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1 Abstract1

Microbes are present in high abundances in the environment and in human-associated2

microbiomes, often exceeding one million per milliliter. Viruses of microbes are present in3

even higher abundances and are important in shaping microbial populations, communities,4

and ecosystems. Given the relative specificity of viral infection, it is essential to identify the5

functional linkages between viruses and their microbial hosts, particularly given dynamic6

changes in virus and host abundances. Multiple approaches have been proposed to infer7

infection networks from time-series of in situ communities, among which correlation-based8

approaches have emerged as the de facto standard. In this work, we evaluate the accuracy9

of correlation-based inference methods using an in silico approach. In doing so, we compare10

predicted networks to actual networks to assess the self-consistency of correlation-based11

inference. At odds with assumptions underlying its widespread use, we find that correlation12

is a poor predictor of interactions in the context of viral infection and lysis of microbial13

hosts. The failure to predict interactions holds for methods which leverage product-moment,14

time-lagged, and relative-abundance based correlations. In closing, we discuss alternative15

inference methods, particularly model-based methods, as a means to infer interactions in16

complex microbial communities with viruses.17
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2 Importance18

Inferring interactions from population time-series is an active and ongoing area of re-19

search. It is relevant across many biological systems – in particular in virus-microbe com-20

munities, but also in gene regulatory networks, neural networks, and ecological communi-21

ties broadly. Correlation-based inference – using correlations to predict interactions – is22

widespread. However, it is well known that “correlation does not imply causation”. Despite23

this, many studies apply correlation-based inference methods to experimental time-series24

without first assessing the potential scope for accurate inference. Here, we find that several25

correlation-based inference methods fail to recover interactions within in silico virus-microbe26

communities, raising questions on their relevance when applied in situ.27

3 Introduction28

Viruses of microbes are ubiquitous and highly diverse in marine, soil, and human-29

associated environments. Viruses interact with their microbial hosts in many ways. For30

example, they can transfer genes between microbial hosts [1, 2], alter host physiology and31

metabolism [3, 4], and redirect the flow of organic matter in food webs through cell lysis [5, 6].32

Viruses are important parts of microbial communities, and characterizing the interactions33

between viruses and their microbial hosts is critical for understanding microbial community34

structure and ecosystem function [5, 7, 8, 9].35

A key step in characterizing virus-microbe interactions is determining which viruses can36

infect which microbes. Viruses are known to be relatively specific but not exclusive in their37

microbial host range. Individual viruses may infect multiple strains of an isolated microbe38

or they may infect across genera as part of complex virus-microbe interaction networks39

[10, 11]. For example, cyanophage can infect both Prochlorococcus and Synechococcus which40

are two distinct genera of marine cyanobacteria [12]. However, knowledge of viral host range41

remains limited because existing experimental methods for directly testing for viral infection42

are generally not applicable to an entire in situ community. Culture-based methods such43
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as plaque assays are useful for checking for viral infection at the strain level and permit44

high confidence in their results, but they are not broadly applicable as many viruses and45

microbes are difficult or currently impossible to isolate and culture [1]. Partially culture-46

independent methods, such as viral tagging [13, 14] and digital PCR [15], overcome some of47

these hurdles but only for particular targetable viruses and microbes. Similarly, single-cell48

genome analysis is able to link individual viruses to microbial hosts [16, 17, 18] but for a49

relatively small number of cells.50

Viral metagenomics offers an alternate route for probing virus-microbe interactions for51

entire in situ communities, bypassing culturing altogether [19, 20, 21]. The viral sequences52

obtained from metagenomes can be analyzed directly using bioinformatics-based methods53

to predict microbial hosts [22, 23] although such methods may only be appropriate for a54

subset of viruses (phages and archaeal viruses but not eukaryotic viruses) and putative hosts55

(prokaryotes but not eukaryotes). Alternatively, metagenomic sampling of a community over56

time can provide estimates of the changing abundances of viral and microbial populations at57

high time- and taxonomic- resolution. Once these high-resolution time-series are obtained,58

they can be used to predict virus-microbe interactions using a variety of statistical and59

mathematical inference methods (see reviews [24, 25, 26, 27, 28]).60

Correlation and correlation-based methods are among the most widely used network61

inference methods for microbial communities [25]. For example, Extended Local Similarity62

Analysis (eLSA) is a correlation-based method which allows for both local and time-lagged63

correlations [29, 30, 31] and has been used to infer interaction networks in communities of64

marine bacteria [32, 33]; bacteria and phytoplankton [34, 35]; bacteria and viruses [36]; and65

bacteria, viruses, and protists [37, 38]. In addition, several correlation-based methods have66

been developed to address challenges associated with the compositional nature of ‘-omics’67

datasets [39, 25], including Sparse Correlations for Compositional data (SparCC) [40].68

Regardless of the particular details of these methods, all correlation-based inference op-69

erates on the same core assumption: that interacting populations trend together (are cor-70
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related) and that non-interacting populations do not trend together (are not correlated).71

Particular correlation-based methods may relax or augment this assumption. For example,72

with eLSA the trends may be time-lagged [29, 30, 31]; with simple rank correlations the73

trends may be non-parametric; and with compositional methods like SparCC the trends74

may occur between ratios of relative abundances [40]. In communities with only a few pop-75

ulations and simple interactions, population trends may indeed be indicative of ecological76

mechanism. In these contexts, some correlation-based methods have been shown to recapitu-77

late microbe-microbe interactions with limited success [25]. Typically however the challenge78

of inferring interaction networks applies to diverse communities and complex ecological inter-79

actions. Microbial communities often have dozens, hundreds, or more distinct populations,80

each of which may interact with many other populations through nonlinear mechanisms such81

as viral lysis, as well as be influenced by fluctuating abiotic drivers. In these contexts, the82

relationship between correlation and ecological mechanism is poorly understood. Often cor-83

relations do not have a simple mechanistic interpretation, a well-known adage (“correlation84

does not imply causation”) that is often disregarded.85

Despite the challenge of interpretation, correlation-based inference methods are widely86

used with in situ datasets [29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 25, 40]. Benchmarking87

inferred networks – connecting correlations to specific ecological mechanisms – is difficult.88

In the context of lytic infections of environmental microbes by viruses, there is (usually)89

no existing “gold standard” interaction network for which to validate inferred interactions.90

