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Abstract.— Molecular sequence data that have evolved under the influence of23

heterotachous evolutionary processes are known to mislead phylogenetic inference.24

We introduce the General Heterogeneous evolution On a Single Topology (GHOST)25

model of sequence evolution, implemented under a maximum-likelihood framework26

in the phylogenetic program IQ-TREE. Extensive simulations show that the27

GHOST model can accurately recover the tree topology, branch lengths,28

substitution rate and base frequency parameters from heterotachously-evolved29

sequences. We apply our model to an electric fish dataset and identify a subtle30

component of the historical signal, linked to the previously established convergent31

evolution of the electric organ in two geographically distinct lineages of electric fish.32

We compare the GHOST model to the partition model and show that, owing to the33

minimization of model constraints, the GHOST model is able to o↵er unique34

biological insights when applied to empirical data.35

Keywords: Phylogenetics, heterotachy, mixture model, maximum likelihood,36

convergent evolution37
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The success and reliability of model-based phylogenetic inference methods38

are limited by the adequacy of the models that are assumed to approximate the39

evolutionary process. Homogeneous evolutionary models have long been recognised40

as inadequate since the rate of evolution is known to vary across sites (Fitch and41

Margoliash, 1967; Holmquist et al., 1983) and across lineages (Baele et al., 2006;42

Lopez et al., 2002; Wu and Susko, 2011; Jayaswal et al., 2014). There are many43

models that have been proposed to compensate for rate heterogeneity across sites.44

The classical example is the discrete � model (Yang, 1994), which allows di↵erent45

classes of variable sites to have their rates drawn from a � distribution. More46

recently, Kalyaanamoorthy et al. (2017) relaxed the requirement for the rates of the47

classes to fit a � distribution, implementing a probability distribution-free48

rates-across-sites model. However, these models still assume that the substitution49

rate for each site is constant across all lineages. This is too restrictive; biologically50

speaking it is not hard to accept that evolutionary processes can be both lineage51

and time dependent. In the context of a phylogenetic tree this manifests as52

lineage-specific shifts in evolutionary rate, coined heterotachy (Philippe and Lopez,53

2001; Lopez et al., 2002), resulting in sequences that cannot be characterised as54

having evolved according to a single set of branch lengths and substitution55

model.56
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The e↵ect of heterotachy on phylogenetic inference was thrust into the57

spotlight by Kolaczkowski and Thornton (K&T) (2004). They used a simulation58

study to show that heterotachously-evolved sequences could mislead the popular59

inference methods of maximum-likelihood (ML) and Bayesian Markov Chain60

Monte-Carlo (BMCMC) to a greater extent than maximum parsimony (MP). Their61

findings were controversial and were widely challenged on the grounds that the62

simulations captured only a special case of heterotachy (Gadagkar and Kumar,63

2005; Philippe et al., 2005; Spencer et al., 2005; Steel, 2005), and more general64

studies of heterotachy concluded that ML performed at least as well as, and in65

most cases better than, MP (Gadagkar and Kumar, 2005; Spencer et al., 2005).66

Valid as these criticisms may have been, the key issue that K&T’s study brought to67

light stood firm - heterotachy was a primary source of model misspecification and68

the models and methods of the time were ill-equipped to deal with it. The main69

impediment to the development of models that can accommodate70

heterotachously-evolved sequences has been the computational expense. Models71

that account for heterogeneity of rates of change across sites can be integrated72

relatively cheaply, but modeling heterotachy is not so simple. One approach has73

been to use partition models (Lanfear et al., 2012), which require the data to be74

partitioned a priori. The analysis then proceeds by inferring seperate branch length75

5

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 10, 2017. ; https://doi.org/10.1101/174789doi: bioRxiv preprint 

https://doi.org/10.1101/174789
http://creativecommons.org/licenses/by-nc-nd/4.0/


and model parameters for each partition. Sequence data is commonly partitioned76

based on genes and/or codon position. However, the inherent assumption of such a77

partitioning scheme is that heterotachy only occurs between partitions, not within78

each partition. This may not be a valid assumption, so the requirement to partition79

the data in advance of the analysis is a possible source of model misspecification.80

