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Diatoms contribute roughly 20% of global primary production, but the factors determining 18 

their ability to adapt to global warming are unknown. Here we quantify the capacity for 19 

adaptation to warming in the marine diatom Thalassiosira pseudonana. We found that 20 

evolutionary rescue under severe warming was slow but adaptation to more realistic 21 

scenarios, where temperature increases were moderate or where they fluctuated between 22 

benign and severe conditions, was rapid. Adaption to warming was linked to major 23 

phenotypic changes in metabolism and elemental composition. Whole genome re-24 

sequencing identified significant genetic divergence both among populations adapted to the 25 

different warming regimes and between the evolved and ancestral lineages.  Consistent 26 

with the phenotypic changes, the most rapidly evolving genes were associated with 27 

photosynthetic, transcriptional and translational processes. These results demonstrate that 28 

evolution of thermal tolerance in marine diatoms can be rapid, particularly in fluctuating 29 

environments, and is underpinned by major genomic and phenotypic divergence.  30 

 31 

Introduction 32 

Earth system models predict that global warming will result in significant declines in net primary 33 

production by marine phytoplankton throughout the 21st century (up to 20%)1,2 driven by rising 34 

temperatures exceeding limits of thermal tolerance and increases in grazing and nutrient 35 

limitation in warmer, more stratified oceans3-5. Current models however, do not consider the 36 

potential marine phytoplankton to rapidly adapt to environmental changes associated with global 37 

warming6-8. Such shortcomings have unknown consequences for projected changes global ocean 38 

primary production and arise because the mechanisms that facilitate or constrain the capacity for 39 
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rapid adaptation to warming in marine phytoplankton are entirely unknown.  40 

Here, we address this fundamental knowledge-gap by carrying out a 300-generation 41 

selection experiment, with the model marine diatom, Thalassiosira pseudonana, to assess the 42 

potential for, and mechanisms that might facilitate rapid adaptation to warming in this globally 43 

important phytoplankton9-11.  A key hypothesis we test is that rapidly fluctuating temperatures – 44 

an intrinsic feature of natural environments – will play a key role adaptation12-14. Temporary 45 

exposure to a benign environment resulting from temperature fluctuations could both accelerate 46 

adaptation to severe conditions by increasing population size (a positive demographic effect) or 47 

constrain adaptation, by relaxing selection for beneficial mutations that promote persistence in 48 

the harsh environment (a negative population genetic effect)12,13.  Our experiment was initiated 49 

with a single clone (the ancestor), which had an upper thermal limit of 35ºC. The ancestor was 50 

then distributed among 4 experimental treatments that represent a range of warming scenarios 51 

(Fig S1 for experimental set-up): (i) a control at 22ºC, which was the long-term culture 52 

temperature; (ii) moderate warming at 26ºC; (iii) severe warming at 32ºC and (iv) a fluctuating 53 

thermal regime, which cycled between 22 and 32ºC every 3-4 generations. To understand the 54 

mechanisms that set the limits of thermal tolerance in marine diatoms and quantify the capacity 55 

for adaptation beyond present limits, we re-sequenced the genomes, measured growth rate, 56 

photosynthesis, respiration and elemental composition in the ancestor and evolved lineages after 57 

approximately 300 generations of selection.    58 

 59 

Results & Discussion 60 

Evolution of thermal tolerance 61 
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Trajectories of population growth rate (µ, d-1) over the course of the selection experiment 62 

differed substantially between the selection regimes (Fig. 1; Table S1-Table S3). In the control 63 

lineages, growth rates increased gradually, presumably reflecting continual laboratory 64 

adaptation. However, trajectories of growth rate in the warming treatments were markedly 65 

different from the control and one another. Lineages selected under severe warming (32ºC) 66 

exhibited a characteristic pattern of ‘evolutionary rescue’14-17 . After an initial increase in the first 67 

3 weeks of the experiment, growth rates declined in the 32ºC environment and remained very 68 

low (0.24 ± 0.09) for more than one year (~ 100 generations). After approximately 100 69 

generations, growth rates increased and were statistically indistinguishable from those in the 70 

control environment after 300 generations (0.63 ± 0.05 at 32ºC, 0.77± 0.11 at 22ºC). Under 71 

moderate warming (26ºC), and in the regime that fluctuated between 22 and 32ºC growth rate 72 

showed an immediate and sustained increase (2.1 and 1.9-fold faster than the ancestor 73 

respectively). These results yield a number of important insights that are pertinent for 74 

understanding the evolutionary dynamics of T. pseudonana in response to warming. First, 75 

adaptation to severe warming was slow, with evolutionary rescue taking over 1 year to restore 76 

growth rates to levels comparable with the ancestor. Second, in the fluctuating environment 77 

where populations experienced short bursts of exposure to 32ºC followed by periods in the 78 

benign (22ºC) environment, adaptation to the severe environment was rapid. Consistent with our 79 

hypothesis, lineages selected under the fluctuating regime maintained substantially larger 80 

population sizes relative to those experiencing severe warming (Fig. S2 and Table S1, S3), 81 

suggesting that temporary restoration of benign conditions increased the probability of fixing 82 

beneficial mutations required for adaptation to the severe (32ºC) environment via a positive 83 

demographic effect.   84 
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 To assess whether adaptation to the various selection regimes changed the thermal 85 

tolerance curves in the evolved lineages, we quantified growth rates across a temperature 86 

gradient spanning 15ºC to 40ºC. Populations selected under the moderate (26ºC), severe (32ºC) 87 

and fluctuating (22ºC/32ºC) warming treatments had higher optimal growth temperatures, Topt, 88 

compared to the ancestor and the control (Fig. 1B; Table S1). In the fluctuating treatments, 89 

growth rate at high temperatures was traded-off against slow growth at low temperature, 90 

suggesting that the severe environment was the dominant driver of selection. By contrast, high 91 

temperature tolerance in the moderate warming treatments appeared to incur no cost in 92 

performance at low temperature. Despite having a high Topt, the lineages selected under constant 93 