Therefore, in this work, we take an in silico approach to assess the accuracy of correlation-91

based inference. To do this, we simulate virus-microbe community dynamics with an interac-92

tion network which is prescribed a priori and use it to benchmark inferred networks. Several93

existing studies have applied similar in silico approaches in the case of both microbe-microbe94

and microbe-virus interactions and found that simple Pearson correlation [41, 39] and several95

correlation-based methods [25] either fail or are inconsistent in recapitulating interaction96

networks. Here, we provide an in-depth assessment of the potential for correlation-based97
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inference in diverse communities of microbes and viruses. As we show, correlation-based98

inference fails to recapitulate virus-microbe interactions and performs worse in more diverse99

communities. The failure of correlation-based inference in this context raises concerns over100

its use in inferring microbe-parasite interactions as well as microbe-predator and microbe-101

microbe interactions more broadly.102

4 Methods103

4.1 Dynamical model of a virus-microbe community104

We model the ecological dynamics of a virus-microbe community with a system of non-105

linear differential equations:106

Ḣi =

microbial growth and competition︷ ︸︸ ︷
riHi

(
1−

∑NH

i′ aii′Hi′

K

)
−

death by viral lysis︷ ︸︸ ︷
Hi

NV∑
j

MijφijVj (1)

107

V̇j = Vj

NH∑
i

MijφijβijHi︸ ︷︷ ︸
release of virions

− mjVj︸ ︷︷ ︸
viral decay

(2)

where Hi and Vj refer to the population density of microbial host i and virus j respectively.108

There are NH different microbial host populations and NV different virus populations. For109

our purposes, a “population” is a group of microbes or viruses with identical life history110

traits, that is microbes or viruses which occupy the same functional niche.111

In the absence of viruses, the microbial hosts undergo logistic growth with growth rates112

ri. The microbial hosts have a community-wide carrying capacity K, and they compete113

with each other for resources both inter- and intra-specifically with competition strength114

aii′ . Each microbial host can be infected and lysed by a subset of viruses determined by the115

interaction terms Mij. If microbial host i can be infected by virus j, Mij = 1; otherwise116

Mij = 0. The collection of all the interaction terms is the interaction network represented117

by matrix M of size NH by NV . The adsorption rates φij denote how frequently microbial118
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host i is infected by virus j.119

Each virus j’s population grows from infecting and lysing their hosts. The rate of virus120

j’s growth is determined by its host-specific adsorption rate φij and host-specific burst size121

βij, which is the number of new virions per infected host cell. The quantity M̃ij = Mijφijβij122

is the effective interaction strength between virus j and host i, and the collection of all the123

interaction strengths is the weighted interaction network M̃. Finally, the viruses decay at124

rates mj.125

4.2 Generating interaction networks and characterizing network structure126

Virus-microbe interaction networks, denoted M, are represented as bipartite networks127

or matrices of size NH by NV where NH is the number of microbial host populations and128

NV is the number of virus populations. The element Mij is 1 if microbe population i and129

virus population j interact and 0 otherwise. In this paper, we consider only square networks130

(N = NH = NV ) although the analysis is easily extended to rectangular networks. We131

consider three network sizes N = 10, 25, 50.132

For each network size N , we generate an ensemble of networks varying in nestedness133

and modularity (Fig 1). We first generate the maximally nested (Fig 1A) and maximally134

modular (Fig 1B) networks of size N using the BiMat Matlab package [42]. In order to135

achieve maximal nestedness and modularity, the network fill F (fraction of interacting pairs)136

is fixed at F = 0.55 for the nested networks and F = 0.5 for the modular networks. For the137

modular networks, the number of modules is set to 2, 5, and 10 for the three network sizes138

respectively.139

To generate networks that vary in nestedness and modularity, we perform the following140

“rewiring” procedure. Beginning with the maximally nested or maximally modular net-141

work, we randomly select an interacting virus-microbe pair (Mij = 1) and a non-interacting142

virus-microbe pair (Mi′j′ = 0) and exchange their values. We do not allow exchanges that143

would result in an all-zero row or column, as that would isolate the microbe or virus popu-144

lation from the rest of the community. We continue the random selection of pairs without145
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Figure 1: Example interaction networks characterized by A) nestedness and B) modularity.
The networks shown here have size N = 10 and fill A) F = 0.55 and B) F = 0.5. Within
each network, rows represent microbe populations and columns represent virus populations,
while navy squares indicate interaction (Mij = 1). Networks were generated according to
§4.2. Nestedness (NODF) and modularity (Qb) were measured with the BiMat package and
are arranged in their most nested or most modular forms [42].

replacement until the desired nestedness or modularity has been achieved. To calculate nest-146

edness and modularity, we use the default algorithms in the BiMat Matlab package. The147

nestedness metric used is NODF [43], and the algorithm used to calculate modularity is148

AdaptiveBRIM [44]. The modularity is additionally normalized according to a maximum149

theoretical modularity as detailed in [45].150

4.3 Choosing life history traits for coexistence151

The life history traits for a given interaction network are chosen to ensure that all mi-152

crobial host and virus populations can coexist, adapted from [46].153

First we sample target fixed point densities H∗i and V ∗j for each microbial host and154

virus population. In addition we sample adsorption rates φij and burst sizes βij. All of155

these parameters are independently and randomly sampled from uniform distributions with156

biologically feasible ranges specified in Table 1. We use a fixed carrying capacity density157

K = 106 cells/mL for all parameter sets.158

Next we sample microbe-microbe competition terms aii′ . We introduce an additional159
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Table 1: Sampling ranges for parameters in the virus-microbe dynamical model (Eqns 1 and
2).

parameter sampling range units

H∗i host i target steady-state density 103 − 104 cells/mL

V ∗j virus j target steady-state density 106 − 107 virions/mL

K community-wide host carrying capacity 106 cells/mL

φij adsorption rate of virus j into host i 10−7 − 10−6 mL/ (virion · day)

