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ABSTRACT 

Most human protein-coding genes are regulated by multiple, distinct promoters, suggesting 

that the choice of promoter is as important as its level of transcriptional activity. While the role 

of promoters as driver elements in cancer has been recognized, the contribution of alternative 

promoters to regulation of the cancer transcriptome remains largely unexplored. Here we infer 

active promoters using RNA-Seq data from 1,188 cancer samples with matched whole genome 

sequencing data. We find that alternative promoters are a major contributor to context-specific 

regulation of isoform expression and that alternative promoters are frequently deregulated in 

cancer, affecting known cancer-genes and novel candidates. Our study suggests that a highly 

dynamic landscape of active promoters shapes the cancer transcriptome, opening many 

opportunities to further explore the interplay of regulatory mechanism and noncoding somatic 

mutations with transcriptional aberrations in cancer. 
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INTRODUCTION 

The key element in regulation of transcription is the region upstream of the transcription start 

sites (TSS), the promoter. Promoters contain the elements required to initiate transcription, and 

they integrate the signals from distal regulatory elements and epigenetic modifications that 

together determine the level of transcription. In the human genome, the majority of protein 

coding genes are regulated by multiple promoters that initiate transcription for different gene 

isoforms (Carninci et al., 2006; Sandelin et al., 2007). In contrast to alternative splicing which 

regulates gene isoform expression post-transcriptionally, the usage of alternative transcription 

start sites provides a way to regulate gene isoform expression pre-transcriptionally (Ayoubi & 

Van De Ven, 1996). Therefore, promoters not only determine when a gene is active and how 

active it is, they also regulate which gene isoform will be expressed. 

In cancer, somatic mutations, genomic re-arrangements, and changes in the regulatory or 

epigenetic landscape have been found to affect the promoter of several oncogenes, and it has 

been suggested that promoters contribute to the malignant transformation of the cells (Khurana 

et al., 2016; Sharma, Kelly, & Jones, 2010; Vogelstein et al., 2013). Genome-wide studies of 

promoters using the H3K4me3 histone modification, an epigenetic mark found at active 

promoters, or CAGE tag sequencing of the 5’ end of transcripts have found that transcription 

start sites frequently are differentially used in cancer (Bernstein et al., 2002; Chi, Allis, & Wang, 

2010; Gherardi, Birchmeier, Birchmeier, & Vande Woude, 2012; Hashimoto et al., 2015; 

Kaczkowski et al., 2016; Kodzius et al., 2006; Muratani et al., 2014; Santos-Rosa et al., 2002; 

Takahashi, Kato, Murata, & Carninci, 2012). However, as data such as H3K4me3 profiles or 

CAGE-Tag is not available for most cancer studies, the role of alternative promoters in cancer 

remains largely unexplored. 

Because any change in a cell's identity and function will be reflected in a change in gene 

expression, transcriptome profiling by RNA-Sequencing is one of the most widely studied 

large-scale molecular phenotypes in cancer. Analysis of gene expression in cancer has 

uncovered fundamental insights of tumor biology (Cancer Genome Atlas, 2012), enabled 

stratification of cancer types (Cancer Genome Atlas Research, 2012), predicted clinical 

outcome (Gerstung et al., 2015), and guided treatment decisions (Cancer Genome Atlas 

Research, 2011), forming a cornerstone of data driven precision oncology. RNA-Seq data 

measures the transcriptome largely unbiased, and as promoters regulate expression of isoforms 

with distinct 5’ start sites, it could potentially be used to identify active promoters (Feng et al., 

2016; Pal et al., 2011; Reyes & Huber, 2017).  

In this manuscript, we infer active promoters from RNA-Seq data, enabling the analysis of 

promoter activity in thousands of samples using publicly available expression data, thereby 

generating the largest currently available catalog of active promoters in human tissues and 

cancers. We apply this approach to comprehensively analyze alternative promoters in the Pan-

Cancer-Analysis of Whole Genomes (PCAWG) cohort of 1188 patient samples with matched 

whole genome sequencing data covering 27 different cancer types (Calabrese et al., 2018), and 

we compare promoter usage to more than 1,500 normal tissue samples (The GTEx Consortium, 

2017). We find that alternative promoters are frequently used to increase isoform diversity and 

that a large number of known cancer genes and novel candidates show deregulation of 

promoters in cancer. Our data suggests that the landscape of active promoter is highly dynamic 

and associated with patterns of somatic mutations, and that patient-to-patient variation in 

promoter activity is associated with survival. We propose that the precise knowledge of which 

promoter is active in each patient helps understanding the genetic, transcriptional, and 
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pathological profile of individual tumors. 

RESULTS 

Identification of active promoters in 1,209 cancer samples from 27 cancer types 

The promoter is defined as the regulatory region upstream of the transcription start site. Using 

the Ensembl v75 annotations (Yates et al., 2016), we compiled a set of 112,985 possible 

promoters, assuming that isoforms which have identical or very close TSSs are regulated by 

the same promoter (Frith et al., 2008). We then define promoter activity as the total amount of 

transcription initiated at each promoter. By quantifying the expression that is initiated at each 

promoter we can then infer levels of promoter activity from RNA-Seq data (Fig. 1a). As the 

number of promoters is much smaller than the number of isoforms per gene, the problem of 

promoter activity estimation is heavily reduced in complexity, resulting in more robust 

inference (Supplementary Fig. 1a). To further reduce the number of false positives, we restrict 

the analysis to promoters that can be uniquely identified (Supplementary Fig. 1b).  Following 

this approach, we quantified promoter activity in 1,209 samples from the PCAWG cohort 

covering 27 cancer types. Across all samples we identified the most active promoter (major 

promoter) for 16,694 genes, we identified 21,313 additional promoters that are active at lower 

levels (minor promoters), and we found 56% (48,312) of promoters to be inactive (Fig. 1b, 

Supplementary Fig. 1c). In the absence of regulatory genomics data, the first promoter of a 

gene is often assumed to be active. Interestingly, our data shows that the dominating major 

promoters can occur at any position within a gene. We find that 1 out of 3 major promoters are 

located downstream of the first TSS (Fig. 1c), demonstrating how RNA-Seq data adds 

information and context to genome annotations. 

To evaluate the accuracy of expression-based estimation of promoter activity, we compared 

them to publicly available H3K4me3 ChIP-Seq and CAGE tag data from a variety of different 

cell lines and tissues (The ENCODE Consortium, 2012; The FANTOM Consortium, 2014; 

Lizio et al., 2015). The major promoters identified in the PCAWG cohort show the highest 

levels of H3K4me3 and CAGE tag support, whereas promoters identified as inactive show the 

lowest H3K4me3 levels and CAGE tag support, demonstrating that expression and epigenetics 

based estimates show a remarkable level of consistency (Fig. 1d, e, Supplementary Fig. 1d, e, 

f). Furthermore, estimates from cancers were most similar to ChIP-Seq profiles from matching 

cell lines (Fig. 1f). Interestingly, while promoter activity estimates from patients were generally 

highly consistent, cell lines showed a much higher variance (Supplementary Fig. 1g). It has 

been observed before that cancer cell lines differ from the primary tissue (The FANTOM 

Consortium, 2014), suggesting that RNA based estimates more accurately reflect the promoter 

landscape of the tumor than cell line based estimates. Overall, this analysis demonstrates that 

RNA-Seq data enables the quantitative, robust, and reproducible estimation of promoter 

activity. 

Alternative promoters are a major contributor to isoform diversity 

Genome-wide, we find that promoter activity is dominated by the tissue and cell of origin for 

each cancer type (Fig. 2a). This closely resembles the observation from gene expression, 

despite using only the minimal set of discriminative reads indicative of promoter activity 

(Supplementary Fig. 2a). In contrast to gene-level expression estimates, promoter activity 

enables us to investigate the contribution of each promoter to the overall expression pattern. 

