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Abstract 

Opsins are G protein-coupled receptors used for both visual and non-visual photoreception, and             
these proteins evolutionarily date back to the base of the bilaterians. In the current sequencing               
age, phylogenomic analysis has proven to be a powerful tool, facilitating the increase in              
knowledge about diversity within the opsin subclasses and, so far, nine paralogs have been              
identified. Within echinoderms, opsins have been studied in Echinoidea and Ophiuroidea, which            
do not possess proper image forming eyes, but rather widely dispersed dermal photoreceptors .             
However, most species of Asteroidea, the starfish, possess true eyes and studying them will shed               
light on the diversity of opsin usage within echinoderms and help resolve the evolutionary              
history of opsins. Using high-throughput RNA sequencing, we have sequenced and analyzed the             
transcriptomes of different Acanthaster planci tissue samples: eyes, radial nerve, tube feet and a              
mixture of tissues from other organs. At least ten opsins were identified, and eight of them were                 
found significantly differentially expressed in both eyes and radial nerve, providing new            
important insight into the involvement of opsins in visual and nonvisual photoreception. Of             
relevance, we found the first evidence of an r-opsin photopigment expressed in a well developed               
visual eye in a deuterostome  animal. 
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Introduction 

Light carries an immense amount of information about the surroundings. Direct light from the              

sun, the moon, or the stars is used by various animals to set diurnal or annual clocks and to set                    

direction during navigational tasks. Light reflected from the surroundings guides innumerous           

different behaviours as it provides information about objects with unprecedented details and            

speed. Light reception is thus widespread in the animal kingdom but interestingly the molecular              

machinery behind light reception shares many common features across all phyla. In most cases              

examined so far the first step in the phototransduction, the absorption of the photons in               

metazoan, is mediated by a specific protein family called opsins [1] . Opsins are seven              

transmembrane G protein-coupled receptors binding a chromophore, retinal, which undergoes a           

conformational change upon the absorption of light, thus triggering the rest of the transduction              

cascade. During the last couple of decades, several molecular studies have examined the             

diversity of the opsin family and found nine major clades [2] . What the work has also shown is                  

that many animals have a surprisingly high number of opsin gene copies and that they can be                 

expressed in almost any body region or organ [3] . In many of these cases, the functions remain                 

unknown  and may well be outside light  reception [4,5] . 

Light reception is known from all major groups of echinoderms and is facilitated by              

different types of photoreceptors ranging from non-pigmented dermal photoreceptors to proper           

image forming eyes. A rather special case has been suggested in the brittlestar Ophiocoma with               

dispersed microlenses formed by skeletal elements [6] . Another dermal photoreceptor system is            

found in sea urchins which has also been suggested to support image forming vision [7,8] . The                

genome has been sequenced for the sea urchin Strongylocentrotus purpuratus and eight opsin             

genes were found belonging to the opsin clades c-opsins, r-opsins, Go-opsins, peropsin,            

neuropsin and echinopsins A and B [9,10] . The latter two groups were recently renamed as               

bathyopsins and chaopsins, respectively, [2] . The r-opsin Sp-opsin4 is expressed in cells at the              

base of the transparent tube feet and is putatively mediating the directional negative phototaxis              

described for a couple of species [8,11,12] . The brittle star Amphiura filiformis has even higher               
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opsin diversity with at least 13 gene copies [13] , but here little is known about expression                

patterns and behavioural  roles. 

Dermal photoreception is also known from several species of starfish (Asteroidea)           

[14–16] but it is unknown if it is opsin based and if so whether it is the same opsin as found in                      

the photoreceptors of the eyes. Remarkably, these echinoderms also have well defined eyes.             

Those eyes are found in most non-burrowing starfish species at the tip of each arm sitting at the                  

base of the unpaired terminal tube foot as a direct extension of the radial nerve. They are                 

compound eyes and structurally they resemble the eyes of arch clams and fan worms [17,18]               

with lensless ommatidia typically 20-40 µm in diameter. Depending on species, adult specimens             

have 50-300 ommatidia in each eye and recent studies have shown that this supports spatial               

resolution in the range of 8-17 degrees used for navigation [19–21] . These studies have also               

indicated that the ommatidia have a single population of photoreceptors which utilize an opsin              

with peak sensitivity  in the deep blue part of  the spectrum around 470 nm.  

