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Abstract 

As global temperatures rise due to climate change, crops are becoming increasingly 

vulnerable to failure.  We tested the accessibility of thermodynamic phenotypic diversity 

within limited positional changes using 29=512 mutants of a terpene synthase (TPS), 

Tobacco 5-epi-Aristolchene synthase.  First, we measured the thermal unfolding curves of 

each mutant and found that mutations shifted the Tms both higher and lower, including a 

cohort of mutants that failed to fold.  The low correlation coefficient between the Tms of 

these mutants and the proportions of each terpene product output by the enzymes 

revealed that thermostability and product output are independent traits. Maximum Noise 

Entropy analyses were used to analyze the impact of the 9 mutational positions on 

thermostability, revealing that three of these positions were mainly responsible for the 

trait of increased Tm.  These positions form a functional network as measured by the 

nonlinearity of their combined effects on thermostability.  Unexpectedly, the strongly 

destabilizing positions combine nonlinearly to ameliorate each other’s deleterious effects 

resulting in a synergistic dampening.  Taken together, our study shows the high potential 
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for specialized metabolic enzyme engineering but also reveals a complex interconnected 

system of amino acids that will continue to evade perfect predictability.   

 

 

Sustainable and climate change-resistant crops are not only critical for future food security 

but also global geopolitical stability1.  Harnessing the combined power of protein 

engineering and breeding techniques will continue to aid farmers in avoiding major crop 

failures due to regional warming, disease and environmental stresses such as increases in 

consistent water deficits2,3.  In addition, these strategies may improve crop yields to meet 

the needs of a global population that is predicted to increase by 33% over the next 34 

years4.   

While the techniques for genetically modifying crop species continue to expand5, further 

research is needed to uncover first principles that might accelerate protein engineering 

approaches.  To address this growing need, we focus on specialized metabolic enzymes, as 

their prominent role in plant ecology and large diverse gene families make them key 

players in the push to enhance crop yield and robustness as average temperatures rise.  

  

Tobacco (Nicotiana tabacum) EAS (TEAS) and Henbane (Hyoscyamus muticus) 

premnaspirodiene synthase (HPS) are encoded by homologous genes (~80% DNA exon 

sequence identity), yet cyclize the ionized form of the acyclic primary metabolite farnesyl 

diphosphate (FPP) into bicyclic and chiral 5-epi-aristolochene (5-EA) and 

premnaspirodiene (PSD), respectively, both of which serve as precursors to species-

specific antimicrobial phytoalexins (Fig. 1a). In general, TPSs often exhibit broad product 

profiles that vary with specific mutational differences, temperature and pH6. TEAS 

generates at least 24 minor products in addition to 5-EA7.  Thus, achieving a predictive 

understanding of mutational pathways leading to new fitness attributes not only has 

practical applications to ecology and plant sustainability in light of climate change8 but also 

to the flavor and fragrance industry and to drug discovery and improvement9,10. 
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Several chemical steps in the catalytic mechanism of TEAS are shared with HPS.  We 

previously demonstrated that by exchanging 9 amino acids in and surrounding the active 

sites of wild type (WT) TEAS and WT HPS generating M9 TEAS and M9 HPS, respectively, 

we reassigned and interconverted their product profiles without significantly 

compromising catalytic efficiencies11.  Further, we generated, expressed, and biochemically 

analyzed a TEAS mutant library spanning all possible combinations of these 9 naturally 

mutable positions (numbered 1-9, giving 29 = 512 mutants. See fig. 1b) demonstrating that 

protein epistasis, or nonlinearity, modulates catalytic specificities of TEAS mutants12.  