Another approach has been to use mixture models, in which the likelihood of the81

data at each site in the alignment is calculated as a weighted sum across multiple82

classes (see Pagel and Meade (2005) for a detailed description of phylogenetic83

mixture models). The most common approaches can be referred to as mixed84

substitution rate (MSR) models (Lartillot and Philippe, 2004; Pagel and Meade,85

2004), whereby each class has its own substitution rate matrix; and mixed branch86

length (MBL) models (Kolaczkowski and Thornton, 2004; Meade and Pagel, 2008),87

whereby each class has its own set of branch lengths on the tree. As a consequence88

of their parameter rich nature, these models have all been implemented only within89

a Bayesian framework. Wu and Susko (2009) proposed a general framework for90

heterotachy, encompassing both mixed substitution rate and mixed branch length91

models as special cases. Another example is the CAT models of Lartillot and92

Philippe (2004), which have been widely used (Whelan and Halanych (2017) and93

references therein). Whelan and Halanych (2017) carried out extensive simulation94
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and empirical studies comparing the performance of the CAT models to partition95

models. They concluded that despite their additional complexity and associated96

increase in runtime, the CAT models generally perform no better than partition97

models. They also found that when new mixture models are introduced in the98

literature their performance is not always assessed against the current popular99

methods for phylogenetic analysis, such as partition models.100

As a consequence of their varied nature, mixture models require many101

parameters and the associated computational expense has thus far impeded their102

implementation in a ML framework. The issue of computational expense is an ever103

diminishing one; as computing power increases and algorithmic architecture104

improves, the opportunity to employ more and more complex models of sequence105

evolution does also. We introduce the General Heterogeneous evolution On a Single106

Topology (GHOST) model for ML inference. The GHOST model combines features107

of both MSR and MBL models. It consists of a number of classes, all evolving on108

the same tree topology. For each class the branch lengths, nucleotide or amino-acid109

frequencies, substitution rates and class weight are parameters to be inferred. It110

minimises the number of assumptions that must be made a priori by inferring all111

parameters directly from the data. Therefore, GHOST is free of the artificial112

constraints common in other models, often included for computational expedience113
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rather than biological relevance. This means that the GHOST model has the114

necessary freedom to extract any historical signals present in the data. We provide115

an easy to use implementation of the GHOST model in the phylogenetic program116

IQ-TREE (Nguyen et al., 2015), the first mixture model of comparable flexibility to117

be made available in a ML framework.118

Methods and Materials119

Model Description120

The GHOST model consists of m classes and one tree topology, T , common to all121

classes. All other parameters are inferred separately for each class. For the jth class122

we define �j as the set of branch lengths on T ; Rj , the relative substitution rate123

parameters; Fj , the set of nucleotide or amino acid frequencies; and w
j

, the class124

weight (w
j

> 0,
P

w
j

= 1). Given a multiple sequence alignment (MSA), A, we125

define L
ij

as the likelihood of the data observed at the ith site in A under the jth126

class of the GHOST model. L
ij

is computed using Felsenstein’s pruning algorithm127

(Felsenstein, 1981). The likelihood of the ith site, L
i

, is then given by the weighted128

sum of the L
ij

over all j:129
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L
i

=
mX

j=1

w
j

L
ij

(T,�j ,Rj ,Fj).

Therefore, if S contains N sites (length of the alignment), the full130

log-likelihood, `, is given by:131

` =
NX

i=1

log

✓
mX

j=1

w
j

L
ij

(T,�j ,Rj ,Fj)

◆
.

We make use of the existing parameter optimisation algorithms within132

IQ-TREE, extending it where necessary, to incorporate parameter estimation133

across the m classes.134

Model Parameter Estimation for a Fixed Tree, T135

Let ⇥ = {w1, . . . , wm

,�1, . . . ,�m,R1, . . . ,Rm,F1, . . . ,Fm} denote the GHOST136

model parameters (i.e., class weights, branch lengths, relative substitution rates,137

and nucleotide or amino-acid frequencies) for each of the m classes. To estimate all138

parameters for a tree T we employ an expectation-maximization (EM) algorithm139
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(Dempster et al., 1977; Wang et al., 2008). We initialize ⇥ with all R̂j = 1 in each140

class, uniform nucleotide or amino-acid frequencies F̂j (i.e., the Jukes-Cantor141

model), and ŵ
j

and �̂j obtained by parsimonious branch lengths rescaled by a142

discrete, distribution-free rates-across-sites model (Kalyaanamoorthy et al., 2017)143

with m categories. This becomes the current estimate ⇥̂. The EM algorithm144

iteratively performs an expectation (E) step and a maximization (M) step to145

update the current estimate until a (local) maximum likelihood is reached.146

E-step.— For each site i and class j compute the posterior probability p̂
ij

of site i147

belonging to class j based on the current estimate ⇥̂:148

p̂
ij

=
ŵ

j

L
ij

(T, �̂j , R̂j , F̂j)P
m

k=1 ŵk

L
ik

(T, �̂k, R̂k, F̂k)
.

M-step.— For each class j, maximize the log-likelihood function:149

`
j

=
NX

i=1

p̂
ij

log

✓
L
ij

(T,�j ,Rj ,Fj)

◆
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to obtain the next �̂j
NEW

, R̂j
NEW

, F̂j
NEW

. This can be done with standard150

phylogenetic optimization routines for each class.151

Finally, the weights are updated by:152

ŵ
j

NEW =
1

N

NX

i=1

p̂
ij

.

