
Genome size and the extinction of small populations

Thomas LaBar1,2,3, Christoph Adami1,2,3,4

1 Department of Microbiology & Molecular Genetics
2 BEACON Center for the Study of Evolution in Action

3 Program in Ecology, Evolutionary Biology, and Behavior
4 Department of Physics and Astronomy

Michigan State University, East Lansing, MI 48824

Abstract 1

Although extinction is ubiquitous throughout the history of life, insight into the 2

factors that drive extinction events are often difficult to decipher. Most studies of ex- 3

tinction focus on inferring causal factors from past extinction events, but these studies 4

are constrained by our inability to observe extinction events as they occur. Here, we 5

use digital evolution to avoid these constraints and study “extinction in action”. We 6

focus on the role of genome size in driving population extinction, as previous work 7

both in comparative genomics and digital evolution has shown a correlation between 8

genome size and extinction. We find that extinctions in small populations are caused 9

by large genome size. This relationship between genome size and extinction is due to 10

two genetic mechanisms that increase a population’s lethal mutational burden: large 11

genome size leads to both an increased lethal mutation rate and an increased likeli- 12

hood of stochastic reproduction errors and non-viability. We further show that this 13

increased lethal mutational burden is directly due to genome expansions, as opposed 14

to subsequent adaptation after genome expansion. These findings suggest that large 15

genome size can enhance the extinction likelihood of small populations and may inform 16

which natural populations are at an increased risk of extinction. 17

Keywords: Extinction, Genome Size, Small Populations, Digital Evolution 18

Introduction 19

The ubiquity of extinction events throughout the history of life [1], and the increasing real- 20

ization that the biosphere may be experiencing a sixth mass extinction [2] drives interest 21

in determining the factors that cause certain species, but not others, to go extinct [3]. It is 22

accepted that a combination of genetic [4, 5], demographic [6, 7], environmental [8, 9], and 23

ecological [10, 11, 12] factors contribute to species extinctions. Beyond those deterministic 24

factors, chance events also likely influence certain extinction events [13, 14]. Here, we focus 25

on the genetic factors influencing extinction, specifically the role of small population size 26

and genetic drift [15]. 27
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In small populations, weakened purifying selection leads to increased fixation of small- 28

effect deleterious mutations [16]. As multiple deleterious mutations fix, the absolute fitness 29

of the population may decrease, resulting in a decrease in population size. This decreased 30

population size further weakens selection, leading to the fixation of additional deleterious 31

mutations and a further decrease in population size. This process continues until the pop- 32

ulation goes extinct. This positive feedback loop between decreased population size and 33

deleterious mutation fixation is known as a mutational meltdown [17]. Mathematical mod- 34

els of mutational meltdowns suggest that even intermediate-sized asexual populations can 35

quickly go extinct [18, 19]. Likewise, small sexual populations are also vulnerable to fast 36

meltdowns [20]. The detection of mutational meltdowns in natural populations is difficult; 37

other non-genetic factors (i.e., environmental or ecological factors) can obscure the role of 38

mutation accumulation in extinction. 39

While the concept of a mutational meltdown provides a population-genetic mechanism 40

for extinction, it is still uncertain what factors beyond population size influence the likeli- 41

hood of a meltdown. For example, if deleterious mutation accumulation drives mutational 42

meltdowns, then species with a greater genomic mutation rate should be at a greater risk 43

of extinction [21, 22]. Therefore, genetic mechanisms that increase the genomic mutation 44

rate may also increase the likelihood of species extinction. One such genetic mechanism 45

that could increase the mutation rate are genome expansions (i.e., mutations that increase 46

genome size) because species with larger genomes (but similar point mutation rates) have 47

greater genomic mutation rates. If these genome expansions lead to an increase in functional 48

genome content, then the deleterious mutational load of a population should also increase. 49