Among all expressed protein-coding genes, 49% have at least 2 active promoters that contribute 

to more than 10% of the overall gene expression (Fig. 2b, c). In principle, these promoters are 
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independent regulatory units which can be used in a different context to control changes in 

isoform expression. The usage of such alternative promoters - promoters whose activity 

depends on the context but not on the activity of the gene’s remaining promoters - will not be 

detectable with gene level based expressions analysis. Therefore, even though globally 

promoter activity reflects gene expression, there is additional information in promoter activity 

that cannot be detected at the gene expression level.  

To approximate the prevalence of alternative promoters as context-specific regulators of 

transcription, we searched for promoters that show significantly changed activity across tissues 

at genes that do not show an overall change in expression (Fig. 2d, Supplementary Fig. 2b, c). 

Strikingly, our data demonstrates that even genes that do not show any tissue-specificity at the 

gene expression level can be under control of 2 independent, highly tissue-specific alternative 

promoters which regulate distinct gene isoforms (Fig. 2e, f, g). The majority of tissue-specific 

alternative promoters activate single isoforms, providing a direct link between transcriptional 

regulation and isoform expression (Fig. 2h). Alternative promoters often correspond to minor 

promoters that are expressed at lower levels compared to the constitutively active major 

promoter (Fig. 2i). However, for 18% of genes we observe that the major promoter is switched 

(Fig. 2i). Interestingly, on a global level, 60% of all isoform switching events involve a switch 

in promoters (Fig. 2j), demonstrating that alternative promoters are a major contributor to 

tissue-specific transcriptional diversity. 

To understand the consequence of alternative promoter usage on the gene product, we 

examined how the functional regions (5’ UTR, CDS, 3’UTR) differ compared to the major 

promoter (Fig. 2k). As expected, use of an alternative promoter is almost always associated 

with a change in the 5’ UTR region (Supplementary Fig. 2d), with on average less than 20% 

of the 5’UTR sequence being shared between alternative promoters (Fig. 2l). A change in 

promoters also dramatically effects the coding part of RNAs, often involving a change of 

almost 50% of the protein coding sequence (Fig. 2l). Surprisingly 90% of alternative promoters 

encode for isoforms that potentially use a different 3’ UTR sequence based on annotations 

(Supplementary Fig. 2d). This suggests that promoters not only regulate transcription initiation, 

but that they specifically regulate alternative isoforms that are marked by distinct sequences, 

possibly influencing post transcriptional regulation, translation, and protein structure in a 

context-specific manner. 

Cancer-associated promoters regulate isoform switching of oncogenes and tumor 

suppressors  

Many cancer-associated genes and pathways have been discovered by comparing the 

expression profile of cancer with the expression profile of normal tissues (Fay et al., 2003; 

Gross, Kreisberg, & Ideker, 2015; Hippo et al., 2002; Rapin et al., 2014). The large number of 

context-specific alternative promoters found in this study suggests that promoters might be 

among the unknown driving forces behind the transcriptional changes in cancer. To investigate 

this hypothesis, we searched for promoters that show a change in activity in cancer compared 

to normal tissue using adjacent samples from the PCAWG data set and additionally 1,831 

samples from GTEx (v6.p1) (The GTEx Consortium, 2017) (Fig. 3a). For the majority of tumor 

types the most similar tissue is indeed the tumor tissue (Fig. 3b, Supplementary Fig. 3a). 

Interestingly, lung squamous cell carcinomas and bladder carcinomas are most similar to 

normal skin tissue, reflecting the cell or origin for these tumors (Cancer Genome Atlas 

Research, 2014). Using these matched tissue groups, we then identified cancer-associated 

alternative promoters. For each tissue we find between 93 and 226 promoters that are 

differentially regulated in cancer compared to normal (Fig. 3c, Supplementary Fig. 3b, d). The 
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change in expression due to cancer-associated promoters is largely independent from the other 

promoters for each gene, confirming that alternative promoters indeed act as independent 

regulatory units which can specifically be deregulated in cancer (Fig. 3d, Supplementary Fig. 

3c, e). Our analysis recapitulates promoter switching events that have been associated with 

cancer, amongst others for MEST (Fig. 3e, f) (Nakanishi et al., 2004) and MET (Gherardi et al., 

2012). However, the vast majority of events are novel and have not been described before. 

Among the genes that show alternative promoter activation in cancer are known cancer 

biomarkers such as SEPT9 (deVos et al., 2009) or TNFRSF19 (TROY) (Paulino et al., 2010), 

oncogenes and tumor suppressors such as IKZF1 (Boer et al., 2016) which has been reported 

to be involved in human B-cell acute lymphoblastic leukemia, the well described proto-

oncogene CTNNB1 (β-catenin) (Lazar et al., 2008), BID (Supplementary Fig. 3f) (Lee et al., 

2004), a pro-apoptotic target gene of p53, or MLLT1 (Perlman et al., 2015), which has been 

associated with childhood kidney cancer (Supplementary Fig. 3g). To understand the 

underlying regulatory changes leading to the use of cancer associated promoters, we performed 

a de-novo motif analysis. Across all cancer types we find several enriched transcription factor 

motifs (Supplementary Fig. 3l-q), suggesting that changes in the activity of promoters are 

partially driven through a change in the regulatory networks.  

Interestingly, alternative promoters also differ between closely related tumor types from the 

same tissue. For the 2 different kidney tumor types we find a large number of genes that only 

show minor changes in overall gene expression, but where alternative promoter usage causes 

a significant, tumor-type-specific change in isoform expression (Fig. 3g, 3h, Supplementary 

Fig. 3h, i). We have also identified several genes, such as STAU2, that use distinct alternative 

promoters across the clinical subtypes of breast cancer (Supplementary Fig. 3r, s, t). While 

some promoters were specifically deregulated in single tumor types, we observed that a number 

of alternative promoters were deregulated in multiple tumor types from different tissues 

compared to their matched normal counterpart. Overall, we find 204 such promoters, several 

of which belong to known oncogenes and tumor suppressors (Futreal et al., 2004) (Fig. 3i). 

Among the known cancer-associated genes for which we find differentially activated promoters 

are the previously described MET gene (Fig. 3j), and genes for which usage of an alternative 

promoter in cancer has not been described such as LSP1, or SPOP (Fig. 3k). Again, we find 

that the choice of promoters changes the 5’UTR, CDS, and 3’UTR sequences, indicating that 

transcriptional changes in cancer are translated into functional differences in the gene product 

(Supplementary Fig. 3j, k). Together, our analysis highlights that alternative promoter usage 

provides a major source of transcript diversity affecting known cancer genes and new 

candidates, demonstrating that promoters are a key contributor to the deregulated cancer 

transcriptome, often independently from an overall change in gene expression.  

Alternative promoter usage of HER2 is associated with survival 

Gene expression has been used as a biomarker to predict cancer patient survival (Director's 

Challenge Consortium for the Molecular Classification of Lung et al., 2008; Finak et al., 2008; 

Salazar et al., 2011). As our data suggests that alternative promoters are often independently 

regulated, we hypothesized that promoter activity in certain cases might provide a more 

accurate predictor for genes that use multiple promoters. To test this hypothesis, we 

investigated the association of promoter activity with survival estimates using TCGA data for 

cancer census genes that use alternative promoters in cancer. Indeed, we find a number of genes 

that show a significant association with survival for a specific promoter. Most strikingly, we 
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find that a minor promoter of ERBB2 (also known as HER2) in lower grade glioma patients is 

predictive of poor outcome, whereas the major promoter shows no significant association with 

patient survival (Fig. 3l, m). High gene expression levels of ERBB2 have been associated with 

aggressive tumor types (Slamon et al., 1987). Our data suggests that such associations can be 

promoter specific, indicating that survival is either associated with the underlying regulatory 

changes or with the differential usage of gene isoforms determined through the choice of 

promoters. Thus, the level of promoter activity can potentially be more specific as a biomarker 

compared to gene expression, demonstrating the promise to further explore their role in cancer. 