severe warming had the slowest growth rates at all measurement temperatures except for 40ºC, 94 

the most extreme temperature. A key question therefore is: what mechanisms facilitated the rapid 95 

evolution of increased thermal tolerance in the lineages selected under moderate and fluctuating 96 

warming?  97 

 98 

Increased metabolic efficiency facilitates evolution of thermal tolerance 99 

The fraction of photosynthesis that can be allocated to growth tends to decline with warming, 100 

owing to the high temperature sensitivity of respiration relative to photosynthesis, suggesting 101 

that the upper thermal tolerance of phytoplankton reflect metabolic constraints that limit the 102 

efficiency of carbon allocation to growth at high temperature18. To investigate whether changes 103 

in metabolic traits could help explain the thermal tolerance curve of the ancestor and 104 

evolutionary shifts observed over the selection experiment, we measured responses of gross 105 

photosynthesis (P) and respiration (R) to acute gradients in temperature, spanning 4 to 45ºC, in 106 
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the ancestor and all evolved lineages. In contrast to previous work18, the activation energies 107 

characterising the temperature sensitivities of P and R in the ancestor were equivalent (e.g. Ea for 108 

P = 1.08eV ± .0.18 s.e.m., and Ea for R = 1.07 ± 0.17 s.e.m.), i.e. increases in P and R up to the 109 

optima were similar (Fig. 2; Table S6-S8). Optimum temperatures for P were however lower 110 

than those for R (Topt for P: 27 ºC ± 0.7ºC, (± s.e.m.); Topt for R = 29 ºC ± 0.36ºC, (± s.e.m.)), 111 

meaning that above Topt for P, the carbon-use efficiency (CUE = 1 – R/P; i.e., the potential 112 

carbon for allocation to growth) declined rapidly. The optimum temperature for growth rate (Topt 113 

= 28ºC; Fig. 1B) and subsequent decreases in growth at supra-optimal temperatures coincided 114 

with declines in the CUE above Topt for P in the ancestor, demonstrating that the temperature 115 

dependence of CUE imposes a physiological constraint that shapes the thermal tolerance curve. 116 

Thus, we hypothesize that shifts in traits that increase CUE at high temperatures should have 117 

played an important role in facilitating adaptation to warming in the evolved lineages of T. 118 

pseudonana.  119 

 Following 300 generations of selection, we observed substantial shifts in the temperature 120 

responses of P and R, both among treatments, as well as between the evolved lineages and the 121 

ancestor (Fig. 2; Tables S4 –S8). For both P and R, estimates of Topt in the warming treatments 122 

were higher than the ancestor and control, and rates of P and R declined less abruptly at 123 

temperatures exceeding Topt. Consequently, CUEs remained high at hotter temperatures in the 124 

warming treatments. The mass-specific rates of P and R normalized to a reference temperature Tc 125 

= 18ºC (P(Tc) and R(Tc), see Eq.6), were significantly down-regulated under moderate, severe 126 

and fluctuating warming, relative to the control treatment and the ancestor (Fig. 2 C, D, Tables 127 

S7 –S9). Rates of R(Tc) also decreased more than those of P(Tc), resulting in an overall increase 128 

in CUE in the lineages selected under moderate and fluctuating warming (Fig. 2E). These results 129 
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support our hypothesis of fluctuating temperatures facilitating thermal adaptation and show that 130 

changes in the traits that increase the CUE, played an important role in the evolution of elevated 131 

thermal tolerance in the treatments subjected to warming. It is notable however, that the 132 

populations experiencing severe warming had lower growth rates and lower CUEs than the 133 

lineages in the moderate and fluctuating warming treatments (Fig. 1B, Fig. 2E, Table S1 and S9, 134 

also Fig S3). This suggests that while evolutionary rescue restored growth rates to levels 135 

comparable with the control, 300 generations of selection under constant, severe warming was 136 

insufficient to evolve CUEs that facilitate growth rates comparable to populations that 137 

experienced only brief periods of severe conditions.    138 

 139 

Changes in subcellular resource allocation 140 

So how were the lineages selected under the moderate and fluctuating warming regimes able to 141 

achieve the shifts in metabolic efficiency that facilitated rapid adaptation to warming? Changes 142 

in temperature are known to alter optimal subcellular allocation of resources to various 143 

macromolecular classes through phenotypic plasticity (i.e. acclimation)19-24. Indeed, algae 144 

exposed to warming often increase their nitrogen-to-phosphorous ratios (N:P) by down-145 

regulating the density of P-rich ribosomes, relative to N-rich proteins, owing to the increased 146 

efficiency of protein synthesis by ribosomes at higher temperatures21-24. We quantified cellular 147 

macromolecular composition in the ancestor and the evolved lineages to investigate the 148 

biochemical basis for the adaptive shifts in growth and metabolic efficiency, and found marked 149 

shifts in elemental composition, both among treatments and between the evolved and ancestral 150 

lineages (Fig. 3). Nutrient-use efficiency (expressed as growth rate per pg of nitrogen (N) or 151 
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phosphorous (P)), the chlorophyll-to-carbon ratio and the quantum efficiency of photosystem II 152 

(ΦPSII; the proportion of the total light absorbed by PSII that is used in photochemistry) were 153 

highest in the fastest growing populations selected under moderate and fluctuating warming. We 154 

also found a positive temperature response in the N:P and C:P ratios, that was consistent, both in 155 

direction and magnitude, with the short-term acclimation responses characterised in the ancestor, 156 

confirming hypotheses21-23 that the direction of phenotypic plasticity (acclimation) and adaptive 157 

shifts in macromolecular composition are convergent (see also Fig S4 and Fig S5, and Tables 158 

S10-S11). Together these results suggest that the greater down-regulation of R(Tc) relative to 159 

P(Tc), which enabled increased efficiency of C allocation to growth and facilitated rapid 160 

adaptation to moderate and fluctuating warming, were in turn tightly coupled to major 161 

adjustments in allocation to the key macromolecular classes that determine cellular composition.     162 

