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19 ABSTRACT

20 The standard workhorse for genomic analysis of the evolution of bacterial
21 populations is phylogenetic modelling of mutations in the core genome.
22  However, in the current era of population genomics, a notable amount of
23 information about evolutionary and transmission processes in diverse
24  populations can be lost unless the accessory genome is also taken into

25  consideration. Here we introduce PANINI, a computationally scalable method for
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26  identifying the neighbours for each isolate in a data set using unsupervised
27  machine learning with stochastic neighbour embedding. PANINI is browser-
28 based and integrates with the Microreact platform for rapid online visualisation
29 and exploration of both core and accessory genome evolutionary signals
30 together with relevant epidemiological, geographic, temporal and other
31 metadata. Several case studies with single- and multi-clone pneumococcal
32 populations are presented to demonstrate ability to identify biologically
33 important signals from gene content data. PANINI is available at

34  http://panini.wgsa.net/ and code at http://gitlab.com/cgps/panini

35

36 BACKGROUND

37

38 In less than a decade, bacterial population genomics has progressed from
39 sequencing of dozens to thousands of strains [1,2,3,4]. The biological insights
40 enabled by population genomics are particularly important in evolutionary
41 epidemiology, as the genome sequences provide high resolution data for the
42  estimation of transmission and evolutionary dynamics, including horizontal
43  transfer of virulence and resistance elements. Phylogenetic trees are the main
44  framework utilised for visualisation and exploration of population genomic data,
45  both in terms of the level of relatedness of strains and for mapping relevant
46  metadata such as geographic locations and host characteristics [5]. While trees
47  are highly useful, they are in general estimated using only core genome variation
48  (i.e. those regions of the genome common to all members of a sample), which
49  may represent only a fraction of the relevant differences present in genomes

50 across the study population. Several recent studies highlight the importance of
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51 considering variation in gene content when investigating the ecological and
52  evolutionary processes leading to the observed data [6, 7].

53

54  The rapidly increasing size of population genomic datasets calls for efficient
55 visualisation methods to explore patterns of relatedness based on core genomic
56 polymorphisms, accessory gene content, epidemiological, geographical and other
57 metadata. Here we introduce a framework that integrates within the web
58 application Microreact [5], by utilising a popular unsupervised machine learning
59 technique for big data to infer neighbors of bacterial strains from accessory gene
60 content data and to efficiently visualize the resulting relationships. The machine
61 learning method, called t-SNE, has already gained widespread popularity for
62  exploring image, video and textual data [8,9], but has to our knowledge not yet
63  been utilized for bacterial population genomics.

64

65 Since gene content may in general be rapidly altered in bacteria, it provides a
66  high-resolution evolutionary marker of relatedness which can extend far beyond
67  core genome mutations [7]. Different processes driving horizontal movement of
68 DNA, such homologous recombination, conjugative transfer of plasmids and
69 phage infections, all affect the gene content within and outside of a chromosome.
70 By contrasting core and non-core gene content, one can investigate and draw
71  conclusions about genome dynamics across a sample collection. Here we
72  demonstrate the biological utility of such an approach by application to multiple
73  population data sets.

74

75 METHODS AND RESULTS
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76  Student t-distributed Stochastic Neighbor Embedding (t-SNE) is a machine
77  learning algorithm which is widely used for data visualization [8]. It is suitable
78 for embedding a set of high-dimensional data items in a 2- or 3-dimensional
79 space. The embedding approximately preserves the pairwise similarities
80  between the data items.

81

82 The t-SNE algorithm consists of two main steps. First, it calculates the
83 similarities between the data items in the high-dimensional space, which is
84  typically based on normal distribution around each data item. The similarities
85 are then normalized to be probabilities (i.e. they sum to one). Similarities in the
86 low-dimensional space are analogously defined and normalized except that
87  Student t-distribution replaces the Gaussians. Second, t-SNE minimizes Kullback-
88  Leibler divergence between the two probability matrices over the embedding
89  coordinates. Finally, the 2-D t-SNE result can be visualized as a scatter plot
90  where each dot indicates a data item.