 

To quantify the extent and magnitude of protein epistasis vis-à-vis thermostability across 

all 9 positions, we expressed, purified and measured the thermostability of all 512 TEAS 

M9 library mutants.  While an in vitro examination of thermostability does not incorporate 

the role of chaperones and other factors important for folding, it does provide 

quantitatively-rich measurements of this adaptable biophysical property.  We then applied 

computational tools, including Maximum Noise Entropy13-19, to extract statistically 

significant patterns of amino acid residue contributions to variations in the thermal 

unfolding profiles (e.g. curve shapes), including changes to the temperature midpoint of 

unfolding (Tm).  These analyses made it possible to rank the contribution of each of the 9 

mutated positions to the characteristic shapes of the unfolding curves and the 

thermostabilities quantified by Tm.  Across the M9 library, phenotypes cluster around WT-

like thermostability, with half of the positions observed to stabilize the protein while the 

other half destabilize the protein relative to WT TEAS.  Importantly, we discovered, that on 

average, pairs of these residues dampen each other’s individual effects on thermostability. 

This set of observations suggests that counterbalancing effects of outer tier active site 

mutations enable TEAS mutants to straddle the line between remaining mutationally 

robust (stable) yet amenable to catalytic adaptation and selection from a population of 

divergent sequences and traits.   

 

Results 

Thermostability phenotypes 
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To assess the temperature-dependent unfolding properties of the 512-member M9 TEAS 

mutant library, we overexpressed proteins in E. coli, purified the soluble fraction via Ni2+-

NTA affinity chromatography, and quantified the purity and concentration of samples by 

SDS-PAGE and band densitometry of Coomassie stained gels.  We then measured the 

thermal unfolding of purified protein samples via thermofluor assays, which monitor the 

extent of protein unfolding using fluorescence changes of an environmentally sensitive 

non-polar dye as a function of temperature 20 (Fig. S1a).  The changes in slopes of the 

change in fluorescence versus temperature curves correlate with the cooperativity of 

unfolding of the protein ensembles, and therefore, often reveal the extent of sample 

conformational homogeneity during unfolding 21.  Since the concentrations of soluble 

protein varied between ~0-5 uM, we normalized the fluorescence data traces (see 

Methods).  We observed a range of thermal stability phenotypes across the M9 library with 

Tm shifts ranging from -4.1 to +11.9 °C relative to WT TEAS. 

 

In order to compare all curves without bias to particular temperatures, we calculated the 

geometric distances between each pair of profiles, thereby generating a 512X512 distance 

matrix (Fig. S1b).  We used this matrix as the input to compute an unrooted neighbor-

joining “thermostability tree” (Fig. 2).  This tree displays the wide diversity of phenotypes 

accessed within the sequence space spanned by the TEAS M9 library, and illustrates the 

degree to which specific sequences cluster to form clades and families in much the same 

way as previously observed for the product profiles of the M9 library 12.  We annotated 

each clade with the superimposed thermofluor data from each mutant represented therein 

(grey curves) and included the average of these curves to highlight the characteristic shape 

of each clade (colored curves).  Each of these plots is also labeled with the average Tms of 

the included mutants as well as the average concentration of purified protein used for each 

set of measurements. 

 

Since the WT control resides in Clade 4, we designate this cluster and its closest neighbor 

(in terms of inter-clade distance), Clade 6, the WT-like family (purple clades).  Many 

mutants in clades 5 and 7-9 are characterized by elevated Tms relative to WT (orange 
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clades, Fig. 2); several mutants unfold at greater than 50 °C, while the Tm of WT is 40.9°.  

Clades 1 and 2 are populated by mutants having weak to nonexistent unfolding transitions 

consistent with two likely properties.  One, the protein samples may exhibit considerable 

dynamics associated with unfolding transitions at room temperature. Two, the 

concentration of soluble samples recovered from heterologous expression and purification 

are low (see concentrations in Fig. 2).  Normalization of the thermofluor dataset renders 

these two phenotypes essentially indistinguishable.  Many mutants in clade 3 also display 

modest unfolding transitions with modest fluorescence increases, for a combination of the 

same reasons; nevertheless, 54 of the 89 mutants in clade 3 had measureable Tms, many of 

which are up to 3 oC lower than WT TEAS.   

 

Strong interdependence within biophysical phenotypes is a major impediment to facile 

protein engineering.  If a specific mutation results in both Tm changes and product profile 

changes, then we cannot enhance thermal robustness without potentially damaging the 

catalytic properties and vice versa.  To address whether this type of obstacle exists in our 

system, we calculated the correlation coefficients between the 12 terpene products and the 

Tm values of each mutant for which a Tm could be detected by the Light Cycler software.  