 163 

Molecular evolution of thermal tolerance 164 

To investigate whether the observed changes in fitness and phenotypes in the evolved lineages 165 

were also reflected by consistent patterns of molecular evolution, we resequenced the genomes 166 

of the ancestor and the evolved populations to determine the identity and frequency of mutations. 167 

Using only non-synonymous single nucleotide polymorphisms (SNPs), we quantified the number 168 

of sites that acquired mutations in each population relative to the ancestral reference sequence, 169 

and from allele frequencies, the genetic distance of each population from the ancestor and the 170 

genetic divergence among populations. Consistent with the fitness trajectories (Fig. 1A), all 171 

evolved populations showed significant genetic divergence from the ancestor (Fig. 4A; Table 172 

S12). The lineages selected under moderate and fluctuating warming had the greatest genetic 173 
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distance from the ancestor (Fig. 4A; Fig. S6, Table S13). Furthermore, the populations that 174 

experienced fluctuations between severe and benign conditions were significantly divergent from 175 

those experiencing constant severe warming. These results are consistent with the demographic 176 

data (Fig. 1A; Fig S2), indicating that the temporary restoration of benign conditions in the 177 

fluctuating regime accelerated rates of molecular evolution, potentially supplying mutations that 178 

were beneficial under the severe conditions. Comparing principal component analyses (PCA) 179 

based on combining all the phenotypic data, with the PCA from the non-synonymous SNPs, 180 

revealed striking similarities in the patterns of divergence among treatments (Fig. 4A,B, Figs S6, 181 

S7, Table S12, S13). These results suggest that the observed changes in metabolic traits and 182 

elemental composition that were linked to the evolution of thermal tolerance could also have a 183 

basis in some of the underlying genomic changes. To investigate this, we identified the top 20 184 

SNPs most strongly associated with the first and second principal components. We then 185 

identified the genes (see Table S14) and protein functions (when annotated in the reference 186 

genome) associated with these SNPs. Mutations most strongly associated with the lineages 187 

selected under moderate and fluctuating warming clustered in gene families linked to 188 

photosynthetic pathways, while the populations evolved under constant severe warming showed 189 

a dominance of mutations in genes related to transcriptional and translational processes (Fig. 190 

4C). Mutations in transcriptional and translational genes, such as the plastid RNA polymerase 191 

subunits (rpoC and rpoC2 – associated with 32ºC lineages), have been shown to be linked to 192 

stress responses in bacteria28 and may indicate that consistent with their poor growth and 193 

physiological performance, even after 300 generations of selection, these lineages were still 194 

under severe thermal stress at 32ºC. Conversely, the overall larger genetic distances relative to 195 

the ancestor in the lineages selected under moderate and fluctuating warming, as well as the 196 
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predominance of mutations related to photosynthetic pathways, may be indicative of more 197 

fundamental metabolic rearrangements associated with the evolution of increased physiological 198 

performance at high temperatures in these populations.    199 

 Our results shed new light on the adaptive potential and evolutionary dynamics of one of 200 

the most abundant and widely distributed eukaryotic marine phytoplankton in response to 201 

warming. We found that evolutionary rescue under severe warming was slow (> 1 year), but 202 

adaptation to more realistic warming scenarios, where temperature increases were moderate or 203 

where they fluctuated between benign and severe conditions, was rapid. The fluctuating 204 

environment accelerated adaptation to severe warming because temporary restoration of benign 205 

conditions increased population size and therefore the probability of fixing beneficial mutations 206 

required for adaptation to the severe environment. Consistent with this demographic effect, the 207 

lineages selected under fluctuating warming had the greatest genetic distance from the ancestor 208 

after 300 generations, indicating accelerated rates of molecular evolution. Because our 209 

experiments were initiated with a single clone, they may in fact be conservative estimates of the 210 

evolutionary potential of the highly diverse meta-population of T. pseudonana in the wild5 where 211 

adaptation will also be aided by standing genetic variation. Our results also show how rapid, 212 

adaptive shifts in thermal tolerance are linked to major phenotypic changes in metabolism and 213 

elemental composition as well as significant molecular evolution, particularly in genes associated 214 

with photosynthesis, transcription and translation processes. Because the changes in carbon-use 215 

efficiency in the warm-adapted lineages arise due to differences the temperature sensitivities of 216 

photosynthesis and respiration, which are highly conserved metabolic pathways, our work raises 217 

the prospect that at the physiological-level, the mechanisms underpinning rapid thermal 218 

adaptation could be universal across the broad diversity of phytoplankton. Our findings could 219 
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therefore help integrate rapid evolution into models of ocean biogeochemistry and improve 220 

projections of marine primary productivity over the 21st century1,25.  221 

 222 
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349 
Figure 1| Growth rate trajectories and rapid evolutionary shifts in thermal tolerance 350 
curves. (A) Time-series of population growth rates reveal immediate and sustained increases in 351 
growth rates in populations adapting to moderate warming and the environment that fluctuated 352 
between 22 (benign conditions) and 32ºC (chronic conditions). In the 32ºC environment 353 
populations performed very poorly for approximately 1 year (~ 100 generation), followed by an 354 
evolutionary rescue event, which caused growth rates to increase to levels comparable with the 355 
control treatment at 22ºC.  Boxplots were created by binning growth rate estimates across 356 
replicates on each week of the experiment until 300 generations had passed in each lineage. 357 
Fitted lines are from the best fits of a GAMM. (B) Thermal response curves of the ancestor and 358 
evolved lineages show marked shifts in thermal tolerance.  Populations selected under moderate, 359 
severe and fluctuating warming all evolved increased tolerance of high temperatures relative to 360 
the ancestors and the control. Values are means and error bars denote ± 1s.e.m. Fitted lines are 361 
the fixed effects of a nonlinear mixed effects model. Grey curves denote the ancestor, green, 362 
samples are the control at 22ºC, blue is 26ºC, red is 32ºC, and purple is the fluctuating 363 
environment.   364 
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 366 