Patterns of noncoding promoter mutations in cancer 

Accumulation of somatic mutations plays a central role in cancer not only by affecting protein 

coding genes, also by disrupting noncoding gene regulatory elements (Kandoth et al., 2013; 

Rheinbay, Parasuraman, et al., 2017; Weinhold, Jacobsen, Schultz, Sander, & Lee, 2014). It 

was found that mutational patterns are highly heterogeneous (Lawrence et al., 2013; Maruvka 

et al., 2017). To better understand which properties of promoters are associated with 

accumulation of somatic (single nucleotide) mutations in cancer, we investigated the whole 

genome sequencing data for all patients with matched RNA-Seq data in the PCAWG cohort. 

We find that promoters of genes with a less complex promoter architecture show higher number 

of mutations (Fig. 4a). These genes are more often non-coding (Fig. 4b) and within regions 

associated with later replication timing (Fig. 4c), confirming that distinct groups of promoters 

are exposed to different mutational patterns. Besides these genomic properties of promoters, 

we also find that their activity and the tissue of origin influence the observed mutation burden: 

major promoters show the highest enrichment of mutations in a window 200bp upstream of the 

TSS, whereas minor and inactive promoters show lower levels of mutations (Fig. 4d, 

Supplementary Fig. 4a). In agreement with previous findings (Sabarinathan, Mularoni, Deu-

Pons, Gonzalez-Perez, & Lopez-Bigas, 2016), Skin-Melanoma displayed the highest variation 

of mutation rates (C>T) due to inefficiency of nucleotide excision repair (NER) in fixing 

lesions induced by UV light when a transcription factor is bound upstream TSS (Supplementary 

Fig. 4b, c). We observe similar mutational patterns for lung adenocarcinomas and lung 

squamous cell carcinomas, all of which are cancer types affected by smoking related 

carcinogens where NER plays a central role in DNA repair (Supplementary Fig. 4a). The 

cancer type that shows the strongest deviation from this pattern is colorectal adenocarcinoma 

(Fig. 4e, Supplementary Fig. 4d, e). These data suggest an intricate relation between promoter 

activation, their genomic properties, and cancer-specific mutational processes that affect the 

observed mutation burden. Understanding these variations in mutation heterogeneity has 

implications for identifying driver mutations by determining background mutation rates 

accurately. A small set of driver promoter mutations (TERT, PAX5, WDR74, HES1, IFI44L, 

RFTN1, and POLR3E) has been identified in the PCAWG cohort, and it is expected that the 

number increases with higher sample number (Rheinbay, Getz, & PCAWG-2-5-9-14, 2017). 

As RNA-Seq data is among the most widely generated data, our approach will provide a 

powerful tool to better understand the relation between somatic mutations, promoter activity 

and regulatory drivers in cancer. 

DISCUSSION 

Promoters are the key elements that link gene regulation with expression. Studies using ChIP-

Seq and CAGE tag data have demonstrated a role of alternative promoters in cancer 

(Kaczkowski et al., 2016; Muratani et al., 2014; Qamra et al., 2017), yet due to limitations in 
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sample numbers for such technologies, the landscape of active promoters and their variation 

across cancers and patients has not been described. By analyzing more than 1,200 RNA-Seq 

samples, we provide the largest survey of promoter activity in human tissues and cancers, 

confirming known examples, and identifying many novel alternative promoters that are 

associated with cancer. The scale of these data allows us to describe for the first time patient-

to-patient variation in promoter usage. Our analysis suggests that the choice of promoter is 

tightly regulated, has a significant influence on the cancer transcriptome, and indicates that 

promoters possibly contribute to the cellular transformation of cancer. 

By using RNA-Seq data, our approach enables the analysis of promoter activity in the PCAWG 

cohort without the need for additional experiments. Similar approaches have been applied to 

normal tissue expression (Reyes et al. 2018), and embryonic stem cells (Feng et al., 2016). 

Overall these estimates are highly accurate although we observe an increased uncertainty for 

some promoters due to use of short read sequencing data. In particular, we find that 

transcription start sites that lie within internal exons or that overlap with splice acceptor sites 

are difficult to accurately identify. Information from the 3’ end of transcripts can be used to 

predict their activity, however this approach heavily depends on accurate annotations and high 

quality isoform abundance estimates, and a high level of uncertainty remains (Teng et al., 2016). 

Both CAGE tag data and ChIP-Seq data suggest that these “internal” TSSs are much less used 

compared to the remaining TSSs, therefore our analysis still captures an accurate and 

comprehensive view of the promoter landscape in cancer, enabling the analysis of patient-

specific promoter activity on a much larger scale compared to other genomic assays.  

It is known that alternative promoters contribute to isoform diversity (The FANTOM 

Consortium, 2014; Reyes & Huber, 2017), yet only few such events have been described in a 

disease context. In cancer, genes such as MET (Muratani et al., 2014), TP73 (Deyoung & 

Ellisen, 2007), or ALK have been reported to use alternative promoters (Wiesner et al., 2015). 

By analyzing the role of alternative promoters in this large scale cohort we demonstrate that 

many more cancer-associated genes use alternative promoters, and that their activity 

systematically alters the cancer transcriptome across all major cancer types. Our results suggest 

that transcriptional regulation, possibly involving sequence specific transcription factors and 

epigenetic modifiers, provides a robust way to pre-transcriptionally determine isoform 

expression in tumors. The choice of promoter often has an impact on the coding sequence, 

suggesting that a switch in promoters will alter protein isoforms or result in noncoding 

transcription. Interestingly, we also observe a frequent change in the 3’ UTR sequence that 

contains regulatory elements such as miRNA binding sites (Lai, 2002), indicating a possible 

relation between pre- and post-transcriptional regulation. Alternative promoters often show 

lower levels of activity, and the functional consequence of such transcripts remains to be 

validated. However, we also find a number of promoter switching events that dramatically 

change the gene product. Such alternative promoters are frequently found in cancer, most of 

which are unknown, demonstrating that this aspect has a large potential to be further explored. 

In summary, our study demonstrates the pervasive role of alternative promoters in context-

specific isoform expression, regulation of isoform diversity, and highlights how patient-to-

patient variation in promoter activation is possibly linked to pathological properties in cancer. 

We provide a comprehensive catalog of active promoters and their expression pattern across 

27 cancer types that will be a highly useful resource to understanding the roles of gene 

regulation and noncoding mutations in cancer. Tissue and cancer-specific promoters could also 
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become highly relevant as sensors and tumor-restricted activators for immunotherapy and the 

development of novel cancer drugs (Nissim et al., 2017), and it will enable accurate designs of 

genome wide functional screens (Klann et al., 2017; Marx, 2017). As the vast majority of 

alternative promoters in cancer has not been described before, our study opens numerous 

possibilities to explore their contribution to tumor formation, diagnosis, or treatment. 
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METHODS 

Promoter activity quantification 

In this study, we used Ensembl v75 annotation to determine the set of promoters. We examined 

the first exon of each TSS and combined the TSS’s with overlapping first exons to obtain the 

set of promoters. We used these promoters in the downstream analysis to quantify promoter 

activities. Since a single promoter can be composed of multiple TSSs, we choose the TSS with 

the highest activity in majority of the samples as the TSS of the promoter. In case of a tie, the 

5’ most TSS is chosen as the TSS of the promoter considered.  

To quantify the activity of each promoter, we used the split reads aligning into the first intron 

of each promoter. Reads that connect the first exon with downstream exons were first 

normalized by reads of splice acceptor sites (indicative of usage of this exon as internal exon, 

not as first exon). We then standardized the read counts by the observed mean read count in 

each sample (further referred to as promoter activity estimates). To obtain gene expression 

estimates, we summed up the activities of each promoter belonging to each gene. We 

normalized each promoter’s activity by the gene expression to obtain relative promoter 

activities. 

After quantifying the promoter activities for each sample, we divided the promoter set into 3 

different categories depending on their activity, namely, major, minor and inactive promoters. 

We mark the promoters with the highest average activity for each gene across the sample cohort 

as major promoters. Promoters with average activities smaller or less than 0.5 constitute 

inactive promoters whereas the other promoters of the gene constitute minor promoters.  