Recently, two draft genomes of the crown-of-thorns starfish (COTS) Acanthaster planci ,           1

relative to animals collected from Okinawa, Japan and Great Barrier Reef, Australia (GBR),             

were released. These two genomes shared 98.8% nucleotide identity and were determined to be              

the same species [22] , which is in agreement with previous classification of the Pacific ocean               

COTS being one species [23] . Although A. planci is not the first Asteroidea with an assembled                

genome, it is the first species with well defined eyes to have an assembled genome. The GBR                 

genome was released along with annotations for ~24,500 protein coding genes [22] , and this              

presents an opportunity to study the mechanisms behind vision in a species with a well defined                

eye that is evolutionarily close to species with alternative methods of photoreception. Here we              

have used tissue specific transcriptomics to investigate the differential expression of opsin genes             

in A. planci . We found at least seven different paralogs and, by comparing expression levels in                

the eyes, in locomotory tube feet, in the radial nerve, and in a mixture of gonadal, stomach, and                  

1  COTS  is thought to be divided into four  separate  species distinguished  by bodies of  water 
[23] --Red Sea, the Pacific,  the Northern and the Southern Indian Ocean, reclassifying  the Pacific 
ocean species as  Acanthaster  solaris [24]. However,  for  consistency with the released  genome 
we  will refer to the GBR  species as  A.  planci.  
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epidermal tissue, we are able to infer which opsins are most likely used in vision, in non-visual                 

photoreception, and outside photoreception.  

 

Material and  methods 

(a) Animals 

The specimens of A. planci used in this study were hand collected on the Great Barrier Reef off                  

the coast of Cairns, Australia. After collection the animals were kept in holding tanks with               

running seawater at 26 degrees for 2-3 days and then flown to Denmark. In Denmark they were                 

kept under similar conditions at the Danish National Aquarium, The Blue Planet, where they              

were fed three times a week with a past of enriched squid and fish meat. Tissue samples were                  

taken from four specimens with diameters of 15-23 cm. Three terminal tube feet including the               

eye, 3 locomotory tube feet, approx. 5 cm radial nerve, and pieces of the gonads, the stomas, and                  

the epidermis were sampled from each of the four specimens and stored in RNAlater at 4ºC. Two                 

additional animals were collected at the coastal reefs of Guam and a total of 12 eyes and 10 cm                   

radial nerve were taken from them directly  after collection  and stored in RNAlater at 4ºC.  

  

(b)  RNA  extraction and sequencing 

The tissue samples were removed from the RNAlater, immediately frozen with liquid nitrogen             

and homogenized using a mortar and pestle. Powdered tissues were then dissolved in EuroGOLD              

RNAPure (EMR 506100) and processed using EUROzol RNA extraction protocol (EMR055100,           

euroclone), then subjected to LitCl (4M) purification. Library preps and sequencing were done at              

Università degli Studi di Salerno using SMART-Seq  v4 Ultra Low  Input RNA  Kit. 

Sequenced reads were examined using fastqc and then quality filtered and trimmed using             

trimmomatic (v0.33) [25] . Quality controlled reads were quasi-mapped and quantified to v1 great             

barrier reef Acanthaster planci transcriptome using salmon (v0.82) [26] . Transcripts per million            

(TPM), the normalized transcript counts [27] . Differentially expressed genes were identified           

using DESeq2 [28] (FDR ≤ 0.05 and -1.5 ≥ log2FC ≥ 1.5). All scripts can be found at                  

https://github.com/elijahlowe/Acanthaster_opsins.git. 
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(c) Identification  of  opsin sequences 

Opsin protein sequences were collected from echinoderms [10,13,29–34] , hemichordates [35]          

(Freeman et al. 2008), molluscs [36–38] , arthropods [39,40] , vertebrates [41–47] and annelids            

[48] covering 40 species and 159 opsin sequences with an additional 7 melatonin receptor              

sequences to be used as an outgroup. These sequences were retrieved from various databases              

including Echinobase [49] , and NCBI [50] , as well as from publications themselves, as described              

in electronic supplementary material (SI 1). These sequences were used to perform Reciprocal             