Figure 2| Rapid evolution of metabolic traits increase carbon-use efficiency. Thermal 367 
response curves for (A) gross photosynthesis rates (P), and (B) respiration (R) reveal substantial 368 
shifts in metabolic thermal traits both among treatments, as well as between the evolved lineages 369 
and the ancestor. Data are presented as means with error bars denoting ± 1s.e.m, n = 6 per assay 370 
temperature, fitted lines are fixed effects from non-linear mixed effects models.  Mass-specific 371 
rates of (B) gross photosynthesis and (C) respiration normalized to reference temperature (P(Tc) 372 
and R(Tc) respectively, see methods) were significantly down-regulated in the populations 373 
evolved under moderate, chronic and fluctuating warming. Furthermore, rates of R(Tc) were 374 
down-regulated more than those of P(Tc) in the moderate and fluctuating warming treatments 375 
resulted in high meaning that (C) those lineages also had the highest carbon-use efficiency 376 
(CUE).  Grey denotes the ancestor, green is the control at 22ºC, blue is 26ºC, red is 32ºC, and 377 
purple is the fluctuating environment.  Carbon use efficiency for FS is displayed at 32ºC for 378 
easier comparison to the 32ºC-evolved samples, and did not differ significantly between assay 379 
temperatures of 22ºC, 26ºC, and 32ºC (see also Figure S3). 380 
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 382 
Figure 3 | Evolutionary shifts in macromolecular composition, photosynthetic and nutrient-383 
use efficiency. (A) the phosphorous-use efficiency (B) the nitrogen-use efficiency and (C) the 384 
quantum efficiency of photosystem II (ΦPSII) were highest in the fastest growing lineages 385 
selected under moderate and fluctuating warming and showed a similar pattern among treatments 386 
to variation in metabolic efficiency (e.g. 𝜀 in Fig. 3). (D) The chlorophyll-to-carbon ratio was 387 
also highest in the fastest growing lineages selected under moderate warming. (E) The N:P and 388 
(F) the C:P ratios increased with increasing selection temperature, with values in the fluctuating 389 
environment comparable to those in the moderate warming treatment. For all panels, n = 6. 390 
Boxplots are for the ancestor (grey) and evolved lineages after 300 generations at 22 ºC (green), 391 
26ºC (blue), 32ºC (red) and the fluctuating environment (purple). Values for the ancestor are as 392 
measured at 22ºC. See also Fig. S3 for additional phenotypic trait values.   393 
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394 
Figure 4 | Phenotypic and molecular evolution in T. pseudonana. (A) Principal components 395 
analysis (PCA) of evolved and ancestral lineages calculated from the frequency and identity of 396 
non-synonymous SNPs. (B) PCA of phenotypic traits calculated from the change in each trait 397 
measured at the treatment temperature relative to that expressed in the ancestor at the same 398 
temperature (C) The top 20 genes most strongly associated with each of the treatments derived 399 
from the first two principal components.   400 
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 401 
METHODS 402 

Experimental Design  403 

The sequenced strain of Thalassiosira pseudonana (CCMP 1335)11 was obtained from the CCAP 404 

culture collection in November 2014. The stock culture was made clonal by serial dilution in a 405 

96-well plate in March 2015 and a single clone was chosen at random to be the ancestor for all 406 

treatments in the selection experiment. Pilot experiments with the ancestor revealed that growth 407 

rates peaked at 28ºC and were negative above 35ºC. The ancestor was then distributed among 4 408 

experimental treatments that represent a range of warming scenarios based on its limits of 409 

thermal tolerance: (i) a control at 22ºC, which was the long-term culture temperature; (ii) 410 

moderate warming at 26ºC; (iii) severe warming at 32ºC and (iv) a fluctuating thermal regime, 411 

which cycled between 22 and 32ºC every 3-4 generations.  Each treatment was replicated 6 412 

times.   413 

  Lineages were grown in grown in f/2 Medium (Guillard's medium for diatoms26) with 414 

artificial seawater, under a 12:12 light/dark cycle. Salinity was maintained at 32 (i.e. 32g NaCl L-415 

1 in 39.5 g L-1 artificial seawater reagents) and pH adjusted to 8.213 ± 0.291  (± s.e.m., averaged 416 

across all transfers) prior to each transfer. pH was further measured at the end of each transfer 417 

(average across all transfers: 8.171 ± 0.252). Light intensity was at 100 µmol quanta m-2 s-1. 418 

Lineages were maintained in semi-continuous batch culture, and transferred during the 419 

exponential phase of growth to an inoculum of 100 cells mL-1. This minimizes demographic 420 

effects that arise by slow-growing populations going through bottle-necks where mutational 421 

supply is limited to a point at which adaptive potential is determined by population size alone, 422 

but still allows for population size, and hence mutational supply to play a crucial role in shaping 423 
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evolutionary trajectories, as faster growing lineages will receive on average more diverse 424 

inocula.  425 

 426 

Flow cytometry 427 

Abundance and cell size (diameter assuming a spherical shape) were determined with a Accuri 428 

C6 flow cytometer (BD Scientific). Cell size was detected using forward scatter (FSC) calibrated 429 

using species and beads of known size against photographic images processed in ImageJ as 430 

described in27, with a conversion factor of FSC=108058 µm + 4.5665. Although T. pseudonana 431 

are cylindrical rather than spherical, this is a useful approximation for relative changes in cell 432 

size. Red fluorescence (FL3) was used for chlorophyll fluorescence in order to distinguish 433 

autotrophs from bacteria, but was not used here to approximate chlorophyll content, which was 434 

instead estimated through acetone extraction (see below). Co-occuring bacteria, e.g. Rhodobacter 435 

spp and Marinobacter spp are known to be crucial for nutrient recycling and signaling molecule 436 

metabolism in T. pseudonana28,29. We therefore made no attempt to make the cultures axenic as 437 

this would have incurred a substantial fitness cost. We quantified the associated bacteria by 438 

regularly filtering the cultures between 0.2µm to 2µm, staining with SYBR gold and 439 

enumerating bacterial densities and cell size via flow cytometry. Co-occurring bacteria 440 

contributed less than 1% of total biomass.  441 

 Flow cytometry was further used in combination with a rhodamine stain to measure a 442 

proxy for mitochondrial potential – the rate of ATP production by ATP synthase is proportional 443 

to mitochondrial potential, which in turn depends on the activity of respiratory proteins 444 

embedded in the mitochondrial membrane.  Since each unit area of membrane has a number of 445 