As discussed above, mutants from Clades 1 and 2 and some from Clade 3 have weak 

fluorescence profiles and were excluded from the analysis, leaving 313 mutants total for 

the calculation.  As shown in Figure S1, there is no correlation between thermostability and 

any of the products.  Taken together these results illustrate that thermodynamically robust 

phenotypes are accessible through changes at a relatively few numbers of sites in the TPS 

fold and that two important biophysical properties of these enzymes, product profile and 

thermostability, can be optimized independently of one another.  

 

Maximum Noise Entropy (MNE) quantifies phenotypic contributions of each 

mutation. 

 

To directly characterize how the presence or absence of a given mutation affects the 

thermal unfolding profiles of sequence populations, we used  the Maximum Noise Entropy 
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(MNE) method, previously applied to identify relevant patterns in neuroscience datasets 

18,19,22.  This method determines patterns that best separate the set of fluorescence curves 

that are associated with  the presence of a particular mutation (representing 50% of library 

mutants) from the set of curves associated with the absence of this mutation across the 

library of mutants.  This method, akin to a logistic regression, works despite the non-

Gaussian and correlated structure of thermal unfolding profiles 18,19.  The results of the 

analyses consist of linear combinations of fluorescence changes in the range of 20-85°C 

that are most strongly associated with mutation at a particular amino acid position (Fig. 

3a).  Notably, these quantities cannot be computed by direct averaging of raw unfolding 

curves. 

 

The relative strength of the mutation’s effects, which we will hereafter refer to as the 

“intensity” of the MNE profile, is represented by the magnitude (technically L2 norm) of the 

computed MNE profile for this particular mutant’s population of sequences (see Extended 

Experimental procedures for further details).  MNE profiles for the 9 library positions 

calculated individually are shown in Figure 3b.  Overall, each amino acid position exerts 

statistically significant effects (see Ext. Experimental Procedures) on the thermostabilities 

of the position’s mutant populations.  When ordered by the intensity of the MNE profile, the 

positions formed the sequence 4, 1, 6, 2, 9, 3, 7, 5, 8 from largest to smallest MNE intensities 

(Fig. 3c).  The effect each mutation has on changes to fluorescence varies in complex ways 

between positive and negative values across the temperature dimension, confirming the 

existence of thermostability features influencing fluorescence changes at temperatures far 

from the WT TEAS Tm.  Mapping the intensity values of these MNE models onto the 3D 

structure of the TEAS active site reveals that the most influential positions, 4, 1 and 6, are 

spread across the active site, and are distal from each other rather than forming a spatially 

connected core (Fig. 3d). 

 

Biophysical interpretation of MNE profiles  

To quantify the expected effect of each mutation in terms of Tm changes, we compared MNE 

profiles for each mutation with those expected for a pure shift in Tm compared to WT TEAS 
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with no other changes to the WT TEAS unfolding profile. We refer to these analyses as 

Basis Function Analyses.  Mathematically, given the WT thermal unfolding profile ����, if a 

site-specific mutation only modifies Tm but does not otherwise affect the shape of the 

unfolding curve, then the expected change in the unfolding profile will occur along the 

derivative of the WT unfolding profile, ����� (Fig. 4a).  One can then estimate the 

magnitude of the Tm shift by comparing the MNE profile to the appropriately normalized 

derivative of the WT unfolding profile with respect to temperature changes, ∆�, to obtain 

dTm in units of oC (see Experimental Procedures and Extended Exp. Proc.).  These Basis 

Function analyses extract portions of the MNE profiles that describe Tm shifts relative to 

WT TEAS.  Figure 4b illustrates these results for the single mutant populations; listed in 

order of decreasing effects, positions 5, 2 and 8 are stabilizing with regard to increased Tms, 

while positions 6, 1 and 3 are destabilizing.  Here, we find position 4 has only modest 

effects on Tm shifts. This position, which exerts the greatest influence on variation within 

the thermal unfolding dataset, primarily results in changes in the shapes of thermal 

unfolding curves that do not correlate with changes to Tms. 