91

92  t-SNE as an unsupervised method is particularly useful for exploratory data
93  analysis. It has a wide range of applications in music analysis, cancer research,
94  computer security research, bioinformatics, and biomedical signal processing. In
95 many cases, t-SNE is able to identify meaningful data structures such as clusters
96 even without feature engineering or structural assumptions, e.g. about number
97  of clusters underlying the data. Here, we use the latest version of the t-SNE
98 projection method, adopting the Barnes-Hut algorithm for accelerating the
99  divergence minimization [9].

100
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101  To demonstrate utility within population genomics, firstly, we explore how the
102 method performs in a simulated setting, where the relationship between all
103 sequences is known and then extended our analysis to published bacterial
104  population data sets, allowing us to uncover previously unseen relationships
105 between data and to address important biological questions.

106

107  SIMULATED DATA

108 To our knowledge, this is the first time that the t-SNE projection method has
109 been used to explore patterns of genetic relatedness between different bacterial
110 isolates. We have therefore validated the methodology by assessing how well it
111  identifies neighbours and clusters for simulated genetic sequences. Firstly, we
112 randomly generated multiple synthetic datasets of related isolates, with each
113  defined as a sequence of present/absent genes. Each dataset is generated using
114  the following parameters:

115 1. There are 20 clusters as underlying subpopulations.

116 2. The number of isolates belonging to a cluster is drawn from a Poisson
117  distribution with mean 15.

118 3. Each cluster is defined by a number of core genes, which ranges uniformly
119 from 1 to 100.

120 4. Each isolate has a probability between 80% to 99% of independently carrying
121  each of the core genes of the cluster it belongs to.

122 5. Conversely, each isolate has a probability (PN) to independently carry each of
123  the non-core genes of its cluster. Non-core genes are composed of core genes of
124  other clusters and "noise" genes which are not defining characteristics of any

125  cluster (in total 300 genes).
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126

127  Each generated dataset has on average 300 isolates with a gene content of 1300
128 genes present/absent on average. For each dataset, we estimated the genetic
129  pairwise Hamming distance (dx) and the distance using the t-SNE algorithm (d).
130 The Hamming distance is simply the number of differences between two
131 sequences of equal length, which in this case refers to a gene being present in
132  one isolate but absent in the other. The implementation of the t-SNE algorithm
133  that we use yields a coordinate in a 2D plane for each isolate, and we calculate
134  the distance d; simply as the Euclidean distance for each pair of isolates.

135

136  Ifacluster is sufficiently differentiable in terms of its gene content, we expect the
137 Hamming distance within the cluster to be smaller than to any other isolate not
138  belonging to it. For the t-SNE algorithm to be considered valid, it should be able
139  to project the isolates from the same cluster on the 2D plane sufficiently close
140  together so that the Euclidean distance within the cluster is smaller than to any
141  other isolate. Given the conditions that were used to generate the synthetic
142  datasets, not all clusters are necessarily differentiable in terms of their gene
143  content, therefore we classified the t-SNE algorithm as performing erroneously
144  only when a pair of isolates belonging to different cluster are not identified as
145  such by the algorithm but are correctly identified using the Hamming distance.
146  For high levels of noise, i.e. a large value of PN, differentiating the clusters using
147  their gene content becomes increasingly difficult as the isolates may lack a
148  sufficiently stable signal of relatedness.

149

150  We analyzed the performance of the t-SNE algorithm for three levels of noise PN:
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151 0.001, 0.005 and 0.01, which measures the average proportion of non-core genes
152  in each isolate. We performed 100 repeats for each noise value, which for each
153  repeat involves generating on average 300 sequences and comparing almost
154 45000 pairs of isolates. The average error for the three noise values was 0.5%,
155 1% and 4% respectively, with a small error representing a particular isolate mis-
156  allocated (i.e. very close to a different cluster) and a large error representing two
157  clusters which are not appropriately differentiated by the t-SNE algorithm,
158 illustrated in Figure 1. The error of the t-SNE algorithm increases with the noise,
159  asshown in Figure 1(iii), and with the total number of clusters (not shown).

160

161  WEB APPLICATION - https://panini.wgsa.net/

162 The t-SNE algorithm implemented in C++ (https://github.com/lvdmaaten/

163  bhtsne) was wrapped as a Node.js native module and embedded within a web

164  application. The application is written in JavaScript and utilises React

165  (https://facebook.github.io/react) for front-end and the Vis,js library

166  (http://visjs.org) for network visualisation.