ChIP-Seq analysis 

To assess the performance of our promoter activity quantification approach, we compared 

estimated promoter activities from RNA-Seq data with ChIP-seq data obtained from ENCODE 

project cell lines. We examined the region spanning 2000 bps upstream and downstream of 

each promoter for H3K4me3 histone modification signals. We used 59 cell lines from different 

tissue types that have H3K4me3 data available. 

Alternative promoter analysis 

We selected the 1500 promoters and genes with the largest variance across the PCAWG data 

cohort to demonstrate the tissue specific behavior of promoters and genes alike with a T-SNE 

plot. The “tsne” R package was used to generate T-SNE plots.  

We removed transcription starts of exons that overlapped splice acceptors sites from this 

analysis as we found that their activity is less reproducibly quantified compared to first exons 

that do not contain splice acceptor sites. We identified promoters with context dependent 

activity by comparing the relative activity profiles across different conditions using a t-test. We 

selected the top 5000 promoters with Benjamini-Hochberg adjusted p-values of less than 0.005 

as candidates. We further required each promoter to have at least 2 fold change in promoter 

activity and less than 1.5 fold change in gene expression across different conditions. To filter 

for inactive genes, we forced a gene expression threshold of 3 and promoter activity threshold 

of 2 in both conditions. Finally, we required each candidate gene to have at least 2 active 

promoters in both conditions. We used this approach to identify the tissue specific alternative 

promoters by comparing samples for each tumor type against all other samples. 
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Identification of isoform switch events 

We find the major transcript of each gene in each tumor type using the mean activity across all 

tumor samples (tumor-specific major transcript). Additionally, we find the major transcript 

based on the pan-cancer mean activity (pan-cancer major transcript). For each tumor type, we 

identify the changes in major transcript by comparing tumor specific and pan-cancer major 

transcripts. A change in major transcript can occur via 2 different mechanisms: either the new 

tumor specific major transcript is regulated by a different promoter than the pan-cancer major 

transcript (i.e. a promoter switch event), or the promoter is still the same as the pan-cancer 

major transcript’s promoter but only the major transcript of this promoter is changed (i.e. a 

splicing event). For each tumor type, we count the number of major transcript changes for both 

of these mechanisms. Finally, we sum up the number of times the major transcript change has 

occurred due to splicing for all tumor types. Similarly, we sum up the number of times major 

transcript change has occurred due to promoter switch for all tumor types. 

5’UTR, CDS, and 3’UTR analysis 

To understand the functional effect of alternative promoters, we compared the major and 

alternative promoters for the samples of each tumor type. We determined the major promoters 

by the mean promoter activity across the samples of the corresponding tumor type. Then, we 

identify the regions unique to the major promoter, alternative promoter and the regions that are 

common in both. For each of these regions, we looked at the Ensembl annotations to determine 

the functional composition, i.e. 5’ untranslated region (5’UTR), exon, coding sequence (CDS) 

and 3’ untranslated region (3’UTR). We determined for each region not only whether we 

observe these functional regions, but also how much of total region is observed. To obtain the 

pan-cancer overview, we considered the set of unique promoter changes occurring across all 

the tumor types.  

Motif analysis 

To uncover the putative transcription factors that might be involved in driving the alternative 

promoter events, we performed de-novo motif analysis using the RSAT – Metazoa webserver 

(Thomas-Chollier, Darbo, et al., 2012; Thomas-Chollier, Herrmann, et al., 2012). We provided 

the 200bs upstream region of the transcription start sites of alternative promoters as target 

sequence, whereas as the reference set we used the genes with at least 2 active non-internal 

promoters. We identified the enriched transcription factor motifs by using RSAT webserver’s 

comparison tool with the 2018 JASPAR transcription factor DNA-binding preferences 

database (Khan et al., 2018). 

Identification of tumor specific and pan-cancer cancer-associated promoters 

In order to identify cancer associated promoters, we downloaded normal samples from the 

GTEx project in addition to the normal samples from PCAWG. In total, we obtained 3233 

normal samples from GTEx across a wide variety of tissue types and processed the same way 

as PCAWG samples to obtain promoter activities. We removed the batch effect that might 

originate from using 2 different data sets by using the “removeBatchEffect” function from 

‘limma’ R package. We clustered the combined normal samples by hierarchical clustering 

where the distance measure was 1 – correlation of non-internal promoter activity. For 

downstream analysis, we removed internal promoters (see above) and used tumor types with 

at least 15 normal and tumor samples each for tumor type specific analysis. 
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For the tumor type specific analysis, we used a generalized linear model to obtain p-values for 

each promoter based on the relative promoter activity. We adjusted the p-values using the 

Benjamini-Hochberg method and selected the top 5000 promoters with adjusted p-values less 

than the background p-value. The background p-value is calculated by using all the promoters 

without any expression filtering (relative, absolute or fold change). For candidate promoters, 

we enforced at least 2 fold promoter activity change and at most 1.5 fold gene expression 

change. Additionally, we required each gene to have at least 2 active promoters (absolute 

promoter activity greater than 0.5 and relative activity greater than 0.1) and at least a gene 

expression of 3.  

Similar to the tumor specific analysis, we examined the promoters that show context dependent 

activity pan-cancer wide. We used a generalized linear model with cancer/normal states as 

explanatory variables and used the same expression based filters to remove false candidates.  

The generalized linear model analysis is performed by using the ‘limma’ R package 

Mutation burden analysis 

To calculate the noncoding mutation burden at each promoters, we considered only the single 

nucleotide variants (SNVs) for donors with available RNA-Seq data and removed the SNVs 

located at exons of each gene (Synapse ID: syn7364923). Then, for each sample, we counted 

the number of noncoding SNVs falling in the 200bp window upstream the TSS of each 

promoter as the mutation burden.  

 

ACKNOWLEDGEMENT 

This work is funded by the Agency for Science, Technology and Research (A∗STAR), 

Singapore. The Genotype-Tissue Expression (GTEx) Project was supported by the Common 

Fund of the Office of the Director of the National Institutes of Health, and by NCI, NHGRI, 

NHLBI, NIDA, NIMH, and NINDS. The data used for the analyses described in this 

manuscript were obtained from the dbGaP accession number phs000424.v6.p1 on 04/09/2015. 

 

 

 

  

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 2, 2018. ; https://doi.org/10.1101/176487doi: bioRxiv preprint 

https://doi.org/10.1101/176487
http://creativecommons.org/licenses/by-nc-nd/4.0/


REFERENCES 

Ayoubi, T. A., & Van De Ven, W. J. (1996). Regulation of gene expression by alternative 

promoters. FASEB J, 10(4), 453-460.  

Bernstein, B. E., Humphrey, E. L., Erlich, R. L., Schneider, R., Bouman, P., Liu, J. S., . . . 

Schreiber, S. L. (2002). Methylation of histone H3 Lys 4 in coding regions of active 

genes. Proc Natl Acad Sci U S A, 99(13), 8695-8700. doi:10.1073/pnas.082249499 

Boer, J. M., van der Veer, A., Rizopoulos, D., Fiocco, M., Sonneveld, E., de Groot-

Kruseman, H. A., . . . den Boer, M. L. (2016). Prognostic value of rare IKZF1 

deletion in childhood B-cell precursor acute lymphoblastic leukemia: an international 

collaborative study. Leukemia, 30(1), 32-38. doi:10.1038/leu.2015.199 

Calabrese, C., Davidson, N. R., Fonseca, N. A., He, Y., Kahles, A., Lehmann, K.-V., . . . 