βij burst size of virus j per host i 10− 100 virions/cell

H0∗
i host i target steady-state density 103 − 106 cells/mL

in the absence of viruses

aii′ competitive effect of host i′ on host i 0− 1

constraint that microbial populations should coexist in the absence of all viruses. To this160

end, we sample target virus-free fixed point densities H0∗
i from a uniform distribution with161

a range specified in Table 1. After sampling, the H0∗
i remain fixed. According to Eqn 1,162

coexistence in the virus-free setting is satisfied when163

K =

NH∑
i′

aii′H
0∗
i′ (3)

for each microbial host i. To start, we set all intraspecific competition to one (aii = 1) and164

all interspecific competition to zero (aii′ = 0 for i′ 6= i). Then for each microbial host i we165

randomly choose an index k 6= i and sample aik uniformly between zero and one. If the166

updated sum in Eqn 3 does not exceed the carrying capacity K, we repeat for a new index167

k. Once the carrying capacity is exceeded, we adjust the most recent aik so that Eqn 3 is168

satisfied exactly.169

Finally, the viral decay rates mj and host growth rates ri are computed from the fixed170

point versions of Eqns 1 and 2:171

mj =

NH∑
i

MijφijβijH
∗
i (4)
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172

ri =

(
NV∑
j

MijφijV
∗
j

)
/

(
1−

∑NH

i′ aii′H
∗
i′

K

)
(5)

4.4 Simulating and sampling time-series173

We use Matlab’s native ODE45 function to numerically simulate the virus-microbe dy-174

namical model specified in §4.1 with interaction network and life history traits generated as175

described in §4.2 and §4.3. We use a relative error tolerance of 10−8. Initial conditions are176

chosen by perturbing the fixed point densities H∗i and V ∗j by a multiplicative factor δ where177

the sign of δ is chosen randomly for each microbial host and virus population. We note that178

δ can be used to tune the amount of variability in the simulated time-series (see Fig S1).179

After simulating virus and microbe time-series, we sample the time-series at regularly180

spaced sample times (every 2 hours) for a fixed duration (200 hours, or 100 samples). There-181

fore, for each virus and each microbe in the community we take S samples at times t1, . . . , tS.182

We use the same sampling frequency and the same S for each inference method, except for183

time-delayed correlation (see §4.5).184

4.5 Standard and time-delayed Pearson correlation networks185

We assume S regularly spaced sample times t1, . . . , tS for each host type Hi and each186

virus type Vj. The samples are log-transformed, that is hi(tk) = log10Hi(tk) and vj(tk) =187

log10 Vj(tk) for each sampled time-point tk. The standard Pearson correlation coefficient188

between host i and virus j is then189

rij =

∑S
k=1

(
hi(tk)− h̄i

)
(vj(tk)− v̄j)√∑S

k=1

(
hi(tk)− h̄i

)2√∑S
k=1 (vj(tk)− v̄j)2

(6)

where h̄i = 1
S

∑S
k=1 hi(tk) and v̄j = 1

S

∑S
k=1 vj(tk) are the sample means. The correlation190

coefficients for all virus-host pairs are represented as a bipartite matrix R of size NH ×NV191

analogous to the interaction network (see §4.2).192

Time-delayed correlations are computed by sampling the virus time-series later in time.193
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Each virus-host pair may have a unique time-delay τij. For example, if host i is sampled at194

times t1, . . . , tS then virus j is sampled at times t1 + τij, . . . , tS + τij. We keep the number of195

samples S fixed, and consequently allow virus j to be sampled beyond the final sample time196

tS of the hosts. The time-delayed Pearson correlation coefficient is197

rτij =

∑S
k=1

(
hi(tk)− h̄i

) (
vj(tk + τij)− v̄

τij
j

)√∑S
k=1

(
hi(tk)− h̄i

)2√∑S
k=1

(
vj(tk + τij)− v̄

τij
j

)2 (7)

where v̄
τij
j = 1

S

∑S
k=1 vj(tk + τij) is the mean of the time-delayed virus sample. As before,198

the correlation coefficients for all virus-host pairs is a bipartite matrix Rτ of size NH ×NV .199

Pearson correlation coefficients, as specified above, were computed using Matlab’s native200

corr function with type=“pearson”. Alternate correlation types including Spearman and201

Kendall are also supported by the corr function and are utilized in the SI.202

4.6 eLSA networks203

Extended Local Similarity Analysis (eLSA) is a correlation-based inference method which204

is widely used with in situ time-series of complex microbial communities (e.g. [32, 33, 34,205

35, 36, 37, 38]). eLSA attempts to detect local correlations, that is, time-series which trend206

together for only a portion of the sample period. In addition, eLSA allows for time-delayed207

correlations (as described in the previous section §4.5). To this end, a “local similarity”208

(LS) score is computed for each pair of time-series. The LS score is analogous to computing209

the Pearson correlation for all possible subsections of the two time-series, with offsets up to210

a pre-decided length, and keeping the maximum absolute correlation. As an example, two211

time-series may trend strongly during the first half of the sample period but not during the212

second. For such a pair of time-series, the Pearson correlation would be low, but the LS213

score would be high.214

To compute the LS score, the two time-series are first transformed to have normal distri-215

butions (we note that such a transformation is non-stationary and thus may induce spurious216

correlations). The LS score is the maximal sum of the product of the entries across all pos-217
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sible subsections, normalized by the time-series length. If a pre-defined delay is specified,218

the subsections are additionally offset from one another from zero up to to the delay amount219

[29, 30, 31].220

We applied eLSA to our simulated time-series data. We used samples of all NH host types221

and all NV virus types with S regularly spaced sample times t1, . . . , tS as input. We used the222

lsa-compute.py Python script and set parameters to specify the number of sampled points223

(spotNum=S), number of replicates (repNum=1), number of bootstraps (b=0), and number224

of permutations (x=1). All other parameters were left with their default settings including225

the maximum allowed time delay (delayLimit=3). The lsa-compute.py script computes226

eLSA scores between all virus-host, host-host, and virus-virus pairs. We selected only the227

virus-host eLSA scores and arranged them in a bipartite matrix of size NH ×NV analogous228

to the interaction network (see §4.2). We used a custom Matlab script write_elsa.m to229

generate .csv data files in the format specified by the eLSA documentation. We used a230

custom bash script elsa_compute_all.sh to run the eLSA analysis on the ensemble of231

virus-microbe communities. Finally, we used a custom Matlab script read_elsa.m to import232

the results into Matlab for scoring (see §4.8).233

4.7 SparCC networks234

Sparse Correlations for Compositional data (SparCC) is a correlation-based inference235

method for use with compositional time-series data. This is relevant for ‘-omics’ data in which236

abundances are typically relative. It is well known that compositional data pose challenges for237

standard statistics, including Pearson and other types of correlation. Because the data sum238

to one, individual time-series are not independent. This biases correlations to be negative239

regardless the trend between the underlying absolute abundances. SparCC estimates the240