ATP synthase molecules and the rate at which each of these produces ATP depends on the 446 
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mitochondrial potential, the overall rate of ATP production per mitochondria depends on both 447 

the area of mitochondrial membrane and the mitochondrial potential. Mitochondrial area is a 448 

good approximation of the area of mitochondrial membrane, and changes in mitochondrial 449 

potential can be measured in live cells using potentiometric dye. Previous work30 has shown that 450 

the styrl dye rhodamine 123 (R123) can be used in live cells of phytoplankton to measure 451 

mitochondrial potential in real time. For staining, a 10 mg mL-1 stock solution in DMSO was 452 

prepared and diluted to a 1µM working solution on the day of measurements. Of this, 20 µL 453 

were added to 200 µL of sample and left to incubate in the dark for 45 minutes. To ensure that 454 

longer incubation as is inevitable on a 96 well plate did not effect FL1 fluorescence as measured 455 

in the accuri c6, samples were randomized across each 96-well plates with the first and the last 456 

well containing the same sample. We found no effect of prolonged incubation after an incubation 457 

period of 45 minutes.  458 

 A Nile Red stain was performed to measure relative lipid contents. Here, the dye was 459 

used as a proxy to determine relative quantities of intracellular polar and neutral lipids31 in 460 

evolved samples, and in samples from short-term assays. The stock dye was obtained as a 461 

powder. The working solution was diluted to 0.1 mg L-1, and 10 µL were added to each 200 µL 462 

sample on a 9-well plate (final concentration 15 mM) and left to incubate in the dark for 30 463 

minutes, as pilot trials had shown that after this, fluorescence levels were stable long enough for 464 

the time taken to measure one 96 well plate. Samples were randomized on the plate as described 465 

above for R123 stains. As Nile Red excites in the same wavelength as chlorophyll (FL3) and 466 

chlorophyll derivatives (FL2), samples were measured before and after adding the dye, and the 467 

chlorophyll fluorescence subtracted from the fluorescence obtained after staining the sample.  468 

  469 
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  470 

Growth rate trajectories  471 

At the beginning and at the end of each transfer T. pseudonana cells were counted on the flow 472 

cytometer as described above and used to estimate specific growth rates (µ d-1)  473 

µ	 = %&	(()*),%&	(()-)
∆/

                                                                                                          (1) 474 

where Nt1 is the density of cells at the end of the transfer, Nt0 is the inoculation density, and Dt is 475 

the time passed in days.  476 

 477 

Thermal tolerance curves 478 

To characterize the thermal tolerance curves of the ancestor and each of the evolved lineages, an 479 

inoculum of 100 cells per mL from the middle of the logarithmic phase of growth was 480 

transferred into fresh media at 15ºC, 20ºC, 25ºC, 30ºC, 32ºC, 35ºC, and 40ºC. Cell count was 481 

then determined daily on a flow cytometer and populations were transferred to fresh media once 482 

at each temperature during the middle of the logarithmic phase of growth, before being left to 483 

reach stationary phase. Growth rates were estimate from the abundance data using a the logistic 484 

growth function  485 

𝑁 𝑡 = 2

34567)-7)-
89)

                                                                                              (2) 486 

where t is time, K is carrying capacity of the population (cell mL-1), r is the maximum growth 487 

rate (d-1) and Nt0 is the cell count at t0 (cell mL-1).  488 
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 489 

Intracellular macromolecular composition  490 

Cellular carbon (C), nitrogen (N), phosphorous (P) and chlorophyll content (total chlorophyll 491 

calculated from chlorophyll a and chlorophyll c content) were quantified in the ancestor and each 492 

of the evolved lineages. We investigated the effects of temperature on macromolecular 493 

composition both over short-term acclimation and long-term evolutionary adaptation. Short-term 494 

thermal acclimation was investigated by exposing the evolved lineages to the 15 to 45ºC thermal 495 

gradient described above for quantifying the thermal tolerance curves for growth rate. Here, 496 

lineages were given 1 transfer to acclimate to a given assay temperature in the gradient and then 497 

harvested during the logarithmic phase of growth in the second transfer. Long-term evolutionary 498 

adaptation to the selection regimes was quantified by harvesting evolved lineages directly from 499 

the experiment during the logarithmic phase of growth.  500 

 The samples were prepared for C, N, P and chlorophyll measurement by spinning down 501 

50 mL of culture in a centrifuge at 4ºC and 3500RPM for 30 minutes. The pellet was then 502 

transferred to a 1 mL Eppendorf tube, spun again for 15 minutes at 3500RPM and the remaining 503 

supernatant decanted. Chlorophyll content was determined on a spectrophotometer (Jenway 504 

7351) after32, with extraction in 100% methanol, and absorption spectra measured in 10 nm 505 

increments from 500 to 700nm, which span the full range of emission peaks for chlorophyll a 506 

and chlorophyll c.  507 

Pellets for C and N determination were freeze dried for 24 hours, transferred to zinc 508 

capsules, weighed and analyzed using a SerCon Isotope Ratio Mass Spectrometer (CF-IRMS) 509 

system (continuous flow mode). Intracellular P content was determined was determined via a 510 

colourimetric reaction on a Seal Analytics AA3 segmented flow auto-analyzer. Freeze dried 511 
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pellets were washed in 0.17M Na2SO4, transferred to scintillation vials and re-suspended in 4 ml 512 

0.017M MnSO4. The samples were transferred to an autoclave (1h, 121ºC), shaken vigorously 513 

and centrifuged at 2500 r.p.m for 30 minutes, the pellet discarded, and the supernatant brought to 514 