Best Hits (RBH) BLAST against the A. planci (GBR) proteome. Additionally,           

pantherSCORE2.0 [51] was used to identify opsin sequences using hidden Markov models. The             

collected sequences were aligned with MAFFT (v7.215) [52,53] using L-INS-i algorithm which            

is better designed for divergence sequences and performed well when benchmarked against other             

multiple sequence aligners [54] . The aligned sequences were then trimmed using trimAl [55] ,             

removing gaps that occurred in 10% of the alignments while being sure to retain 60% of the total                  

sequence length. Initial phylogenetic trees were generated using the aligned sequences with            

fasttree (v2.1.7) [56] and visualised with figtree (v1.4.3) [57] . Additional trees were then             

generated using iqtree [58] with 10,000 ultrafast bootstrap support [59] using the ‘ a Bayesian-like              

transformation of aLRT’ (abayes) method [60] , and LG+F+R6 amino acid substitution model            

selected using ModelFinder [61] . Modifications such as additional labels and visual effects were             

done using inkscape.  

 

Results  

Diversity of  opsins  in A.  planci 

We identified thirteen putative opsin paralogs in A. planci ’s proteome using Reciprocal Best Hits              

(RBH) BLAST and pantherSCORE2.0, which share high sequence similarity. Closer          

examination using the genome revealed that two of these sequences were actually one             

fragmented opsin (gbr.65.47.t1 and gbr.65.48.t1), so we manually edited the sequence, which can             
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be found in the opsin fasta file of electronic supplementary material (SI 2). These sequences               

were included in a phylogenetic analysis totaling 169 sequences spanning 40 different species.             

Our phylogenetic analysis from both FastTree and iqtree revealed ten A. planci opsins belonging              

to 7 groups and two sequences clustering with the melatonin receptors outgroup (figure 1): 1               

rhabdomeric opsin (r-opsin), 4 ciliary opsins (c-opsins), 1 peropsin, 1 Go-opsin, 1 RGR opsin, 1               

neuropsin, and 1 chaopsin. Chaopsins were first classified as echinoderm specific [9,10] but were              

later found to group with several cnidarian opsins [2] . A. planci possesses representatives of all               

so far known echinoderm opsin groups with the exception of bathyopsin (former echinopsin A),              

which thus has yet to be identified in any starfish. A. planci opsins grouped closest with those of                  

Patiria miniata--an eyeless starfish--followed by Asteria  rubens opsins.  

In A. planci eyes, all opsins with the exception of ciliary opsin 1.1b and neuropsin were                

up-regulated in comparison to the mixed tissues (Figure 2). This was also the case when               

comparing opsin expression in the radial nerve to the mixed sample but to a lesser degree (Figure                 

S1). Expression of opsins in the tube feet, however, was not observed to be up-regulated               

compared to the mixed tissue, in fact c-opsin 1.1b and neuropsin showed higher expression in the                

mixed tissue samples (figure 3).  

In order to assess the putative functionality of the A. planci identified opsin sequences, an               

analysis of the key residues necessary for opsin function was performed (Table 1). In most               

opsins, the retinal binds to the K296 via a Schiff base bond, however the proton in the opsin                  

protein is unstable and a counterion is needed and often supplied by the highly conserved               

Glutamic acid (E113) residue. There are cases, however, where this residue is replaced by a               

Tyrosine (Y), Phenylalanine (F), Methionine (M), or Histidine (H) and the other highly             

conserved Glutamic acid residue, E181, serves as the counterion [62] . This is the case with the                

majority of the opsins in A. planci , where E113 are replaced with a Tyrosine (Y), with the                 

exception of   Ap-Go-opsin  which has  a Isoleucine (I)  in the position 113. 

In addition to ten opsin sequences, we have also observed ten A. planci sequences that are                

potential G protein alpha subunits. Phylogenomic methods classified these sequences as 3 Gα s, 1              

Gα o, 4 Gα i, 1 Gα q, and 1 Gα 12 (figure S2). All identified G protein alpha subunits with the                  
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exception of 1 Gα s (gbr.231.19.t1), 1 Gα i (gbr.143.10.t1) and the Gα 12 are upregulated in the eyes                

of  A. planci compared to the mixed tissue samples (figure S3). 