Indeed, there is some evidence that genome size positively correlates with extinction risk in 50

certain clades of multicellular organisms [23, 24]. 51

It is difficult to experimentally test the role of genome size in extinction in both natural 52

and laboratory model systems. Here, we use digital experimental evolution to test whether 53

genome expansions can drive population extinction. Digital experimental evolution is the 54

computational counterpart to microbial experimental evolution [25, 26, 27]. Instead of a 55

population of microbes evolving in a flask (or other physical microcosm), digital evolution 56

experiments instantiate a population of self-replicating computer programs that reproduce 57

and mutate in a digital world [28]. Most digital evolution systems do not try to emulate any 58

specific biological system. Instead, these systems implement populations with heritability, 59

variation, and differential fitness (i.e., the three requirements for Darwinian evolution) but 60

composed of organisms and genomes significantly simpler than those in biological popula- 61

tions [29]. 62

In a previous study with the digital evolution system Avida [30] on the role of population 63

size in the evolution of complexity, we found that the smallest populations evolved the largest 64

genomes and the most novel traits, but also had the greatest extinction rates [31]. Here, we 65

use Avida to test explicitly the role of genome size in the extinction of small populations. 66

Avida differs from previous models of extinction in small populations in the mode of selection. 67

Unlike mutational meltdown models [15], where selection is hard and the accumulation of 68

deleterious mutations directly leads to population extinction, selection is primarily soft in 69

Avida and deleterious mutations alter relative fitness (i.e., competitive differences between 70

genotypes), not absolute fitness (i.e., differences in the number of viable offspring between 71

genotypes). Extinction occurs in Avida through the accumulation of “lethal” mutations, or 72
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more precisely, “non-viable” mutations that prevent their bearer from reproducing. These 73

non-viable avidians occupy a portion of the limited space allocated to an avidian population, 74

thus reducing the effective population size and potentially causing extinction over time. 75

We find that extinction in small populations is to a large extent driven by genome ex- 76

pansions, and that an increased genome size not only leads to an increase in the genomic 77

mutation rate, but specifically to an increase in the lethal mutation rate. Heightened lethal 78

mutation rates eventually lead to population extinction. Additionally, we show that geno- 79

types with large genomes have an elevated probability of stochastic replication errors during 80

reproduction (i.e., stochastic viability), further elevating the likelihood of non-viability of 81

offspring and extinction. These results suggest that large genome size does elevate the risk 82

of population extinction due to an increased lethal mutational burden. 83

Methods 84

Avida 85

For the following experiments, we used the digital experimental evolution platform Avida, 86

version 2.14 [30]. In Avida, simple computer programs (“avidians”) compete for the resources 87

required to undergo self-replication and reproduction. Each avidian consists of a genome of 88

computer instructions drawn from a set of twenty-six available instructions in the Avida 89

genetic code. A viable asexual avidian genome must contain the instructions to allocate a 90

new (offspring) avidian genome, copy the instructions from the parent genome to the offspring 91

genome, and divide off the offspring genome into a new avidian. During this copying process, 92

mutations may occur that introduce variation into the population. These novel mutations 93

can then be passed onto future generations, resulting in heritable variation. This genetic 94

variation causes phenotypic variation: avidians with different genomes may self-replicate 95

at different speeds. As faster self-replicators will outcompete slower self-replicators, there 96

is differential fitness between avidians. Therefore, given there is heritable variation and 97

differential fitness, an Avida population undergoes Darwinian evolution [32, 29]. Avida has 98

previously been used to test hypotheses concerning the evolution of genome size [33, 31], 99

the role of population size in evolution [34, 35, 31, 36], and the consequences of population 100

extinction [37, 38, 39, 40]. 101

The Avida world consists of a grid of N cells; each cell can be occupied by at most one 102

avidian. Thus, N is the maximum population size for the Avida environment. While Avidian 103

populations are usually at carrying capacity, the presence of lethal mutations can reduce their 104

effective population size below this maximum size. In traditional Avida experiments, the 105

geometry of the environment can alter evolutionary dynamics, as offspring are placed into 106

the environment in one of nine cells neighboring (and including) their parent’s cell [41]. Here, 107

offspring can be placed into any cell in the environment, simulating a well-mixed environment 108

(i.e., no spatial structure). If a cell is occupied by another avidian, the new offspring will 109

overwrite the occupant. The random placement of offspring avidians adds genetic drift to 110

Avida populations, as avidians are overwritten without regard to fitness. 111

Time in Avida is structured in discrete units called “updates”. During each update, 112

