
so as to illustrate the way different perturbations affected the abundance profiles (correlation 
coefficient, 𝜌, was calculated using data from the three phases together). So as to ensure a Yule–
Simpson effect is not occurring the confidence intervals for the independently calculated 
correlation coefficients are also reported in the figure, and indeed all three phases have positive 
correlations. This confirms in a way what was demonstrated in Figures 5a1,b1 and 5a2,b2. The 
probiotic phase of the study has an indistinguishable impact on the overall abundance profiles 
within the patients. Thus, while probiotics may have a targeted impact on the specific 
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biochemical pathways of interest, we do not detect a global population level impact on the 
microbiome. 

 

3.2.3 Perturbation by FMT. FMT has been demonstrated to be a highly effective therapy for one 
well-known dysbiotic state, recurrent Clostridium difficile infection (rCDI), with an overall cure 
rate ~ 90% (43). Note that the overall cure rate includes patients with subsequent FMTs if a 
single FMT fails. The cure rate with a single FMT ~70%-80% (36,41). FMT has also been 
proposed as a treatment for other gastrointestinal (GI) diseases such as inflammatory bowel 
disease (IBD), irritable bowel syndrome (IBS), and chronic constipation, as well as a variety of 
non-GI disorders as divergent as autism and obesity (44). Currently, there are general guidelines 
for what makes a potential donor healthy enough to participate in an FMT (32–34). There are 
currently no guidelines, however, for matching an rCDI patient to a specific donor when there is 
a pool of healthy donors to choose from. Indeed, even with the same donor, different patients can 
have very different post-FMT steady-state abundance profiles (35), which suggests there may not 
be such a thing as a “super donor” (32). A personalized donor should be chosen, however, in 
order to have more control over the post-FMT steady-state abundance profile of an rCDI patient. 
We hypothesize that greater long term success is possible if the patient remains at a similar 
abundance profile to the donor. First and foremost, it might be that engraftment/restoration of 
flora is more successful when the patient has a lower aFUT relative to the donor, increasing the 
cure rate even for a single FMT.  One can also hypothesize that there may be less risk of 
recurrence of CDI or ongoing non-specific GI symptoms, or post-infectious IBS, which are 
common in people with recurrent CDI. Understanding the role that the collection plays in 
determining microbial abundance could also eventually allow the repertoire of FMT applications 
to be expanded to other clinical conditions.  First, one might consider and study the use of FMT 
in a first episode of CDI, and then extend FMT to other complex illnesses related to a disrupted 
microbiome such as IBD or Crohn’s disease, which do pose as greater challenges. 

 

In this section we will predict the similarity of the post-FMT gut microbiota of an rCDI patient to 
their donor by analyzing their pre-FMT stool samples. To illustrate this, consider the trajectories 
shown in Figure 6a1 and Figure 6a2. The two trajectories were generated from data in (3) where 
the abundance profile of patients was followed for several months after the FMT. For both 
patients, the abundance profiles are like the donor immediately after the FMT (figure 6a1 and 
a2). While the purple trajectory remains similar to the donor, the blue trajectory settles on a 
steady state that is far from the donor. If we compare the post-FMT samples to the single donor 
samples as in Figure 6a3 then the same strong correlation between rrJSD and sFUT as shown 
before holds as well, which implies that similar taxa have a similar steady-state abundance 
profile. This method can be used in a predictive manner as well. Using aFUT to calculate the 
patients fractions of unique taxa pre-FMT to the donor sample and plotting that against the rrJSD 
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for all post-FMT samples, the same trend as before holds; in other words, similar taxa implies a 
similar abundance profile, see Figure 6a4.  

 

The trend shown in Figure 6a was also observed in data from a larger study (36), where pre-
FMT, donor, and post-FMT samples were available for 15 patients, see Figure 6b with the 
corresponding correlation coefficient and p-value shown in the subfigure. Patient 8 behaves in 
the exact same fashion as the patient highlighted in blue in Figure 6a. Both patients have a high 
aFUT with their respective donors, and they both immediately become similar to the donor 
immediately post-FMT, but then ultimately settle at a steady-state abundance profile that is far 
from the donor. Synthetic data using stochastic Generalized Lotka-Volterra (GLV) dynamics 
replicates the results as well, see Figure 6c.  