 

Previous studies have shown that amino acid positions that affect similar functions of the 

enzyme cluster in the 3D protein structure to form groups called “sectors” 23,24.  Such an 

arrangement would enhance and expedite engineering efforts, because educated guesses 

can be made regarding the role of uncharacterized positions that are nearby well-

characterized positions. To test whether this is the case in our system, we mapped the 

MNE-derived Tm values for all nine positions onto the 3D structure of the TEAS active site 

(Fig. 4C).  Instead of spatial clustering of stabilizing and destabilizing mutations, 

respectively, surprisingly we found their distribution in 3D space to be statistically 

indistinguishable from random chance.  This result shows that the relative spatial positions 

of amino acids in this system may not be a factor that will enhance our ability to predict the 

effects of mutations to nearby uncharacterized positions.   

 

Link between protein solubility and thermostability 

Next, we explored the degree to which the 9 positions modified protein solubility.  The loss 

of protein to inclusion body formation during expression and purification can be the result 
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of altered folding thermodynamics, but it can also signal that the folding kinetics, or the 

native folding pathway, has been disrupted.  Therefore, it is possible to produce a highly 

thermostable TEAS that nonetheless severely misfolds resulting in only modestly soluble 

protein 25. 

 

We computed the most effective linear combination of mutations that together would drive 

changes in the in vivo solubility of TEAS heterologously expressed in E. coli.  Solubilities 

were quantified as “high” if the concentration of eluted protein from Ni+2-NTA 

chromatography fell at or higher than the 75th percentile (Fig. 5a).  Given that all possible 

mutations were equally represented in the library, we computed the average mutation 

profile that produces high solubility rank (see Experimental Procedures), which is a 

simpler but conceptually similar dimensionality reduction analysis to the MNE approach 26.  

The result (Fig. 5b) represents the direction in M9 sequence space that predicts high 

protein solubility with the highest probability across the sequence population.  Projection 

of the 512 mutant profiles onto this “preferred solubility profile” (blue distribution, Fig. 5c) 

compares well with the distribution arising from the 75th percentile mutations (red 

distribution); that these two probability distributions have similar variances implicates 

only one significant mode of covariance, and, therefore, one mutational pattern that 

significantly influences protein solubility across the 9 positions. 

 

The preferred solubility profile confirms that mutating positions that increase Tm (2, 5, 8) 

also improve solubility and that the Tm destabilizing positions (1, 3, 4, 6, 9) also reduce the 

probability of achieving high TEAS solubility (compare Figs. 4c and 5b).  The exception to 

this correspondence is the position 7 mutation (I438T), which has almost no effect on Tms 

but provides robust improvements to TEAS solubilities, suggesting that sequence 

populations with Thr at position 7 (exchanging a methyl moiety for a hydroxyl group) may 

modify the folding kinetics and pathway while leaving the Tms of the folded proteins 

relatively unchanged. 

 

Non-additive pairwise mutational effects measured by MNE 

The more nonlinear a system is, the more difficult it becomes to accurately predict 
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outcomes of combined perturbations.  In general, proteins are highly non-linear systems, 

and the structure and dynamic outputs of mutations tend to influence protein functions in 

complex ways.  This phenomenon, often referred to as protein epistasis, has been assessed 

through modeling 27, measured directly using thermodynamic cycle analysis 28,29, and has 

been witnessed in real-time evolution of viral strains 30.  Understanding protein epistatic 

behaviors is critical to predicting the functional consequences of sequence divergence 

within a protein family over time 31, and is essential for engineering proteins to behave like 

natural proteins 32.  The importance of epistasis or non-additivity in our TPS system is 

suggested by the observation that the greatest changes in unfolding profiles is triggered by 

variation at position 4 with average shifts in Tms (compare Figs. 3c and 4b).  This result 

implies that the effect of position 4 contextually depends on mutations at other locations.  