That is, the new weight for class j is the mean posterior probability of each153

site belonging to class j. This completes the proposal of the new estimate ⇥̂NEW .154

If `(⇥̂NEW ) > `(⇥̂) + ✏ (where ✏ is a user-defined tolerance, ✏ = 0.01 by default),155

then ⇥̂ is replaced by ⇥̂NEW and the E and M steps are repeated. Otherwise, the156

EM algorithm finishes.157

An auxiliary benefit of the ML implementation of the GHOST model in158

IQ-TREE is that once the EM-algorithm has converged, we can soft-classify sites159

according to their probability of belonging to a particular class. Post convergence,160

the final values of p
ij

can be directly interpreted as the probability that the ith site161

in the alignment belongs to the jth class. This classification can be used to identify162

sites in the alignment that belong with high probability to a particular class of163

interest.164
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Software165

The GHOST model has been implemented in IQ-TREE (Nguyen et al., 2015)166

(http://www.iqtree.org), the first model of this type and complexity to be made167

available in a ML framework. The GHOST model can be run with both nucleotide168

and amino acid sequences. The GHOST model is executed in IQ-TREE v1.6 by169

augmenting the model argument as shown below. For example if one wants to fit a170

four-class GHOST model in conjunction with the GTR model of evolution to171

sequences contained in data.fst, one would use the following command:172

iqtree -s data.fst -m GTR+H4173

By default the above command will infer only one set of equilibrium base174

frequencies and apply these to all classes. To infer separate equilibrium base175

frequencies for each class then we must add the +FO option:176

iqtree -s data.fst -m GTR+FO+H4177

The above command implements the linked version of the GHOST model.178

This means that only one set of GTR rate parameters will be inferred and applied179

to all classes. If one wishes to infer separate GTR rate parameters for each class180

then the unlinked version is required:181

iqtree -s data.fst -m GTR+FO*H4182
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The -wspm option will generate a .siteprob output file. This contains the183

probability of each site belonging to each class.184

iqtree -s data.fst -m GTR*H4 -wspm185

Validation of the GHOST Model186

We validated the GHOST model by carrying out two separate simulation studies.187

The first study was a replication of the simulations carried out by Kolaczkowski188

and Thornton (2004), focusing on the ability to recover the correct tree topology189

from heterotachously-evolved data on quartet trees. The second study was on190

12-taxon trees and focused on the ability to recover branch length and substitution191

model parameters from heterotachously-evolved data.192

K&T simulations.— We followed K&T’s method precisely and compared the193

performance of MP, ML-JC (ML under a JC model) and ML-JC+H2 (ML under194

JC with 2 GHOST classes). We used Seq-Gen (Rambaut and Grassly, 1997) to195

simulate nucleotide sequences on two symmetric, 4-taxa trees of identical topology196

(see Fig. 1a) using the JC model of evolution (Jukes and Cantor, 1969). The197

branch lengths were constructed such that each tree comprised of two non-sister198

long branches (length p) and two non-sister short branches (length q) separated by199

an internal branch (length r). We replicated three separate experiments previously200
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carried out by K&T.201

12-taxon simulations.— The replication of the K&T simulations focused on202

recovering tree topology only. However, the GHOST model is parameter rich and203

naturally the validation process must address its ability to accurately recover204

branch lengths and model parameters. We constructed independent sets of205

parameters for two classes on a randomly generated 12-taxon tree using the GTR206

model of evolution. For each class the branch lengths were drawn randomly from an207

exponential distribution with a mean of 0.1. When specifying a GTR rate matrix208

in Seq-Gen, the G$T substitution rate is fixed at 1 and all other substitution rates209

are expressed relatively. Within each class, the five relative substitution rates were210

drawn randomly from a uniform distribution between 0.5 and 5. The four base211

frequencies for each class were assigned a minimum of 0.1, with the remainder212

allocated proportionally by scaling a normalised set of four observations from a213

uniform distribution. From these two classes MSAs were constructed (again using214

Seq-Gen) by varying the weight of each class. The weight of Class 1, w1, was varied215

from 0.2 to 0.8 in increments of 0.05 and at each increment 20 separate MSAs were216

simulated. Each MSA was constructed by concatenating two independently217

simulated sets of sequences, the first of length 10000⇥w1 simulated using the Class218