10 ml with MillliQ purified water. The samples were immediately analyzed on the AA3 using 515 

the colourimetric molybdate/antimony method33. Using these data we calculated the molar 516 

stoichiometric ratios, C:N, C:P, N:P and the Chl:C ratio. Nitrogen-use efficiency (PNUE) and 517 

phosphorous-use efficiency (PPUE) were characterized as the ratio of growth rate to cellular 518 

nutrient concentration in pg.  519 

Silica content, although not a main trait under investigation here, was determined through 520 

preparing pellets as described above. Then, 4ml of 0.2M NaOH were added to the pellet in 521 

polyethylene tubes and the pellets vortexed briefly. The samples were then transferred to a 522 

heating block at 90ºC for ca. 1h. 2 ml of 1M HCl were added, the samples vortexed again and 523 

then spun at 3500 rpm for 1h. The supernatant was passed through an 0.5µm filter, pipetted into 524 

fresh tubes, topped up to 10ml with MiliQ water and used immediately on the segmented flow 525 

auto-analyser, where the colourimetric procedure followed that described in34. 526 

 527 

Photochemistry 528 

We characterised a range of photochemical parameters in the ancestor and each of the evolved 529 

lineages using fast repetition rate fluorometry (FastPro8, FRRf3, Fast Ocean System Chelsea 530 

Technology Group). 500 µL of dilute sample (with a cell count of less than 1000 cells mL-1) 531 

were added to 5 ml of fresh culture medium. Samples were then pre-incubated in the dark at the 532 

assay temperature for 15 minutes in a water-bath, and another 10 minutes in the fluorometer to 533 

make sure that samples were fully dark acclimated and all reaction centers closed. All 534 
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measurements were made at the selection temperature for the 22, 26, and 32ºC lineages, while 535 

for the lineages in the fluctuating regime measurements were carried out at both 22 and 32ºC. 536 

Photochemical traits were measured in response to rapid flashes at increasing light intensities 537 

from 0 to1600 µmol m-2 s-1. Flash frequency and rate followed standard protocols for 538 

phytoplankton35, with 100 flashes of 1.1 µs at 1 µs intervals. Peak emission wavelengths of the 539 

LEDs used for excitations were at 450 nm, 530 nm, and 624 nm. ΦPSII was particularly relevant 540 

to our study as it is commonly used to describe the light responses of photosynthetic efficiency. 541 

ΦPSII values are used as an indication of the proportion of the total light absorbed that is used in 542 

photochemical reactions in PSII (see also Table S10 and Figure S3). Additionally, we 543 

determined rP, NPQ, and C (see Fig. 4B and SI Table 13 for PCA on phenotypic traits). These 544 

describe the relative rate of photosynthesis in response to irradiance and are obtained as an 545 

estimate of electron transport through PSII (rP), the cell’s ability to maintain photochemical 546 

function at high light intensities (NPQ, non photochemical quenching) and the proportion of PSII 547 

reaction centers in a closed state (C). As measurements were carried out following a light 548 

response curve, we were then able to measure these functions both at saturating light intensity 549 

and at the light intensity that the samples were grown at in the incubators.  550 

 551 

Thermal responses of photosynthesis and respiration 552 

Measurements of photosynthesis and respiration were made on the ancestor and all evolved 553 

lineages after 300 generations of selection when in the middle of the logarithmic phase of 554 

population growth. Net photosynthesis (NP) was measured as O2 evolution at increasing light 555 

intensities in intervals of 50 µmol-1 m-2 s-1 up to 300 µmol-1 m-2 s-1, and then in intervals of 100 556 

µmol-1 m-2 s-1 up to 1000 µmol-1 m-2 s-1, followed by 200 µmol steps up to 2000 µmol-1 m-2 s -1. 557 
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The maximum rate of light saturated photosynthesis was determined by fitting the NP data to a 558 

dynamic model of photoinhibition via non-linear least squares regression using the methods 559 

outlined in18:  560 

𝑁𝑃 𝐼 = (<=>?@
7A=>?
BCDE)
F @F4 3,G7A=>?

BCDE)
@47A=>?

B

− 𝑅                                                  (3) 561 

where NP(I) is the rate of photosynthesis at light intensity I, NPmax is the maximum rate of net 562 

photosynthesis at the optimal light intensity, Iopt, and α controls the rate at which NP(I) increases 563 

up to NPmax and R is the rate of respiration (i.e. the rate of O2 flux when I = 0). Gross 564 

photosynthesis (P) was estimated as P = NPmax + R. Measurements of O2 flux were measured in 565 

a Clark-type oxygen electrode (Hansatech Ltd, King's Lynn UK Chlorolab2). Aliquots (50 mL) 566 

of the populations were concentrated through centrifugation to a density of approximately 8*104 567 

cells mL-1 and acclimatised to the assay temperature for 15 minutes in the dark before measuring 568 

metabolic rates. The thermal responses of P and R were quantified by measuring rates over a 569 

temperature gradient from 4ºC to 45ºC (in 3ºC increments, with additional measurements at the 570 

selection temperatures). Rates of P and R were expressed in units of µg C per µg C using the 571 

following equation 36  572 

𝑏 µ𝑔𝐶	µ𝑔𝐶,3 =
	M(NOPQ	RF	OS6*	T6*∗VG∗W∗(

*F
XX)

	NOPQ	Y	Z8QQ6*∗Z8QQ[		OS6*
                                                           (4) 573 

where b is the metabolic rate (either P or R), 32 * M * (12/44) is used to convert µmol O2 into µg 574 