Zhang, Z. (2018). Genomic basis for RNA alterations revealed by whole-genome 

analyses of 27 cancer types. bioRxiv. doi:10.1101/183889 

Cancer Genome Atlas, N. (2012). Comprehensive molecular portraits of human breast 

tumours. Nature, 490(7418), 61-70. doi:10.1038/nature11412 

Cancer Genome Atlas Research, N. (2011). Integrated genomic analyses of ovarian 

carcinoma. Nature, 474(7353), 609-615. doi:10.1038/nature10166 

Cancer Genome Atlas Research, N. (2012). Comprehensive genomic characterization of 

squamous cell lung cancers. Nature, 489(7417), 519-525. doi:10.1038/nature11404 

Cancer Genome Atlas Research, N. (2014). Comprehensive molecular characterization of 

urothelial bladder carcinoma. Nature, 507(7492), 315-322. doi:10.1038/nature12965 

Carninci, P., Sandelin, A., Lenhard, B., Katayama, S., Shimokawa, K., Ponjavic, J., . . . 

Hayashizaki, Y. (2006). Genome-wide analysis of mammalian promoter architecture 

and evolution. Nat Genet, 38(6), 626-635. doi:10.1038/ng1789 

Chi, P., Allis, C. D., & Wang, G. G. (2010). Covalent histone modifications--miswritten, 

misinterpreted and mis-erased in human cancers. Nat Rev Cancer, 10(7), 457-469. 

doi:10.1038/nrc2876 

deVos, T., Tetzner, R., Model, F., Weiss, G., Schuster, M., Distler, J., . . . Lofton-Day, C. 

(2009). Circulating methylated SEPT9 DNA in plasma is a biomarker for colorectal 

cancer. Clin Chem, 55(7), 1337-1346. doi:10.1373/clinchem.2008.115808 

Deyoung, M. P., & Ellisen, L. W. (2007). p63 and p73 in human cancer: defining the 

network. Oncogene, 26(36), 5169-5183. doi:10.1038/sj.onc.1210337 

Director's Challenge Consortium for the Molecular Classification of Lung, A., Shedden, K., 

Taylor, J. M., Enkemann, S. A., Tsao, M. S., Yeatman, T. J., . . . Beer, D. G. (2008). 

Gene expression-based survival prediction in lung adenocarcinoma: a multi-site, 

blinded validation study. Nat Med, 14(8), 822-827. doi:10.1038/nm.1790 

The ENCODE Project Consortium, (2012). An integrated encyclopedia of DNA elements in 

the human genome. Nature, 489(7414), 57-74. doi:10.1038/nature11247 

The FANTOM Consortium, the, R. P., Clst, Forrest, A. R., Kawaji, H., Rehli, M., . . . 

Hayashizaki, Y. (2014). A promoter-level mammalian expression atlas. Nature, 

507(7493), 462-470. doi:10.1038/nature13182 

Fay, M. J., Longo, K. A., Karathanasis, G. A., Shope, D. M., Mandernach, C. J., Leong, J. 

R., . . . Husain, A. (2003). Analysis of CUL-5 expression in breast epithelial cells, 

breast cancer cell lines, normal tissues and tumor tissues. Mol Cancer, 2, 40. 

doi:10.1186/1476-4598-2-40 

Feng, G., Tong, M., Xia, B., Luo, G. Z., Wang, M., Xie, D., . . . Wang, X. J. (2016). 

Ubiquitously expressed genes participate in cell-specific functions via alternative 

promoter usage. EMBO Rep, 17(9), 1304-1313. doi:10.15252/embr.201541476 

Finak, G., Bertos, N., Pepin, F., Sadekova, S., Souleimanova, M., Zhao, H., . . . Park, M. 

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 2, 2018. ; https://doi.org/10.1101/176487doi: bioRxiv preprint 

https://doi.org/10.1101/176487
http://creativecommons.org/licenses/by-nc-nd/4.0/


(2008). Stromal gene expression predicts clinical outcome in breast cancer. Nat Med, 

14(5), 518-527. doi:10.1038/nm1764 

Frith, M. C., Valen, E., Krogh, A., Hayashizaki, Y., Carninci, P., & Sandelin, A. (2008). A 

code for transcription initiation in mammalian genomes. Genome Res, 18(1), 1-12. 

doi:10.1101/gr.6831208 

Futreal, P. A., Coin, L., Marshall, M., Down, T., Hubbard, T., Wooster, R., . . . Stratton, M. 

R. (2004). A census of human cancer genes. Nat Rev Cancer, 4(3), 177-183. 

doi:10.1038/nrc1299 

Gerstung, M., Pellagatti, A., Malcovati, L., Giagounidis, A., Porta, M. G., Jadersten, M., . . . 

Boultwood, J. (2015). Combining gene mutation with gene expression data improves 

outcome prediction in myelodysplastic syndromes. Nat Commun, 6, 5901. 

doi:10.1038/ncomms6901 

Gherardi, E., Birchmeier, W., Birchmeier, C., & Vande Woude, G. (2012). Targeting MET in 

cancer: rationale and progress. Nat Rev Cancer, 12(2), 89-103. doi:10.1038/nrc3205 

Gross, A. M., Kreisberg, J. F., & Ideker, T. (2015). Analysis of Matched Tumor and Normal 

Profiles Reveals Common Transcriptional and Epigenetic Signals Shared across 

Cancer Types. PLoS One, 10(11), e0142618. doi:10.1371/journal.pone.0142618 

The GTEx Consortium, Laboratory, D. A., Coordinating Center -Analysis Working, G., 

Statistical Methods groups-Analysis Working, G., Enhancing, G. g., Fund, N. I. H. 

C., . . . Montgomery, S. B. (2017). Genetic effects on gene expression across human 

tissues. Nature, 550(7675), 204-213. doi:10.1038/nature24277 

Hashimoto, K., Suzuki, A. M., Dos Santos, A., Desterke, C., Collino, A., Ghisletti, S., . . . 

Carninci, P. (2015). CAGE profiling of ncRNAs in hepatocellular carcinoma reveals 

widespread activation of retroviral LTR promoters in virus-induced tumors. Genome 

Res, 25(12), 1812-1824. doi:10.1101/gr.191031.115 

Hippo, Y., Taniguchi, H., Tsutsumi, S., Machida, N., Chong, J. M., Fukayama, M., . . . 

Aburatani, H. (2002). Global gene expression analysis of gastric cancer by 

oligonucleotide microarrays. Cancer Res, 62(1), 233-240.  

Kaczkowski, B., Tanaka, Y., Kawaji, H., Sandelin, A., Andersson, R., Itoh, M., . . . 

Consortium, F. (2016). Transcriptome Analysis of Recurrently Deregulated Genes 

across Multiple Cancers Identifies New Pan-Cancer Biomarkers. Cancer Res, 76(2), 

216-226. doi:10.1158/0008-5472.CAN-15-0484 

Kandoth, C., McLellan, M. D., Vandin, F., Ye, K., Niu, B., Lu, C., . . . Ding, L. (2013). 

Mutational landscape and significance across 12 major cancer types. Nature, 

502(7471), 333-339. doi:10.1038/nature12634 

Khan, A., Fornes, O., Stigliani, A., Gheorghe, M., Castro-Mondragon, J. A., van der Lee, 

R., . . . Mathelier, A. (2018). JASPAR 2018: update of the open-access database of 

transcription factor binding profiles and its web framework. Nucleic Acids Res, 

46(D1), D260-D266. doi:10.1093/nar/gkx1126 

Khurana, E., Fu, Y., Chakravarty, D., Demichelis, F., Rubin, M. A., & Gerstein, M. (2016). 

Role of non-coding sequence variants in cancer. Nat Rev Genet, 17(2), 93-108. 

doi:10.1038/nrg.2015.17 

Klann, T. S., Black, J. B., Chellappan, M., Safi, A., Song, L., Hilton, I. B., . . . Gersbach, C. 

A. (2017). CRISPR-Cas9 epigenome editing enables high-throughput screening for 

functional regulatory elements in the human genome. Nat Biotechnol, 35(6), 561-568. 

doi:10.1038/nbt.3853 

Kodzius, R., Kojima, M., Nishiyori, H., Nakamura, M., Fukuda, S., Tagami, M., . . . 