 

(a) Ciliary  and  rhabdomeric  opsins 

There are four ciliary opsins identified in the A. planci genome, three of which are expressed in                 

the eyes; c-opsin 1.1a, 1.2 and c-opsin 1.3. These three c-opsins were closely clustered on               

gbr_scaffold65 (~70 kb), and observed to be significantly differentially expressed in the animal,             

as neither are expressed in the mixed tissue (figure 4). Of the Ap-c-opsins, 1.1a is the highest                 

expressed, followed by Ap-c-opsin 1.2 and 1.3. C-opsin 1.2 was observed to not have the K296                

residue, which is required for the formation of the Schiff base, but instead an Arginine (R)                

residue is placed in this position. This is the only A. planci opsin missing this key residue. While                  

the E113 counterion is replaced with tyrosine (Y) in all of the Ap-c-opsins, the E181 counterion                

is present in Ap-c-opsin1.1a, completely missing in Ap-c-opsin 1.1b and 1.2 and replaced with              

an Alanine (A) in Ap-c-opsin 1.3 The Ap-c-opsin 1.2 and Ap-c-opsin 1.3 are missing other               

important motifs, the C187 and C110 disulfide bond motifs [63] , respectively  (table 1).  

A. planci ’s r-opsin, on the other hand, is the most highly differentially expressed of the               

opsins and of any other genes when comparing eye tissues to mixed tissue (figure 2). Further, the                 

Ap-r-opsin was observed to be the most up-regulated in the starfish eye tissue and its sequence                

features the Lysine residue (K296), critical for the Schiff base formation, and a putative              

counterion  (E181) (Table  1).  

 

(b)  Chaopsin 

Chaopsin is a recently identified group of opsins. Ramirez et al. [2] found the formerly described                

groups of anthozoa I opsins [64] and the echinoderm echinopsin B [10] to cluster forming the                

chaopsin group. In agreement with D’Aniello et al. (2015) we found an A. planci ’s chaopsin to                

cluster together with other ambulacrarian chaopsins between the r-opsin and c-opsin clades            

(figure 1). Ap-chaopsin is amongst the highest differentially expressed opsins in our A. planci              

transcriptomes, with ~9.7 log2 fold changes in the eye compared to the mixed tissue (figure 2). It                 
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is also expressed in the radial nerve tissue, but to a far lesser degree, and appears to not be                   

significantly expressed in the mixed tissues or  the tube feet (figure 3 and S1).  

 

(c) Peropsin RGR  and Go  opsins 

Peropsin and RGR opsin are the highest expressed of the opsin in the tube feet, mixed, and radial                  

nerve, although both still have higher expression in the eyes (figure 3 and S1). The disulfide                

bond linkage C110/C187, counterion sites and the Lysine for the Schiff base formation are all               

present. However, both A. planci RGR-opsin and peropsin contain variations of the NPxxY             

motif, NAALQ and NPLMF, respectively (Table 1). Additionaly, peropsin has a variation of the              

LxxxD motif, ASAGD. Ap-Go-opsin was expressed in both the eyes and radial nerve but was               

not found  in the mixed sample or  the tube feet (figure 2 and 3). 

 

Discussion 

Light sensing is an important aspect of life and much of it is mediated or initiated by the                  

G-protein-coupled receptor proteins, opsins. The release of the annotated draft genome of A.             

planci has prompted us to investigate its opsin repertoire and expression in a tissue specific               

manner. This allowed us to classify the specific opsins and to infer possible function and further                

expand the knowledge of opsin evolution especially within deuterostomes. Ten opsins were            

identified spanning seven clades: r-opsin, c-opsin, Go-opsin, peropsin, neuropsin, RGR opsin           

and chaopsin. Opsins have also been sequenced from two other starfish species, Asterias rubens              

and Patiria miniata . Through a phylogenomic analysis, it was observed that A. planci opsins              

grouped closest to those in the eyeless P. miniata . This grouping is in accordance with the                

phylogenetic position of these starfish species [65] , with A. planci as an Acanthasteridae more              

closely related to P. miniata , an Asterinidae, (both species belonging to Valvatida)- than to A.               

rubens belonging to Forcipulatacea. However, studies on tissue specific opsin expression is            

needed to reveal in which organs of the eyeless starfish P. miniata the respective opsin orthologs                

are expressed. To this point, it remains unclear if opsins potentially serving a visual function in                

the eye possessing A. planci might have switched functions in the eyeless representative, or if               
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their expression simply persists as a potential evolutionary remain, a finding known e.g. from              

blind cave salamanders which still express opsins inside their highly degenerated and            

pigmentless photoreceptors [66] . 