30N genome instructions are executed across the population. The ability for an avidian 113
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to execute one instruction in its genome is called a SIP, or Single Instruction Processing 114

unit. In a population consisting of N individuals with the same genotype, each avidian will 115

receive approximately 30 SIPs, and thus execute 30 instructions each update. However, in a 116

population with multiple genotypes, some genotypes may be allocated more SIPs than others, 117

depending on a value called “merit”; genotypes with greater merit will receive proportionally 118

more SIPs than genotypes with lesser merit. 119

An avidian lineage can evolve increased merit through two means. First, an increase in 120

genome size will increase merit by a proportional amount. Merit is set to be proportional 121

to genome size in order to offset the decrease in replication speed, and thus the decrease in 122

fitness, caused by increasing genome size. The second way to increase merit is through the 123

evolution of certain phenotypic traits. Avidians can evolve the ability to perform Boolean 124

logic calculations. If an avidian can input random numbers from the environment, perform 125

a calculation using these numbers and output a correct result, its offspring’s merit will be 126

increased by a preset amount. The performance of calculations of greater complexity will 127

result in a greater merit improvement. In the experiments here that select for trait evolution, 128

we used the so-called “Logic-9” environment [41]. In this environment, the performance of 129

NOT or NAND multiplies merit by 2, the performance of ORNOT or AND multiplies merit 130

by 4, the performance of OR or AND NOT multiplies merit by 8, the performance of NOR 131

or XOR multiplies merit by 16, and the performance of EQUALS multiplies merit by 32. If 132

a genotype can perform multiple calculations, the merit multiplier is multiplicative (i.e, a 133

genotype that can perform NOT and NAND for example has its merit multiplied by 4). 134

Fitness for an avidian genotype is estimated as the genotype’s merit divided by its ges- 135

tation time (the number of instruction executions needed for reproduction). Thus, fitness 136

is the ratio of the number of instructions a genotype can execute in a given time to the 137

number of instructions it needs to execute to reproduce. Therefore, there are two avenues 138

for a population of avidians to increase fitness: increase their merit or decrease the number 139

of instruction executions needed for self-replication. 140

There are a variety of different possible implementations of mutations in Avida. Here, 141

we used settings that differed from the default in order to improve our ability to analyze the 142

causes of population extinction (see Table 1 for a listing of changes to the default settings). 143

Point mutations occur upon division between parent and offspring, after replication. There 144

is an equal probability that each instruction in the genome will receive a point mutation 145

upon division; thus, genome size determines the total genomic mutation rate. To model 146

indels, we used so-called “slip” mutations. This mutational type will randomly select two 147

loci in the genome and then, with equal probability, either duplicate or delete the section 148

of the genome between those two loci. Finally, to to ease our analysis, we required every 149

offspring genotype to be equivalent to its parent’s genotype before the above mutations were 150

applied at division. 151

In Avida, it is possible to perform experiments where the appearance of mutations with 152

certain effects is prevented [42]. For example, it is possible to revert a mutation of a particular 153

predetermined size after it has appeared. For this to occur, the Avida program analyzes the 154

fitness of every novel genotypes that enters the population and, if the fitness is of the pre-set 155

effect, the mutation is reverted. This system allows experimenters the ability to determine 156

the relevance of certain mutational effects to evolution. However, mutations of certain effects 157

can still enter the population if their fitness effect is stochastic. An avidian has stochastic 158
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Table 1: Notable Avida parameters changed from default value.

Parameter Default Value Changed Value Treatment
WORLD X 60 N All
WORLD Y 60 1 All

BIRTH METHOD 0 4 All
COPY MUT PROB 0.0075 0.0 All
DIV MUT PROB 0.0 µ All

DIVIDE INS PROB 0.05 0.0 All
DIVIDE DEL PROB 0.05 0.0 All
DIVIDE SLIP PROB 0.0 0.01 All Variable Genome Size

