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ABSTRACT 

Codon usage bias is the preferential use of the subset of synonymous codons during translation. In this paper, the 

comparisons of normalized entropy and GC content between the sequence of coding regions of Escherichia coli k12 

and noncoding regions (ncRNA, rRNA) of various organisms were done to shed light on the origin of the codon 

usage bias.The normalized entropy of the coding regions was found significantly higher than the noncoding regions, 

suggesting the role of the translation process in shaping codon usage bias. Further, when the position specific GC 

content of both coding and noncoding regions was analyzed, the GC2 content in coding regions was lower than GC1 

and GC2 while in noncoding regions, the GC1, GC2, GC3 contents were approximately equal. This discrepancy is 

explained by the biased mutation coupled with the presence and absence of selection pressure. The accumulation of 

CG content occurs in the sequences due to mutation bias in DNA repair and recombination process. In noncoding 

regions, the mutation is harmful and thus, selected against while due to the degeneracy of codons in coding regions, 

a mutation in GC3 is neutral and hence, not selected. Thus, the accumulation of GC content occurs in coding 

regions, and thus codon usage bias occurs. 
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INTRODUCTION 

The genetic code decides which amino acid will be inserted during translation of protein for each three nucleotide 

set, or codon, in the mRNA. [1] More precisely, the genetic codon determines which of the 61 triplets, or codon, 

corresponds to which of the 20 amino acids. [2] There are 64 possible codons – three codons terminate translation 

while remaining 61 codes for amino acids, but only 20 different amino acids to incorporate during translation. Thus, 

codons are redundant, and more than one codon encodes the same amino acids. This feature of the genetic code is 

mentioned as the degeneracy of the codon. [3] Although few amino acids are encoded by a single codon, most 

amino acids are encoded by two to six different codons. Different codons that encode the same amino acid are 

known as synonymous codons. [2] 

 

The frequency of synonymous codons is not fair as the determination of a large number of DNA sequences from 

different species has shown, in many cases, that synonymous codons for any amino acids are not used randomly. [4] 

This suggests that the sequence in the DNA is not random, but some bias occurs. Some synonymous codons are 

highly expressed, whereas the use of others is limited. This phenomenon of preferential use of the subset of 

synonymous codons during translation is known as codon usage bias.  

 

If during a translation of a gene, a synonymous codon incorporates a particular amino acid more often, a gene is said 

to have codon usage bias. Such frequently used codons are known as optimized codons.  

 

The codon usage bias differs among organisms. Closely related organisms have similar patterns of codon usage. [5] 

The genome hypothesis of codon usage bias states that different organisms have distinct codon biases [6]. Even the 

difference in codon usage is observed among genes of the same organism. It has been revealed through multivariate 
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analyses that even in each species codon usage among genes differ. [5] The codon usage of sixteen weakly and 

thirteen strongly expressed E. coli genes were examined, yet again using a multivariate analysis technique, and was 

found to have a noticeable variation in codon usage [7] 

 

It was proposed that codon usage bias might be correlated with variation in tRNA abundance [7].The codon usage 

bias in E. coli and Saccharomyces cerevisiae was correlated with the abundance of the cognate tRNA. [8, 9]The 

optimal codons are one with the highest cognate tRNA. The experiments performed by Sorensen et al (1989)have 

detected differences in these rates.[10] Codons that are recognized by the major tRNAs are translated 3–6 fold faster 

than their synonyms This selection may favor the use of the more frequent codons during translation.[10] 

Additionally, the experiments performed by Parjer et al. (1983) has estimated that in E. coli the non-optimal 

Asparagine codon (AAU) can be mistranslated eight to ten times more often than its optimal synonym (AAC). [11] 

These findings imply that the codon usage bias or use of optimal codon for translation increases the accuracy of 

translation with fewer mistakes than genes that use less frequent codons and also increases the speed of translation. 

Hence, the organism may confer selective advantage due to the use of optimal codons, and codon usage bias is 

maintained. Therefore, translational selection can be a responsible factor for shaping codon usage bias. 

