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Abstract 
Motivation: Analysis toolkits for shotgun metagenomic data achieve strain-level characterization of 

complex microbial communities by capturing intra-species gene content variation. Yet, these tools are 

hampered by the extent of reference genomes that are far from covering all microbial variability, as 

many species are still not sequenced or have only few strains available. Binning co-abundant genes 

obtained from de novo assembly is a powerful reference-free technique to discover and reconstitute 

gene repertoire of microbial species. While current methods accurately identify species core parts, they 

miss many accessory genes or split them into small gene groups that remain unassociated to core 

clusters. 

Results: We introduce MSPminer, a computationally efficient software tool that reconstitutes Meta-

genomic Species Pan-genomes (MSPs) by binning co-abundant genes across metagenomic samples. 

MSPminer relies on a new robust measure of proportionality coupled with an empirical classifier to 

group and distinguish not only species core genes but accessory genes also. Applied to a large scale 

metagenomic dataset, MSPminer successfully delineates in a few hours the gene repertoires of 1 661 

microbial species with similar specificity and higher sensitivity than existing tools. The taxonomic an-

notation of MSPs reveals microorganisms hitherto unknown and brings coherence in the nomenclature 

of the species of the human gut microbiota. The provided MSPs can be readily used for taxonomic 

profiling and biomarkers discovery in human gut metagenomic samples. In addition, MSPminer can be 

applied on gene count tables from other ecosystems to perform similar analyses. 

Availability: The binary is freely available for non-commercial users at enterome.fr/site/downloads/ 
Contact: florian.plaza-onate@inra.fr   

Supplementary information: Available in the file named Supplementary Information.pdf 

 

 

1 Introduction  

Metagenomics has revolutionized microbiology by allowing culture-inde-

pendent characterization of microbial communities. Its advent has allowed 

an unprecedented genetic characterization of the human gut microbiota 

and emphasized its fundamental role in health and disease (Wang et al., 

2015). Shotgun metagenomics where whole-community DNA is ran-

domly sequenced bypasses the biases and limitations of 16S rRNA se-
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quencing (Větrovský and Baldrian, 2013; Brooks et al., 2015) by provid-

ing high resolution taxonomic profiling as well as insights into the diverse 

physiological roles and the metabolic potential of the community (Ranjan 

et al., 2016; Jovel et al., 2016). 
The analysis of large cohorts revealed a substantial inter-individual mi-

crobial gene content variability (Li et al., 2014) nucleotide polymorphism 

(Schloissnig et al., 2012) which reflects that individuals are not only car-

riers of various species, but also of different strains of the same species 

(Greenblum et al., 2015; Zhu et al., 2015). The characterization of the ac-

cessory genes found in individual strains is crucial in many contexts as 

they can provide functional advantages such as complex carbohydrates 

metabolism (Larsbrink et al., 2014), antibiotic resistance or pathogenicity 

(Loman et al., 2013; Scaria et al., 2010). 
Recent analysis toolkits for shotgun metagenomics data achieved 

strain-level resolution when coverage is sufficient. To this end, they either 

capture intra-species single-nucleotide polymorphisms (SNPs) in pre-

identified marker genes (Luo et al., 2015; Truong et al., 2017), gene con-

tent variation (Scholz et al., 2016) or both (Nayfach et al., 2016). How-

ever, these tools are hampered by the extent of the reference genomes. 
Indeed, microbial variability extends far beyond the content of refer-

ence genomes making metagenomic samples an untapped reservoir of in-

formation. First, it has been estimated that on average 50% of the species 

present in the human gut microbiota of Western individuals lack reference 

genome and this proportion rises to 85% in individuals with traditional 

lifestyles (Nayfach et al., 2016). Even if recent advancements of culture-

based methods have proven that a substantial proportion of these species 

are actually cultivable (Browne et al., 2016; Lagier et al., 2016), the num-

ber of unknown species is probably still important. In addition, these tech-

niques remain laborious and time consuming. Second, although species of 

public health interest (e.g. Escherichia coli, Salmonella enterica or Clos-

tridium difficile) are represented by hundreds or even thousands of strains 

in genome databases, only few strains are available for the great majority 

of commensal species. Consequently, accessory genes associated with mi-

crobial phenotypic traits may be missing in gene repertoires constructed 

from reference genomes. 
Metagenomic assembly where overlapping reads are merged into 

longer sequences called contigs is a powerful reference-free technique for 

overcoming the limitations of reference-based methods. However, assem-

bly remains a computationally challenging task and despite the many ded-

icated tools proposed, the process only recovers incomplete genomes scat-

tered in multiple contigs (Sczyrba et al., 2017). In an attempt to obtain 

exhaustive references, metagenomic assembly is performed on multiple 

samples to create non-redundant gene catalogs (Almeida and Pop, 2015). 
Then, these catalogues are used in metagenome-wide association stud-

ies for disease-related analyses (Wang and Jia, 2016) or descriptive pur-

poses (Li et al., 2014). However, testing millions of genes is biased to-

wards organisms with the most genes in the pool as they have more 

chances of being picked up. In addition, this approach lacks statistical 

power because many genes have strongly correlated abundances profiles 

which amounts to perform the same test multiple times (Schwartzman and 

Lin, 2011). 
Considering that the physically linked genes should have proportional 