1 parameters, and the second of length 10000⇥ (1� w1) simulated using the Class219
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Figure 1: Replication of the simulations of Kolaczkowski & Thornton. (a) We simu-
lated DNA sequences on two symmetric, 4-taxon trees of identical topology using the
Jukes-Cantor (JC) model of evolution (Jukes and Cantor, 1969). The branch lengths
were constructed such that each tree comprised of two non-sister long branches and
two non-sister short branches. Thus each tree was susceptible to long branch at-
traction (Felsenstein, 1978) (LBA). Importantly, the LBA artefact in both trees was
complementary - the bias was in the direction of the AC|BD tree. (b) Performance
of maximum likelihood (ML) using a JC, two-class mixture model (ML-JC+H2),
ML using a single-class JC model (ML-JC) and maximum parsimony (MP) for data
generated under strong heterotachy, p=0.75 and q=0.05. The length of the internal
branch, r, was varied between 0.01 and 0.4 with 200 replicates at each value of r.
ML-JC+H2 was able to reliably recover the tree topology for this data even when
the internal branch is very short.
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2 parameters. We used IQ-TREE to infer parameters from each MSA under a220

GHOST model with two GTR classes (GTR+FO*H2). We also inferred parameters221

from each MSA under a GTR edge-unlinked partition model.222

Parameter recovery: metrics.— The recovery accuracy of base frequency and223

relative rate parameters for the 12-taxon simulations was measured by calculating224

the mean absolute di↵erence between the inferred and true parameters. The225

accuracy of branch length estimates was assessed using the branch score metric, BS226

(Kuhner and Felsenstein, 1994). One challenge in assessing accuracy of branch227

length recovery is that BS is an absolute distance metric. Therefore, we established228

a frame of reference so that we could assess whether the results obtained are229

suitably close to the truth or not. To do this we made use of the estimates under230

the edge-unlinked partition model as a baseline. The fundamental di↵erence231

between the partition model and the GHOST model is that the partition model has232

a priori knowledge of which sites in the alignment belong to which class. This233

means that in e↵ect (and excluding the possibility of inferring the incorrect234

topology) the results of the partition model are identical to those that would be235

obtained by fitting GTR models to the Class 1 and Class 2 sequences236

independently. Thus we can consider the accuracy of the partition model as a237

benchmark.238
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Convergent Evolution of the Nav1.4a Gene Among Teleosts239

To investigate the performance of the GHOST model using real data we applied it240

to a sequence alignment (2178 bp) taken from the coding region of a sodium channel241

gene, Na
v

1.4a, for 11 teleost species. We used Akaike’s Information Criterion (AIC)242

(Akaike, 1974) to determine the model of sequence evolution and number of classes243

that provided the best fit to the data. We also used PartitionFinder (Lanfear et al.,244

2012) and IQ-TREE to fit the best edge-unlinked partition model to the alignment.245

The data was partitioned based on codon position.246

Results & Discussion247

Validation - K&T Simulations248

Experiment 1.— We fixed p = 0.75 and q = 0.05 (see Fig. 1a) and varied the249

internal branch length, r, on the interval [0.01, 0.4] in increments of 0.01. For each250

value of r, 200 simulated MSAs were constructed by concatenating two251

sub-alignments of equal length, one simulated on each of the trees in Figure 1a. We252

carried out phylogenetic inference on each MSA using MP, ML-JC and253

ML-JC+H2. The experiment was repeated for sequence lengths of 1,000, 10,000254

and 100,000 base pairs. The results are shown in Figure 1b. We found that both255
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ML-JC and MP were misled when r was short, but as r increased MP recovered256

before ML. For a sequence length of 100kb, MP was misled to some extent for257

r < 0.24 and ML-JC was misled for r < 0.3. These findings mirrored those of K&T258

precisely. However, the ML-JC+H2 model however was never misled. Figure 1b259

shows that given su�cient sequence length, the ML-JC+H2 model inferred the260

correct topology from the heterogeneous sequences 100% of the time with r as low261

as 0.01. Our results clearly demonstrate that the ML-JC+H2 model can correctly262

infer the tree topology when ML-JC and MP both are misled by the heterotachous263

nature of the data.264

Experiment 2.— We tested nine di↵erent combinations of p 2 {0.3, 0.5, 0.7} and265

q 2 {0.001, 0.1, 0.2, 0.3, 0.4} (see Fig. 1a). For each of the three methods/models266

(MP, ML-JC and ML-JC+H2) and at each combination of p and q we determined267

the smallest value of r (subject to the minimum r = 0.001), denoted BL50 by K&T,268

such that the correct topology was returned at least 50% of the time. The results269