Carninci, P. (2006). CAGE: cap analysis of gene expression. Nat Methods, 3(3), 211-

222. doi:10.1038/nmeth0306-211 

Lai, E. C. (2002). Micro RNAs are complementary to 3' UTR sequence motifs that mediate 

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 2, 2018. ; https://doi.org/10.1101/176487doi: bioRxiv preprint 

https://doi.org/10.1101/176487
http://creativecommons.org/licenses/by-nc-nd/4.0/


negative post-transcriptional regulation. Nat Genet, 30(4), 363-364. 

doi:10.1038/ng865 

Lawrence, M. S., Stojanov, P., Polak, P., Kryukov, G. V., Cibulskis, K., Sivachenko, A., . . . 

Getz, G. (2013). Mutational heterogeneity in cancer and the search for new cancer-

associated genes. Nature, 499(7457), 214-218. doi:10.1038/nature12213 

Lazar, A. J., Tuvin, D., Hajibashi, S., Habeeb, S., Bolshakov, S., Mayordomo-Aranda, E., . . . 

Lev, D. (2008). Specific mutations in the beta-catenin gene (CTNNB1) correlate with 

local recurrence in sporadic desmoid tumors. Am J Pathol, 173(5), 1518-1527. 

doi:10.2353/ajpath.2008.080475 

Lee, J. H., Soung, Y. H., Lee, J. W., Park, W. S., Kim, S. Y., Cho, Y. G., . . . Lee, J. Y. 

(2004). Inactivating mutation of the pro-apoptotic gene BID in gastric cancer. J 

Pathol, 202(4), 439-445. doi:10.1002/path.1532 

Lizio, M., Harshbarger, J., Shimoji, H., Severin, J., Kasukawa, T., Sahin, S., . . . consortium, 

F. (2015). Gateways to the FANTOM5 promoter level mammalian expression atlas. 

Genome Biol, 16, 22. doi:10.1186/s13059-014-0560-6 

Maruvka, Y. E., Mouw, K. W., Karlic, R., Parasuraman, P., Kamburov, A., Polak, P., . . . 

Getz, G. (2017). Analysis of somatic microsatellite indels identifies driver events in 

human tumors. Nat Biotechnol, 35(10), 951-959. doi:10.1038/nbt.3966 

Marx, V. (2017). Choosing CRISPR-based screens in cancer. Nat Methods, 14(4), 343-346. 

doi:10.1038/nmeth.4232 

Muratani, M., Deng, N., Ooi, W. F., Lin, S. J., Xing, M., Xu, C., . . . Tan, P. (2014). 

Nanoscale chromatin profiling of gastric adenocarcinoma reveals cancer-associated 

cryptic promoters and somatically acquired regulatory elements. Nat Commun, 5, 

4361. doi:10.1038/ncomms5361 

Nakanishi, H., Suda, T., Katoh, M., Watanabe, A., Igishi, T., Kodani, M., . . . Shimizu, E. 

(2004). Loss of imprinting of PEG1/MEST in lung cancer cell lines. Oncol Rep, 

12(6), 1273-1278.  

Nissim, L., Wu, M. R., Pery, E., Binder-Nissim, A., Suzuki, H. I., Stupp, D., . . . Lu, T. K. 

(2017). Synthetic RNA-Based Immunomodulatory Gene Circuits for Cancer 

Immunotherapy. Cell, 171(5), 1138-1150 e1115. doi:10.1016/j.cell.2017.09.049 

Pal, S., Gupta, R., Kim, H., Wickramasinghe, P., Baubet, V., Showe, L. C., . . . Davuluri, R. 

V. (2011). Alternative transcription exceeds alternative splicing in generating the 

transcriptome diversity of cerebellar development. Genome Res, 21(8), 1260-1272. 

doi:10.1101/gr.120535.111 

Paulino, V. M., Yang, Z., Kloss, J., Ennis, M. J., Armstrong, B. A., Loftus, J. C., & Tran, N. 

L. (2010). TROY (TNFRSF19) is overexpressed in advanced glial tumors and 

promotes glioblastoma cell invasion via Pyk2-Rac1 signaling. Mol Cancer Res, 8(11), 

1558-1567. doi:10.1158/1541-7786.MCR-10-0334 

Perlman, E. J., Gadd, S., Arold, S. T., Radhakrishnan, A., Gerhard, D. S., Jennings, L., . . . 

Smith, M. A. (2015). MLLT1 YEATS domain mutations in clinically distinctive 

Favourable Histology Wilms tumours. Nat Commun, 6, 10013. 

doi:10.1038/ncomms10013 

Qamra, A., Xing, M., Padmanabhan, N., Kwok, J. J. T., Zhang, S., Xu, C., . . . Tan, P. (2017). 

Epigenomic Promoter Alterations Amplify Gene Isoform and Immunogenic Diversity 

in Gastric Adenocarcinoma. Cancer Discov, 7(6), 630-651. doi:10.1158/2159-

8290.CD-16-1022 

Rapin, N., Bagger, F. O., Jendholm, J., Mora-Jensen, H., Krogh, A., Kohlmann, A., . . . 

Porse, B. T. (2014). Comparing cancer vs normal gene expression profiles identifies 

new disease entities and common transcriptional programs in AML patients. Blood, 

123(6), 894-904. doi:10.1182/blood-2013-02-485771 

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 2, 2018. ; https://doi.org/10.1101/176487doi: bioRxiv preprint 

https://doi.org/10.1101/176487
http://creativecommons.org/licenses/by-nc-nd/4.0/


Reyes, A., & Huber, W. (2017). Alternative start and termination sites of transcription drive 

most transcript isoform differences across human tissues. Nucleic Acids Res. 

doi:10.1093/nar/gkx1165 

Rheinbay, E., Getz, G., & PCAWG-2-5-9-14. (2017). Discovery of coding and non-coding 

driver events in >2,700 whole cancer genomes. (unpublished).  

Rheinbay, E., Parasuraman, P., Grimsby, J., Tiao, G., Engreitz, J. M., Kim, J., . . . Getz, G. 

(2017). Recurrent and functional regulatory mutations in breast cancer. Nature, 

547(7661), 55-60. doi:10.1038/nature22992 

Sabarinathan, R., Mularoni, L., Deu-Pons, J., Gonzalez-Perez, A., & Lopez-Bigas, N. (2016). 

Nucleotide excision repair is impaired by binding of transcription factors to DNA. 

Nature, 532(7598), 264-267. doi:10.1038/nature17661 

Salazar, R., Roepman, P., Capella, G., Moreno, V., Simon, I., Dreezen, C., . . . Tollenaar, R. 

(2011). Gene expression signature to improve prognosis prediction of stage II and III 

colorectal cancer. J Clin Oncol, 29(1), 17-24. doi:10.1200/JCO.2010.30.1077 

Sandelin, A., Carninci, P., Lenhard, B., Ponjavic, J., Hayashizaki, Y., & Hume, D. A. (2007). 

Mammalian RNA polymerase II core promoters: insights from genome-wide studies. 

Nat Rev Genet, 8(6), 424-436. doi:10.1038/nrg2026 

Santos-Rosa, H., Schneider, R., Bannister, A. J., Sherriff, J., Bernstein, B. E., Emre, N. 

C., . . . Kouzarides, T. (2002). Active genes are tri-methylated at K4 of histone H3. 

Nature, 419(6905), 407-411. doi:10.1038/nature01080 

Sharma, S., Kelly, T. K., & Jones, P. A. (2010). Epigenetics in cancer. Carcinogenesis, 31(1), 

27-36. doi:10.1093/carcin/bgp220 

Slamon, D. J., Clark, G. M., Wong, S. G., Levin, W. J., Ullrich, A., & McGuire, W. L. 

(1987). Human breast cancer: correlation of relapse and survival with amplification of 

the HER-2/neu oncogene. Science, 235(4785), 177-182.  

Takahashi, H., Kato, S., Murata, M., & Carninci, P. (2012). CAGE (cap analysis of gene 

expression): a protocol for the detection of promoter and transcriptional networks. 

Methods Mol Biol, 786, 181-200. doi:10.1007/978-1-61779-292-2_11 

Teng, M., Love, M. I., Davis, C. A., Djebali, S., Dobin, A., Graveley, B. R., . . . Irizarry, R. 