Pearson correlation between two time-series while taking into account these compositional241

dependencies. In particular, SparCC computes the variance of the log-transformed ratio of242

two time-series, and compares this quantity to the variances of the individual log-transformed243

time-series. SparCC assumes sparsity in the correlation matrix but is robust to violations of244
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this assumption [40].245

We applied SparCC to our simulated time-series data as a means to evaluate correlation-246

based inference in a scenario in which underlying viral and microbial densities can be mea-247

sured only relatively. Given samples at S regularly spaced sample times t1, . . . , tS, we first248

normalized the NH host types and NV virus types at each sample time tk by249

NH,k =

NH∑
i=1

Hi(tk) (8)

for the hosts and by250

NV,k =

NV∑
j=1

Vj(tk) (9)

for the viruses. We used the normalized NH host and NV virus samples as input for the251

SparCC computation using the SparCC.py script. All parameters were left with their de-252

fault settings. We used a custom Matlab script write_sparcc.m to generate .csv data253

files in the format specified by the SparCC documentation. We used a custom bash script254

sparcc_compute_all.sh to run the SparCC analysis on the ensemble of virus-microbe com-255

munities. Finally, we used a custom Matlab script read_sparcc.m to import the results into256

Matlab for scoring (see §4.8).257

4.8 Scoring correlation network accuracy258

To evaluate how well the Pearson correlation, eLSA, or SparCC (collectively referred to259

as “correlation”) network R recapitulates the original interaction network M̃, we compute260

the receiving operator curve (ROC). First, we binarize the interaction network M̃ so that it261

is a boolean network M of zeros (non-interactions) and ones (interactions). Then we choose262

a threshold of interaction c between the minimum and maximum attainable values of the263

correlation network R; for Pearson correlation these are -1 and +1. Correlations in R that264

are greater than or equal to c are categorized as interactions (ones), while those that are less265

are non-interactions (zeros). The true positive (TP) count is the number of interactions in266
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M correctly predicted by the thresholded correlation network Rc. The false positive (FP)267

count is the number of non-interactions in M incorrectly predicted by Rc. The TP and FP268

counts are normalized by the number of interactions and non-interactions in M to obtain269

the true positive rate (TPR) and false positive rate (FPR). TPR and FPR are computed for270

all thresholds c to obtain the receiver operator curve (ROC).271

The overall “score” of the correlation network R is the area under the curve (AUC). A272

perfect prediction results in AUC=1, since for some threshold TPR=1 and FPR=0. Ran-273

dom predictions result in AUC=1/2, since TPR=FPR across all possible thresholds. AUC274

values which are less than 1/2 indicate a misclassification of “interaction”, that is, catego-275

rizing interactions and non-interactions in the opposite way would have resulted in a better276

prediction of M̃.277

5 Results278

5.1 Standard Pearson correlation279

We calculated the standard Pearson correlation networks for an ensemble in silico commu-280

nities that varied in network size and network structure. For each network sizeN = 10, 25, 50,281

we generated 20 unique interaction networks. 10 of the networks were generated so that they282

were distributed along a range of nestedness values, and the other 10 were generated so that283

they were distributed along a range of modularity values (see §4.2). For each interaction284

network, a single set of life history traits were generated to ensure coexistence using biologi-285

cally feasible ranges according to §4.3. The mechanistic model for the community dynamics286

is described in §4.1. Time-series were simulated according to §4.4 with δ = 0.3, that is, the287

initial conditions were the fixed point values perturbed by 30% (for additional values of δ see288

Fig S5 in the SI). For δ = 0.3, the mean coefficient of variation was 12% for host time-series289

and 4% for virus time-series (see Fig S1 in the SI). The time-series were sampled during the290

transient dynamics to represent in situ communities which are likely perturbed from equi-291

librium due to changing environmental conditions and intrinsic feedback. We sampled the292

time-series every 2 hours for 200 hours, that is, we took 100 samples (for additional sample293
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frequencies see Fig S7 in the SI).294

For each in silico community, we calculated the standard Pearson correlation network295

as described in §4.5. Two example in silico communities of size N = 10 are shown in296

Fig 2 with their simulated time-series, log-transformed samples, and resulting correlation297

networks. The correlation networks were scored against the original interaction networks by298

computing AUC as described in §4.8. The procedure for computing AUC is shown in Fig 3299

for the two example in silico communities.300

AUC values for all in silico communities are shown in Fig 4. Across varying network301

size and network structure, AUC is approximately 1/2 implying that standard Pearson cor-302

relation networks lack predictive power. Similar results were found when varying the initial303

condition perturbation δ (Fig S4) and the sampling frequency (Fig S7). There are some cases304

for the smaller networks (N = 10) where AUC does deviate from 1/2 although these devi-305

ations are small (≈ ±10%). Interestingly these deviations tend to be negative indicating a306

misclassification of the interaction condition, that is, negative correlations are slightly better307

predictors of interaction than positive correlations. Overall however, the deviations disap-308

pear for larger networks (N = 50) implying that they are exceptions rather than the norm.309

We completed identical analyses for additional correlation metrics in particular Spearman310

correlation and Kendall correlation (see Fig S2 in SI). We found similar results reinforc-311

ing our conclusion that simple correlations between time-series are poor predictors of the312

underlying interaction network.313

5.2 Time-delayed Pearson correlation314

Given the results of the previous section §5.1 – that standard correlations do not recapit-315

ulate interactions – we computed time-delayed correlation networks for the same ensemble316

of in silico communities. The addition of time-delays to standard correlation approaches317

is motivated by a large body of theoretical work on predator-prey dynamics, where both318

predator and prey populations oscillate but with a phase delay between them [47]. Similar319

results hold for the phase delay in simple phage-bacteria dynamics [48]. Time-delayed corre-320
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Figure 2: Calculating standard Pearson correlation networks for two in silico A) nested
and B) modular communities (N = 10). A1-B1) Original weighted interaction networks,
generated as described in §4.2 and §4.3. A2-B2) Simulated time-series of the virus-microbe
dynamical system as described in §4.4 (δ = 0.3). A3-B3) Log-transformed samples, sampled
every 2 hours for 200 hours from the simulated time-series. A4-B4) Pearson correlation
networks, calculated from log-transformed samples as described in §4.5.
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Figure 3: Scoring correlation network accuracy of the two in silico A) nested and B)
modular communities (N = 10, see Fig 2) as described in §4.8. A1-B1) Correlation networks
are binarized according to thresholds c between −1 and +1, three of which are shown here
(c = −0.5, 0, and 0.5). A2-B2) Original interaction networks are also binarized. A3-B3) True
positive rate (TPR) versus false positive rate (FPR) of the binarized correlation networks for
each threshold c. Three example thresholds (c = −0.5, 0, and 0.5) are marked (red, white,
and blue circles). The “non-discrimination” line (grey dashed) is where TPR = FPR. The
AUC or area under the ROC curve is a measure of relative TPR to FPR over all thresholds;
AUC = 1 is a perfect result. Distributions for the reported p-values are shown in the SI.