REQUIRE EXACT COPY 0 1 All
REVERT DEAD 0.0 1.0 Lethal-reversion

REVERT DETRIMENTAL 0.0 1.0 Deleterious-reversion

fitness if its replication speed depends on characteristics of the random numbers it inputs 159

in order to do its Boolean logic calculations. Some stored numbers may alter the order in 160

which certain instructions are executed or copied into an offspring’s genome, thus altering 161

fitness. 162

Experimental Design 163

To study the role of genome size in the extinction of small populations, we first evolved 164

populations across a range of per-site mutation rates (µ = 0.01 and µ = 0.1) and population 165

sizes (N = {5, 6, 7, 8, 10, 15, 20} for µ = 0.01 andN = {10, 12, 15, 16, 17, 20, 25} for µ = 0.01). 166

For each combination of population size and mutation we evolved 100 populations for 105
167

generations. Each population was initialized at carrying capacity with N copies of the default 168

Avida ancestor with all excess instructions removed; this resulted in an ancestor with a 169

genome of 15 instructions (only those needed for replication). Ancestral genotypes with per- 170

site mutation rates of µ = 0.01 and µ = 0.1 thus have genomic mutation rates of U = 0.15 171

and U = 1.5 mutations/genome/generation, respectively. Genome size mutations *(indels) 172

occur at a rate of 0.01 mutations/genome/generation for all treatments. Additionally, for 173

each mutation rate and population size combination, an additional 100 populations were 174

evolved in an environment where genome size was fixed. To directly test for the role of 175

lethal and deleterious mutations in driving extinction, we evolved 100 populations at the low 176

mutation rate population sizes under conditions where either lethal mutations or deleterious, 177

but non-lethal, mutations were reverted (the “lethal-reversion” and “deleterious-reversion 178

treatments”, respectively). 179

Data Analysis 180

For all evolution experiments, we saved data on the most abundant (dominant) genotype 181

every ten generations. The final saved dominant genotype was used in all analyses here. All 182
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data represents either genotypes at most ten generations before extinction (in the case of 183

extinct populations) or genotypes from the end of the experiment (in the case of surviving 184

populations). In order to calculate the lethal mutation rate and other relevant statistics for 185

a genotype, we generated every single point mutation for that genotype and measured these 186

mutants’ fitness using Avida’s Analyze mode. The lethal mutation rate was estimated as 187

ULethal = µ × L × pLethal, where µ is the per-site mutation rate, L is the genome size, and 188

pLethal is the probability that a random mutation will be lethal. 189

Analysis of the relationship between genome expansions and changes in the lethal 190

mutation rate 191

To test whether genome expansions themselves were responsible for the increase in the lethal 192

mutation rate or whether the lethal mutation rate increased after adaptation occurred in 193

response to a genome expansion, we first reconstructed the line-of-descents (LODs) for each of 194

the one hundred genotypes evolved in a population of 20 individuals with a per-site mutation 195

rate of 0.01 mutations/site/generation. An LOD contains every intermediate genotype from 196

the ancestral genotype to an evolved genotype and allows us to trace how genome size evolved 197

over the course of the experiment [41]. We reduced these LOD to only contain the ancestral 198

genotype, the genotypes that changed in genome size, the genotype immediately preceding a 199

change in genome size, and the final genotype. We measured the genome size and the lethal 200

mutation rate for each of these remaining genotypes. Then, we measured the relationship 201

between the change in genome size and the change in the lethal mutation rate for genome 202

expansions, genome reductions, and the segments of evolutionary time where genome size 203

was constant. 204

Analysis of stochastic viability 205

In order to test the possibility that some of our populations had evolved stochastic viability, 206

we analyzed each genotype from the N = 5 lethal-reversion populations and each genotype 207

from the N = 8, µ = 0.01, original populations. These population sizes were chosen because 208

they had the greatest equality between number of extinct populations and number of sur- 209

viving population for their respective treatments. We performed 100 viability trials, where 210

a genotype was declared non-viable if it had a fitness equal to 0. A genotype was declared 211

stochastic-viable if the number of trials where it was nonviable was greater than 0 and less 212

than 100. Otherwise, it was defined as deterministic-viable or always viable. 213

All data analysis beyond that using Avida’s Analyze Mode was performed using the 214

Python packages NumPy version 1.12.1 [43], SciPy version 0.19.0 [44], and Pandas version 215

0.20.1 [45]; figures were generated using the Python package Matplotlib version 2.0.2 [46]. 216