 

Rhabdomeric opsin 

Electrophysiological recordings from the photoreceptors of A. planci have shown light           

absorption here to be utilizing a single opsin. Of the several opsins found to be expressed in the                  

eyes of A. planci , r-opsin appeared as the highest differentially expressed gene in the eye               

transcriptome when compared to mixed samples, thus suggesting this to be the opsin utilized for               

vision. A similar function has been proposed for the sea urchin r-opsin in S. purpuratus tube feet                 

[7] . Whereas rhabdomeric opsins have been described in many protostome species as the primary              

opsin for vision (reviewed in [67] ), no deuterostome eye has previously been found to express an                

r-opsin. As A. planci eyes have been previously demonstrated to perform proper spatial vision              

[19–21] , our findings thus provide first evidence for a deuterostome eye utilizing an r-opsin for               

spatial vision. 

 

Ciliary opsin 

Ciliary opsins are well known for their role in vertebrate vision and brain function in some                

invertebrates [68] . [68] They are differentially expressed in A. planci eyes, with the exception of             

Ap-c-opsin 1.1b, which is not clustered on the same scaffold as the other 3 Ap-c-opsins.               

Interestingly, the three clustered opsins show a correspondence between their spatial ordering            

within the cluster (in the direction 3' to 5') and their expression level, with most 3’ Ap-c-opsin                 

being the most highly expressed in both eye and radial nerve (figure 4). C-opsins appear               

clustered also in vertebrates, for example, human’s medium and long wavelength ciliary opsins             

(opsin1MW1, opsin1MW2, opsin1MW3 and opsin1LW) are clustered on chromosome X, while           

human’s short wavelength c-opsin is on chromosome 7 (Ensembl genome browser; [69] ).            

Clustering of opsins has so far not been described outside deuterostomes, but it is also seen in the                  

echinoderm, S. purpuratus where Go-opsins (opsin 3.1 and 3.2) clustered on scaffold26            
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(Echinobase; [49] ). The significance of the occurrence of opsin clustering in echinoderms is not              

obvious and awaits more functional  studies. 

 

 

Chaopsin 

Chaopsin (Ap-chaopsin) is the second most differentially expressed opsin in A. planci eyes and it               

has many of the motifs necessary for phototransduction, including the NPxxY binding motif in              

the 7 transmembrane domain involved in coupling with the G protein. Little is known about the                

functions of chaopsins (or opsin5) but they have been identified in Echinoidea, Asteroidea, and              

Ophiuroidea [10,13,30,34,49] . In the respective species, chaopsins have been found analyzing           

genomic data or transcriptomes of hypothesized photosensitive tissues, such as the tube feet in              

Strongylocentrotus droebachiensis [30] and Strongylocentrotus intermedius [34]. A chaopsin         

was identified in the genome of the eyeless P. miniata but was not found in transcriptome data of                  

the eye possessing starfish A. rubens . The lack of chaopsin in A. rubens is probably a                

methodological artifact, since general arm tissue, including radial nerve and tube feet, but not              

eyes, has been used to generate these transcriptomic data [70] . In the Caribbean elkhorn coral,               

Acropora palmata, opsin3, which along with echinoderm opsin5 belongs to the chaopsin clade             

[2] , has been demonstrated to couple with a Gq-protein in a light-dependent manner [71] . This               

leads us to hypothesize that the Ap-chaopsin may be important for phototransduction in A. planci               

and potentially  in all echinoderms.  The exact  role of  this opsin remains elusive, though.  

 

Peropsin and RGR  opsin 

Peropsin and RGR opsin were expressed in the tube feet, the mixed tissue, and the radial nerve                 

of A. planci , but both have the highest expression in the eyes. They are considered as                

photoisomerase enzymes and not as photopigments, since they bind to all-trans retinaldehyde to             

regenerate 11-cis-retinoids for pigment regeneration. This has been observed for peropsin in the             

vertebrate retinal pigment epithelium [72] , in cephalopod photoreceptors [73] and in the jumping             

spider [74] . Knock-down mice [75] , together with biochemical and spectroscopic studies in            

amphioxus [76] , have demonstrated the same properties for RGR opsin in chordates. This family              
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of opsins is thus important for visual pigment regeneration [77] . While RGR opsins are known to                

not have the NPxxY binding motif in the 7 transmembrane domain involved in coupling with the                

G protein, this motif is often found in peropsins [74,76] . This was not the case in A. planci ,                  

where both RGR opsin and peropsin have varying NPxxY binding motifs. This could alter              

peropsin’s ability to couple with G proteins, further supporting its function as photoisomerase.             