 

Moreover, highly expressed genes generally show a higher bias in synonymous codon usage. The positive 

correlation between codon usage bias and expression levels is again attributed to selection for translational 

efficiency. [12] It is also showed that codon usage bias modulates gene expression. [7] 

 

Although translational selection plays a role in shaping codon usage bias within species, such selection may not be 

directly correlated or explained with the codon usage bias pattern observed among species because much of the 

variation among species appears to be due to differing patterns of mutation. [13] An alternative explanation for the 

cause of codon usage bias, a mutational explanation, suggests that codon usage bias arises from the properties of 

underlying mutational processes – e.g. biases in nucleotides produced by point mutations, contextual biases in the 

point mutation rates, or biases in repair. [14] Mutational explanations are neutral, because they confer no fitness 

advantage or detriment associated with alternative synonymous codons. Mutational mechanisms are typically 

invoked to explain inter-specific variation in codon usage, especially among unicellular organisms. [15] 

 

Recombination also affects codon usage bias. The study performed by Comeron et al. (1999) observed a positive 

correlation between recombination rate and codon usage bias. [16] Other factors that may influence codon usage 

bias include: GC content [16, 17]; biased gene conversion. [18, 19] 

 

It is evident from above studies that the codon usage bias is commonly observed the phenomenon in the genome, be 

it inter-genome or intra-genome, but the origin of codon usage bias is a complex puzzle that is rarely explained by 

only one factor. 

 

The different quantitative methods are available to quantify or characterize codon usage bias. The codon preference 

bias, codon bias index (CBI), scaled Chi-square approach, codon preference statistic (CPS), relative synonymous 

codon usage (RSCU), codon adaptation index (CAI), effective number of codons (ENC), Shannon information 

theory, synonymous codon usage order (SCUO) are the available quantitative methods to characterize codon usage 

bias in terms of numbers. [20] Each method has own strength and limitations. 

 

After Shannon published a pioneering paper on "A Mathematical Theory of Communication" [21], the use of 

information theory is not limited to telecommunication and data compression but has been used in many fields of 

physics, biology, and linguistics. In recent times, the use of Shannon’s entropy in molecular biology for prediction 

of DNA, RNA structure, protein secondary structure prediction, modeling molecular interaction, drug design has 

been recommended. [22] In this paper we have used Shannon informatics theory to measure codon usage bias in 
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terms of Synonymous codon usage order (SCUO). The fundamental principle involved in this method is the 

calculation of the entropy of each synonymous codon for each amino acid in the protein. 

 

 

MATERIALS AND METHODS 

 

Materials 

 

The 20 DNA sequences of coding regions of Escherria coli k12 and 20 DNA sequences of non-coding regions 

(ncRNA, rRNA) of various organisms were obtained in FASTA format in NCBI database. 

 

Methods 

 

Calculation of SCUO 

 

The information theoretic value of a given DNA sequence was obtained using the Shannon formula [23].  

 

(Equation 1) 

 

Here, 

naa is the number of distinct amino acids, 

nsyncod(i) is the number of synonymous codons for each amino acid i (or macro-state) whose value range from 1 to 6,  

P(i,j)  is the probability of synonymous codon j for amino acid i. 

 

For every sequence, the probability of each synonymous codon was calculated using online sequence manipulation 

suite using the standard genetic code as the reference. [24] The probability of synonymous codons was feed into 

(Equation 1) to calculate the entropy. This was achieved using the tailor made program in Python. The obtained 

value of H is the entropy per codon of the gene. 

 

Additionally, to calculate the maximum entropy of the sequence, a random sequence of the same length as that of a 

gene to be compared and have the likelihood of nucleotides 25%, was created using online platform. [25] Similarly, 

the probability of each synonymous codon was calculated and hence, maximum entropy per codon of the random 

sequence is calculated using the python program. 

 

Now, subtracting observed entropy with the maximum entropy gives information which measures the non- 

randomness in synonymous codon usage and hence describes the degree of orderliness for synonymous codon usage 

in each sequence. 

 

   (   )            (Equation 2) 
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 (   )
                    (Equation 3) 

 

O is the normalized difference between the maximum entropy and the observed entropy in the sequence. 0 ≤ O ≤ 1. 