 

4 Discussion  

These results demonstrate that the human gut microbiome is an ecological system that has a 
preference toward a unique and asymptotically stable state for each collection of coexisting 
microbes. Identifying the asymptotic stability of the gut microbiome, in turn, allows us to make 
predictions about steady-state abundance profiles from the presence or absence of taxa alone.  
These findings hold promise as we move forward with personalized or precision microbiome-
based therapies (37). One of the main themes reported in the literature is that our gut microbiome 
is highly individualized. Each person’s response to perturbations, such as antibiotics or FMT, is 
unique. We want to emphasize that this does not imply that we lack a complete understanding of 
the implications of that individuality. This paper illustrates that one of the major determinants of 
steady-state abundance is simply the microbes that are present. Therefore, given a potential 
donor pool, this work provides a first step towards choosing an optimal donor to minimize the 
dissimilarity between the patient’s post-FMT gut microbiome and the donor’s gut microbiome, 
(see Figure 1d for how our method could be applied). If we know that the post-FMT abundance 
profile of a patient can be better controlled by choosing a healthy donor for which the patient has 
the fewest possible unique taxa (low aFUT) then it is reasonable to assume that this will lead to a 
decreased probability of post-FMT complications. Indeed, if having less unique taxa compared to 
a donor leads to a more predictable post-FMT state, then one strategy for reducing sFUT 
between a patient and a donor would be to simply reduce the overall number of taxa in the 
patient by the administration of broad-spectrum antibiotics before FMT (24). This clean slate 
approach may hold promise for the general application of FMT in treating other complex 
diseases associated with a disrupted gut microbiome, such as, IBD, IBS and obesity. 
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Fig. 1.  Stability schematic and FMT donor selection schematic. (a) Illustrations of the definition 
of stability in terms of (a1) a stability landscape (45) and (a2) trajectories near steady state. Note 
the lack of attractivity to the steady state. (b) Illustrations of the definition of asymptotic stability 
in terms of (b1) a stability landscape (45) and (b2) trajectories near steady state. Notice that even 
with different initial conditions the steady state is reached by both trajectories. (c) An illustration 
of our ability to predict the post-FMT steady state from pre-FMT analysis of samples if the 
dynamics are merely stable. Similarity in collection need not imply similarity in abundance 
profile post FMT. (d) An illustration of our ability to predict the post-FMT steady state from pre-
FMT analysis of samples if the dynamics are asymptotically stable. The more similar the patients 
gut is in terms of taxa to the donor, the more similar the post-FMT abundance profile will be to 
the donor.  
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Fig. 2. Attractivity Visualized through Longitudinal Data. (a) Background in blue is scope of 
variation for the American Gut Project (AGP, cross sectional cohort of n = 6,375). Orange Dots 
are from a single male subject , (n = 336 longitudinal almost daily samples), and yellow dots are 
from a female subject, (n = 131 longitudinal less frequently sampled but over the same time 
window) and are from the Moving Pictures Study (MPS). AGP and MPS samples were analyzed 
using the same OTU picking scheme, principal components were derived from the AGP samples 
only and then the male and female longitudinal samples were projected into PC1 and PC2. (b) A 
typical multiple day snapshot of the male samples with all samples staying in the same region. 
(c) An instance where the samples deviated from the steady region for the male, but then 
returning to the steady region rapidly after each deviation. (d) An instance where the samples 
deviated from the steady region for the female, but then returning to the steady region within a 
few days after each deviation. (e) A typical multiple day snapshot of the female samples with all 
samples staying in the same region. 

