
 
 

Figure 1. Illustration of method for a simple case of fitting two 
parameters to data. The parameter estimation procedure iteratively 
refines a large number of parameter vectors. At each generation, 
simulations, initialized with each parameter vector, are run in parallel, 
and the outputs are compared with the data to get a total error value. The 
errors are sorted to find the best fits, which are used to determine the 
next generation of parameter vectors. The selection method combines 
direct inheritance of the best fits (selection), random adjustment of the 
best fits (mutation), and random sampling from each parameter 
distribution generated from the best fits (resampling). 
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Abstract — Agent-based models are valuable in cancer 

research to show how different behaviors emerge from 
individual interactions between cells and their environment. 
However, calibrating such models can be difficult, especially if 
the parameters that govern the underlying interactions are 
hard to measure experimentally. Herein, we detail a new 
method to converge on parameter sets that fit an agent-based 
model to multiscale data using a model of glioblastoma as an 
example.  

I. AGENT BASED MODELS AND GLIOBLASTOMA 

Agent-based models (ABMs) are useful in cancer 
research to study evolutionary dynamics of cell populations 
and emergent behavior from cell-cell and cell-environment 
interactions [1]-[4]. As we gain a deeper understanding of 
the spatial and temporal heterogeneity in tumors [5], [6] 
and develop better techniques for measuring single cell 
dynamics [7], an ABM can be an  invaluable tool to 
integrate these data and to understand the underlying 
mechanisms of tumor progression. However, ABMs often 
have many parameters, which may involve unmeasured 
rates and interactions. Here we describe a method to 
estimate a large set of model parameters, used to fit 
glioblastoma multiforme (GBM) model, to multiscale 
experimental data. 

GBM is a particularly heterogeneous and malignant 
brain cancer, characterized by infiltration of individual cells 
deep into the brain tissue. The abundant invasion through 
essential brain anatomy and heterogeneity makes curative 
intervention difficult, if not impossible. To investigate the 
role of environmental factors involved, an experimental rat 
model was created using platelet-derived growth factor 
(PDGF) as a driver of tumor initiation and progression [8]-
[10]. The experiment yielded multiscale data: bulk tumor 
size measurements (from imaging), cell population sizes 
(using fluorescence microscopy), and single cell data (by 
tracking individual cells ex vivo). Of particular interest, the 
single cell data revealed marked heterogeneity amongst 
cells, which we sought to capture using a hybrid ABM.  

II. GUIDE TO THE METHOD 

While there are many parameter-fitting techniques that can 
be used for continuous models, issues arise with ABMs due 
to their stochastic nature, which potentially corresponds to 
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large fluctuations in behavior from small parameter 
changes and even large variability in output from a single 
set of parameters [11]. Additionally, ABMs may have a 
large number of unknown parameters and simulation times 
may be very long. Simple methods like random sampling 
and parameter sweeping can be used to find a loose fit and 
get a sense of the overall system behavior when there are 
few unknown parameters. However, with more complex 
systems that have many unknown parameters, schemes 
such as evolutionary algorithms, Bayesian approximations, 
swarming methods, and simulated annealing should be used 
[11]-[14].  

Our hybrid ABM has 16 unknown input parameters and 
16 experimentally measured output metrics. After 
encountering poor convergence using random sampling, a 
genetic algorithm, and simulated annealing, we developed a 
hybrid approach that achieved a good fit in less time. Our 
method uses a high-performance computing cluster 
(HPCC) to iteratively narrow a large parameter space to 
obtain a set of solutions within an allowed error. Figure 1 
shows an overview of the procedure. For each iteration, the 
parameter space is refined using both a genetic algorithm 
approach combined with random weighted sampling. With 
the genetic algorithm we use selection to directly inherit the 
best fits in the set and mutation to allow divergence, so that 
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Figure 2. Mapping single cell densities to estimate average tumor 
diameter. The background shows cell density distributions on a 
regular mesh. To calculate the average tumor radius, single cells are 
mapped to a radial mesh where the tumor edge is defined as the 
largest radial distance for each angle with a density of ≥ 50% of the 
carrying capacity. The radius is found by averaging this distance over 
all angles. 

improvements are possible while also preserving the 
correlation between parameters. Random sampling from 
distributions generated from the winning parameters was 
used to search more globally and avoid local minima.  

A. Defining inputs and outputs 

Parameter range selection. Each parameter range needs to 
be bounded within reasonable biological values. Given no 
prior knowledge on reasonable distributions, we uniformly 
sample the space to populate a large number of parameter 
vectors. In this example, we take 5000 samples, due to the 
size of the parameter space and the available computational 
resources[11], [13].  

Mapping model outputs to experimental data. The ABM 
needs to be able to match its outputs to measures analogous 
to the experimental data. While this data set includes tumor 
sizes, ratios of different cell types, and single cell 
proliferation events and velocity distributions at various 
time points, we will only elaborate on how we transformed 
the single cell distributions into a measure of tumor size. 