abundances across samples, binning co-abundant genes has been proposed 

to organize catalogs into clusters of genes originating from the same bio-

logical entity. However, clustering millions of genes is a computationally 

intensive task as pairwise comparison of all gene abundance profiles is 

hardly feasible. To reduce the number of comparisons, some authors have 

performed binning on the subset of genes that were statistically significant 

by themselves (Qin et al., 2012; Le Chatelier et al., 2013), which does not 

improve the statistical power of the analysis. Others have proposed meth-

ods to perform the clustering of complete gene references based either on 

the Markov clustering algorithm (Karlsson et al., 2014), the Chameleon 

clustering algorithm (Jie et al., 2017) or a variant of the Canopy clustering 

algorithm (Nielsen et al., 2014). 
Although direct proportionality is expected between co-abundant 

genes, these methods rely either on Pearson’s or Spearman’s correlation 

coefficients which respectively assess a linear association with a poten-

tially non-null intercept or any monotonic association. Thus, these coeffi-

cients are not specific enough and spurious associations can be discovered. 

In addition, they are hampered by rare genes with many null counts 

(Huson, 2007), non-normal gene counts distributions (Kowalski, 1972) 

and presence of outliers (Osborne and Overbay, 2004). 
Furthermore, current clustering strategies group species core genes and 

highly prevalent accessory genes into the same cluster, but miss lower 

prevalence accessory genes or assign them to small separate clusters 

(Almeida et al., 2016). Dependency between core and accessory clusters 

can be evaluated downstream using the Fisher’s exact test (Nielsen et al., 

2014), which compares their presence/absence patterns across samples. 

Yet, this strategy does not account for the co-abundance of genes and is 

poorly discriminative when considering accessory clusters that are rare or 

associated with very prevalent species. In addition, it is not suitable for 

detecting clusters shared between several species. 
To overcome these limitations, we have developed MSPminer, the first 

tool that discovers, delineates and structures Metagenomic Species Pan-

genomes (MSPs) from large-scale shotgun metagenomics datasets without 

referring to genomes from isolated strains. MSPminer presents several sig-

nificant improvements over existing methods. First, it relies on a robust 

measure of proportionality for the detection of co-abundant but not neces-

sarily co-occurring genes as expected for non-core genes. Second, genes 

grouped in a MSP are empirically classified as core, accessory and shared 

genes.  
To illustrate its usefulness, we applied MSPminer to the largest publicly 

available gene abundance table which is composed of 9.9M genes quanti-

fied in 1 267 human stool samples (Li et al., 2014). We show that 

MSPminer successfully groups genes from the same species and identifies 

additional genes. Gene variability of microbial species is better captured 

and their quantification is subsequently more precise. MSPminer is a com-

putationally efficient multithreaded program implemented in C++ that can 

process large datasets with millions of genes and thousands of samples in 

just a few hours on a single node server. 

1 Methods 

1.1 Comparison of gene abundance profiles 

Microbial pan-genomes are gene repertoires composed of core genes pre-

sent in all strains and accessory genes present in only some of them 

(Medini et al., 2005). In a shotgun metagenomic sequencing context, we 

assumed that core genes of a microbial species should yield directly pro-

portional mapped reads counts across samples (co-abundance) and should 

be consistently observed in samples if sequencing depth allows (co-occur-

rence). Remarkably, core genes and accessory genes should have directly 

proportional counts only in the subset of samples where they are both de-

tected (Fig. 1). To group the core genes of a species and then identify its 

accessory genes, we developed a measure that evaluates proportionality 

between gene counts using samples where both genes are detected at a 

sufficiently high abundance. 
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Fig. 1: Simplified model illustrating the rationale behind the method 

We consider 6 samples of which all except the fourth carry a strain of the 
same microbial species represented here by a circular chromosome. Each 
strain is composed of different genes materialized by colored circular arcs. 
The species genes repertoire is made up of 3 core genes and 2 accessory 
genes present in only some strains. Gene length based on an arbitrary scale 
equals 1 (core gene 1), 2 (core gene 2, core gene 3 and acc. gene 2) or 3 
(acc. gene 1). 

A shotgun sequencing experiment is performed on each sample with a read 
length of 1 (length of the shortest gene). The sequencing coverage is indi-
cated at the bottom right of the chromosome of each strain. Finally, a table 
counting the number of reads aligned on each gene in each sample is gen-
erated. In a given sample, the number of reads aligned on a gene is equal to 
its length multiplied by the sequencing coverage. 

A directly proportional relationship is observed between the abundance pro-
files of core genes, the proportionality coefficient being equal to the ratio of 
their length. In contrast, such relationship between a core and an accessory 
gene is observed only in the subset of samples where the accessory gene is 
present. 

Estimation of the coefficient of proportionality 

Let 𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑚} be a set of 𝑚 metagenomic samples. Let 𝑔1 =

(𝑐1,𝑠1
, 𝑐1,𝑠2

, … , 𝑐1,𝑠𝑚
) and 𝑔2 = (𝑐2,𝑠1

, 𝑐2,𝑠2
, … , 𝑐2,𝑠𝑚

) be the vectors of the 

number of mapped reads on the two genes to be compared. 