This indeed appears to be the case.  

 

To characterize pairwise residue-residue coupling within the M9 library, we again applied 

MNE analyses, but now incorporating sequence populations encompassing pairs of 

mutations.  Results for all pair-wise combinations of mutant populations are shown as 

black curves in Figure 6a (the first order MNE profiles are shown as well for comparison).  

Each of the mutant pairs exhibits statistically significant effects on thermal stabilities with 

similarly complex profiles as observed for the individual mutation analyses.  Comparison of 

these profiles and the profiles computed assuming the effects of two mutations can be 

combined linearly quantifies the synergy, or the degree of non-additivity, within the 

mutant pair population.  In Fig. 6a, we combined the MNE profiles from the two positions 

analyzed independently (top row) and overlaid them in red with their respective pair-wise 

MNE profiles.  If there is no synergy, the two profiles will match, indicating that the pair-

wise effect of two simultaneous mutations (25% of library mutants) in the background of 

all other changes at the other 7 positions (75% of library mutants) on the thermostability 

profiles are linear combinations of their individual effects.  If, however, the two profiles do 

not match, then this indicates that there is synergy, quantified as the magnitude of the 

difference between these two vectors (Fig. 6b- yellow shaded area).  Matrices of these 

quantities, shown by ||��� 	 �� 	 ��||� give the degree of non-additivity between pairs of 
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mutations. Here, positions 2 and 8, in general, display the most synergy with other 

positions, indicating that their overall effects on the thermofluor curves are the most 

sensitive to sequence context (Fig. 6c). 

 

Having quantified nonlinarity across the entire thermofluor curve, we then turned our 

attention to investigating the nonlinearity specific to the Tm, as this feature is a main target 

to improve enzyme robustness within increasing temperature extremes.  We also 

quantified the effect of pairs of mutations on Tm by comparing these results to Tm shifts 

expected for independent contributions from each mutation in a given pair, averaged over 

the rest of the library.  In the majority of cases, Tm shifts induced by pairs of mutations (red 

bars in Figure 7) were smaller than those expected from additive contributions from each 

mutation to Tm shifts. These suppressive effects are observed even when both positions 

shift the Tm in the same direction.  For example, positions 1,3 and 6 are all destabilizing, but 

when paired together, their destabilizing effects are less than expected from a linear 

combination of their individual effects.  The same is true for Tm-stabilizing positions, i.e., 2, 

5 and 8.  Taken together, these pairwise analyses reveal that residue-residue mutations 

synergistically dampen changes to Tm, especially when the additive effect is expected to be 

large (Fig. 7b). 

 

Discussion 

We set out to assess the rational evolvability of the TPS fold with the goal of generating 

enhanced robustness to thermal extremes.  Using large biochemical datasets measuring 

thermal unfolding, enzyme solubility and catalytic product specificity, we found that 

several principles of this system were quite amenable to rational engineering.  First, a 

cohort of thermostable mutants with Tm increases of up to ~11degrees C is accessible 

within a relatively few number of mutations overall.  We also identified three positions 

driving this elevated thermostability phenotype, which have effects so penetrant that they 

are stereotypical even in the background of mutations at the other positions.  The utility of 

the MNE methodology is also highlighted by this work, as these population level 

measurements are made possible by these computational approaches tailor made for such 

large datasets.   
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Secondly, we found that Tm and catalytic specificity are uncorrelated, thus providing 

greater flexibility towards the independent optimization of these two crucial biophysical 

features of the enzyme.  It will be interesting for future research to determine whether 

covariance exists between patterns of product profile variance and features of 

thermostablility profile variance beyond the Tm.  Third, we found a mutational profile that 

correlates with high solubility, thereby enabling accurate prediction of the relative 

solubility of any mutant in this library.  Our reference system of the TEAS M9 library shows 

the TPS family will likely remain robust in the face of dynamic climate changes, as wide 

robustness-enhancing variances in product output, thermostability features and solubility 

are accessible within the same sequence space.   