lations are the basis of several existing correlation-based inference methods including eLSA321

[29, 30, 31].322

For this analysis, we used the same ensemble of in silico communities (network sizes323

N = 10, 25, 50 of varying nestedness and modularity), simulated time-series (δ = 0.3; see324

Fig S5 in SI), and sample frequency (2 hours; see Fig S8 in SI) as before (see §5.1 for325

time-series). We calculated the time-delayed Pearson correlation networks as described in326

§4.5, where for each virus-host pair the virus time-series is sampled later in time by some327
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Figure 4: AUC values for standard Pearson correlation for the ensemble of A) nested and
B) modular communities over three network sizes N = 10, 25, 50 (20 communities for each
network size). AUC is computed as described in §4.8. Each plotted point corresponds to a
unique in silico community. Dashed line marks AUC=1/2 and implies the predicted network
did no better than random guessing.

delay amount τij relative to the host time-series (for Spearman and Kendall correlation, see328

Fig S3 in SI). Each delay is chosen such that the absolute value of the correlation for the329

virus-host pair is maximized. Since the optimal time-delay is not known in advance, delays330

between 0 < τij < tS/2, (0 hours and tS/2 = 100 hours) were considered. The number331

of samples used to compute each correlation coefficient was kept fixed at S = 100 (sample332

duration 200 hours). Time-delayed Pearson correlation networks for the two example in333

silico communities of size N = 10 are shown in Fig 5A-B. AUC was computed as described334

in §4.8.335

AUC values for all in silico communities are shown in Fig 5C. For the small networks336

(N = 10) there are a few particular networks which have AUC scores greater than 1/2. For337

the remaining small networks and the large networks (N = 25, 50), AUC ≈ 1/2 implying338

time-delayed Pearson correlation lacks predictive power for these networks. Similar results339

were found for alternate correlation metrics (Spearman and Kendall; Fig S3), initial condition340

perturbations δ (Fig S5), and sampling frequencies (Fig S8). Because AUC deviates from341
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1/2 for only a few small networks and disappears for large networks, it should be considered342

an exceptional result rather than the norm for time-delayed Pearson correlation.343

interaction networkA1)

viruses

m
ic

ro
be

s

0

2

4

6

8

in
te

ra
ct

io
n 

st
re

ng
th

10-5
tauA2)

viruses

m
ic

ro
be

s

1

2

3

4

tim
e-

de
la

y 
(h

ou
rs

)

correlation networkA3)

viruses

m
ic

ro
be

s

-1

0

1

co
rr

el
at

io
n

interaction networkB1)

viruses

m
ic

ro
be

s

0

2

4

6

8

in
te

ra
ct

io
n 

st
re

ng
th

10-5
tauB2)

viruses

m
ic

ro
be

s
1

2

3

4

tim
e-

de
la

y 
(h

ou
rs

)

correlation networkB3)

viruses

m
ic

ro
be

s

-1

0

1

co
rr

el
at

io
n

0 0.5 1
0

0.5

1

A
U

C

N=10

C)

0 0.5 1

nestedness (NODF)

0

0.5

1
N=25

0 0.5 1
0

0.5

1
N=50

0 0.5 1
0

0.5

1

A
U

C

N=10

0 0.5 1

modularity (Q b)

0

0.5

1
N=25

0 0.5 1
0

0.5

1
N=50

Figure 5: Performance of time-delayed Pearson correlation. A1-B1) Two example in silico
interaction networks (N = 10). A2-B2) Time-delays τij for each virus-host pair, chosen
so that the absolute value of the correlation is maximized. A3-B3) Time-delayed Pearson
correlation networks calculated as described in §4.5. C) AUC values for the ensemble of
nested (top row) and modular (bottom row) communities over three network sizes N =
10, 25, 50 (20 communities for each network size). Each plotted point corresponds to a unique
in silico community. Dashed line marks AUC=1/2 and implies the predicted network did
no better than random guessing.
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5.3 Correlation-based methods eLSA and SparCC344

We performed a similar in silico analysis using eLSA [29, 30, 31] and SparCC [40], two345

established correlation-based inference methods which are widely used with in situ time-346

series data. We used the same ensemble of in silico communities as before (network sizes347

N = 10, 25, 50 of varying nestedness and modularity), along with the simulated time-series348

(δ = 0.3; see Fig S6), sample frequency (2 hours; see Fig S9) and sample duration (200349

hours). We implemented eLSA and SparCC as described in §4.6 and §4.7 respectively. eLSA350

and SparCC predicted networks for the two example in silico communities of size N = 10351

are shown in Fig 6A-B. AUC was computed as before and as described in §4.8.352

AUC values for all in silico communities are shown in Fig 6C. We see the same trends353

as with standard correlation and time-delayed correlation (see Figs 4 and 5). Similar results354

hold for varying values of the initial condition perturbation δ (Fig S6) and sampling frequency355