When O=1, usage is biased to the extreme while O=0, usage is random. The O is designated as the synonymous 

codon usage order (SCUO). [26] 

 

The normalized difference between the maximum entropy and the observed entropy in the sequence i.e. normalized 

entropy was calculated, for both the noncoding and coding sequences and was compared.  

 

Calculation of position specific GC content 

 

The position specific GC content of noncoding and coding sequence was calculated using the python program. The 

GC content of noncoding and coding sequences was compared. 

 

 

RESULTS AND DISCUSSION 

The normalized entropy of coding regions of Escherichia coli k12 and 20 DNA sequences of non-coding regions 

(ncRNA, rRNA) of various organisms was compared using independent t-test. The P value was less than significant 

level of 0.01; thus, the null hypothesis that says both mean are same was rejected and the alternate hypothesis that 

says the mean data are significantly different at 99 % confidence interval and a significant level of 0.01 was 

accepted. (Figure I) 

  

Hence, from the results, it can be concluded, the normalized entropy of noncoding region was greater than the 

normalized entropy of coding regions. As the coding and non-coding regions were independently selected, we 

assume this result can be extrapolated for all the coding and non-coding regions. This infers, although, noncoding 

regions also show slight codon usage bias; the codon usage bias in coding regions is prominent. As, the non-coding 

regions do not go through the translational process while coding region goes through this, this difference in codon 

usage bias can be attributed to the translational process or due to some idiosyncrasy of the translational mechanism.  

 

The role of the translation process in codon usage bias is established from above observation. The possibility arises 

that the translation can select the optimal codons. We know codons that are recognized by the major tRNAs are 

translated 3–6 fold faster than their synonyms. This may favor the use of the more frequent codons during 

translation. [10] However, it cannot be concluded that the translation selects optimal codons. We do not know the 

selection pressure generated by translation. 

 

Further, the GC content in the genome is correlated with the codon usage bias. [16, 17] Thus, in this research, the 

normalized entropy and the GC content of the respective DNA sequences (both coding and noncoding) were 

analyzed and we found the weak correlation with the Pearson's coefficient of 0.269. Due to the low amount of data, 

the correlation is probably an underestimate. But, the interesting thing is that the correlation between the normalized 

entropy and the position specific GC content i.e. GC1 and GC3 is higher than the correlation with the total GC 

content of the sequences. The Pearson's correlation coefficient between the normalized entropy and the GC1 content 

is 0.496. Similarly, the Pearson's correlation coefficient between the normalized entropy and the GC3 content is 

0.359. The reason for higher correlation with GC1 content is not explained here. But, the higher correlation for GC3 

content can explain the origin of codon usage bias.   

 

Additionally, the next interesting fact was also deciphered from the comparison of the coding and noncoding 

sequences. In noncoding sequences, the position specific GC content (GC1, GC2, GC3) was approximately equal. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 10, 2017. ; https://doi.org/10.1101/174359doi: bioRxiv preprint 

https://doi.org/10.1101/174359
http://creativecommons.org/licenses/by-nc-nd/4.0/


(Figure II). Conversely, in noncoding sequences, the GC content varied. In all the cases, the GC1 and GC3 content 

were greater than GC2 content.(Figure III) The question arises why the noncoding sequences have equal position 

specific GC content while coding sequences do not hail that feature. There are biases for C and G nucleotides in 

coding sequences. The major driving factor for these biases can be explained by mutational bias. [27]The 

discrepancy of higher CG content in coding sequence can be explained by mutational bias and neutral theory of 

molecular evolution.  