(Fig. 2) indicate that ML-JC+H2 comprehensively outperformed the two270

alternatives, with the di↵erence most apparent when the influence of heterotachy271

was strongest (most notably when p is large and q is small). Again the results we272

observed for MP and ML-JC closely emulated the findings of K&T.273
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Figure 2: The ML-JC+H2 model clearly outperforms MP and ML-JC over the range
of heterotachous conditions tested by K&T. They introduced the BL50 measure as
the minimum internal branch length required for the method to recover the correct
tree topology at least 50% of the time. Small values of BL50 indicate that the model
is less likely to be misled by the heterotachous nature of the data.
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Experiment 3.— We tested the impact of varying the weight, w, of each class in the274

simulated MSAs for a variety of branch length combinations. Initially p and q (see275

Fig. 1a) were fixed at 0.75 and 0.05 respectively, with r 2 {0.05, 0.15, 0.25} and276

w 2 {0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99}. The process was then277

repeated, this time with p and r fixed at 0.75 and 0.15 respectively, with278

q 2 {0.05, 0.15, 0.25} and w as before. Sequence length was held fixed throughout279

at 100,000bp and 200 replicates were simulated at each combination of branch280

lengths and weight. We found that for almost all branch length combinations281

ML-JC+H2 was able to recover the correct topology for all replicates. In the entire282

experiment, only one dataset (out of 13,200) returned the incorrect topology. The283

results of K&T indicate that ML-JC could not reliably recover the correct topology284

for all weights for any of the branch length combinations.285

The good performance of the GHOST model over the three K&T286

experiments should be expected in some sense, as ML-JC+H2 enjoys significant287

advantage over the two alternatives. It is in no way misspecified, having the288

freedom to fit two classes evolved under the JC substitution model, precisely the289

conditions used to simulate the data. Conversely, ML-JC has only a single class290

and therefore is subject to model misspecification. No single set of branch lengths291

can reproduce the signal present in the simulated alignments. MP is obviously not292
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subject to model misspecification as the method is non-parametric, but it is subject293

to the long-established artefact of long branch attraction (LBA) (Felsenstein, 1978).294

Felsenstein showed that having long non-sister branches separated by a relatively295

short internal branch can result in MP incorrectly inferring the long branches as296

sisters. Figure 1a shows the two trees used for the classes in the mixture, both297

sharing the same AB|CD topology. The Class 1 tree has long terminal branches on298

the A and C lineages, therefore the LBA artefact leads MP to incorrectly favour299

the AC|BD topology. The Class 2 tree is in a sense the symmetric opposite of the300

Class 1 tree, it has long terminal edges on the B and D lineages so the result is the301

same: LBA leads MP to incorrectly infer the AC|BD topology.302

Therefore the successful replication of the K&T simulations is a necessary303

but not su�cient condition for the GHOST model’s endorsement. It indicates that304

the implementation of the GHOST model within IQ-TREE’s algorithm structure305

has been successful, but these simulations are on only four taxa and use the most306

simple model of sequence evolution. Moreover, they only focus on recovering307

correct tree topology and not inferring branch length parameters.308

12-taxon simulations.— We simulated heterotachously-evolved MSAs on a random309

12-taxon tree topology under a GTR+FO*H2 model. Using the true GTR+FO*H2310
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model, IQ-TREE accurately recovered the correct tree topology in all 260311

simulated datasets. Figure 3 shows the performance of the GHOST model in312

recovering the various tree and model parameters for Class 1 of the simulated data.313

The analagous plots for Class 2 can be found in Supplementary Figures S1 - S4.314

The results of the 12-taxon simulations clearly show that under the GTR+FO*H2315

model IQ-TREE recovered the base frequencies, relative rate parameters and316

weights to a high degree of accuracy for both classes. With respect to the branch317

score (BS) (Figs. 3c and S3), we see that the GHOST model again performs very318

well. The mean BS for the GHOST model approaches that obtained by the319

partition model as class weight (and therefore share of sequence length in the320

mixture) increases. This is a very impressive result, given that the partition model321

enjoys the significant advantage of having full knowledge of which sites were322

simulated under which class. A BS of zero would imply that the true simulation323

parameters were inferred for every simulated alignment. Thus, the magnitude of324

the BS for the partition model can be thought of as a measure of the stochastic325

simulation error. The di↵erence between the BS for the GHOST and partition326

models can then be considered the error attributable to losing the knowledge of the327

partitioning scheme. Clearly this error is negligible in comparison to the simulation328

error. In Figure 3c, when w1 > 0.5 (or equivalently Fig. S3 when w1 < 0.5), the329
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clear overlap of the error bars (which represent ±2 standard errors of the mean)330

suggests that the trees inferred by the GHOST model are not significantly di↵erent331

from those inferred by the partition model. This is a promising result, as in332

empirical data any partitioning of the MSA is based on assumptions, and therefore333

introduces a significant potential source of model misspecification. The GHOST334

model can be applied without any such assumptions.335

To demonstrate the ability of the GHOST model to provide meaningful336

information about which sites might belong to which class, we performed a soft337

classification on one of the MSAs generated for the 12-taxon simulations. For338

simplicity we have chosen an MSA where Class 1 and Class 2 are of equal weight.339