 

On the other hand, we also discovered that positions that stabilize or destabilize the fold 

are not spatially clustered in any strongly predictable way.  Most importantly, as was 

previously demonstrated with TEAS catalytic profiles 12, the combined Tm effects of two 

mutations displays strong nonlinearity, which is on average dampening.  These properties 

make it difficult to predictably hit particular sets of phenotypic targets through mutations.  

Taken together, these findings indicate that while protein engineering promises to reveal 

many mutational strategies for increasing specialized enzyme, and therefore crop, 

robustness, the inherent nonlinearity and non-predictability of these systems will continue 

to present challenges to the efficiency of these efforts.   

 

Moving forward, we must be cautiously optimistic and emphasize the importance of 

diversified strategies both in scientific research and in the public policy arenas when 

dealing with the impacts of climate change.  Indeed, failure to facilitate every available 

approach may have a significant adverse impacts on geopolitical stability. We hope that the 

coordinated efforts of researchers, including bioengineers/breeders can better inform 

policy makers and aid in the timely implementation of initiatives to address the demands of 

a growing population facing increasing environmental challenges.   
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Online Methods 

Expression and purification of M9 library proteins 

Expression and purification of library proteins was performed as previously described 33.  

Mutants were expressed in BL21(DE3) cells in 5 ml of Terrific broth (TB) growth media 

with kanamycin until cultures reached OD600≥0.8. Protein expression was induced by 

addition of IPTG to 0.1OmM followed by growth with shaking at 20O°C. for 5Oh. Pellets 

from harvested cell cultures were re-suspended by adding 0.8Oml of lysis buffer containing 

1OmgOml−1 lysozyme and 1OmM EDTA directly to frozen pellets followed by shaking at 

room temperature. Proteins were purified using 96-well, 800 uL, 25 to 30 um melt blown 

polypropylene filter plates (Whatman 7700-2804) and Ni-NTA superflow resin (Qiagen 

30410).  The N-terminal Histidine tag was left on the purified protein during the rest of the 

analysis and included a cleavage recognition site for either TEV or Thrombin protease.  

Protein purity and concentration were estimated by SDS-PAGE.  Bands were quantitated 

using ImageJ 34 and compared to a 1 μM internal standard of WT TEAS protein. 

For further details see Extended Experimental Procedures. 

 

Thermofluor assay and generation of unfolding phenotype neighbor joining tree 

Thermal unfolding experiments were carried out in white 384-well plates in a LightCycler 

480 (Roche Applied Science). Each well contained the protein in 25 mM Tris-HCl, pH 8.0, 

250 mM NaCl, 50% glycerol (v/v), 2.5 mM β-mercaptoethanol and 125 mM imidazole and 

10x SyproOrange Dye (Invitrogen). The plate was ramped from 20 to 85 °C with 10 data 

points acquired per °C.  The dye fluorescence was detected at 580 nm using the dynamic 

integration mode (max integration time, 999 ms). Light Cycler® 480 II software computed 

the global minimum of the first derivatives of the raw fluorescence versus temperature to 

obtain the Tm where possible. The temperature vs. fluorescence raw data were averaged 

(n=4) and used to generate a neighbor joining tree:  temperature values were divided into 

100 bins using a spline function and fluorescence values were normalized using L2 

normalization where the sum of squared values equals 1.  This approach preserves the 

shapes of the curves while placing each trace on the same relative fluorescence scale, 
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(y1
2+y2

2+…+y100
2)^0.5.  A 512X 512 Euclidean distance matrix was then calculated and 

used as input to generate a neighbor-joining tree in Mega 5.2 35.  Clades were designated 

heuristically by iteratively grouping the closest branches and measuring the average 

distances between these groups to look for smaller groups that could be combined without 

significantly changing the average intragroup distance.  

Maximum Noise Entropy analysis of Thermofluor data 

Overview and definitions 

We used the Maximum Noise Entropy (MNE) 18,19 approach to find statistically significant 

associations of the enzyme fold stability and the mutational background of the protein. The 

end goal of this analysis is to compute a vector, also sometimes  referred to as a “feature” or 

“filter”, that describes the direction along which two populations of data can be most 

effectively separated.  Specifically, we search for a feature of the unfolding curves ��  that 

best allows us to predict whether a given experimentally observed curve ����is is 

associated with the presence or absence of a mutation at site i.  