Suppose there is a relationship of proportionality between 𝑔1 and 𝑔2 

noted 𝑔2 = 𝛼 ∙ 𝑔1. Here, the coefficient of proportionality 𝛼 is a strictly 

positive constant roughly equal to the ratio of 𝑔2 and 𝑔1 length. However, 

this ratio is not a good estimator when genes are duplicated or when their 

coverage is not uniform (Supplementary Fig. 1). Therefore, 𝛼 was ro-

bustly estimated with the following iterative algorithm: 

Let t = 6, α = 1 and num_iters = 1 

While num_iters ≤ 2 do 

 t1 = max (t,
t

a
) and t2 = max(t, α ∙ t) 

 α = median (
c2,s

c1,s
) s ∈ S|(c2,s ≥ t2 ∧ c1,s ≥  t1) 

 num_iters = num_iters + 1 

When estimating 𝛼, only samples were 𝑔1 and 𝑔2 had counts above a 

threshold 𝑡 were taken into account. In the second iteration, different quan-

tification thresholds named t1 and t2 were used to reflect that one gene 

may have higher counts than the other. This filtering has the following 

advantages: 

(1) It discards samples where both genes have null counts as they do 

not provide a quantitative information which can be used for the 

assessment of proportionality. 

(2) It discards samples with low counts which do not allow a precise 

estimation of the coefficient of proportionality. 

(3) It discards samples where one of the genes has a null count to 

detect proportionality occurring in a subset of samples only. 

If less than 3 samples were available for the estimation of 𝛼, the genes 

were not compared. 

Classification of zeros 

Quantification thresholds were also used to classify zeros. A gene with a 

null count in a sample can be either a sampling or a structural zero. In the 

first case, the gene is not detected because of sampling or technical effects 

while in the second case the gene is really absent in the sample. Distin-

guishing these two kinds of zeros is crucial to accurately classify a gene 

as core or accessory.  

Here, a gene with a null count in a sample was classified as a structural 

zero if the other gene had a count above its quantification threshold i.e. 

(c2,s ≥ t2 ∧ c1,s = 0) or (c2,s = 0 ∧ c1,s ≥  t1). Otherwise, it was classi-

fied as an undetermined zero. 

With an initial threshold t = 6, the probability of misclassifying a null 

count as a structural zero is 0.2% under the assumption that the number of 

reads mapped on a gene follows a Poisson distribution 

(𝑃(𝑋 = 0|λ = 6) = 0.002). 

 Non-robust measure of proportionality 

First, counts were square root transformed to stabilize variance and reduce 

the skewness of their distribution (Bland and Altman, 1996). Then, the 

directly proportional relationship between the two genes was evaluated by 

a modified version of the Lin’s concordance correlation coefficient (Lin, 

1989): 
2𝛼 ∙ 𝑐𝑜𝑣(𝑔1, 𝑔2)

𝛼 ∙ 𝜎𝑔1
2 + 𝜎𝑔2

2 + (𝛼 ∙ 𝑔1 − 𝑔2)2
 

where 𝑔1 and 𝑔2 are the means, 𝜎𝑔1

2  and 𝜎𝑔2

2  are the variances and 

𝑐𝑜𝑣(𝑔1, 𝑔2) is the covariance of 𝑔1 and 𝑔2. Only samples where both 

genes had non-null counts were considered to compute this coefficient. 

Robust measure of proportionality 

We derived a robust version of the measure to identify associated genes 

despite the presence of samples with inconsistent counts, hereafter named 

outliers. Indeed, outliers may decrease significantly the concordance co-

efficient calculated if not accounted for. 

Residuals defined as the difference between observed and expected pro-

portional counts were computed on samples where both genes had counts 

above their respective quantification thresholds with the following for-

mula: 

𝑐2,𝑠 − 𝛼 ∙ 𝑐1,𝑠 

Then outliers were detected using the Tukey's method. Let 𝑄1 and 𝑄3 

be the first and third quartiles of the residuals and 𝐼𝑄𝑅 be the interquartile 

range defined by 𝐼𝑄𝑅 = 𝑄3 −  𝑄1. Among the 𝑚′ samples with non-null 

counts in both genes, those with residuals greater than 𝑄3 + 𝐼. 5 ∙ 𝐼𝑄𝑅 or 

lower than 𝑄1 − 𝐼. 5 ∙ 𝐼𝑄𝑅 were classified as outliers. 

Finally, the measure of proportionality was computed on remaining 

samples. To avoid the detection of spurious associations with too many 

outliers, this robust measure was not computed if there were more than 

(𝑚′ − 5) ∙ 0.3 outliers that is to say a percentage of asymptotically equal 

to 30%. 