Figure 4 clearly indicates, as one would expect, that the probability of a site340

belonging to Class 1 is generally higher for those sites that were simulated under341

the Class 1 parameters. However, given the stochastic element of the simulations,342

there are some sites simulated under the Class 2 parameters that are classified as343

having a higher probability of evolving under Class 1, and vice versa. For this344

reason we never attempt to hard classify specific sites to a particular class. Rather345

we consider a specific site’s probability distribution of evolving under all of the346

classes.347
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Figure 3: 12-taxon simulations - Class 1 inferred parameters vs Class 1 weight.
The data points indicate the mean value of the inferred parameter or statistic, the
error bars represent ±2 standard errors of the mean. Dotted lines represent the
true parameter value used for data simulation. (a) Base frequencies (b) Relative
substitution rates (c) Branch score (BS) for both the GHOST and partition models
(d) Inferred Class 1 weight.
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Figure 4: Soft classification of sites to classes - the probability of a site belonging
to Class 1 is shown on the y-axis, the two Classes are shown on the x-axis. The
boxplots clearly show that in general, sites generated under Class 1 parameters tend
to have a higher probability of belonging to Class 1 than sites generated under Class
2.
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Convergent Evolution of the Nav1.4a Gene Among Teleosts348

To investigate the performance of the GHOST model using empirical data we349

applied it to the coding region of a sodium channel gene, Na
v

1.4a, for 11 teleost350

species. Zakon et al. (2006) demonstrated the role of this gene in the convergent351

evolution of the electric organ amongst electric fish species from South America352

and Africa. AIC determined that GTR+FO*H4 provided the best fit between tree,353

model and data (Supplementary Fig. S5). The trees inferred by the GHOST model354

can be found in Figure 5. We then partitioned the electric fish sequence alignment355

into three partitions, based on codon position (CP). PartitionFinder suggested356

GTR+FO+G4 (GTR with inferred equilibrium base frequencies plus discrete �357

with four classes) for both the CP1 and CP2 partitions, and GTR+FO+I+G4358

(same as above but with the inclusion of an invariable sites class) for the CP3359

partition. We used IQ-TREE to run the partition model with the models indicated360

by PartitionFinder. The trees inferred by the partition model can be found in361

Figure 6.362

We labelled the four classes inferred by the GHOST model in order of363

increasing total tree length (TTL): the ‘Conserved Class’ (TTL
Cons

=0.23), the364

‘Convergent Class’ (TTL
Conv

=0.99), ‘Fast-evolving Class A’ (TTL
FEA

=4.06) and365

‘Fast-evolving Class B’ (TTL
FEB

=4.18). Of particular interest is the Convergent366
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Class, so named as it corresponds well to Zakon et al.’s (2006) hypothesis of367

convergent evolution of Na
v

1.4a among the South American and African electric368

fish clades. The convergent class tree displays much more evolvution in the electric369

rather than the non-electric fish lineages (Fig. 7). This is indicative of either a370

relaxation of purifying selection pressure, an introduction of positive selection371

pressure or a combination of both. The notable exception is the Brown Ghost372

Knifefish, which appears relatively conserved. The Brown Ghost Knifefish is unique373

amongst the other electric fish in the dataset, in that its electric organ has evolved374

from neural rather than muscle tissue. Consequently in the Brown Ghost Knifefish375

the Na
v

1.4a gene is still expressed in muscle, just as it is in the non-electric fish.376

The clear distinction in terminal edge length between the Brown Ghost Knifefish377

and the other electric fishes is obvious and compelling. It provides strong evidence378

that the GHOST model has indeed identified a subtle component of the historical379

signal related to the convergent evolution of Na
v

1.4a, as opposed to returning an380

arbitrary combination of numerical parameters that happen to maximize the381

likelihood function. The ability of the GHOST model to isolate such a small382

component of the signal (the inferred weight of the convergent class being 0.13, the383

smallest of the 4 classes) is most encouraging. Furthermore, we can expect that the384

sites belonging with high probability to the convergent class are likely to have been385
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influential in the functional development of the electric organ.386

Soft classification of sites to classes.— The soft classification of sites to classes387

facilitates the prospective identification of functionally important sites in an388

alignment. Zakon et al. (2006) report several amino acid sites from the dataset that389

are influential in the inactivation of the sodium channel, a process critical to390

electric organ pulse duration. Figure 8a shows that these sites generally have a391

higher than average probability of belonging to the convergent class in at least one392

codon position. For example, at amino acid site 647 an otherwise conserved proline393