A. (2016). A benchmark for RNA-seq quantification pipelines. Genome Biol, 17, 74. 

doi:10.1186/s13059-016-0940-1 

Thomas-Chollier, M., Darbo, E., Herrmann, C., Defrance, M., Thieffry, D., & van Helden, J. 

(2012). A complete workflow for the analysis of full-size ChIP-seq (and similar) data 

sets using peak-motifs. Nat Protoc, 7(8), 1551-1568. doi:10.1038/nprot.2012.088 

Thomas-Chollier, M., Herrmann, C., Defrance, M., Sand, O., Thieffry, D., & van Helden, J. 

(2012). RSAT peak-motifs: motif analysis in full-size ChIP-seq datasets. Nucleic 

Acids Res, 40(4), e31. doi:10.1093/nar/gkr1104 

Vogelstein, B., Papadopoulos, N., Velculescu, V. E., Zhou, S., Diaz, L. A., Jr., & Kinzler, K. 

W. (2013). Cancer genome landscapes. Science, 339(6127), 1546-1558. 

doi:10.1126/science.1235122 

Weinhold, N., Jacobsen, A., Schultz, N., Sander, C., & Lee, W. (2014). Genome-wide 

analysis of noncoding regulatory mutations in cancer. Nat Genet, 46(11), 1160-1165. 

doi:10.1038/ng.3101 

Wiesner, T., Lee, W., Obenauf, A. C., Ran, L., Murali, R., Zhang, Q. F., . . . Chi, P. (2015). 

Alternative transcription initiation leads to expression of a novel ALK isoform in 

cancer. Nature, 526(7573), 453-457. doi:10.1038/nature15258 

Yates, A., Akanni, W., Amode, M. R., Barrell, D., Billis, K., Carvalho-Silva, D., . . . Flicek, 

P. (2016). Ensembl 2016. Nucleic Acids Res, 44(D1), D710-716. 

doi:10.1093/nar/gkv1157 

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 2, 2018. ; https://doi.org/10.1101/176487doi: bioRxiv preprint 

https://doi.org/10.1101/176487
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure Legends 

Figure 1: Promoter activity estimation using RNA-Seq data and comparison with ChIP-Seq 

and CAGE data. (a) Schematic representation of promoter activity quantification using RNA-

Seq data. Isoforms which are controlled by the same promoter are grouped and promoter 

activity is estimated as the total expression of these grouped isoforms. (b) Categorization of 

annotated promoters based on the average activity estimate across all samples. Major: most 

active promoter for a gene; minor: active promoter, lower activity than major promoter; 

inactive: no activity detected (threshold: 0.5). (c) Major/minor promoter proportions across 

TSSs ranked by position (5’ to 3’), based on multi promoter genes with at least one active 

promoter. (d) Mean H3K4me3 ChIP-Seq signal across 59 ENCODE cell lines for the pan-

cancer major (green), minor (red), and inactive promoters (purple) at the first TSS. (e) 

Percentage CAGE tag support for inactive, low, and high activity promoters. (f) Correlation of 

promoter activity estimates and H3k4me3 ChIP-Seq signal for lymphoid, liver, kidney, and 

colorectal ENCODE cell lines and PCAWG samples. PCAWG samples show higher 

correlation with ChIP-Seq data from the matching tissue. 

Figure 2: Alternative promoters are a major contributor to isoform diversity. (a) t-SNE plot 

using the top 1,500 promoters with the highest variance in promoter activity. (b) Comparison 

of major promoter activity and gene expression (sum of all promoters). A single promoter often 

does not fully explain gene expression, minor promoters contain additional information. (c) 

Most active promoters are observed at genes with multiple promoters. (d) Heatmap showing 

the normalized mean promoter activity for tissue-specific alternative promoters of genes which 

do not change in overall expression. (e) Shown is the mean read count at the GJB1 gene locus 

for samples from the central nervous system (CNS) and from all other tissues. The light blue 

and red regions highlight the two alternative promoters. (f) The second GJB1 promoter 

(prmtr.51019) is more active in CNS compared to all other tissues, whereas the first promoter 

(prmtr.51018) is inactive in CNS samples. (g) Comparison of gene expression levels for GJB1. 

(h) Number of isoforms that can be transcribed from tissue-specific alternative promoters. (i) 

Alternative promoters are most often minor promoters. (j) Shown is the fraction of isoform 

switching events across tissues that involve a change in promoter. (k) Schematic representation 

for the analysis of 5’UTR, CDS, and 3’ UTR regions and their association with alternative 

promoter usage. Regions unique to the major and alternative promoter, and regions shared 

among them are quantified for each tissue-specific alternative promoter. (l) Shown is the 

percentage of the 5’UTR, 3’UTR, and CDS sequence that is unique to the tissue specific 

promoter gene isoforms (green), unique to the major promoter gene isoforms (blue), and that 

is shared (gray). Tissue-specific promoters shorten the coding sequence by 40% on average. 

Figure 3: Cancer-associated alternative promoters regulate oncogenes and tumor suppressors 

both for individual tissue types and across cancers. (a) Overview of cancer and normal data 

obtained by combining PCAWG and GTEx samples. (b) Cancer samples are most similar 

(highest average correlation of promoter activity) to the normal samples from the same tissue 

type. Tumor types with less than 15 normal and cancer samples are excluded from this analysis, 

normal samples are batch corrected to account for different data sources (PCAWG and GTEx). 

(c) Heatmap showing the normalized promoter activity estimates for lung cancer and normal 

samples, ranked by mean difference. (d) Difference in cancer-associated promoter activities 

(upper panel) and gene expression excluding alternative promoters (lower panel) for lung 

cancer and normal samples, ranking is similar to heatmap in (c). (e) Shown is the mean read 
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count at the MEST gene locus for lung cancer and lung normal samples (left panel). The light 

blue and red regions highlight the cancer-associated promoters. First promoter is the major 

promoter in cancer samples whereas second promoter is the major promoter in the normal 

samples. (f) The promoter activity for the first (red) and second (light blue) promoters of MEST 

in cancer and normal samples show the switch of promoters between cancer and normal 

samples. (g) PCA plot using the top 1,000 promoters with the highest variance in promoter 

activity in kidney samples. (h) Shown is the MTCP1 locus (top) and mean relative activity 

across different kidney cancer and normal samples (bottom). The first promoter of MTCP1 

(prmtr.73965, dark blue) displays Kidney-RCC tumor subtype specific activation. (i) Heatmap 

showing the average activity of promoters that significantly differ between cancer and normal 

samples across multiple cancer types (pan-cancer associated promoters). Promoters of known 

cancer-associated genes are highlighted (Futreal et al., 2004). (j, k) Relative activity profile of 

pan-cancer-associated promoters. Shown is the MET gene locus which shows activation of an 

alternative promoter in cancer (j); and the SPOP gene locus which shows lower activity of an 

alternative promoter across multiple cancer types (k). (l, m) Shown is the ERBB2 gene locus 

(top). Increased activity of the second (minor) promoter (prmtr.34625) is associated with 

decreased survival in lower grade glioma patients (m), whereas increased expression of the 

first (major) promoter (prmtr.34623) is not associated with survival (l). The boxplots on the 

right panels show the activity of each promoter in their respective high (red) and low (blue) 

activity sample groups i.e. the same sample groups as the survival plots on the left panels. 

Figure 4: Overview of noncoding promoter mutations patterns across different cancer types 

and pan-cancer. (a) Proportion of single and multi TSS genes for different numbers of 

mutations at promoters. Single TSS genes are more frequently mutated than genes with 

multiple promoters (multiple TSS genes). (b) lncRNAs are more frequently mutated at the 

promoter than protein coding genes. (c) Boxplot comparing the replication timing across 

samples with different number of mutations, a higher number of mutations is associated with 

later replication timing. (d) Distribution of promoter mutations around promoters across 

PCAWG cohort for major, minor and inactive promoters. Red lines indicate the window of 

200bps upstream TSS where major promoters show an enrichment of mutations whereas minor 

and inactive promoters don’t. (e) Distribution of promoter mutations around promoters for the 

top 2 most mutated cancer types (Skin-Melanoma and ColoRect-AdenoCA) and the others. 