1.2 Reconstitution of Metagenomic Species Pan-genomes 

We developed MSPminer, a method that uses the measures of proportion-

ality described above to group co-abundant genes into Metagenomic Spe-

cies Pan-genomes (MSPs). MSPminer empirically distinguishes core from 

accessory genes based on their presence absence patterns and tags genes 

observed in samples where the core is not detected as shared. 
MSPminer is implemented in C++ and uses the OpenMP framework to 

take advantage of multicore processors. 
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Input data and filtering 

MSPminer takes as input a tab-separated values matrix giving the number 

of reads mapped on 𝑛 genes (rows) across 𝑚 metagenomic samples (col-

umns). Count data is neither normalized by gene length, nor by read length 

nor by sequencing depth. Indeed, the number of times a gene is detected 

is lost after normalization while it is used to classify null counts. 

Rare genes which do not support enough quantitative information for 

further processing were discarded. By default, genes with counts greater 

than 6 in at least 3 samples were kept. 

Gene binning 

To avoid comparison of all pairs of genes, genes with the highest count in 

the same sample were binned. On real metagenomic data, we found that 

this strategy not only decreases the number of comparisons to perform but 

increases the probability that related genes are placed in the same bin com-

pared to random assignment (Supplementary Fig. 2). 

To achieve a good load balancing, raw read counts were normalized 

prior to bin assignment by the number of mapped reads in samples, as 

samples with high sequencing depth tend to bin more genes. (Supplemen-

tary Fig. 3). Normalized counts were used in this step only. 

Seeds creation 

Sets of co-abundant and co-occurring genes called seeds hereafter were 

identified. Seeds were created in parallel in each bin by a greedy approach. 

First, genes were compared pairwise. All pairs of genes with a non-robust 

measure of proportionality of at least 0.8 and no structural zeros were 

saved in a list. Then, the list was sorted by decreasing measure of propor-

tionality.  

The pair of genes with the highest measure of proportionality was se-

lected as a centroid. Genes related to one of the centroid genes were 

grouped together in a new seed and removed from the list. This procedure 

was repeated until the list was empty. 

Seed representative 

For each seed, a pseudo gene referred as representative was computed to 

compare seeds with each other. First, the seed representative was defined 

as the median vector of the counts of all its genes. Then, each gene of the 

seed was compared to the seed representative using the measure propor-

tionality. The final seed representative corresponded to the median vector 

of the counts of the 30 genes with the highest measure of proportionality. 

Seeds merging across bins 

Some related genes may have been assigned to different bins when sam-

ples with the highest counts had close values. Therefore, seeds with a non-

robust measure of proportionality of at least 0.8 and no structural zeros 

counts were merged. After merging, seeds with less than 150 genes were 

discarded. 

 Core seeds identification 

Core seeds were identified among final seeds, based on the assumption 

that in a set of related seeds, the largest corresponds to a species core ge-

nome and the others are modules of either accessory or shared genes. 
To this end, seeds were sorted by decreasing number of genes. The larg-

est seed was defined as a new core seed. Then, the representative of the 

core seed was compared to the representative of all remaining seeds. Seeds 

with a robust measure of proportionality of at least 0.8 with the core seed 

were discarded from the list of potential cores. The procedure was iterated 

until there was no more seed to process 

Identification of genes associated to core seeds 

The representatives of each core seed were compared to all the genes. 

Genes with a robust measure of proportionality of at least 0.8 were con-

sidered as associated to the core seed. 

 Classification of genes associated to a core seed 

Let 𝑔1 be the median vector of the number of mapped reads on a core seed 

and 𝑔2 the vector of the number of mapped reads on a gene related to this 

core seed. The related gene was assigned to one of the 4 following classes 

according to the presence of structural zeros: 

(1) core: the related gene was present in all the samples where core 

seed was detected and uniquely in those (Fig. 2.A) 

∀s ∈ S | (c1,s ≥ t1 →  c2,s ≠ 0) ∧ (c2,s ≥ t2 →  c1,s ≠ 0) 

(2) accessory: the related gene was present in a subset of samples 

where core seed was detected (Fig. 2.B) 

(∃𝑠 ∈ S | 𝑐1,𝑠 ≥ 𝑡1 ∧ 𝑐2,𝑠 = 0) ∧ (∀𝑠 ∈ S | 𝑐2,𝑠 ≥ 𝑡2 → 𝑐1,𝑠 ≠ 0) 

(3) shared core: the related gene was detected in all the samples 

where the core seed was present plus some samples where the 

core seed absent (Fig. 2.C) 

(∀𝑠 ∈ S | 𝑐1,𝑠 ≥ 𝑡1 → 𝑐2,𝑠 ≠ 0 ) ∧ (∃𝑠 ∈ S | 𝑐2,𝑠 ≥ 𝑡2 ∧ 𝑐1,𝑠 = 0) 

(4) shared accessory: the related gene was detected in a subset of 

samples where the core seed was present plus some samples 

where the core seed was absent (Fig. 2.D) 

(∃𝑠 ∈ S | 𝑐1,𝑠 ≥ 𝑡1 ∧ 𝑐2,𝑠 = 0) ∧ (∃𝑠 ∈ S | 𝑐2,𝑠 ≥ 𝑡2  ∧ 𝑐1,𝑠 = 0) 

 
Fig. 2: Illustration of the four types of genes grouped in a MSP 

The median abundance profile of the 30 best representative genes of a core 
seed (x-axis) is compared to the abundance profile of four of its related genes 
(y-axis). Genes are quantified across the 1267 samples of the IGC catalog. 
Abundances are represented on a square root scale. The slope of the solid 
line is equal to 𝛼. The intercepts of the vertical and horizontal dashed lines 
are respectively 𝑡1 and 𝑡2. Black and grey points are respectively inlier and 
outlier samples. Black and grey crosses on the x and y axes are respectively 
structural and undetermined zeros. Only structural zeros are taken into ac-
count to affect genes to a given class. 