167 1) Data are uploaded as a gene presence/absence matrix - Panini expects data in
168 the .rtab format (the output from Roary: the pan genome pipeline [10];

169  https://sanger-pathogens.github.io/Roary) However, this is simply a data file

170  containing gene rows and isolate columns with ‘1’ or ‘0’ indicating
171  presence/absence of a particular gene for a particular isolate.

172 2) Genes present in all isolates are ignored (i.e. core genome) and non-core
173  genes are clustered using t-SNE with default parameters (auto perplexity and
174  theta=0.5 - parameters can be changed by users).

175  3) The Results (x, y coordinates, a “.dot’ format file containing graph layout, csv


https://doi.org/10.1101/174409
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/174409; this version posted August 21, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

176  and JSON) are made available for download and reuse. Results are also visualised
177  directly within the PANINI web application as a graph layout.

178 To interpret the data in an epidemiological, phylogeographic and geographic
179  context, the estimated network can also be uploaded directly to the Microreact
180 platform allowing a user to add other forms of data to relate to the resulting
181 neighbor embedding, typically a phylogenetic tree, geographical locations of the
182  isolates, and temporal data (Further information and instructions at

183  https://microreact.org ).

184

185  UTILITY WITH EXISTING PUBLISHED DATASETS

186

187 To demonstrate utility of t-SNE clustering we applied the method to three
188  published datasets which used Whole Genome Sequencing (WGS) to study the
189  evolution of the bacterium Streptococcus pneumoniae. The first, a population
190 level dataset, detailed population-wide diversity of pneumococci within
191  Massachusetts, USA pre- and post vaccine introduction [2], while the second and
192  third detailed international collections of globally-disseminated multidrug-
193 resistant lineages of Streptococcus pneumoniae [11, 12]. Additional biological
194  insights made possible with PANINI are described, and links to the projects
195  within Microreact for further exploration of associated metadata and download
196 of raw data formats are provided.

197

198

199

200
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201 ANALYSIS OF A DIVERSE PNEUMOCOCCAL POPULATION
202
203 Data Visualisation and download:

204  https://microreact.org/project/panini-sparc?ui=nt

205 Source data and .RTab file:

206 https://gitlab.com/cgps/panini/datasets/tree/master/SPARC

207  Video walkthrough for PANINI and Microreact creation/use:

208  https://vimeo.com/230416235

209

210  PANINI was applied to a collection of 616 systematically-sampled pneumococcal
211  isolates from a vaccine and antimicrobial resistance surveillance project in
212  Massachusetts [13]. The original analysis of gene content in this collection
213  identified 5,442 ‘clusters of orthologous genes’ (COGs) [2], the core set of which

214 was used to define fifteen ‘sequence clusters’ with  BAPS

215  (http://www.helsinki.fi/bsg/software/BAPS) [18]. For most of the sequence
216  clusters, the correspondence between a group in the PANINI output and the
217  original sequence clusters was exact (Figure 2A), reflecting their similarity both
218  in terms of the core and accessory genomes [14]. These sets of isolates therefore
219  represent well-defined, distinct lineages. However, SC1, SC6, SC10 and SC12 all
220  exhibited distinct substructuring in the PANINI output. This corresponded well
221  with the diverse core genome observed in these clusters (Figure 2B), and in each
222 case, these groups were consistent with clades within the sequence clusters.
223  These sequence clusters are therefore likely to represent amalgams of genotypes
224  that should be subdivided into multiple clusters. Conversely, PANINI revealed

225  clear substructuring within the previously unclustered SC16, which was also
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226  consistent with the core genome phylogeny. Hence PANINI can easily facilitate
227  the division of a diverse population into discrete genotypes that are coherent in
228  their accessory and core genome content.