Results 217

Large genome size increases the extinction risk of small populations 218

To test if genome expansions and large genome size enhanced the probability of popula- 219

tion extinction, we evolved populations across a range of sizes at both high (1.5 muta- 220
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Figure 1: Possibility of genome expansions increase extinction in low mutation rate pop-
ulations. a) Number of extinct populations as a function of population size. Full lines
represent variable genome size populations; dashed lines represent fixed genome size popu-
lations. Black circles represent low mutation rate populations; white circles represent high
mutation rate populations. Error bars are bootstrapped 95% confidence intervals (104 sam-
ples). b) Time to extinction for population size and mutation rate combinations where at
least ten populations went extinct. Lines and colors same as in panel a. Error bars represent
2× standard error of the mean. Data only shown for those treatments that resulted in at
least ten extinct populations.

tions/genome/generation) and low (0.15 mutations/genome/generation) with both a fixed 221

genome size and an evolving genome size. Under the low mutation rate regime, popula- 222

tions with variable genome sizes had greater rates of extinction than those with fixed small 223

genomes (Fig. 1a). Under the high mutation rate regime, there was no significant difference 224

between populations with a variable genome size and populations with a constant genome 225

size (Fig. 1a). Estimations of the time to extinction further support these trends. In the 226

low mutation regime, populations where genome size could evolve went extinct in fewer gen- 227

erations than those where genome size was constant; there were no differences in the high 228

mutation rate regime (Fig. 1b). 229

Next, we compared the final evolved genome size between genotypes from extinct pop- 230

ulations and surviving populations. Across the range of population sizes for which at least 231

10 populations both survived and went extinct, “extinct” genotypes evolved larger genomes 232

than those “surviving” genotypes in the low mutation rate regime (Fig. 2a). In the high 233

mutation rate regime, one population size (N = 15 individuals) led to surviving populations 234

evolving larger genomes, while there was no statistically-significant difference for the other 235

population sizes (Fig. 2b). Together, these results suggest that genome expansions and large 236

genome size can enhance the risk of small population extinction if the initial mutation rate 237

is too low for extinction to occur. Now, we will focus on examining the mechanism behind 238

the relationship between genome size and extinction in the low mutation rate populations. 239
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Figure 2: Extinct populations evolved larger genomes. a) Final genome size for the low
mutation rate populations as a function of population size. Populations that survived are
shown with gray boxplots; populations that went extinct are shown with white boxplots.
Red bars are the median value, boxes are the first and third quartile, upper/lower whiskers
extend up to the 1.5 times the interquartile range, and circles are outliers. ** indicates Mann-
Whitney U p < 10−4, * indicates p < 10−2, and N.S. indicates p > 0.05. Population sizes
where fewer than ten populations went extinct (or survived) not shown. b) Final genome size
for the high mutation rate populations as a function of population size. Description same
as in panel a. Population sizes where fewer than ten populations went extinct (or survived)
not shown.

Extinction and large genome size is associated with increases in the 240

lethal mutational load 241

In a constant environment with soft selection, Avidian populations only face population-size 242

reductions through one mechanism: parent avidians produce non-viable (or infertile) off- 243

spring that replace viable avidians. In other words, the lethal mutational load should drive 244

population reduction and eventually population extinction. It is therefore possible that 245

the increased genomic mutation rate that co-occurs with genome size increases specifically 246

increased the genomic lethal mutation rate and that led to increased rates of population 247

extinction. We first tested whether larger genomes had an increased lethal mutation rate. 248

Genome size was correlated with the lethal mutation rate across genotypes from all popula- 249

tion sizes, supporting the hypothesis that increases in genome size result in increased lethal 250

mutational load and eventually population (Fig. 3a; Spearman’s ρ ≈ 0.75, p = 1.77×10−148). 251

Next, we examined whether populations that went extinct had previously evolved greater 252

lethal mutation rates than surviving populations. As with the trend for genome size, extinct 253

populations evolved greater lethal mutations rates than surviving populations (Fig. 3b). 254