A. The gene is classified as core. It is present in all the samples where core 
seed is detected and only in those. B. The gene is classified as accessory. It 
is present in a subset of samples where core seed is detected (7.2%). C. The 
gene is classified as shared core. It is present in all the samples where core 
seed is detected plus 286 samples where the core seed is absent D. The 
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gene is classified as shared accessory. It is present in a subset of samples 
where core seed is detected (30.6%) plus 28 samples where the core seed 
is absent. 

Creation of Metagenomic Species Pan-genomes 

Core, accessory, shared core and shared accessory genes associated to a 

core seed were assembled in a MSP. 

Core genes were compared to the core seed representative and sorted 

by decreasing measure of proportionality. In each class except core, a clus-

tering procedure similar to the one used to create seeds was run. It identi-

fied modules of co-occurring genes that may be interpreted as functional 

units, i.e. operons. Unclustered genes were saved as singleton modules. 

1.3 Simulated dataset 

For evaluation purposes, we generated abundance tables simulating the 

counts of genes from a single virtual species. The pan-genome of this spe-

cies consisted in 1 000 core genes detected in all strains and 6 000 acces-

sory genes present only in some of them. Gene lengths were randomly 

drawn between 100 bp and 5 000 bp. The prevalence of accessory genes 

was randomly drawn between 2.5% and 99.5%.  

In a first simulation, 200 samples containing each a single strain of the 

species were generated. The sequencing coverage of a strain in a sample 

was drawn from a uniform law (min=0.6, max=20) and read length was 

set to 100 bp. In a given sample, the theoretical number of reads mapped 

on a gene was calculated according to the gene length, the strain coverage 

and the presence or not of the gene in the strain. Finally, the observed gene 

counts were drawn from Poisson distributions with means equal to theo-

retical counts. 

In the second simulation used to evaluate the robust measure, outliers 

were added by multiplying observed counts of each gene by either ¼, ⅓, 

2 ,3 or 4 in 5%, 10% and 20% of the samples were it was present.  

Next, we progressively decreased the number of samples where the spe-

cies was detected (200, 100 and 50) to apprehend the impact of this pa-

rameter on the completeness of MSPs. 

Finally, we simulated samples carrying two strains of the species where 

the dominant strain is 5 to 10 times more abundant than the subdominant 

one as observed in fecal samples (Truong et al., 2017). 

2  Results 

2.1 Evaluation on simulated data 

 Evaluation of the measures of proportionality 

First, we simulated the abundance table of a species across 200 samples to 

compare the performance of Pearson’s correlation coefficient, Spearman’s 

correlation coefficient and the proposed measure of proportionality for de-

tecting a relation between the abundance profile of the species core ge-

nome and all its genes including accessories. Pearson’s and Spearman’s 

correlation coefficients decreased with the prevalence of the tested gene, 

while the proposed measure remained high, as it only uses samples where 

both the species core and the tested gene are detected (Fig. 3.A). There-

fore, the association between core genes and many accessory genes will 

be missed using the correlation coefficients. However, accessory genes 

observed in similar subsets of samples could be grouped into small distinct 

clusters as their abundance profiles should be correlated. Our simulations 

also show that the measure of proportionality is more sensitive to species 

with highly variable coverage and on long genes as their counts are higher 

and less dispersed (Supplementary Fig. 4). 

Then, we compared the robust measure of proportionality against its non-

robust counterpart by adding an increasing percentage of outliers to the 

genes abundance profiles. For a given percentage of outliers, each of these 

genes was compared to the outlier-free abundance profile of the core. This 

simulation showed that the non-robust measure of proportionality de-

creases when the percentage of outliers increases whereas the robust meas-

ure remains high, demonstrating that proportionality is still detected (Fig. 

3.A). 

 
Fig. 3: Evaluation of the measures of proportionality 

A. Comparison of the Pearson’s correlation coefficient, the Spearman’s cor-

relation coefficient and the proposed measure of proportionality to detect an 

association between the median abundance vector of the core genes of the 

simulated species and the abundance vectors of each of its genes. The x-

axis corresponds percentage of samples where a gene is detected and the 

y-axis corresponds to the intensity of the relationship between the compared 

vectors. The closer the value is to 1, the stronger the intensity of the relation-

ship. B. Comparison of the performances of the robust (black) and the non-

robust (grey) measures of proportionality to detect a relationship between the 

noisy abundance vector of each gene of the simulated species and the out-

lier-free median abundance vector of its core genes. The proportion of outli-

ers is gradually increased to 5%, 10% and 20%. 