(codon CCN) is replaced by a valine (GTN) in the Pintailed Knifefish and a394

cysteine (TGY) in the Electric Eel. Unique substitutions at codon positions 1 and 2395

are necessary for both of these amino acid replacements and we find these two sites396

have a very high probability of belonging to the convergent class. With this result397

in mind, for each amino acid we summed the probability of codon positions 1 and 2398

belonging to the Convergent Class. Figure 8b shows the results for the eight amino399

acid sites with the highest score. Comparing the magnitude of these bars with those400

of the amino acids in Figure 8a (which are known to be functionally important),401

one can suspect that these amino acids might also be critical to the operation of402

the sodium channel gene. Given that there are many other sites in the alignment403

with a high probability of belonging to the convergent class, one can envisage the404
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Figure 5: The four trees inferred under the General Time Reversible, four class
mixture model (GTR+FO*H4) for the electric fish data. We can clearly see the
variability of the branch lengths among the four classes. The classes are displayed
in order of increasing tree size, as determined by the sum of the branch lengths.
We refer to this as the total tree length (TTL): TTL

Cons

= 0.23, TTL
Conv

= 0.99,
TTL

FEA

= 4.06 and TTL
FEB

= 4.18.
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Figure 6: The three trees inferred under the edge-unlinked partition model for the
electric fish dataset, with the alignment partitioned based on codon position (CP).
The CP1 and CP2 partitions used a GTR+FO+G model, while the CP3 partition
used a GTR+FO+I+G model.
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Figure 7: The convergent class inferred by ML-GTR+FO*H4. The 11 fish species
comprised four South American electric fish (green), one African electric fish (blue),
and six non-electric fish (black) from various locations. The tree for this class shows
that in comparison to the electric fish, the non-electric species are relatively con-
served.
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GHOST model helping to identify sites of potential functional importance in an405

alignment, thereby focusing the experimental work of biologists.406

In addition to providing insight on an individual site basis, the soft407

classification can also help to inform us about the nature of the classes themselves.408

Summing the weighted TTLs for each of the inferred classes results in an estimated409

1.766 substitutions per site under the inferred model. Table 1 reports the410

contributions to this figure, stratified by codon position and class. If class411

membership and codon position were independent attributes of each site then we412

should expect the contribution of each codon position to be approximately one413

third for each class. This is not what we observe. Overall we can see that sites in414

CP1(23%) and CP2 (16%) contribute only 39% of the total of 1.766 substitutions415

per site. However, within the Conserved and Convergent Classes, sites in CP1 and416

CP2 are responsible for 90% and 76% of their contribution respectively. This would417

suggest that a comparatively larger proportion of the substitutions attributed to418

these classes are non-synonymous: resulting in amino acid replacements that419

influence the fitness of the organism. We can therefore conclude that even though420

the Conserved and Convergent Classes are smallest (as determined by substitutions421

per site), they appear to be the primary catalyst of evolution via natural selection422

within Na
v

1.4a amongst these species.423
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Figure 8: Probability of sites belonging to the convergent class by codon position. (a)
The amino acid positions selected correspond with those identified by Zakon et al.
(2006) as being functionally important to the inactivation of the Na+ gene. The
horizontal dotted line at 0.13 represents the average probability of belonging to the
convergent class over all sites in the alignment. (b) The amino acid positions selected
correspond to those with the highest probability of belonging to the convergent class,
summed across the first two codon positions.
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Class CP1 CP2 CP3 Subs/site

Conserved 0.049 (41%) 0.058 (49%) 0.012 (10%) 0.119

Convergent 0.051 (40%) 0.047 (36%) 0.031 (24%) 0.129

Fast-evolving A 0.135 (19%) 0.076 (11%) 0.504 (70%) 0.715

Fast-evolving B 0.175 (22%) 0.100 (12%) 0.528 (66%) 0.803

All Classes 0.410 (23%) 0.280 (16%) 1.076 (61%) 1.766

Table 1: Expected number of substitutions per site (bold), weighted by class and
separated by codon position (CP). For each inferred class, the expected substitutions
per site are calculated by multiplying the total tree length (TTL) by the class weight.
The CP1, CP2 and CP3 columns show the contribution to these figures from only the
sites within each CP. The grand total indicates that under the parameters inferred
by ML-GTR+H4 we would expect 1.766 nucleotide substitutions per site. We can
then see, for example, that the Convergent Class is responsible for 0.129 of these
substitutions per site. Finally, of the 0.129 substitutions per site attributable to the
Convergent Class, 0.051 (or 40%) is the contribution from sites in CP1, 0.047 (36%)
is the contribution from sites in CP2 and 0.031 (24%) is the contribution from sites
in CP3.
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Comparison to the Partition Model.— It is apparent upon examination of the trees424

in Figure 6 that the evidence of convergent evolution highlighted by the GHOST425

model (Fig. 7) has not been recovered by the partition model. None of the three426

trees in Figure 6 have the distinctive pattern, whereby the majority of the total427

tree length is associated with the electric fish species (with the exception of the428