C, and the factor M, is the assimilation quotient of CO2:O2. In our study, NO3
- was the source of 575 

nitrogen, thus assuming a set of balanced growth equations36:  576 

 577 

𝑛𝐶𝑂G + 𝑛 + 1 𝐻G𝑂 + 𝐻𝑁𝑂V 	→ (𝐶𝐻G𝑂)b	𝑁𝐻V + (𝑛 + 2)𝑂G		                      (5) 578 
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if the C:N ratio is calculated in moles the assimilation ratio of CO2:O2  will be n/n+2 (see36). The 579 

estimated M values are given in Table S1 and ranged from ~ 0.77 to ~ 0.79. Alongside the 580 

biomass measurements for phytoplankton, we also periodically measured bacterial biomass (see 581 

methods detailed above), which typically comprised <1% of algal biomass. Consequently, 582 

bacterial respiration did not contribute significantly to metabolic rates, and when 2µm filtered 583 

samples were run for metabolic rate measurements, the slopes were indistinguishable from water 584 

blanks. 585 

 586 

DNA extraction for Whole Genome Re-Sequencing 587 

At the beginning (t000) and after 300 generations (t300) of selection in each environment, 250ml 588 

of each sample in exponential growth were spun to a pellet in 50ml batches at 4ºC and 3500 589 

RPM (rounds per minute). The supernatant was discarded and the pellet stored at -20ºC until 590 

further use. Prior to DNA-extraction, samples were put through three cycles of thawing and 591 

refreezing, as this had shown to increase yield of diatom DNA relative to bacterial DNA in pilot 592 

studies. DNA was extracted following a standard cTAB protocol in chloroform:isoamyl and 593 

isopropanol (Murray and Thompson, 1980) with a proteinase K step to digest proteins, and an 594 

RNAse step to digest RNA. The resulting DNA pellet was quality controlled on 1% agarose gels 595 

and fluorometrically on a Qbit system. The extracted genomic DNA was then frozen in TE 596 

buffer at -20ºC until samples were processed at the Exeter Sequencing Services (University of 597 

Exeter, UK). Whole genome re-sequencing (Illumina) was carried out on a HiSeq 2500 platform 598 

with paired-end reads. Library preparation was carried out at the Exeter Sequencing Services 599 

using Netflex. The resulting reads were assembled against the existing T. pseudonana genome 11.  600 

Quality control filtering of sequence data 601 
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We generated paired 125-bp reads from genomic DNA from 61 samples (plus three negative 602 

controls containing no diatoms) using the Illumina HiSeq. Reads were trimmed and filtered to 603 

remove poor quality data using Trimgalore 604 

(https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/)   with “–q 30”. 605 

 606 

Variant calling: single-nucleotide polymorphisms (SNPs) 607 

After trimming and filtering, remaining sequence reads were then aligned against version 2 of 608 

the reference T. pseudonana genome sequence 11,37 (GenBank: GCA_000149405.2) using BWA-609 

mem version 0.7.5a-2 with default settings 38. Alignment statistics were calculated using 610 

Qualimap 39-41.This resulted in average aligned sequence depths from 3.4 to 74.5 fold; the 611 

average alignment depth for the t0 (ancestor) sample was 18.5 fold. This resulted in a set of 64 612 

BAM-formatted 41 files (see also Table S15). 613 

 Each BAM file was converted to mpileup format using SAMtools 41 version 0.1.19-1. 614 

The mpileup file contains, for each position in the alignment, the frequency of each base (allele) 615 

among the sequence reads aligned at that position; in other words it offers an estimate of the 616 

frequencies of each allele among the sequenced population. We considered only those genomic 617 

positions that in the t0 (ancestor) sample had a single base (i.e. allele) with a 100 % frequency; in 618 

other words we excluded from consideration genomic sites where there was ambiguity about the 619 

genetic state in the ancestor population. SNP sites falling within protein-coding exons were 620 

classified as synonymous or non-synonymous using the SNPeff tool 42. 621 

 We combined the allele frequencies from each mpileup file into a single matrix, which 622 

was used for the downstream statistical analyses implemented in R using the packages vegan 623 

(2.4-3), mixOmics (6.1-3), and phangorn (2.2-0). Specifically, we created distance matrices on 624 
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which we ran PERMANOVAs to test for separation of samples (on phenotypic data and SNPs) 625 

by treatment. Pairwise contrasts between treatments were examined in PERMDISP followed by 626 

TukeyHSD post-hoc tests. Trees were built within the phangorn package through neighbour-627 

joining, and annotation of trees was carried out in the FigTree software (FIGTREE 1.4.3 628 

http://tree.bio.ed.ac.uk/software/figtree/).  629 

 To visualise treatment associated PCA-loadings, we used the plotLoadings functions 630 

within the mixOmics package, which performs discriminant PCA and then represent the loading 631 

weight of each selected variable on each component, i.e. the length of the bar is directly 632 

correlated to the location of the loadings on the PCA, with the longest bar indicating the 633 

strongest association to a treatment group. This allows us to find treatment associated groups in 634 

which the changes in the selected gene or SNPs are maximal 43,44.   635 

 636 

Statistical Analyses 637 

Fitness trajectories 638 

The resultant time series of specific growth rates were analyzed using a generalised additive 639 

mixed effects model (GAMM) to assess whether the fitness trajectories differed between the 640 

selection regimes. We used GAMMs to account for the hierarchical nature of our experimental 641 

data. For example, our experimental design yielded replicate fitness trajectories in each selection 642 

treatment. This hierarchical structure meant that measurements were non-independent – e.g. 643 

measurements from the same replicate will be auto correlated. We account for this by treating 644 

replicate as a random effect on the intercept of the model, which models deviations among 645 

replicates from the fixed effects as normally distributed with a mean of zero. The most complex 646 

models included an effect of treatment (e.g. ‘22’, ‘26’, ‘32’, ‘22-32’) on the intercept (which 647 
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characterises the median value of the response variable) and also allowed the shape of the time 648 

series, which was modeled using a cubic regression spline, to vary among treatments. Treatment 649 

effects on the shape and intercept of the seasonal phenology were modeled as fixed effects in the 650 

GAMMs. Model selection entailed fitting a range of models to the data, starting with the full 651 

model and then a series of reduced models with interaction terms and main effects removed to 652 

test hypotheses about the potential differences in the fitness trajectories among treatments. For 653 

multi-model selection we computed small sample-size corrected AIC scores (AICc) and then 654 

compared between models by calculating delta AICc values and AIC weights using the ‘MuMIn’ 655 

package. GAMMs were fitted to the data using the ‘gamm4’ package and were conducted in R 656 