Evaluation of the clustering algorithm 

Next, we tested if the number of samples where the species was detected 

had an influence on the completion of its corresponding MSP. Although 

this parameter did not impact the clustering of core and prevalent acces-

sory genes, rarer accessory genes were grouped in the MSP only when the 

species was detected in a sufficiently large number of samples (Fig. 4). 

 
Fig. 4: Impact of number of samples where the simulated species is detected 
on clustering. 

Finally, we explored the impact of mixture of multiple strains of the 

same species in samples. When occasional, strains mixture had little im-

pact on clustering. If it was more frequent, many accessory genes of low 

or medium prevalence were missed (Fig. 5). However, strains mixture 

might have less impact on the clustering performance. When it occurred, 

we considered that the presence of a gene in one strain was independent 

of its presence in the other. Yet, the low nucleotide divergence frequently 

observed between strains present in the same fecal sample suggests that 

they may have similar gene content (Truong et al., 2017). 
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Fig. 5: Impact of strain mixture on clustering 

2.2 Application to the study of the human gut microbiota 

We applied MSPminer to the largest publicly available gene abundance 

table provided with the Integrated Gene Catalog of the human gut micro-

biome (Li et al., 2014). In this table, 9 879 896 genes are quantified across 

1 267 stool samples from individuals of various geographical origin (Eu-

rope, USA and China) and diverse health status (healthy, obese, diabetic, 

with inflammatory bowel disease etc.). 6 971 229 (70.6%) genes with 

counts greater than 6 in at least 3 samples were kept. Among these, 3 288 

928 (47.2%) were organized into 1 661 MSPs (Supplementary Table 1). 

Census of universal single copy marker genes 

To check that MSPs correspond to real microbial species and evaluate the 

completeness of their core genomes, we identified 40 universal single 

copy marker genes (SCM) in the gene catalog (Sunagawa et al., 2013). 

84% of SCMs detected in at least 3 samples were assigned to MSPs, indi-

cating that MSPs capture a large proportion of the biological signal at spe-

cies level. 915 MSPs (55%) had at least 30 SCM and 406 (24%) had all of 

them (Supplementary Table 2). As housekeeping genes, SCMs are essen-

tial to the microbe survival and expected among core genes. Indeed, 93% 

of the SCMs were core genes in their respective MSP and 70% of non-

core SCMs were accessory genes of high prevalence (≥ 90%). This shows 

that the heuristic used for the classification of genes is reliable. 

Precision 

We evaluated the precision of MSPminer by calculating in MSPs the frac-

tion of genes assigned to the dominant species (Supplementary Table 

4.A). Apart from unassigned genes, the taxonomic consistency was very 

high for all gene categories (mean > 98%) except shared accessory genes 

(mean = 83.3%). Remarkably, some MSPs such as those representative of 

Bacteroides plebeius, Ruminococcus bicirculans and Eubacterium eligens 

had many unknown accessory genes (resp. 2 888, 2 821 and 2 399) which 

is coherent with the low number of genomes available for these species. 

On average, 80% of these novel accessory genes were validated by per-

forming the taxonomic annotation of the contigs they derived from. The 

remaining genes were found in unassigned contigs or contigs carrying 

only one gene. Conversely, 99% of the genes of the MSP representative 

of Escherichia coli (msp_0005) were annotated as thousands of references 

are available for this species. 

Sensitivity 

Then, we aligned 3 143 genomes representative of 322 species of the hu-

man gut microbiome against the IGC catalog. For each genome, we de-

fined the sensitivity as the number of its genes grouped in the most repre-

sentative MSP divided by the total number of its genes found in the catalog 

(Supplementary Table 4.C). Overall, the sensitivity weighted by the 

number of genomes per species was high (median=77%). Interestingly, 

genes grouped in MSPs were significantly longer than those that were not 

(median length of 975 bp vs 670 bp, Wilcoxon rank-sum test p-value = 0). 

More specifically, genomes of 1 127 human gut-associated E. coli strains 

were well covered by the msp_0005 (mean = 83.4%). 95% of core genes 

of genomes were also tagged as core in the MSP which shows again the 

robustness of the classification. However, 32 078 genes from the IGC cat-

alog detected in E. coli genomes were missing in the msp_0005. 85% of 

these genes were present in less than 5% of the metagenomic samples 

where E. coli was detected, indicating that MSPminer misses rarest acces-

sory genes which can be very numerous. 

Comparison to the Canopy clustering algorithm  

MSPminer was compared to the Canopy clustering algorithm (Nielsen et 

al., 2014) which is the only gene binning tool publicly available. Both 

tools were applied to the metagenomic dataset described above using de-

fault parameters (Supplementary Methods). In total, MSPminer grouped 

17.8% more genes than Canopy (3 288 928 vs 2 704 552) although 

MSPminer had a more stringent gene selection criterion (6 971 229 vs 7 

304 439 genes processed). Both tools had a very high precision (mean > 

98%) but MSPminer brought a significant gain in sensitivity (median: 

77% vs 62%) (Supplementary Table 4). Remarkably, Canopy produced 

more objects with at least 150 genes than MSPminer (2 010 CAGs vs 1 

661 MSPs) as it splits some species (e.g. E. coli) into multiple clusters. In 

contrast, MSPminer generated one MSP per species which improves 

downstream statistical analysis. Finally, MSPminer achieved better com-

puting performance than Canopy (wall time: 2h 40min vs 42h) while con-

suming less memory (peak memory: 74Go vs 231Go).  