(Fig S9). For small networks (N = 10), there are a few AUC scores which deviate weakly356

from 1/2 (≈ ±10%). Interestingly, AUC scores for eLSA tend to be negative, implying a357

misclassification of interaction. AUC converges to 1/2 as network size increases (N = 25, 50)358

indicating that the AUC scores for small networks may themselves be spurious.359

6 Discussion360

Using in silico virus-microbe community dynamics, we calculated correlation networks361

among viral and microbial population time-series samples. We tested the accuracy of several362

different types of correlation and time-delayed correlation (Pearson, Spearman, and Kendall)363

and existing correlation-based inference methods (eLSA and SparCC). The correlation net-364

works for all of these implementations failed to effectively predict the original interaction365

networks, as quantified by the AUC score. Failure persisted across variation in network366

structure, network size, degree of initial condition perturbation (i.e. scaling the variability367

of dynamics), and sampling frequency. We therefore conclude these correlation-based in-368

ference methods do not meaningfully predict interactions given this mechanistic model of369
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Figure 6: Performance of correlation-based inference methods eLSA and SparCC. A1-B1)
Two example in silico interaction networks (N = 10). A2-B2) eLSA predicted network
computed as described in §4.6. A3-B3) SparCC predicted network computed as described
in §4.7 (color bar adjusted for visibility). C-D) AUC values for the ensemble of nested (top
row) and modular (bottom row) communities over three network sizes N = 10, 25, 50 (20
communities for each network size). Each plotted point corresponds to a unique in silico
community. Dashed line marks AUC=1/2 and implies the predicted network did no better
than random guessing.

virus-microbe community dynamics.370

Earlier, we stated the core assumption of correlation-based inference: that interacting371

populations are correlated and that non-interacting populations are not correlated. While372

this core assumption may sometimes hold in small microbe-only communities with simple373

interaction mechanisms [25], we find it does not necessarily hold in more complex virus-374

microbe communities. (Each inference method also faces challenges unique to its formulation:375
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eLSA in particular uses a non-stationary data transformation which may induce additional376

spurious correlations.) We considered communities with microbes and viruses that interacted377

through a nonlinear mechanism (infection and lysis) across a spectrum of network sizes378

and network structure. We found that correlation-based inference performed poorly given379

variation in these network properties, but that there was greater variation in performance for380

small networks. Because this variation is relatively small and disappears for larger networks,381

successful predictions for small networks may themselves be spurious. Namely, for a small382

network (e.g. N < 10), there is a greater probability of randomly guessing the interactions383

correctly because the space of possible networks is smaller.384

Our results raise concerns about the use of correlation-based methods on in situ datasets,385

since a typical community under consideration will have dozens or more interacting strains386

and therefore will not be in the low diversity microbe-only regime explored by [25]. Ad-387

ditional challenges such as external environmental drivers, measurement noise, and system388

stochasticity must also be carefully considered before applying correlation-based methods to389

in situ datasets. Although the degree of variability of dynamics had no effect on inference390

quality here, it may also be an important consideration for both experimental design and391

choice of inference method. For example, the model-based inference method developed by392

[49] performs better when dynamics are highly variable. On the other hand, co-occurrence393

based inference methods, which require samples across space instead of time, may enable394

inference across different baseline environmental conditions even if the dynamics within a395

given environment are relatively stable.396

In light of the poor performance of correlation-based methods, we advocate for increased397

studies of model-based inference. Model-based inference methods operate by first assuming398

an underlying dynamical model for the community (such as the one used in this manuscript,399

Eqns 1 and 2). The dynamical model is then used to formulate an objective function for400

an optimization or regression problem, where the solution is the interaction network which401

best describes the sampled community time-series (for example, see [41, 39, 50, 49, 51, 52]).402
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Unlike correlation-based methods which assume that similar trends in population indicate403

interaction, model-based inference has the potential to be tailored to complex communities404

and environments while leveraging existing knowledge about ecological mechanisms. Given405

favorable results of in silico benchmarking of model-based inference methods [41, 39, 50, 49,406

51, 52], it will be important to investigate the efficacy of model-based inference methods for407

complex microbial and viral communities in practice.408
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22

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 23, 2018. ; https://doi.org/10.1101/176628doi: bioRxiv preprint 

https://github.com/WeitzGroup/correlation_based_inference
https://github.com/WeitzGroup/correlation_based_inference
https://github.com/WeitzGroup/correlation_based_inference
https://github.com/cesar7f/BiMat
https://github.com/cesar7f/BiMat
https://github.com/cesar7f/BiMat
https://bitbucket.org/charade/elsa/wiki/Home
https://bitbucket.org/yonatanf/sparcc
https://doi.org/10.1101/176628
http://creativecommons.org/licenses/by/4.0/


References
[1] F. Rohwer and R. V. Thurber, “Viruses manipulate the marine environment,” Nature, vol. 459, no. 7244,

pp. 207–12, 2009.

[2] L. D. McDaniel, E. Young, J. Delaney, F. Ruhnau, K. B. Ritchie, and J. H. Paul, “High frequency of
horizontal gene transfer in the oceans,” Science, vol. 330, no. 6000, p. 50, 2010.

[3] K. D. Bidle and A. Vardi, “A chemical arms race at sea mediates algal host-virus interactions,” Curr
Opin Microbiol, vol. 14, no. 4, pp. 449–57, 2011.

[4] D. Lindell, M. B. Sullivan, Z. I. Johnson, A. C. Tolonen, F. Rohwer, and S. W. Chisholm, “Transfer of
photosynthesis genes to and from prochlorococcus viruses,” Proc Natl Acad Sci U S A, vol. 101, no. 30,
pp. 11013–8, 2004.

[5] J. S. Weitz and S. W. Wilhelm, “Ocean viruses and their effects on microbial communities and biogeo-
chemical cycles,” F1000 Biol Rep, vol. 4, p. 17, 2012.

[6] C. A. Suttle, “Viruses in the sea,” Nature, vol. 437, no. 7057, pp. 356–61, 2005.

[7] J. R. Brum, J. C. Ignacio-Espinoza, S. Roux, G. Doulcier, S. G. Acinas, A. Alberti, S. Chaffron,
C. Cruaud, C. de Vargas, J. M. Gasol, G. Gorsky, A. C. Gregory, L. Guidi, P. Hingamp, D. Iudicone,
F. Not, H. Ogata, S. Pesant, B. T. Poulos, S. M. Schwenck, S. Speich, C. Dimier, S. Kandels-Lewis,
M. Picheral, S. Searson, , P. Bork, C. Bowler, S. Sunagawa, P. Wincker, E. Karsenti, and M. B. Sullivan,
“Patterns and ecological drivers of ocean viral communities,” Science, vol. 348, no. 6237, 2015.

[8] M. Breitbart, “Marine viruses: Truth or dare,” Annual Review of Marine Science, 2012.

[9] C. Brussaard, “Viral control of phytoplankton populations – a review,” Journal of Eukaryotic Microbi-
ology, 2005.