However, it is worth mentioning that, in chicken, the presence of both peropsin and RGR opsin                

is thought to serve in the visual cycle  of  the circadian  clock [46] .  

 

Go-opsin 

In A. planci eye and radial nerve transcriptomes, we found significant expression of a Go-opsin               

along with putative Go alpha subunit proteins. Evidence for Go-opsins in animals is rare. These               

opsins interact with a specific G-protein that differs from those in the c-opsin as well as the                 

r-opsin transduction cascade [38,78] . In the retina of the bivalve Patinopecten yessonensis ,            

Go-opsin is expressed in a layer of morphologically ciliary receptor cells, which do not express a                

ciliary opsin. However, in the marine annelid Platynereis dumerilii , Go-opsin is coexpressed            

with two r-opsins in the photoreceptor cells of the larval eye [79] . Knocking down Go-opsin did                

not lead to absence of phototaxis in P. dumerilii but did reduce the sensitivity to the blue-cyan                 

part of the color spectrum (λmax=488 nm). A similar absorbance spectrum ( λmax=483 nm) was               

observed in amphioxus, Branchinostoma belcheri , Go-opsin [76,80] . While the morphological          

and expression data on Go-opsin in P. yessonensis point towards a functioning in a visual               

context, no other studies have found this. Our data does not reveal if A. planci Go-opsin is                 

co-expressed with any other opsins inside the same cells, nonetheless, the fact that this opsin is                

expressed in the starfish eye along with the results from annelids and amphioxus, opens up the                

possibility that it is involved in spectral tuning of vision in A. planci . Such a tuning would indeed                  

be consisted with the spectral sensitivity curves obtained by electrophysiology in this starfish             

species [20] .  

 

Conclusion 
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In conclusion, our findings demonstrate that the eye of the starfish A. planci expresses an entire                

set of ten different opsin proteins. This starfish has recently been demonstrated to perform spatial               

vision in order to prey on its preferred coral food and its r-opsin, as the by far most highly                   

expressed photopigment in its eyes, is likely to facilitate these sophisticated visually guided             

behaviours. A. planci is thus not only one more echinoderm possessing a much more complex               

photoreceptor system than previously assumed, but rather the first deuterostome animal that has             

been shown to navigate by the use of r-opsin expressing photoreceptors. The variety of opsins               

found differentially expressed in various starfish light sensitive tissues by our transcriptomic            

analyses also set the groundwork for comparative studies on evolutionary changes in            

photoreceptor function that occurred towards  the vertebrate  eye.  
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Table 1. Analysis of  known  typically highly conserved key residues and amino acid motifs 
 

A. planci Opsin Disulfide bonda 

(C110/C187) 
LxxxD b  
(79) 

Counterionc 
(E113/E181) 

Schiff based 
(K296) 

NPxxY e  
(302) 

C-opsin 1.1a 
(gbr.65.47.t1) 

C/C ICVAD Y/E K NPVIY 

C-opsin 1.1b 
(gbr.508.2.t1) 

C/C VCVAD Y/- K NPVIY 

C-opsin 1.2 
(gbr.65.46.t1) 

C/F ISVGD Y/- R N---- 

C-opsin 1.3 
(gbr.65.45.t1) 

L/C VCEA- Y/A K NPIIY 

Go-opsin 
(gbr.470.6.t1) 

C/C MAVSD I/E K NPLIY 

R-opsin 
(gbr.176.5.t1) 

C/C LAFSD Y/E K NPLVY 

Chaopsin 
(gbr.176.10.t1) 

C/C LSGSD Y/E K NPIIY 

Peropsin 
(gbr.31.87.t1) 

C/C ASAGD Y/E K NPLMF 

RGR  opsin 
(gbr.37.113.t1) 

C/C LCAGD Y/E K NAALQ 

Neuropsin 
(gbr.37.57.t1) 

C/C LAVSD Y/E K NPIIY 

 
a. Motif required for  recognition  of  rhodopsin by G-protein [81] 
b. Motif interacting  with NPxxY  motif upon receptor  activation for  structural constrains 