The previous data support the hypothesis that genome expansions drive population ex- 255

tinction by increases in the lethal mutation rate and thus the lethal mutational load. How- 256

ever, it is unclear whether genome expansions themselves increase the likelihood of lethal 257

mutations or whether genome expansions merely potentiate the ability for further evolu- 258

tion to increases the lethal mutation rate. To test these two scenarios, we examined the 259

evolutionary histories (i.e., line-of-descents) for all 100 N = 20 low mutation-rate popula- 260
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Figure 3: Lethal mutation rate correlates with genome size and population extinction. a)
The lethal mutation rate as a function of genome size for the final genotypes from each
evolved low mutation rate population. White circles are extinct populations; gray circles are
surviving populations. b) The lethal mutation rate for extinct and surviving populations
across population sizes. Boxplots as previously described. Colors and significance symbols
same as Figure 2. Population sizes where fewer than ten populations went extinct (or
survived) not shown.

tions. We then examined the relationship between changes in genome size and changes in 261

the lethal mutation rate (Fig. 4a). When genome size was constant, the lethal mutation rate 262

did not change on average (mean change = 7×10−4, 95% Confidence Interval = ±2×10−3). 263

Genome size increases on average increased the lethal mutation rate (mean change = 0.024, 264

95% Confidence Interval = ±0.0023), while genome size decreases on average decreased the 265

lethal mutation rate (mean change = -0.033, 95% Confidence Interval = ±0.0040). Addition- 266

ally, the change in genome size positively correlates with the change in the lethal mutation 267

rate (Fig. 4b; Spearman’s ρ = 0.67, p ≈ 0.0). 268

Lethal mutation rate and stochastic viability drive population ex- 269

tinction 270

Finally, to establish the role of the lethal mutation rate in driving population extinction, we 271

performed additional evolution experiments to test whether the prevention of lethal muta- 272

tions would prevent population extinction. We repeated our initial experiments (Fig. 1), ex- 273

cept offspring with lethal mutations were reverted to their parental genome (lethal-reversion 274

treatment; see Methods for details). We also did the same experiment where deleterious, but 275

non-lethal, mutations were reverted in order to test if deleterious mutations contributed to 276

extinction. When populations evolved without deleterious mutations, extinction rates were 277

similar to, if not greater than, those for populations that evolved with deleterious mutations 278

(Fig. 5a). Populations that evolved with fixed-size genomes and without lethal mutations 279

never went extinct, demonstrating how the lack of lethal mutations can prevent extinction 280

(Fig. 5b). However, when these populations evolved with variable genome sizes, extinction 281

still occurred, although at a lower rate than when lethal mutations were present (Fig. 5b). 282
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Figure 4: Insertions and deletions directly change the lethal mutation rate. a) Change in
the lethal mutation rate as a function of a mutation’s effect on genome size. Boxplots as
previously described. Each data point represents the a genotype from a reduced evolutionary
lineage of a population with 20 individuals. b) Relationship between a mutation’s change in
genome size and the change in the lethal mutation rate. Data same as in panel a. Dashed
line represent no change. Data points comparing genotypes with equal genome size were
excluded.

While these data demonstrate that lethal mutations do primarily drive extinction risk, 283

they also show that there is a second factor that relates genome size to extinction. This is 284

surprising, as lethal mutations are the only direct mechanism to cause extinction in Avida. 285

One possible explanation for extinction in the lethal-reversion populations is that mutants 286

arise in these populations that are initially viable, but later become non-viable. In other 287

words, these populations evolve stochastic viability, where characteristics of the random 288

numbers the avidians input during their life-cycle determine their ability to reproduce. These 289

genotypes with stochastic viability would, on occasion, not be measured as lethal mutants, 290

and thus enter the population even when lethal mutations are reverted. As they reproduce, 291

these stochastic-viable genotypes will input other numbers and thus become, in effect, a lethal 292

mutation and subsequently lead to population extinction. To test if these populations that 293

went extinct without lethal mutations did evolve stochastic viability, we tested the viability 294

of all 100 genotypes from the variable genome size N = 5 populations; each genotype was 295

tested 100 times. We also performed the same tests with the 100 genotypes from the N = 8 296

populations that evolved with lethal mutations to see if these mutants arose in our original 297

populations. 298

For both sets of genotypes, we found that some genotypes were stochastically viable 299