[10] J. S. Weitz, T. Poisot, J. R. Meyer, C. O. Flores, S. Valverde, M. B. Sullivan, and M. E. Hochberg,
“Phage-bacteria infection networks,” Trends Microbiol, vol. 21, no. 2, pp. 82–91, 2013.

[11] C. O. Flores, S. Valverde, and J. S. Weitz, “Multi-scale structure and geographic drivers of cross-infection
within marine bacteria and phages,” ISME J, vol. 7, no. 3, pp. 520–32, 2013.

[12] M. B. Sullivan, J. B. Waterbury, and S. W. Chisholm, “Cyanophages infecting the oceanic cyanobac-
terium prochlorococcus,” Nature, vol. 424, no. 6952, pp. 1047–51, 2003.

[13] L. Deng, A. Gregory, S. Yilmaz, B. T. Poulos, P. Hugenholtz, and M. B. Sullivan, “Contrasting life
strategies of viruses that infect photo- and heterotrophic bacteria, as revealed by viral tagging,” MBio,
vol. 3, no. 6, 2012.

[14] L. Deng, J. C. Ignacio-Espinoza, A. C. Gregory, B. T. Poulos, J. S. Weitz, P. Hugenholtz, and M. B.
Sullivan, “Viral tagging reveals discrete populations in synechococcus viral genome sequence space,”
Nature, vol. 513, no. 7517, pp. 242–5, 2014.

[15] A. D. Tadmor, E. A. Ottesen, J. R. Leadbetter, and R. Phillips, “Probing individual environmental
bacteria for viruses by using microfluidic digital pcr,” Science, vol. 333, no. 6038, pp. 58–62, 2011.

[16] S. Roux, A. K. Hawley, M. T. Beltran, M. Scofield, P. Schwientek, R. Stepanauskas, T. Woyke, S. J.
Hallam, and M. B. Sullivan, “Ecology and evolution of viruses infecting uncultivated sup05 bacteria as
revealed by single-cell- and meta-genomics,” eLIFE, 2014.

[17] J. M. Labonte, B. K. Swan, B. Poulos, H. Luo, S. Koren, S. J. Hallam, M. B. Sullivan, T. Woyke,
K. E. Wommack, and R. Stepanauskas, “Single-cell genomics-based analysis of virus-host interactions
in marine surface bacterioplankton,” ISME J, 2015.

[18] J. H. Munson-McGee, S. Peng, S. Dewerff, R. Stepanauskas, R. J. Whitaker, J. S. Weitz, and M. J.
Young, “A virus or more in (nearly) every cell: ubiquitous networks of virus-host interactions in extreme
environments,” ISME J, 2018.

23

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 23, 2018. ; https://doi.org/10.1101/176628doi: bioRxiv preprint 

https://doi.org/10.1101/176628
http://creativecommons.org/licenses/by/4.0/


[19] M. Breitbart, P. Salamon, B. Andresen, J. M. Mahaffy, A. M. Segall, D. Mead, F. Azam, and F. Rohwer,
“Genomic analysis of uncultured marine viral communities,” Proc Natl Acad Sci U S A, vol. 99, no. 22,
pp. 14250–5, 2002.

[20] R. A. Edwards and F. Rohwer, “Viral metagenomics,” Nat Rev Microbiol, vol. 3, no. 6, pp. 504–10,
2005.

[21] M. R. Clokie, A. D. Millard, A. V. Letarov, and S. Heaphy, “Phages in nature,” Bacteriophage, vol. 1,
no. 1, pp. 31–45, 2011.

[22] S. Roux, F. Enault, B. L. Hurwitz, and M. B. Sullivan, “Virsorter: mining viral signal from microbial
genomic data,” PeerJ, 2015.

[23] R. A. Edwards, K. McNair, K. Faust, J. Raes, and B. E. Dutilh, “Computational approaches to predict
bacteriophage-host relationships,” FEMS Microbiology Reviews, 2015.

[24] M. Layeghifard, D. M. Hwang, and D. S. Guttman, “Disentangling interactions in the microbiome: A
network perspective,” Trends Microbiol, vol. 25, no. 3, pp. 217–228, 2017.

[25] S. Weiss, W. Van Treuren, C. Lozupone, K. Faust, J. Friedman, Y. Deng, L. C. Xia, Z. Z. Xu, L. Ursell,
E. J. Alm, A. Birmingham, J. A. Cram, J. A. Fuhrman, J. Raes, F. Sun, J. Zhou, and R. Knight,
“Correlation detection strategies in microbial data sets vary widely in sensitivity and precision,” ISME
J, vol. 10, no. 7, pp. 1669–81, 2016.

[26] K. Faust, L. Lahti, D. Gonze, W. M. de Vos, and J. Raes, “Metagenomics meets time series analysis:
unraveling microbial community dynamics,” Curr Opin Microbiol, vol. 25, pp. 56–66, 2015.

[27] K. Faust and J. Raes, “Microbial interactions: from networks to models,” Nat Rev Microbiol, vol. 10,
no. 8, pp. 538–50, 2012.

[28] J. A. Fuhrman, “Microbial community structure and its functional implications,” Nature, vol. 459,
no. 7244, pp. 193–9, 2009.

[29] Q. Ruan, D. Dutta, M. S. Schwalbach, J. A. Steele, J. A. Fuhrman, and F. Sun, “Local similarity
analysis reveals unique associations among marine bacterioplankton species and environmental factors,”
Bioinformatics, vol. 22, no. 20, pp. 2532–8, 2006.

[30] L. C. Xia, J. A. Steele, J. A. Cram, Z. G. Cardon, S. L. Simmons, J. J. Vallino, J. A. Fuhrman, and
F. Sun, “Extended local similarity analysis (elsa) of microbial community and other time series data
with replicates,” BMC Syst Biol, vol. 5 Suppl 2, p. S15, 2011.

[31] L. C. Xia, D. Ai, J. Cram, J. A. Fuhrman, and F. Sun, “Efficient statistical significance approximation
for local similarity analysis of high-throughput time series data,” Bioinformatics, vol. 29, no. 2, pp. 230–
7, 2013.

[32] C. E. Chow, R. Sachdeva, J. A. Cram, J. A. Steele, D. M. Needham, A. Patel, A. E. Parada, and J. A.
Fuhrman, “Temporal variability and coherence of euphotic zone bacterial communities over a decade in
the southern california bight,” ISME J, vol. 7, no. 12, pp. 2259–73, 2013.