(v.3.23). 657 

 658 

Thermal responses of growth and metabolism 659 

The thermal responses for growth, photosynthesis and respiration were quantified using a 660 

modified version of the Sharpe-Schoolfield equation (see45,46 for the original equations), which 661 

assumes that the rate of growth or metabolism is limited by single enzyme catalyzed reaction  662 

ln 𝑏 𝑇 = 𝐸h
3
ijk

− 3
ij

+ ln 𝑏 𝑇Z − ln 1 + 𝑒mn
*

opn
, *
op                                     (6) 663 

where b(T), is the rate of metabolism (in µg C µg C-1 d-1) or growth (d-1), k is Boltzmann’s 664 

constant (8.62×10-5 eV K-1), Ea is the activation energy (in eV) for the metabolic process, 665 

indicative of the steepness of the slope leading to a thermal optimum, T is temperature in Kelvin 666 

(K), Eh characterises temperature-induced inactivation of enzyme kinetics above Th where half 667 

the enzymes are rendered non-functional and b(Tc) is the rate of metabolism normalised to an 668 
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arbitrary reference temperature, here Tc = 18ºC, where no low or high temperature inactivation is 669 

experienced. Equation (6) yields a maximum metabolic rate at an optimum temperature, where 670 

metabolic rates are fastest: 671 

𝑇Pq/ =
mnjn

mn4ijn%&
rn
r>
,3

                                                                                             (7) 672 

 Equation (6) differs from the Sharpe-Schoolfield equations in a number of ways. First, 673 

we exclude parameters from Eq. (6) used to characterise low-temperature inactivation due to 674 

insufficient data to quantify this phenomenon in our analysis. Second, rather than characterise 675 

temperature effects below Topt using the Eyring (1935) relation, j
jk

𝑒m>(
*
opk

, *
op), we instead use 676 

the simpler Boltzmann factor, 𝑒m>(
*
opk

, *
op). This simplification enables an explicit solution for Topt 677 

(Eq. 8) and facilitates more direct comparison with previous work on the temperature 678 

dependence of metabolism using metabolic theory47-50 .  679 

 The parameters b(Tc), Ea, Eh, Th, and Topt, represent traits that characterise a unimodal 680 

thermal response curve, and we expect them to differ between selection regimes owing to 681 

thermal adaptation. To test this hypothesis, we fitted the rate data to Eq. (6) using non-linear 682 

mixed effects models in the ‘nlme’ package in R. We analyzed the photosynthesis, respiration 683 

and growth data in separate mixed effects models. We also analyzed the thermal responses for 684 

ancestor separately from the data for the evolved lineages following the selection experiment. 685 

Models included random effects on each of the parameters of Eq. (6) by replicate, and for the 686 

analysis with evolved lineages, ‘selection environment’ as a fixed four level factor on each 687 

parameter. For the analysis of the metabolism data for the ancestor we included both 688 

photosynthesis and respiration data together, with ‘flux’ as a two-level fixed factor on each of the 689 
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parameters in Eq. (6), to establish whether the thermal responses differed between these fluxes 690 

and likely physiological constraints on growth prior to the selection experiment. Model fitting 691 

and selection started with the most complex possible model, including fixed and random effects 692 

on all parameters. Model selection then proceeded by first removing treatment effects on the 693 

parameters individually, then in pairs of two and in pairs of three, and finally, by removing the 694 

treatment-effect all four parameters. For multi-model selection we computed small sample-size 695 

corrected AIC scores (AICc) and then compared between models by calculating delta AICc 696 

values and AIC weights using the ‘MuMIn’ package. When candidate models deviated from the 697 

most parsimonious model (that with the lowest AICc score) by less than two AICc units, 698 

parameters were averaged across those candidate models. The relative importance of the fixed 699 

factors in the averaged model was determined using the sum of their relative weights (see Table 700 

S5 and S6). 701 

 702 

Carbon-use efficiency (CUE) 703 

Carbon use efficiency, as the potential for carbon allocation to growth, was calculated from the 704 

gross photosynthesis (P) and respiration (R) data as CUE = 1 – R/P. For statistical analysis, we 705 

used CUE calculated at the temperature of the selection environment. In the fluctuating 706 

treatment, we used data for photosynthesis and respiration at 32ºC to aid comparison with the 707 

populations experiencing 32ºC throughout. We fitted a linear mixed effects model to these data, 708 

with ‘selection regime’ as a fixed effect and biological replicate as a random effect. Model 709 

selection proceeded as described above.   710 

 711 
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Macromolecular composition and photosynthetic efficiency  712 

The C, N and P content, the C:N, C:P, N:P, Chl:C ratio, size and silicate content, as well as ΦPSII 713 

at high and low light, were each analyzed using a separate mixed effects model, where ‘selection 714 

regime’ was a fixed effect and replicate was a random effect on the intercept (see Table S11 for 715 

details).  Model selection was as described above.  716 

We quantified the light response curve of ΦPSII using an exponential decay model 717 

Φ<s@@ = 𝑎 ∗ exp	(𝐼 ∗ 𝑏)                                                                                             (8) 718 

where I is the irradiance, a is a normalization constant, and b is the rate constant which 719 

characterises how rapidly ΦPSII declines with increasing I. Eq. (8) was fitted to the ΦPSII data 720 

using a non-linear mixed model including random effects by biological replicate on each 721 

parameter and ‘selection environment’ as a fixed factor. Model output was then used to calculate 722 

ΦPSII at the light intensity that samples would have experienced in the incubators (i.e. ~ 100µmol 723 

quanta m-2 s-1 see Fig. 4 G). Model selection then proceeded as described above for P and R data. 724 

Detailed model output and model selection data are available in Table S10 where nomenclature 725 

and acronyms are as given here (see also Figure S4).  726 

 727 
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