 

At equilibrium, the number of AT → GC and GC →AT mutations are equal. For biased mutations, the equilibrium 

is disturbed, and DNA sequence accumulates a pair of nucleotides in greater quantity. In coding sequences, the 

biased mutation was pronounced in GC3 (the reason why GC1 also has more GC content is not explained). There is 

experimental evidence that demonstrates that the DNA repair mechanism and recombination mechanism has biases 

towards AT→CG mutations. [27] Gerton et al. have found the correlation between the recombination and GC 

content in Saccharomyces cerevisiae[28] while Marais et al. 2001 has found the correlation between the 

recombination and GC content in Drosophila melanogaster, and Caenorhabditis elegans.[17] Similarly, Brown and 

Jiricny 1987; Bill et al. 1998  have experimentally observed biased DNA repair toward GC in mammalian cells after 

transfection of mismatched DNA fragments. [29, 30]So, it is likely that DNA sequence accumulates more CG. The 

high GC3 content in the coding regions only but not in noncoding sequence can be explained by the neutral theory 

of evolution. The neutral theory of molecular evolution, proposed by Kimura, states that the vast majority of 

conserved mutations are neutral. [31] Similarly, in the histrionic paper  ―Codon—anticodon pairing: The wobble 

hypothesis‖  Crick has suggested that due to the degeneracy of the genetic code, the first two positions of the codon 

or triplet are important for pairing while there may be some wobble in the pairing of the third base. [32]To simplify, 

the third base is considered to be less discriminatory than the other two bases. This implies that the third base of the 

codon is subjected to no or less selection pressure if a mutation happens there. The mutation in the third base of the 

codon does not change the amino acid profile of the protein. Thus, the mutation in the third base of the triplet is 

neutral. This helps in the accumulation of the high GC3 content in the coding sequences as selection against this 

mutation doesn’t occur. Similarly, the biases are not observed in the noncoding sequence because the mutation in the 

noncoding sequence is not neutral. The mutations in any position in the noncoding sequence (ncRNA, rRNA) alter 

the structure of this RNA, hence, altering the function of these RNA. [1]So, the selection occurs against mutations in 

noncoding sequences. The accumulation of the CG in the third base of coding sequence ensue high amount of 

codons ending in C&G and low number of codons ending with A&T , thus, demonstrating codon usage bias. The 

codon usage bias will ultimately benefit the cell as the optimal codons will translate the protein in higher rates. [10] 

 

CONCLUSION 

The role of the translational role in shaping codon usage bias cannot be justified by this research. But, this research 

lights on the role of translational process on shaping codon bias. The DNA repair mechanism and recombination 

mechanism increases the CG content volume by the bias mutation toward CG. The translational foible is such; the 

mutation in the third base of sequence doesn’t alter the structure of the protein. Thus, if the bias mutation in GC3 

occurs, the mutation is not selected but preserved. Hence, the GC3 content is higher in the coding regions. However, 

the selection is tough in the noncoding region (ncRNA, rRNA) and thus, mutations in the noncoding region is 

selected ensuing the equal distribution of GC content over the entire sequence. Hence, the biased mutation and the 

absence of selection pressure in the sequence are responsible for the codon usage bias in the coding regions. 
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ILLUSTRATIONS 

 

 
I. Figure: The result of independent t-test of normalized entropy of coding regions and noncoding regions 

 

 
II. Figure: The position specific GC percentage of noncoding regions 
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III. Figure: The position specific GC percentage of coding regions 

 

 

 

 

 

 

 

 

 

 

 

TABLES 

 

 

 

Gene 

ID Gene Name 

DNA 

length 

Entr

opy 

Maximum 

Entropy 

Normalized 

entropy (C) 

94717

5 alanyl tRNA synthetas 2631 22.64 29.18 0.2888693 

91596

6 rpIB 50s ribosomal protein 822 17.16 27.758 0.6175991 

94717

0 DNA recombination and repair protein 1062 16.24 27.9 0.7179803 

12635

47 repE replication initiation protein 756 25.17 27.74 0.1021057 

94450

06 lacz beta-D-galactosidase 3075 22.73 29.22 0.2855257 

94721

0 rpos RNA polymeras, sigma(S38) factor 993 22.62 27.39 0.2108753 

94821 chromosomal replicatopn initiator protein DnaA 1404 23.94 28.71 0.1992481 
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7 