 

As a technique for determining these features from a dataset, the MNE method is designed 

to minimize the bias imposed by making assumptions on the nature of correlations 

between the enzyme's amino acid sequence ���
 and the protein's unfolding curve ����. It 

does so by maximizing the model's uncertainty about all the correlations between 

mutations and unfolding curves (the noise entropy) outside of a set of constraints derived 

from the experimental data. We compute the MNE feature for each mutation site  � �

1, … ,9, and also for each of the 36 possible combinations of pairs of mutations at sites i and 

j.  For analysis, we discretized the unfolding curves by binning them into � � 15 equally 

sized temperature bins centered at ��  (� � 1, … , �) that span the range of temperatures 

that was probed experimentally.  

 

Importantly, the magnitude of the resulting vectors ��  (or ��� , in the case of mutation pair 

analysis at sites i and j) quantifies the degree of separability (technically, the Kullback-

Leibler distance) between the distributions of curves associated with mutated and WT 
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enzymes projected onto the vector �.  Hence, for each site (or site-pair) the magnitude of 

this vector, which we denote as �, quantifies the impact of a given mutation on the 

temporal unfolding profile.. For presentation purposes, all v’s are normalized to 1 

�� · � � 1� whereas all the information about the magnitude resides in � values shown in 

Figure 3.   

 

Estimation of Tm shifts from the MNE profiles.  

We compared the degree to which the observed changes in thermal unfolding profiles 

caused by mutation at a particular site or site-pair can be understood exclusively as shifts 

in Tm, without modifications of the unfolding profile. Denoting the unfolding profile of the 

WT TEAS protein as Fwt(T) and its derivative as F’wt(T), the shift in melting temperature 

caused by a mutation is 

 

Δ� �  
����� · �����
�

��’���
� ��
                                                                 (1) 

 

where � is the unnormalized MNE vector of the specific site or site-pair. The matrix CF is 

the covariance matrix of all unfolding curves in the dataset. Detailed derivation of Eq. (1) is 

provided in Extended Experimental Procedures 
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Figures	

	

	

	

	

	