229

230 EXTENSIVE PROPHAGE VARIATION IN A MULTIDRUG-RESISTANT LINEAGE
231

232 Data Visualisation and download:

233  https://microreact.org/project/panini-pmen2?ui=nt

234  Source data and .RTab file:

235 https://gitlab.com/cgps/panini/datasets/tree/master/PMEN2

236

237  PANINI was applied to an analysis of orthologous genes across a global collection
238  of 190 isolates from the multidrug-resistant Streptococcus pneumoniae clone
239  PMEN2 [11], which caused a large outbreak of disease in Iceland starting in the
240 late 1980s (Figure 3A). Multiple distinct clusters were again evident in the
241  output (Figure 3B). In some cases, these were consistent with the phylogeny. The
242  original analysis identified two independent entries of the lineage into Iceland,
243  clades IC1 and IC2, the latter of which contained many fewer isolates and was
244  clustered as IcA in the annotated output. By contrast, IC1 was distributed across
245  four clusters IcB-E, which did not correspond with clear clades in the phylogeny.
246  The difference between IcB and IcC is technical, rather than biological: all IcB
247  isolates were sequenced early in the project with 54 nt reads, whereas most IcC
248  isolates were sequenced with 75 nt reads. Unusually for pneumococci, the
249  isolates in both these groups were trilysogenic, carrying prophage similar to

250 ¢$670-6B.1 and $670-6B.2, found in the S. pneumoniae 670-6B genome inserted
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251 between dnaN and pth (atte7o), and within the comYC gene (attcomyc),
252  respectively; and a prophage isolated from 0211+13275, inserted at
253  SPN23F15280 - SPN23F15810 (attmwmi1) [15]. The apparent rapid acquisition, and
254  stable maintenance, of multiple viral loci may relate to the abrogation of these
255  Dbacteria’s competence system by the insertion of prophage ¢IC1 into comYC
256 [11,16]. Group IcD, interspersed with IcB and IcC within clade IC1 in the
257  phylogeny, differs in the absence of prophage similar to $670-6B.2. IcE, also
258  polyphyletic within clade IC1, differed in having lost the region of PPI-1 that
259  encodes the pia iron transport operon, which plays a role in pneumococcal
260 pathogenesis in animal models [17]. Hence it is not surprising to find these
261 isolates were only recovered from sputum, otitis media samples or

262  nasopharyngeal swabs.
263

264  Multiple distinct clusters of non-Icelandic isolates were also observed. These all
265 represented cases where t-SNE grouped isolates that were disparate in terms of
266  their country and year of isolation, , as well as having a polyphyletic distribution
267 across the whole genome phylogeny. These groupings represented cases of
268  convergent evolution through parallel acquisition very similar prophage. Group
269 IntA lacked any prophage similar to those shown in Figure 3C; group IntB had
270  prophage with some similarity to both prophage in the reference genome; group
271  IntC only had a prophage with similarity to $0211+13275, whereas group IntD
272 had prophage similar to $0211+13275 and ¢$670-6B.1 as well. Hence the rapid
273 movement of prophage sequences within lineages [14] clearly substantially
274  contributes to the changes in gene content observed over short timescales.

275  PANINI facilitates rapid analysis of these diverse elements, and their complex
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276  relationship with bacterial population structure.

277

278 MOBILE ELEMENT AND SEROTYPE VARIATION IN A VACCINE-ESCAPE
279 LINEAGE

280

281 Data Visualisation and download:

282  https://microreact.org/project/panini-pmenl14?ui=nt

283 Source data and .RTab file:

284 https://gitlab.com/cgps/panini/datasets/tree/master/PMEN14

285

286  PANINI was similarly applied to 176 isolates of the multidrug-resistant S.
287  pneumoniae PMEN14 lineage [11]. Although the sequences came from many
288  countries, the collection was strongly enriched for bacteria from the Maela
289  refugee camp in Thailand, which fell into five clades (ML1-5), of which ML2 was
290  thelargest. The groups identified by PANINI were again polyphyletic (Figure 4A),
291  with ML2 split up in a similar manner to the PMEN2 clade IC1. This was again
292  driven by the distribution of prophage sequence: group 1 isolates were free of
293  prophage, whereas group 2 isolates were infected with a ‘group 2-type’
294  prophage, and group 3 isolates were infected with a similar, but distinct, ‘group
295  3-type’ prophage (Figure 4B). Clade ML2 isolates in group 4 were distinguished
296 by variation in another mobile genetic element, a phage-related chromosomal
297  island (PRCI), shared by most of the isolates. This PRCI was absent from these
298 assemblies, either because at least part of the element had been lost through
299  deletion, replacement with a related sequence (isolate 6259_1-15), or the

300 acquisition of a second, highly similar PRCI that prevented effective assembly of
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301 either (isolates 6237_8-12, 6237_8-13 and 6237_8-18). In this latter case,
302 mapping to the element was still evident.