94504

9 sbcd exonuclease, dsDNA, ATP-dependent 1203 22.92 28.87 0.2595986 

94793

1 glycogen phosphorylase 2448 23.05 29.02 0.2590022 

94637

0 zwf glucose-6-phosphate 1-dehydrogenase 1476 22.77 28.97 0.2722881 

94797

1 

branched chain aa ABC transporter periplasmic 

protein 1104 19.34 28.78 0.4881075 

94845

5 

N-acetyl-gamma-glutamylphosphate reductase, 

NAD(P)-binding 1005 21.59 27.91 0.2927281 

83819

04 putative transposase protein IstA 1173 24.85 27.98 0.1259557 

83818

84 putative hemin receptor 1887 24.74 29.12 0.1770412 

13702

463 chaperone 1872 20.03 29.05 0.4503245 

94844

8 putative enzyme IIC component of PTS 1080 20.95 27.88 0.3307876 

94889

2 16S rRNA m(2)G1207 methyltransferase 1032 22.22 27.79 0.2506751 

94694

8 

sensory histidine kinase in two-component 

regulatory system with NarP 1701 24.84 29.3 0.1795491 

 94722

9 

Cascade complex anti-viral R-loop helicase-

annealase Cas3 2667 25.46 29.37 0.1535742 

94898

6 GMP reductase 1044 21.64 27.92 0.2902033 

I. Table: The normalized entropy of coding sequence 

 

 

 

 

 

 

 

Gene 

ID Gene name 

Gene 

Type 

DNA 

length 

Entr

opy 

max 

entrop

y 

Normalized 

entropy© Organism 

55420

2 MIR31 host gene 

ncRN

A 

10543

1 

27.3

1 29.9 0.094837056 Homo sapiens 

10000

8588 RNA, 18S ribosomal rRNA 1869 

28.4

2 29.14 0.025334272 Homo sapiens 

28721

396 PBNK65NY_000485800 rRNA 1432 

24.4

2 28.95 0.185503686 

Plasmodium 

berghei 

24723 45S pre-ribosomal RNA rRNA 12342 

28.4

6 29.6 0.040056219 

Rattus 

norvegicus 

17778

983 23S ribosomal RNA rRNA 3006 

29.2

6 29.3 0.001367054 

Salmonella 

enterica 
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32047

8 SOX2 overlapping transcript 

ncRN

A 

11761

3 

28.5

3 29.91 0.048370137 Mus musculus 

43798

15 sphinx 

ncRN

A 2094 

28.0

4 29.5 0.052068474 

Drosophila 

melanogaster 

94846

6 16S ribosomal RNA of rrnB operon rRNA 1542 27.7 29.23 0.055234657 e coli 

14955 

H19, imprinted maternally 

expressed transcript 

ncRN

A 9817 

28.0

2 29.82 0.064239829 Mus musculus 

94777

3 23S ribosomal RNA of rrnD operon rRNA 2904 

28.7

3 29.45 0.025060912 e coli 

50652 prostate cancer associated  

ncRN

A 23134 

27.8

7 29.89 0.072479368 homo sapiens 

5820 Pvt1 oncogene  

ncRN

A 

92016

3 

28.1

8 29.91 0.061391057 homo sapiens 

55000 taurine up-regulated 1  

ncRN

A 10185 

28.2

2 29.81 0.056343019 homo sapiens 

58027

29 prl45 

miscR

NA 803 

23.2

6 27.78 0.194325021 

 Schizosacchar

omyces pombe 

972h 

 6696

1 

nuclear paraspeckle assembly 

transcript 1  

ncRN

A 20773 28.2 29.75 0.054964539 Mus musculus  

10037

9571 BACE1 antisense RNA 

ncRN

A 825 

25.6

4 27.76 0.082683307 homo sapiens 

10115

4644 

long intergenic non-protein coding 

RNA,muscle differentiation  

ncRN

A 4210 

27.3

3 29.68 0.085986096 homo sapiens 

 5553

9 KCNQ1 downstream neighbor  

ncRN

A 2073 

27.2

8 29.57 0.083944282 homo sapiens 

26534

084 Dpse\GA32664 

ncRN

A 2469 

27.8

8 29.61 0.06205165 

Drosophila 

pseudoobscura 

10537

3818 

long intergenic non-protein coding 

RNA 1827 

ncRN

A 4848 

27.6

3 29.7 0.074918567 

Drosophila 

pseudoobscura 

II. Table: The normalized entropy of noncoding sequence 

 