[33] J. A. Gilbert, J. A. Steele, J. G. Caporaso, L. Steinbruck, J. Reeder, B. Temperton, S. Huse, A. C.
McHardy, R. Knight, I. Joint, P. Somerfield, J. A. Fuhrman, and D. Field, “Defining seasonal marine
microbial community dynamics,” ISME J, vol. 6, no. 2, pp. 298–308, 2012.

[34] L. Liu, J. Yang, H. Lv, and Z. Yu, “Synchronous dynamics and correlations between bacteria and
phytoplankton in a subtropical drinking water reservoir,” FEMS Microbiol Ecol, vol. 90, no. 1, pp. 126–
38, 2014.

[35] S. F. Paver, K. R. Hayek, K. A. Gano, J. R. Fagen, C. T. Brown, A. G. Davis-Richardson, D. B.
Crabb, R. Rosario-Passapera, A. Giongo, E. W. Triplett, and A. D. Kent, “Interactions between specific
phytoplankton and bacteria affect lake bacterial community succession,” Environmental Microbiology,
vol. 15, no. 9, pp. 2489–2504, 2013.

24

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 23, 2018. ; https://doi.org/10.1101/176628doi: bioRxiv preprint 

https://doi.org/10.1101/176628
http://creativecommons.org/licenses/by/4.0/


[36] D. M. Needham, C. E. Chow, J. A. Cram, R. Sachdeva, A. Parada, and J. A. Fuhrman, “Short-term
observations of marine bacterial and viral communities: patterns, connections and resilience,” ISME J,
vol. 7, no. 7, pp. 1274–85, 2013.

[37] C. E. Chow, D. Y. Kim, R. Sachdeva, D. A. Caron, and J. A. Fuhrman, “Top-down controls on
bacterial community structure: microbial network analysis of bacteria, t4-like viruses and protists,”
ISME J, vol. 8, no. 4, pp. 816–29, 2014.

[38] J. A. Steele, P. D. Countway, L. Xia, P. D. Vigil, J. M. Beman, D. Y. Kim, C. E. Chow, R. Sachdeva,
A. C. Jones, M. S. Schwalbach, J. M. Rose, I. Hewson, A. Patel, F. Sun, D. A. Caron, and J. A.
Fuhrman, “Marine bacterial, archaeal and protistan association networks reveal ecological linkages,”
ISME J, vol. 5, no. 9, pp. 1414–25, 2011.

[39] Z. D. Kurtz, C. L. Muller, E. R. Miraldi, D. R. Littman, M. J. Blaser, and R. A. Bonneau, “Sparse and
compositionally robust inference of microbial ecological networks,” PLoS Comput Biol, vol. 11, no. 5,
p. e1004226, 2015.

[40] J. Friedman and E. J. Alm, “Inferring correlation networks from genomic survey data,” PLoS Comput
Biol, vol. 8, no. 9, p. e1002687, 2012.

[41] C. K. Fisher and P. Mehta, “Identifying keystone species in the human gut microbiome from metage-
nomic timeseries using sparse linear regression,” PLoS One, vol. 9, no. 7, p. e102451, 2014.

[42] C. O. Flores, T. Poisot, S. Valverde, and J. S. Weitz, “Bimat: a matlab package to facilitate the analysis
of bipartite networks,” Methods in Ecology and Evolution, vol. 7, no. 1, pp. 127–132, 2016.

[43] M. Almeida-Neto, P. Guimares, P. R. Guimares, R. D. Loyola, and W. Ulrich, “A consistent metric for
nestedness analysis in ecological systems: reconciling concept and measurement,” Oikos, vol. 117, no. 8,
pp. 1227–1239, 2008.

[44] M. J. Barber, “Modularity and community detection in bipartite networks,” Phys. Rev. E, vol. 76,
p. 066102, Dec 2007.

[45] S. J. Beckett, “Improved community detection in weighted bipartite networks,” R Soc Open Sci, vol. 3,
no. 1, p. 140536, 2016.

[46] L. F. Jover, M. H. Cortez, and J. S. Weitz, “Mechanisms of multi-strain coexistence in host-phage
systems with nested infection networks,” J Theor Biol, vol. 332, pp. 65–77, 2013.

[47] M. Rosenzweig and R. H. MacArthur, “Graphical representation and stability conditions of predator-
prey interactions,” vol. 97, pp. 209–223, 01 1963.

[48] J. S. Weitz, Quantitative Viral Ecology. Princeton University Press, 2015.

[49] L. F. Jover, J. Romberg, and J. S. Weitz, “Inferring phage-bacteria infection networks from time-series
data,” R Soc Open Sci, vol. 3, no. 11, p. 160654, 2016.

[50] R. R. Stein, V. Bucci, N. C. Toussaint, C. G. Buffie, G. Ratsch, E. G. Pamer, C. Sander, and J. B.
Xavier, “Ecological modeling from time-series inference: insight into dynamics and stability of intestinal
microbiota,” PLoS Comput Biol, vol. 9, no. 12, p. e1003388, 2013.

[51] P. Dam, L. L. Fonseca, K. T. Konstantinidis, and E. O. Voit, “Dynamic models of the complex microbial
metapopulation of lake mendota,” NPJ Syst Biol Appl, vol. 2, p. 16007, 2016.

[52] S. Marino, N. T. Baxter, G. B. Huffnagle, J. F. Petrosino, and P. D. Schloss, “Mathematical modeling
of primary succession of murine intestinal microbiota,” Proc Natl Acad Sci U S A, vol. 111, no. 1,
pp. 439–44, 2014.

25

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 23, 2018. ; https://doi.org/10.1101/176628doi: bioRxiv preprint 

https://doi.org/10.1101/176628
http://creativecommons.org/licenses/by/4.0/

	Abstract
	Importance
	Introduction
	Methods
	Dynamical model of a virus-microbe community
	Generating interaction networks and characterizing network structure
	Choosing life history traits for coexistence
	Simulating and sampling time-series
	Standard and time-delayed Pearson correlation networks
	eLSA networks
	SparCC networks
	Scoring correlation network accuracy

	Results
	Standard Pearson correlation
	Time-delayed Pearson correlation
	Correlation-based methods eLSA and SparCC

	Discussion
	Acknowledgments
	Availability of data and materials