Brown Ghost Knifefish). The reason that the partition model failed to recover this429

signal is clear when considering the contribution of each CP to the Convergent430

Class. Table 1 indicates that the substitutions associated with the Convergent431

Class are attributable to CP1 sites (40%), CP2 sites (36%) and CP3 sites (24%).432

The partition model constrains the analysis, such that sites in di↵erent CPs are433

modeled independent of each other. It is impossible for a model constrained in such434

a way to recover the convergent evolution signal, or any other signal whose435

components are distributed across multiple partitions. The decision to partition the436

data based on codon position may make sense superficially, but in doing so the437

analysis is constrained and the results are compromised. We no longer have the438

ability to uncover the evolutionary stories concealed within the data. We can only439

hope to obtain those stories that happen not to conflict with the assumptions and440

constraints that have been placed on the analysis a priori. Minimizing these441

assumptions and constraints where possible, while computationally expensive, is442
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necessary in order to illuminate the evolutionary history without distorting it in443

the process.444

On the Identifiability of the GHOST Model445

An ongoing concern with regard to parameter-rich mixture models has been446

whether or not they are identifiable. There are several examples of theoretically447

non-identifiable mixture models in the literature (Matsen and Steel, 2007;448

Štefankovič and Vigoda, 2007b). These examples have inspired much theoretical449

work on the identifiability or otherwise of di↵erent types of phylogenetic mixture450

models (Allman and Rhodes, 2006; Štefankovič and Vigoda, 2007a; Allman et al.,451

2008; Allman and Rhodes, 2008; Allman et al., 2011). Of particular interest to the452

current study, Allman et al. (2011) showed that for a single topology, four taxa,453

two-class mixture under the JC model, only the tree topology is identifiable but not454

the branch lengths. This provides a theoretical justification for the procedure455

carried out by K&T (and replicated here), measuring performance of the models456

based only on recovery of the topology and paying no attention to recovery of457

branch length parameters. With regard to the identifiability of the GHOST model458

more generally, we rely on a result from Rhodes and Sullivant (2012). They459

established an upper bound on the number of classes for which tree topology,460
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branch lengths and model parameters are identifiable, as a function of the number461

of character states and the number of taxa. For the simulations we carry out in the462

current study, with 12 taxa and four character states, the model is identifiable up463

to a maximum of 15 classes. In the case of the electric fish dataset, with four464

character states and only 11 taxa, the model is identifiable up to 11 classes.465

However, there is a technical caveat. The result is shown based on assuming a466

general Markov model across the tree. There are specific choices of parameters that467

can result in non-identifiability, but these are of little concern in practical data468

analysis. Problems arise only when the parameters selected collapse the parameter469

space to some lower dimension. For example, we could fit the GTR model but if we470

chose parameters such that all base frequencies were equal and all substitution471

rates were equal then we are in fact using a JC model, and identifiability may be472

compromised. However, these technical examples of non-identifiability are not473

relevant in practice, as in the absence of any constraints there is no likelihood of474

inferring parameters that collapse the parameter space in such a way.475

Conclusion476

Heterotachy has been somewhat of an Achilles heel for ML since K&T published477

their study. The implementation of the GHOST model in IQ-TREE represents a478
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positive advance for ML based phylogenetic inference. Through minimization of479

model assumptions the GHOST model o↵ers significant flexibility to infer480

heterotachous evolutionary processes, illuminating historical signals that might481

otherwise remain hidden. The GHOST model seems well suited to the analysis of482

phylogenomic datasets, commonly used to address deep phylogenetic questions.483

While we only present the method and one single-gene empirical example in the484

current paper, forthcoming empirical studies will compare the performance of the485

GHOST model to currently popular phylogenomic analysis tools, such as partition486

and CAT models. One can also envisage many other potential uses for the GHOST487

model. It could be applied to datasets for which the topology is poorly supported488

or disputed. It could also provide more accurate parameter estimates, leading to489

sounder divergence date estimation. The model provides intuitive, biologically490

meaningful visualizations of the di↵erent evolutionary pressures that act on a group491

of taxa. Structural biologists may find it useful for highlighting functionally492

important areas within proteins. We have demonstrated its use as a method for493

identifying changes in selection pressure, as well as bringing to light evidence of494

convergent evolution. Similarly, one can envisage the GHOST model illuminating495

the subtle evolutionary relationships between hosts and parasites, disease and496

immune cells, or the countless evolutionary arms races that are observed497
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throughout the natural world.498
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