(Fig. 5c). Of the 23 genotypes from populations that went extinct in the lethal-reversion 300

treatment, 19 displayed stochastic viability. The remaining four populations did not show 301

signs of stochastic viability; however, as we only sampled one genotype per population ten 302

generations before extinction, there was likely stochastic-viable replicators among the re- 303

maining individuals in the populations. No genotypes from surviving populations were 304

stochastically-viable. Of the 43 genotypes from populations that went extinct among our 305

original treatment genotypes, eight displayed stochastic viability. Two genotypes from sur- 306

viving populations were stochastically-viable, suggesting these populations would have an 307
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enhanced likelihood of extinction if the experiment had continued. Finally, we compared the 308

genome sizes between genotypes from the lethal-reversion genotypes that were always mea- 309

sured as viable and those that measured as stochastic-viable. Stochastic-viable genotypes 310

evolved larger genomes than deterministic-viable genotypes (Mann-Whitney U, median = 311

128 instructions vs. median = 191 instructions, p < 2 × 10−4; Fig. 5d), further suggesting 312

that increased genome size can lead to the evolution of stochastic viability and eventually 313

population extinction. 314

Discussion 315

We explored the role of genome size in the extinction of small populations and found that 316

low mutation rate populations with variable genome sizes go extinct at a higher rate than 317

those with a fixed genome size. Large genome size enhances the rate of small population 318

extinction due to two factors: increased lethal mutation rates and increased appearance of 319

genotypes with stochastic viability. Extinction occurs because, as genome size and the lethal 320

mutation rate increases, the population-level lethal mutational load increases, driving pop- 321

ulation collapse. These increases in the lethal mutation rate are directly driven by genome 322

expansion mutations, not by evolution after genome expansion, while deletions lowered the 323

lethal mutation rate. Finally, we showed populations with large genomes are at risk of evolv- 324

ing genotypes with stochastic viability and this increases the contribution of large genome 325

size to extinction. 326

The most prominent model of small population extinction is the mutational meltdown 327

model [15, 17, 19], which argues that even intermediate-sized asexual and sexual populations 328

(i.e., 103 individuals) can go extinct on the order of thousands of generations. It is worth 329

comparing our results from the predictions of the meltdown model, namely that only very 330

small populations go extinct in Avida, and extinction occurs on a much longer timescale 331

than in the mutational meltdown model. The contrast between our results and previous 332

results are likely due to differences in the character of selection between the two models. 333

Selection is hard in mutational meltdown models, and the accumulation of deleterious mu- 334

tations due to genetic drift reduces the probability of offspring surviving to reproduce [15]. 335

In other words, the accumulation of deleterious mutations directly increases the probability 336

that offspring will be non-viable. In Avida, selection on deleterious mutations is soft; accu- 337

mulation of deleterious mutations due to drift is unrelated to viability and the likelihood of 338

offspring receiving lethal mutations. The lethal mutation rate will only increase indirectly 339

in Avida due to accumulation of genome expansions in very small populations. Without 340

the positive feedback loop between deleterious mutation accumulation and population size, 341

avidian populations only evolve a high rate of non-viabile mutants if they undergo large 342

genome expansions, thus explaining the trends we saw here. 343

These differences between extinction in hard selection models and the hybrid selection 344

model we used here emphasizes the need to consider whether selection in biological pop- 345

ulations is primarily hard or soft. Unfortunately, there has been little resolution on this 346

question [47, 48]. There is some evidence that soft selection may be more relevant to evo- 347

lutionary dynamics than hard selection. For instance, soft selection has been invoked as 348

an explanation for why humans are able to experience high rates of deleterious mutations 349
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Figure 5: Evolution of stochastic viability contributes to extinction risk. a) Number of pop-
ulation extinctions (out of 100 replicates) as a function of population size. Squares represent
deleterious-reversion populations and circles represent populations where lethal mutations
were not reverted. Dashed lines represent populations with fixed-size genomes; solid lines
represent populations with variable-size genomes. Error bars are 95% confidence intervals
generated using bootstrap sampling (104 samples). b) Number of population extinctions
(out of 100 replicates) as a function of population size. Triangles represent lethal-reversion
populations. All other symbols same as in panel a. c) Number of viability trials (out of
100) that estimated that a given genotype was not viable. Values between 0 and 100 in-
dicate stochastic viability. “Original” refers to the 100 genotypes from the populations of
8 individuals that evolved with lethal mutations. “Revert-lethal” refers the 100 genotypes
from the N = 5 lethal-reversion populations. Boxplots as previously described. d) Genome
size as a function of whether a genotype was measured as stochastic-viable or deterministic-
viable. Data are the 100 genotypes from the N = 5 lethal-reversion populations. Boxplots
as previously described.
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per generation [49, 50]. Moreover, the persistence of small, isolated populations [51, 52, 53] 350