Taxonomy 

642 MSPs (38.7%) could be annotated at species level, 315 (19.0%) at 

genus level, 525 (31.6%) at a higher taxonomic level from family to 

superkingdom and the remaining 179 (10.8%) could not be annotated, in-

dicating that a majority of MSPs correspond to species not represented in 

GenBank (Supplementary Fig. 5 and Supplementary Table 3.C). 

Among the annotated MSPs, one corresponded to Homo sapiens, 4 were 

unicellular eukaryotes of the genus Blastocystis, 8 were Archaea and the 

remaining 99% were Bacteria represented predominantly by the phyla Fir-

micutes (1 016 MSPs), Bacteroidetes (263 MSPs), Proteobacteria (94 

MSPs) and Actinobacteria (46 MSPs). 
Among the 642 MSPs annotated at species level, 304 corresponded to 

well-defined species and 338 matched genomes with imprecise taxonomy 

(i.e. sp., cf., CAG or bacterium). In the end, most MSPs assigned to well-

defined species matched RefSeq reference genomes. 
Interestingly, 15 species were represented by multiple MSPs such as 

Faecalibacterium prausnitzii (7 MSPs), Bacteroides fragilis (2 MSPs) or 

Methanobrevibacter smithii (2 MSPs) (Supplementary Table 3.D). In 

these cases, one of the MSPs matched the species reference genome and 

the other MSPs matched other genomes only. The low Average Nucleo-

tide Identity (ANI) between these genomes and the species reference sug-

gests that they actually belong to distinct species.  
Conversely, 8 MSPs were attributed to reference genomes of different 

species (Supplementary Table 3.E). For all cases, the comparison of the 

reference genomes revealed an ANI > 96%, suggesting that they actually 

belonged to the same species despite distinct names were attributed. 
Among the 3 813 genomes that matched MSPs annotated at species 

level, 369 with imprecise taxonomy could be reassigned to well-defined 

species, and 581 appeared misannotated or contaminated (Supplemen-

tary Table 3.B). 

 MSPs content 
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Most MSPs were small (median number of genes = 1 821) even if 51 had 

more than 5 000 genes (Supplementary Fig. 6 and Supplementary Ta-

ble 2). As expected, a strong positive correlation (Pearson's r = 0.78) be-

tween the total number of genes in a MSP and its number of accessory 

genes was observed. Interestingly, 4 outliers corresponding to the unicel-

lular eukaryotes previously described had a high number of core genes and 

few accessory genes. This suggests that Eukaryotic genomes have a larger 

number of genes and a lower gene content variability than Prokaryotes. 

Among the MSPs with the more accessory genes, many corresponded to 

species reported as highly variable such as Klebsiella pneumoniae (Holt 

et al., 2015) or Clostridium bolteae (Dehoux et al., 2016). As previously 

observed in population genomics studies comparing multiple strains of the 

same species (Koonin and Wolf, 2008), the prevalence of accessory genes 

in MSPs often follows a bimodal distribution showing either a high or low 

prevalence but rarely intermediate (Supplementary Fig. 7). 

MSPs prevalence 

Most MSPs were very rare as 596 (35.9%) were detected in less than 1% 

of samples and 1 110 (66.2%) in less than 5%. Only 82 (4.9%) MSPs were 

detected in at least half of the samples showing that the common microbial 

core of the human gut microbiota is limited to a few dozen species (Sup-

plementary Table 2). MSPs annotated at species level were significantly 

more frequent than those with less precise annotation (median prevalence: 

5.4% vs 1.7%, p-value=1.4.10-21 Wilcoxon rank-sum test) indicating that 

non-sequenced species are generally rarer. No clear relation between the 

prevalence of the MSPs and their mean abundance was found. However, 

2 MSPs corresponding to Bacteroides vulgatus and Bacteroides uniformis 

were both very prevalent (detected in 97.5% and 94.0% of the samples 

respectively) and very abundant (mean relative abundance of 7.3% and 

4.1% respectively). Interestingly, many rare MSPs assigned to the 

Prevotella genus were abundant in the few samples which carried them. 

 MSPs quantification for biomarkers discovery  

To demonstrate that MSPminer was useful for biomarkers discovery, we 

first looked for differentially abundant MSPs according to the geograph-

ical origin of samples (Supplementary Methods). We discovered 343 

MSPs differentially abundant between Westerners and Chinese including 

259 more abundant in Westerners and 84 in Chinese (Supplementary Ta-

ble 5.A). Among the discriminant MSPs, all those assigned to the Proteo-

bacteria phylum (Klebsiella pneumoniae, Escherichia coli and Bilophila 

wadsworthia) were more abundant in Chinese which is consistent with 

previously published results (Li et al., 2014). Interestingly, three MSPs 

assigned to Faecalibacterium prausnitzii were significant but two were 

more abundant in Westerners and the other in Chinese. In addition, we 

discovered 134 MSPs differentially abundant between Europeans and 

Americans of which 119 were more abundant among Europeans (Supple-

mentary Table 5.B). This result is consistent with previous studies show-

ing lower gut microbiota diversity among Americans compared to Euro-

peans (Sunagawa et al., 2013). 
Secondly, we used MSPs for strain-level analysis. To do this, we looked 

for accessory genes more frequent in samples of a given geographical 

origin (Supplementary Methods). We found 51 MSPs with at least 200 

such accessory genes (Supplementary Table 5.C). Some MSPs con-

tained genes associated with sample origin while the abundance of their 

core was not, illustrating the complementarity of the two approaches. 