[82] 
c. Glutamic  acid residues stabilizing  the Schiff base bond  

d. Lysine residue forming Shiff base bond with retinal Motif providing structural constraints            

in response to photoisomerization during formation of the G protein-activating Meta II            

[83] 
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Figure Legends 
 
Figure 1. Phylogenomic  tree of  169 opsin sequences with melatonin  receptors as  the outgroup. 
There are 10 A.  planci opsins  (bold and checkered  background) which classify into 7 different 
groups: 4 c-opsins,  1 chaopsin, 1 r-opsin,  1 peropsin, 1 RGR  opsin, 1 go-opsin, and 1 neuropsin. 
No  bathyopsin was  found  in A.  planci, and has  yet to be identified  in any starfish species. The 
tree was  generated  by iqtree [58]  with 10,000 ultrafast  bootstrap support [59]  using the ‘ a 
Bayesian-like transformation of aLRT’ (abayes) method [60] , and LG+F+R6  amino acid 
substitution model. 
 
Figure 2. Summary of  differential  expression data in various A.  planci tissue samples focusing 
on opsin expression. (A)  Transcripts per million  (TPM)  counts of  each opsin for  each tissue type. 
For  eyes (green) the highest expressed opsins  are r-opsin,  peropsin, chaopsin, RGR  opsin, and 
go-opsin, with c-opsin 1.2, c-opsin 1.3, and neuropsin being expressed at low amounts, while no 
expression is observed in c-opsin 1.1b. RGR  opsin and peropsin were the highest expressed 
amongst the other tissues. The mixed tissue and tube feet (tf) have little  to no expression (TPM  < 
0.5)  of  c-opsin 1.2, c-opsin 1.3, go-opsin, and chaopsin.  
 
Figure 3.  Differential  expression of  the eye tissue samples versus  the mixed tissue samples. 
R-opsin is the most differentially  expressed, followed by chaopsin. With the exception  of  c-opsin 
1.1b and neuropsin, all opsins  are differentially  expressed in the eyes of  A.  planci compared to 
the mixed tissue samples. 
 
Figure 4. The boxes  below the two panels represent “gbr_scaffold65”  from the Great barrier reef 
assembly of  the A.  planci genome. Each box represents a gene and the size of  the box correlates 
the to size of  the gene. Three of  the four  Ap-c-opsins  are located  on the same scaffold all being 
transcripted 3’  to 5’; Ap-c-opsin  1.1a (red), Ap-c-opsin  1.2 (orange) and Ap-c-opsin  1.3 (purple). 
Bottom panel: The log2 fold change of  significantly  differentially expressed genes (FDR  < 0.05) 
comparing  A. planci eyes the mixed tissue samples, with the three Ap-c-opsins  highlighted.  Top 
panel: Expression of  the three Ap-c-opsins  clustered  on “gbr_scaffold65”, the expression level 
correlates with the spatial  ordering within the cluster (in the direction  3'  to 5'),  the most 3’  having 
the highest expression and the most 5’  having the lowest expression. 
 
Figure S1 . Differential  gene expression in all A.  planci tissue samples with the opsins 
highlighted: c-opsins  in red, go-opsins  in green, chaopin in black, neuropsin in purple, peropsin 
in yellow, r-opsin  in blue and RGR  opsin in orange. The y-axis in the log2 fold-change, as  the 
distance from the y-axis increases the more differentially  expressed a gene is in one tissue versus 
the other. The x-axis represents counts per million  (CPM),  an increase on the this axis shows 
genes with more reads counts. 
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Figure S2 . Phylogenomic  tree of  92 G-protein alpha subunit sequences. A.  planci sequences ID’s 
are highlighted  in red. Of  the 10 A.  planci sequences 3 classified  as  Gα s, 1 as  Gα o, 4 as  Gα i, 1 as 
Gα q, and 1 as  Gα 12.  
 
Figure S3 . Differential  gene expression in the A.  planci eye samples compared  to mixed tissues, 
with the G  protein alpha subunits highlighted:  3 Gα s (red), 1 Gα o (green), 4 Gα i (black), 1 Gα q 

(purple), and 1 Gα 12 (yellow). All identified  g protein alpha subunits with the exception  of  1 Gα s 

(gbr.231.19.t1), 1 Gα i (gbr.143.10.t1) and the Gα 12 are upregulated  in the eyes of  A.  planci 
compared to the mixed tissue samples.  
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