suggests that not only is selection primarily soft in nature, but that the extinction dynamics 351

we study here are relevant to a subset of biological populations. While large genome size 352

may not be the factor that causes populations to begin their ecological decline, it could drive 353

an already-reduced population to extinction. 354

We discovered two genetic mechanisms responsible for the relationship between large 355

genome size and small population extinction. First, genome expansions directly increase the 356

likelihood that an offspring will receive a lethal mutation and thus be non-viable. This is 357

contrary to expectations from biological organisms, where it is often assumed that genome 358

expansions, i.e., gene/genome duplications, increase robustness and reduce the lethality of 359

mutations by multiplying the copies of essential genes [54]. However, recent research has 360

shown that gene duplication can also result in increased mutational fragility, not just mu- 361

tational robustness [55]. Additionally, one major component of genome growth in many 362

multicellular eukaryotes is the expansion of transposable elements [56]. Any increase in the 363

number of active transposable elements in a genome should increase the lethal mutation 364

rate, as we have shown here, by increasing the likelihood that any essential gene will be mu- 365

tated. Selfish genetic elements such as transposons were the original proposed mechanism 366

to explain the relationship between genome size and extinction risk in plant species [23]. 367

However, there is no equivalent to transposable elements in Avida, so we cannot directly 368

test relevance of this mechanism here. 369

Our second proposed mechanism underlying the connection between genome size and 370

population extinction is the evolution of stochastic viability, or genotypes that could only 371

reproduce under some environmental conditions (i.e., random number inputs). The connec- 372

tion behind stochastic viability and extinction in small populations is intuitive. Mutations 373

causing stochastic viability likely have a weak effect (due to their stochastic nature) and 374

can fix in small populations due to weakened selection. After fixation, the lethality of these 375

mutation may be stochastically revealed, and extinction occurs. However, studies on the 376

functional consequences of mutations responsible for extinction are novel [57, 58] and it is 377

uncertain whether these mutations arise in populations at high extinction risk. One sugges- 378

tion that mutations with stochastic effects might be relevant to population extinction comes 379

from microbial experimental evolution. It has been shown that small populations have re- 380

duced extinction risk if they over-express genes encoding molecular chaperones that assist 381

with protein folding [59]. These over-expressed chaperones presumably compensate for other 382

mutations that cause increased rates of stochastic protein misfolding. Therefore, mutations 383

responsible for an increased likelihood of protein misfolding may be an example of a class 384

of mutations with a stochastic effect that enhance extinction risk. However, this is only 385

speculation and further work is needed to see if stochastic viability is a possible mechanism 386

behind extinction risk. 387

In a previous study, we observed that small populations evolved the largest genomes, the 388

greatest phenotypic complexity, and the greatest rates of extinction [31]. This result raised 389

the question of whether greater biological complexity itself could increase a population’s 390

rate of extinction, a question we explored here. Although we did not test whether increased 391

phenotypic complexity had a role in extinction, we have shown that genomic complexity, 392

measured in terms of genome size, did drive small-population extinction. While it is possible 393

that phenotypic complexity also enhanced the likelihood of extinction, the Avida phenotypic 394
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traits likely do not increase the lethal mutation rate. Thus, both high extinction rates and 395

increased phenotypic complexity arise due to the same mechanism: greater genome size. This 396

result illustrates an evolutionary constraint for small populations. While weakened selection 397

and stronger genetic drift can lead to increases in biological complexity, small populations 398

must also evolve genetic architecture that reduces the risk of extinction. Otherwise, small 399

populations cannot maintain greater complexity and their lethal mutational load drives them 400

to extinction. 401
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