303

304 A fifth group, which did not include any Maela isolates, corresponded to the
305 antibiotic-susceptible outgroup isolates. These differed through the absence of a
306  third type of mobile element, the Tn916 integrative and conjugative element, an
307 antibiotic resistance-encoding genomic island that was absent from these
308 ‘outgroup’ isolates. Additionally, these bacteria shared two smaller genomic
309 islands, encoding putative lantibiotic biosynthesis and restriction-modification
310 operons, which were absent from the multidrug-resistant isolates. Variation in
311 other non-mobile element islands was also detectable. The group 1-19A
312  subcluster contained isolates of serotype 19A, produced through two
313 independent serotype switching recombinations at the capsule polysaccharide
314  synthesis (cps) locus that resulted in genotypes ‘19A ST320’ and ‘19A ST236'.
315 These changes were responsible for allowing isolates to evade the seven valent
316  polysaccharide conjugate vaccine, which targeted the lineage’s ancestral
317  serotype 19F, expressed by almost all the rest of the collection [12]. A smaller
318 serotype switching recombination, which did not replace the entire serotype-
319 determining cps locus, generated the ‘19A ST271’ isolates [12]. The smaller
320 associated change in gene content meant this isolate was not clearly
321  distinguished from the rest of group 1 (Figure 4A).

322

323  DISCUSSION

324 The rapid increase in sampling density of bacterial populations for

325 epidemiological and evolutionary studies highlights the need of combining
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326  traditional genomic markers, such as SNP loci and small insertions or deletions
327  in coding regions, with measures of difference in terms of gene content. As many
328  Dbacteria have varied accessory genomes, changes in the gene content can offer a
329 way to identify epidemiologically or evolutionarily important clues about the
330 evolutionary processes affecting a pathogen’s spread. As we illustrated here,
331 such information is most useful when clustering is combined within a
332  phylogeographical approach, and visualized jointly in a seamless fashion
333  enabling the rapid interpretation of core and non-core clustering in the context
334  of where and when data were collected.

335

336  The t-SNE algorithm is a very efficient approach to cluster isolates based on their
337  gene content. In the simulated scenarios considering synthetic data, the errors in
338  clustering always remained small, either representing an isolate allocated to a
339 wrong cluster, or two clusters which were not appropriately differentiated.
340 However, this only occurred in simulations with the "noise" level much higher
341 than expected in nature. In general, what we defined as "core" genes in a cluster
342  rarely appear in isolates not belonging to the cluster, and if they do, it is typically
343 at much lower frequencies than those we considered. Furthermore, in our
344  synthetic datasets we formed clusters defined by as few as a single core gene.
345  These clusters with a limited number of core genes, combined with relatively
346  high levels of "noise", are in practice almost completely indistinguishable from
347  others, as illustrated in Figure 1 (iii - clusters K, L, O and Q). Overall, our
348 simulated datasets are conservative, as the gene absence and presence variation
349 is higher than expected in natural populations, and therefore indicate that the t-

350 SNE is a promising approach for rapidly and accurately clustering bacteria based
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351 ongene content.

352

353  When applied to a population-wide genomic dataset, the algorithm was clearly
354  able to identify distinct lineages within a diverse collection. This analysis could
355  highlight which clusters, defined using the core genome, could be sensibly
356 subdivided, and which small groups of within a diverse set of strains could be
357 justifiably regarded as new clusters. Within lineages, the same congruence
358 between core and accessory genomes across clades was not observed. Instead,
359  clusters were distinguished by rapidly occurring, homoplasic alterations, such as
360 phage infection. In this context, PANINI provides an intuitive way in which to
361 understand the distribution of rapidly-evolving aspects of the genome, which are
362  difficult to analyse in a conventional phylogenetic framework. PANINI is
363  therefore a promising platform through which biologically-important changes in
364  Dbacterial gene content can be uncovered at all levels of evolutionary, ecological
365 and epidemiological analyses.
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437  FIGURE LEGENDS