Extracting a single metric for tumor size using an 
ABM is not straightforward since the model tumor is a very 
diffuse and oddly shaped set of single cells (Figure 2). To 
calculate a radius, we first created a radial mesh from the 
center of the tumor mass and recorded the number of cells 
at each location. To find the total density at each location, 
we divided the cell number, Nθ, by the total area: 

                          𝜌!,! =
𝑁!

𝜋(𝑟! − (𝑟 − 1)!)/𝑁!
 ,                   (1)	

where	 r	 is	 the	 radial	 distance	 from	 the	 center	 point	 at	
r=0	and	Nθ	 is	 the	number	of	angular	divisions	defining	
the	 radial	 grid.	 In the experiment, the average diameter 
was found from measuring volumes of abnormal 
hyperintensity on magnetic resonance (MR) images. While 
there is no accepted mapping of tumor cell density to MR 
intensity, we used a cell density threshold of 50% for the 

model. The diameter was then found by	averaging	over	all	
angles	 the	 maximum	 distance	 from	 the	 center	 of	 the	
tumor	that	50%	cell	density	was	observed	(Figure	2).	

B. Parallel computation and error calculation 

Running the model.  The process of running a simulation 
for each parameter vector is perfectly parallel for each 
generation, meaning each simulation is independent of the 
others thus allowing them to run simultaneously. The run 
time per simulation was between 13 and 30 minutes. 
However, the scheduler on our HPCC limits users to 1000 
simultaneous jobs, therefore a typical generation composed 
of 5000 runs took between 65 and 150 minutes.  

Error Calculation. The model outputs that corresponded to 
data measurements were recorded during each simulation 
run. To get a total error from these outputs, the individual 
errors were weighted. This accounts for the allowed 
variance of each metric individually, in order to compare 
values of different metrics on different scales. For each 
output value mi, we calculate the error Ei from the data 
value mdata, using a normalized weighted least squares 
formula: 

                             𝐸! =
1
𝑁!

 
𝑚!"#" −𝑚!

𝑤!"#"

!
   ,                       (2)	

where Nm is the number of metrics, ensuring the sum of all 
errors ( 𝐸!

!m
!!! ) in a single run will be equal to or less than 

1 if the values Ei on average are within the allotted 
weighted margin, wdata, of each output.  

C. Sort errors to get best parameter combinations 

After running the simulations on the HPCC, the selection of 
the next parameter set is done in MATLAB. From the 
output vectors, we sum the error vector for each run. We 
found that occasionally error would build up in a single 
metric, so with the constraint that a single error cannot 
exceed a threshold value, we ranked the total errors in 
ascending order with their corresponding parameter 
vectors. From the ranked set, we take the top 10% to create 
the next generation of parameter vectors.  

D. Refine the parameter sets 

The winning parameter vectors are directly inherited and 
continue to the next generation, while the remaining 90% 
are found by mutation (40%) and resampling (50%). For 
mutation, each parameter was allowed to vary within a 
normal distribution centered at the original value with a 
standard deviation of 5% of the range. For resampling, a 
distribution was created for each parameter by binning the 
range into 20 equal intervals and recording the counts. Each 
parameter was sampled independently. We considered the 
parameter estimation procedure converged when the 
parameters of the current generation did not substantially 
change mean (by 5% of the range) or standard deviation (by 
0.5% of the range) from the previous 2 generations. This 
system generally took around 10-12 generations to fully 
converge. 
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III. DISCUSSION 

Parameter fitting, model analysis, and data integration for 
ABMs is extremely difficult due to their stochastic nature. 
Randomness and heterogeneity amongst the many individual 
agents makes these models subject to noisy output, and the 
bottom-up approach of ABMs means that many underlying, 
unmeasured parameters need to be estimated. Random 
sampling and parameter sweeping are useful methods for 
investigating the global effect of parameter changes in an 
ABM. However, these methods are inappropriate when the 
number of unknown parameters is large. Finding optimal fits 
to data requires more complex, automated algorithms. 

We are ultimately interested in characterizing 
heterogeneity in GBM on the single cell level to understand 
individual cell dynamics in disease progression and 
response to therapy. The noise generated from run to run 
due to the heterogeneity in single cell behavior, even with 
the same parameters could often be very large. We 
alleviated this concern by running a large number of 
parameter vectors in parallel over several generations. 
Some methods automate the entire process by using 
feedback during the simulation process [12], [15], which 
might improve parameter selection  dynamically to 
decrease convergence time. The method presented here 
runs the simulations and refines the parameter array in 
separate steps, but also avoids complex cluster scheduling 
procedures and allows the user to observe the results at 
each step and make any necessary adjustments. 

Using this approach we were able to converge on a set 
of parameters that fit bulk data (e.g. tumor size) and 
individual data (e.g. distributions of migration rates) to a 
reasonable degree. Beyond fitting the model to data, it 
helped us better understand which parameters were critical 
and which ones had little influence on the measured output. 
This method is a hybrid approach; so further refinements of 
each component are possible. However, this practical and 
easy to implement technique balances parameter correlation 
preservation with a more global search strategy to aid in 
systematically and efficiently narrowing a large parameter 
space. Whilst we used a GMB model here, our approach is 
equally applicable to any complex ABM coupled with 
appropriate multiscale data.  
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