ColoRect-AdenoCA displays a very different mutational pattern compared to all other cancer 

types.   
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Supplementary Figure 1: RNA-Seq data can be used to identify active promoters. (a) 

Correlation of expression estimates across samples of the same tumor type for genes (dark 

blue), active promoters (blue), and isoforms of multi isoform genes (light blue). The 

correlations are shown for the tumor types with more than 100 samples. A higher correlation 

of promoter activity estimates suggest a higher level of robustness compared to isoform 

estimates. (b) Correlation of activity for promoters that overlap internal exons (light blue), and 

promoters that do not overlap internal exons (blue) across the sample pairs of the same tumor 

type. (c) Overview of major (highly expressed), major (lowly expressed), minor (highly 

expressed), minor (lowly expressed) and inactive promoters across the PCAWG data cohort, 

using a threshold of 0.5 for low expression, and a threshold of 2.5 to define high expression. 

(d, e) Mean H3K4me3 ChIP-Seq read count across 59 ENCODE cell lines for the pan-cancer 

major, minor, and inactive promoters. (d) All promoters. (e) Promoters at the 2nd and 3rd TSS 

positions. (f) Percentage CAGE tag support for inactive, low, and high activity promoters, 

shown are only promoters that overlap with internal exons. The CAGE tag support is lower 

compared to non-internal promoters. (g - k) Correlation of promoter activity estimations with 

H3K4me3 ChIP-Seq read counts from ENCODE cell lines for blood (g, h), kidney (i), liver (j), 

colon (k) tissues. Orange color denotes the matching cell lines in terms of tissue origin. 

Inclusion of the gray-listed Myeloid-AML samples into promoter activity estimates increases 

the similarity to the K562 cell line, which otherwise is different from the other cancers. 

Supplementary Figure 2: Alternative promoters display context specific regulation 

independent from the gene expression. (a) t-SNE plot using the top 1,500 genes with the highest 

variance in gene expression. (b) Difference in alternative promoter activities (upper panel) and 

gene expression excluding alternative promoters (lower panel) across pan-cancer.  Alternative 

promoters’ contribution to tissue specificity is independent from gene expression. (c) Number 

of alternative promoters for each tumor type. (d) Shown is the percentage of times a change 

has occurred in the 5’UTR, 3’UTR, and CDS sequence that is unique to the tissue specific 

promoter (green), unique to the major promoter (orange), and that is shared (gray). (e, f, g) 

Shown is the percentage of the 5’UTR (e), CDS (f), and 3’ UTR (g) sequence that is unique to 

the tissue specific promoter gene isoforms (top panel), unique to the major promoter gene 

isoforms (middle panel), and that is shared (bottom panel). 

Supplementary Figure 3: Identification of cancer-associated promoters. (a) Cancer samples 

from PCAWG match to normal samples from the same tissue (blue) regardless of data source 

(PCAWG or GTEx). Squamous cell carcinoma of the lung (Lung-SCC), and bladder cancer 

(Bladder-TCC) are assigned to skin reflecting the origin of cancer cell not the tissue. (b) 

Heatmap showing the normalized promoter activity estimates for liver cancer and normal 

samples, ranked by mean difference. (c) Difference in cancer-associated promoter activities 

(upper panel) and gene expression excluding alternative promoters (lower panel) for liver 

cancer and normal samples, ranking is similar to heatmap in (b). (d) Heatmap showing the 

normalized promoter activity estimates for blood cancer and normal samples, ranked by mean 

difference. (e) Difference in cancer-associated promoter activities (upper panel) and gene 

expression excluding alternative promoters (lower panel) for blood cancer and normal samples, 

ranking is similar to heatmap in (d). (f) Promoter activity and gene expression plots for the BID 

gene’s cancer associated promoter across liver cancer and normal samples. (g) Shown is the 

mean read count at the MLLT1 gene locus for kidney tumor samples and normal samples 

(bottom-left). The light blue regions highlight the cancer-associated promoters in kidney cancer 

samples. The cancer associated deactivation of prmtr.26519 can be seen in relative (bottom-
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middle) and absolute (bottom right) promoter activities across normal and cancer samples. (h) 

Kidney cancer associated promoters display tumor type specific. (i) Shown is the mean read 

count for the MTCP1 gene’s promoter that displays kidney cancer tumor type specific 

regulation. The first promoter (prmtr.73965) is only active in Kidney-RCC but not in Kidney-

ChRCC tumors. (j, k) Shown is the percentage change in occurrence (j) and length (k) of the  

5’UTR, 3’UTR, and CDS sequence that is unique to the cancer associated promoter (green), 

unique to the major promoter (blue), and that is shared (gray). (l) Sample motifs identified by 

RSAT de-novo motif discovery webserver to be enriched for different cancer associated 

promoter sets. (m) The PWM of the motif enriched for cancer associated down-regulated 

alternative promoters for brain tissue. (n, p) The transcription factor NFE2L2 binds to a similar 

motif to the identified de-novo motif for cancer associated down-regulated alternative 

promoters for brain tissue. (n) The JASPAR motif (MA0150) for NFE2L2 transcription factor. 

(p) The expression of NFE2L2 gene in brain cancer and normal samples. (o, q) The 

transcription factor FOSB::JUNB binds to a similar motif to the identified de-novo motif for 

cancer associated down-regulated alternative promoters for brain tissue. (o) The JASPAR motif 

(MA1135) for FOSB::JUNB transcription factor. (q) The expression of FOSB gene in brain 

cancer and normal samples. (r) Shown is the mean read count at the STAU2 gene locus for 

samples from the basal subtype of breast cancer and from all other subtypes of breast cancer. 

The light red, light blue and blue rectangle regions highlight the top 3 most active promoters. 

(s) The last STAU2 promoter (prmtr.2834) is more active in basal subtype compared to all 

other subtypes, whereas the other 2 active promoters (prmtr.2827 and prmtr.2839) show 

comparable activity levels in all subtypes. (t) Comparison of gene expression levels for STAU2. 

Supplementary Figure 4: Overview of noncoding promoter mutation patterns across different 

cancer types. (a) Distribution of promoter mutations around major, minor and inactive 

promoters across cancer types where NER plays a major role. Red lines indicate the window 

of 200bps upstream TSS where major promoters show an enrichment of mutations whereas 

minor and inactive promoters don’t. (b, c) Overview of promoter mutations for Skin-Melanoma 

tumors. The majority of promoter mutations are C>T indicative of UV induced DNA damage 

(b). Distribution of promoter mutations for each mutation class reveals the enrichment of C>T 

mutations around the 200bps window upstream (c). (d, e) Overview of promoter mutations for 

ColoRect-AdenoCA tumors. The majority of promoter mutations are C>A and C>T (d). 

Distribution of promoter mutations for each mutation class doesn’t display an enrichment of 

mutations around the 200 bps window upstream differing from the mutation pattern of Skin-

Melanoma tumors. 
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FIGURES 

 

Figure 1: Promoter activity estimation using RNA-Seq data and comparison with ChIP-Seq 

and CAGE data. 
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Figure 2: Alternative promoters are a major contributor to isoform diversity. 
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Figure 3: Cancer-associated alternative promoters regulate oncogenes and tumor suppressors 

both for individual tissue types and across cancers. 
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Figure 4: Overview of noncoding promoter mutations patterns across different cancer types 

and pan-cancer. 
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Supplementary Figure 1: RNA-Seq data can be used to identify active promoters. 
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Supplementary Figure 2: Alternative promoters display context specific regulation 

independent from the gene expression. 
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Supplementary Figure 3: Identification of cancer-associated promoters. 
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Supplementary Figure 4: Overview of noncoding promoter mutation patterns across 

different cancer types. 
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