 

 

 

 

 

Gene 

ID Gene Name 

GC(

%) 

GC1(

%) 

GC2(

%) 

GC3(

%) 

947175 alanyl tRNA synthetas 53.3 59.01 41.09 60.84 

915966 rpIB 50s ribosomal protein 53.1 64.83 47.25 47.81 

947170 DNA recombination and repair protein 54.14 60.33 39.37 62.994 

126354 repE replication initiation protein 47.22 50.59 38.64 52.78 
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7 

944500

6 lacz beta-D-galactosidase 56.26 62.1 43.65 63.12 

947210 rpos RNA polymeras, sigma(S38) factor 52.06 66.36 35.75 54.38 

948217 chromosomal replicatopn initiator protein DnaA 54.05 60.59 40.04 61.53 

945049 sbcd exonuclease, dsDNA, ATP-dependent 53.28 64 40.25 55.86 

947931 glycogen phosphorylase 50.9 57.54 34.6 60.9 

946370 zwf glucose-6-phosphate 1-dehydrogenase 53.28 65.68 36.39 57.7 

947971 branched chain aa ABC transporter periplasmic protein 54.6 61.3 39.78 62.5 

948455 

N-acetyl-gamma-glutamylphosphate reductase, NAD(P)-

binding 53.53 61.97 40.11 58.8 

838190

4 putative transposase protein IstA 53.11 58.97 37.94 62.65 

838188

4 putative hemin receptor 49.28 52.86 46.49 48.64 

137024

63 chaperone 52.02 62.11 34.99 59.13 

948448 putative enzyme IIC component of PTS 54.16 61.02 42.33 59.44 

948892 16S rRNA m(2)G1207 methyltransferase 55.71 63.26 42.85 61.33 

946948 

sensory histidine kinase in two-component regulatory system 

with NarP 51.61 58.48 37.63 58.73 

 947229 Cascade complex anti-viral R-loop helicase-annealase Cas3 44.69 56.75 38.73 38.69 

948986 GMP reductase 51.34 58.5 43.51 52.29 

III. Table: The overall and position specific GC content of coding regions 

 

 

 

 

 

 

 

 

 

 

 

Gene ID Gene name 

GC(%

) 

GC1(%

) 

GC2(%

) 

GC3(%

) 

554202 MIR31 host gene 37.56 37.57 37.8 37.3 
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10000858

8 RNA, 18S ribosomal 56.12 56.1 54.98 57.46 

28721396 PBNK65NY_000485800 24.3 26.62 21.42 24.94 

24723 45S pre-ribosomal RNA 64.15 63.6 64.33 64.56 

17778983 23S ribosomal RNA 53.72 53.74 54.34 52.99 

320478 SOX2 overlapping transcript 44.77 44.64 44.98 44.7 

4379815 sphinx 36.1 34.28 38.45 35.67 

948466 16S ribosomal RNA of rrnB operon 54.4 53.6 53.5 54.8 

14955 H19, imprinted maternally expressed transcript 41.5 42.75 40.66 41.9 

947773 23S ribosomal RNA of rrnD operon 53.4 51.29 53.05 55.57 

50652 prostate cancer associated  40.88 41.21 41.12 40.3 

5820 Pvt1 oncogene  

 

46.8 47.85 48.95 

55000 taurine up-regulated 1  42.05 40.51 43.37 42.26 

5802729 prl45 30.26 29.58 32.2 29.21 

 66961 nuclear paraspeckle assembly transcript 1  47.26 47.66 46.68 47.75 

10037957

1 BACE1 antisense RNA 48 49.63 44.16 49.81 

10115464

4 

long intergenic non-protein coding RNA,muscle 

differentiation  40.92 40.69 41.72 40.34 

 55539 KCNQ1 downstream neighbor  60.97 60.86 59.56 62.37 

26534084 Dpse\GA32664 35.23 35.4 35.27 34.99 

10537381

8 long intergenic non-protein coding RNA 1827 40.44 40.86 39.87 40.59 

IV. Table: The overall and position specific GC content of noncoding regions 
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