Figure 2: Attractivity Visualized through Longitudinal Data. (a) Male, n = 336 and shown
in orange, and Female, n = 131 and shown in yellow, fecal samples from Moving Pictures
projected onto all the fecal samples from the AGP, n = 6375 and shown in blue. (b) A typical
multiple day snap shot of the male samples with all samples staying in the same region. (c) An
instance where the samples deviated from the steady region for the male, but then returning to
the steady region rapidly after each deviation. (d) An instance where the samples deviated from
the steady region for the female, but then returning to the steady region within a few days after
each deviation. (e) A typical multiple day snap shot of the female samples with all samples
staying in the same region.
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Fig. 3. Hexagonal Density Plots for Fraction of Unique Taxa versus Similarity in Healthy Cross-
sectional Cohorts. Correlation coefficient,	𝜌, and boot strapped p-values displayed, see Methods 
section for details. (a) HMP fecal samples, n = 146 resulting in 10,585 sample pairs (a1) original 
samples (a2) randomized samples. (b) SMP data, n = 72 resulting in 2,556 sample pairs (b1) 
original samples (b2) randomized samples. (c) Healthy AGP data, n = 2,597 resulting in 
3,370,906 sample pairs (c1) original samples (c2) randomized samples. All healthy cohorts 
illustrate the strong correlation between sFUT and rrJSD showing that the less unique taxa 
between any two samples the more similar the abundance profiles.  
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 Fig. 4. Fraction of Unique Taxa versus Similarity in Healthy Individuals taking Antibiotics. 
Healthy individuals were given two rounds of antibiotics each. The data shown here represents 
the data before the first round and at least one week after each round of antibiotics and no data is 
from the time period when antibiotics were taken. Thus the data is more or less a representation 
the three steady time periods for the individuals. The number of samples meeting this criterion is 
32, 21, and 31 for the three individuals respectively. (a) sFUT versus rrJSD between subjects, 
highlighted in red resulting in 2315 sample pairs, and within subjects, highlighted in blue 
resulting in 1,171 sample pairs (b) Fraction of Unique Taxa versus Similarity for Subject 1, 
resulting in 496 sample pairs, Subject 2, resulting in 210 sample pairs, and Subject 3, resulting in 
465 sample pairs. Correlation coefficient,	𝜌, and boot strapped p-values displayed, see Methods 
section for details. The same trend as seen in the healthy cohorts in Figure 3 is seen here as well 
with samples within subjects more similar than between subjects. The response from each 
individual to the antibiotics may be unique in terms of the specific taxa that are affected, but the 
overall trend in terms of the two distances is the same for each individual.  
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Fig. 5. Perturbation by probiotics (a) Cross-over study from (30) for 25 patients resulting in n = 
100 samples. (a1) Clustering performed by k-medoids and projected into first two principle 
components (a2) Labeled data with the same 2D projection. (a3) Intra-individual sFUT versus 
rrJSD comparing each of the visits in {v2, v3, v4} to the initial sample v1. Correlation 
coeficicents,	𝜌, combining all three phases of the trial with corresponding p-values (standard), 
and 95% confidence intervals for correlation within the three phases {probiotic, washout, 
placebo} denoted {ci95(𝜌pr), ci95(𝜌wa),	ci95(𝜌pl)}, see methods section for details. (b) Cross-
over study from (31) for 27 patients resulting in n = 108 samples, with the same subfigure 
descriptions.  
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Fig. 6. Perturbation by FMT (a) Long term study of four CDI patients receiving an FMT (3), n ∈ 
{35, 21, 14, 31} post FMT samples for the four respective patients {blue, orange, yellow 
purple}. (a1) Trajectory of patient 1, post-FMT shown in blue, pre-FMT shown in gray, and 
donor in green. (a2) Trajectory of patient 4, post-FMT shown in purple, pre-FMT shown in gray, 
and donor in green. (a3) Post-FMT samples paired with their four respective donor samples 
resulting in {35, 21, 14, 31} sample pairs. (a4) aFUT is computed from a single patient pre- FMT 
sample paired with the donor sample, and rrJSD is computed from post-FMT samples paired 
with donor samples. This is now predictive, in the sense that the x-axis only uses pre- FMT data 
and the y-axis is comparing post-FMT patient data to the donor. The first four time points post-
FMT not included do to the fact that all patients are similar to the donor immediately after FMT, 
resulting in sample pairs of size {31, 17, 10, 27} (b) FMT study from MGH with n = 15 out of an 
original 20. (b1) Three representative trajectories for patients receiving an FMT. Patient 16 
becomes most similar to the donor, patient 6 a little less similar, and patient 8, while temporarily 
being similar to the patient immediately post FMT does not remain similar (b2) aFUT is 
computed from a single pre-FMT sample paired with the donor sample, and rrJSD is computed 
from the last post-FMT sample, having been taken at least three days post FMT. Correlation 
coefficient and corresponding p-value displayed in the subfigure. Patients 6,8,16 highlighted. 
Correlation coefficient,	𝜌, and p-value (standard) displayed, see Methods section for details (c) 
Four synthetic patients shown in blue, orange, yellow and purple and a donor in green, made to 
mimic the Long term FMT study. (c1) Trajectories of all four patients, with the pre-FMT state 
shown in gray. (c2) aFUT is computed from a single pre-FMT sample paired with the donor 
sample, and rrJSD is computed from the post-FMT samples, excluding the samples 
corresponding to the transients immediately after FMT, see the Methods for more details on the 
in silico model. 
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