3 Discussion 

3.1 Identification of genes with proportional counts 

MSPminer relies on a new robust measure to detect genes with directly 

proportional counts. This relation more stringent than those assessed by 

Pearson’s or Spearman’s correlation coefficients was successfully used to 

reconstitute Metagenomic Species Pan-genomes of the human gut micro-

biota. In fact, most genes from sequenced genomes were grouped into a 

single MSP showing that direct proportionality is the most common rela-

tion between genes from the same biological entity. 
However, MSPminer misses some genes for which counts are not ruled 

by this relation. Indeed, proportionality is disrupted when gene copy num-

ber varies across samples (Greenblum et al., 2015), when a sample con-

tains multiple strains of the same species (Truong et al., 2017), when a 

gene is subject to horizontal gene transfer (Dagan et al., 2008) or when 

genes from different species have the same reference in the gene cata-

logue. Nevertheless, the first two cases have most likely a limited impact 

as the majority of strains tend to have the same gene copy numbers 

(Greenblum et al., 2015) and samples often carry a dominant strain 

(Truong et al., 2017). Regarding shared genes, their signals are a linear 

combination of the MSPs that carry them. Thus, they will be identified 

only if these MSPs are mostly detected in separate sets of samples. 

3.2 Parameters impacting the quality of the MSPs 

The quality of the MSPs is impacted by the upstream steps required for 

generating the count matrix, as well as by the biological and ecological 

characteristics of the dataset. At the sequencing level, the number of reads 

(sequencing depth) generated for each sample impacts the detection and 

coverage of subdominant species, while read length affects the quality of 

the assembly and the ability to assign a read to a gene without ambiguity. 

At the bioinformatics level, assembly, gene prediction, gene redundancy 

removal, mapping and counting require expertise to select the most appro-

priate strategies, tools and parameters. Indeed, assemblers returning chi-

meric contigs which combine sequences from highly related species, in-

accurate predictors generating truncated or merged genes, redundancy re-

moval with a common threshold for all genes (95% of nucleotide identity) 

lead to genes of variable quality in catalogues. When quantifying genes, 

keeping only uniquely mapped reads underestimates the abundance of 

some genes whereas considering shared reads can generate false positives. 

As shown on simulated data and verified on a real metagenomic dataset, 

longer genes are more likely to be clustered in MSPs because they have 

greater and less dispersed counts. Finally, at the biology level, a high num-

ber of samples with varied phenotypes will improve the comprehensive-

ness and quality of MSPs. Indeed, as the number of samples grows, 

MSPminer will be able to identify rare species and assign rarer accessory 

genes to their respective MSPs. In addition, highly prevalent accessory 

genes will be reclassified from core to accessory as observed while se-

quencing an increasing number of strains of a species (Touchon et al., 

2009). 

3.3 Applications 

As illustrated in this paper, MSPs can be used for taxonomic profiling of 

human gut metagenomes. By using a dedicated pipeline (Kultima et al., 

2012; Karlsson et al., 2014), the sequencing reads need to be mapped on 

the IGC catalog to get the number times each gene was sequenced. Then, 

the aggregation of the core genes abundance profiles of each MSP allows 

accurate detection and quantification of microorganisms in samples up to 

species level. New MSPs will need to be built if those provided are not 

representative of the studied ecosystem. 
Compared to methods relying on reference genomes (Truong et al., 

2017), information from unknown or non-sequenced species can be ex-

ploited. In addition, our method is not impacted by contaminated genomes 

or incorrect taxonomic annotation. Compared to methods quantifying a 
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few dozen universal marker genes (Sunagawa et al., 2013), MSPminer 

may improve the estimation of species abundance by automatically detect-

ing among hundreds of core genes those with the highest specificity, the 

highest counts and lowest dispersion. 
Furthermore, in each MSP, accessory genes associated with the tested 

phenotype can be explored opening the way to global strain-level anal-

yses. This allows the comparison of strains carried by individuals and dis-

covery of biomarkers corresponding to functional traits specific to certain 

strains. 
Finally, MSPminer provides microbial population genetics from large 

cohorts which can help culture-dependent methods prioritize species of 

greater interest, such as those with no reference genome available or with 

reference genomes distant from the strains present in metagenomic sam-

ples (Fodor et al., 2012). When sequencing coverage allows, genomes of 

these species can be directly reconstituted from metagenomic assemblies 

by binning contigs carrying genes of the same MSP. 
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