438

439  Figure 1 Illustration of a simulated dataset, with the isolates’ gene content
440  (left), black dots indicate presence of a gene, x-axis represent all the considered
441 genes (total of 1213 genes in this simulation). The right panels show the
442  embedded locations in the 2D plane as estimated by the t-SNE algorithm, with
443  each colour representing a cluster in the underlying simulation model. Clusters
444  are named using the alphabet (A, B, C...). From top to bottom, plots indicate
445  simulations generated with 0.1% (i), 0.5% (ii) and 1%(iii) noise, respectively.
446

447 Figure 2 A) Annotated output of the PANINI algorithm applied to 616 S.
448 pneumoniae isolates from a diverse population in Massachusetts. Each node
449 represents an isolate, each of which is coloured according to its sequence cluster,

450 as defined using the core genome. Clusters of isolates belonging to the same
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451 sequence cluster are circled and annotated. Where sequence clusters are divided
452  into multiple groups in the PANINI network, the circles are joined by dashed
453 lines. B) Core genome phylogeny based on comparison of conserved clusters of
454  orthologous genes adapted from [2] and displayed within Microreact. Sequence
455  clusters are annotated for comparison with non-core clustering.

456

457  Figure 3 Analysis of the S. pneumoniae PMEN2 lineage. A) i) Core genome
458 phylogeny with tree leaves coloured by country of origin and ii) geographic
459  origin of isolates. B) Annotated output of the PANINI algorithm applied to 189
460 isolates from an international collection of representatives of the S. pneumoniae
461 PMENZ2 lineage. Each point is coloured according to its region of origin. Groups
462  defined by the structure of the PANINI output are circled and annotated. Clusters
463  containing primarily Icelandic isolates (coloured orange) are labelled with ‘Ic’
464  prefixes, whereas those containing isolates from multiple countries are labelled
465  with ‘Int’ prefixes. C) Variation in accessory loci associated with differential
466  classification of isolates into groups. The orange and brown bands across the top
467  of the figure indicate the extent of the three prophage and pneumococcal
468  pathogenicity island 1 (PPI-1) sequences, against which the short read data from
469 the isolates were mapped. The heatmap below includes one row per isolate,
470  which were ordered according to their grouping in panel A. The heatmap is
471  coloured blue where mapping coverage was low, indicating a locus is absent, and
472 red were mapping coverage was high, indicating a sequence was present.
473  Horizontal dashed lines indicate the boundaries between the groups of isolates,
474  which vertical dashed lines indicate the boundaries between loci.

475
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476  Figure 4 Analysis of the S. pneumoniae PMEN14 lineage. A) Annotated output of
477  the PANINI algorithm applied to 176 isolates from an international collection of
478 representatives of the S. pneumoniae PMEN14 lineage. The main groups 1-5 are
479  circled with solid lines and named; the subgroups within group 1 are circled by
480 dashed lines. (B) Variation in accessory loci associated with differential
481 classification of isolates into groups. This heatmap is displayed as in Figure 3. In
482  this case, the sequence loci across the top are more functionally diverse. The first
483  is the neuB coding sequence with an ISSpn8 element inserted into it. The lack of
484  mapping to the middle of this column indicates the absence of this insertion
485  sequence anywhere in the chromosome. The next loci are alternative alleles of
486  the capsule polysaccharide synthesis locus, one encoding for the biosynthesis of
487  the 7-valent polysaccharide conjugate vaccine (PCV7) type 19F polysaccharide,
488  the other for the non-PCV7 type 19A polysaccharide. These are followed by two
489  similar prophage, one associated with group 2 isolates, the other with group 3
490 isolates; the similarity between these two viruses means there is extensive
491 mapping to both, even when an isolate only contains one of them. The PRCI
492  absent from the assemblies of group 4 isolates is next; mapping suggests this is
493  actually present in some, but PANINI nevertheless included them in this group
494  because the acquisition of a further, related PRCI prevented either assembling
495  accurately. This is followed by the Tn916 conjugative element, absent from the
496  group 5 isolates, which possess genomic islands encoding for the biosynthesis of
497  a lantibiotic and a restriction-modification system, included at the right-hand

498  end of the panel.
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