	
Figure	1.	 Structural	 overview	of	TEAS	 catalysis	 and	M9	 library	positions	 (A)	
Catalytic	 pathways	 generating	 the	 major	 products	 of	 TEAS	 library	 mutants.	 (B)	
Crystal	structure	of	WT	TEAS	bound	to	2-fluoro-FPP	(PDB	ID:	3M02).		M9	positions	
are	 highlighted	 in	 orange	 or	 purple	 based	 on	 their	 direct	 or	 indirect	 contact	with	
active	 site	 surface,	 respectively.	 	 Positions	are	 labeled	 from	1-9	according	 to	 their	
sequence	 order	 and	 are	 hereafter	 referred	 to	 in	 the	 text	 by	 this	 convention.		
Structural	images	made	in	Pymol.	
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Figure	 2.	 Thermal	 unfolding	 phenotypes	 reveal	 spread	 of	mutational	 effects	
on	 thermostability	 in	 the	 TEAS	 M9	 library.	 	 Neighbor-joining	 tree	 of	 thermal	
unfolding	phenotypes	in	the	TEAS	M9	protein	library.	Raw	fluorescence	data	were	
averaged	(4	replicates),	condensed	into	100	bins,	normalized	such	that	the	norm	of	
each	curve	equals	1,	and	a	512x512	distance	matrix	calculated.	The	neighbor-joining	
tree	was	generated	 from	these	distances	using	Mega	5.2	 78.	 	Clades	were	assigned	
based	on	 tree	 topology	 and	 grouped	 into	phenotypic	 families	 by	 average	distance	
between	clades.	X-	and	Y-axes	are	temperature	in	°C	and	Norm	Fl.U,	respectively.		
Each	clade	is	annotated	with	the	superimposed	thermofluor	data	from	each	mutant	
represented	 therein	 (grey	 curves)	 and	 the	 average	 of	 these	 curves	 highlights	 the	
characteristic	profile	of	each	clade	(colored	curves).	 	Each	plot	 is	also	labeled	with	
the	 average	 Tms	 of	 the	 included	mutants	 as	 well	 as	 the	 average	 concentration	 of	
purified	 protein	 used	 for	 each	 set	 of	measurements.	 	 The	 range	 of	 Tm	 across	 the	
library	is	36.8	-	52.8	°C.		Many	unfolding	curves	have	unfolding	transitions	that	are	
too	shallow	to	obtain	a	reliable	Tm	either	because	the	protein	concentration	 is	 too	
low	 or	 because	 the	 sample	 is	 already	 significantly	 unfolded.	 	 In	 Clade	 2,	 a	 few	
mutants	 diverge	 significantly	 from	 the	 average	 (highlighted	 in	 burgundy),	 and	 in	
Clade	3,	there	are	7	standout	mutants	with	higher	Tm	than	WT	(highlighted	in	dark	
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green).		Averaged	Tm	and	average	recovered	protein	concentrations	for	mutants	are	
displayed.		Average	Tm	for	Clade	3	is	calculated	for	54/89	mutants,	which	excludes	
the	 dark	 green,	 standout	 mutants	 and	 the	 mutants	 for	 which	 a	 Tm	 could	 not	 be	
measured	accurately.		All	errors	are	standard	error	of	the	mean.	
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Figure	 3.	 	 Maximum	 Noise	 Entropy	 Analysis	 of	 Thermofluor	 data.	 	 (A)	
Schematic	representation	of	a	first	order	MNE	profile	acting	as	a	mathematical	filter	
for	 separating	 two	 populations	 of	 unfolding	 traces	 with	 maximal	 probability.	 (B)	
Normalized	MNE	profiles	capture	the	first	order	effect	of	each	of	the	nine	mutation	
sites.	Gray	shaded	areas	represent	confidence	bounds	found	by	separating	the	data	
into	 training	 and	 validation	 sets.	 	 All	 MNE	 profiles	 were	 found	 to	 be	 significant	
based	 on	 the	 KL	 distance	 (Cover	 &	 Thomas	 1991)	 between	 the	 distribution	 of	
projection	 onto	 the	 relevant	 dimension	 and	 the	 same	 distribution	 computed	 for	
randomly	 assigned	mutations.	 	 This	 tests	 aims	 to	 compare	 significance	 relative	 to	
the	 cases	 where	 there	 is	 no	 association	 between	 mutations	 and	 changes	 in	 the	
thermal	unfolding	profile.	(C)	The	strength	of	each	library	mutation	is	proportional	
to	the	KL	distance	between	distributions	of	projections	of	the	MNE	profile	onto	the	
two	populations	of	thermofluor	curves.		(D)	The	9	library	positions	are	displayed	in	
the	3D	active	site	structure	of	WT	TEAS	(PDB	ID:	3M01)	with	a	substrate	analog	2-
fluoro-farnesyldiphosphate	(2F-FPP)	bound	(grey	sticks).	 	The	 library	amino	acids	
are	 rendered	 as	 sticks	 covered	 by	 a	 20%	 transparent	 van	 der	 Waals	 surface	
representation.		A	color	gradient	from	green	to	blue	indicates	the	norm	with	values	
ranging	 from	~11-94.	 	Ray	 tracing	 fog	 feature	was	removed	to	ensure	accuracy	of	
color	gradient.			
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Figure	4.	 	 Basis	 Function	Analysis	 to	 extract	Tm	 shifts	 from	MNE	profiles.	 	A.		
The	basis	 function	describing	Tm	shifts	 is	 the	 first	derivative	of	 the	WT	unfolding	
curve	F(T).		This	function	is	then	multiplied	by	the	covariance	matrix	of	the	binned,	
normalized	fluorescence	dataset	to	obtain	∆T.		(B)		The	projection	of	this	vector	onto	
the	MNE	profiles	gives	the	Tm	shift	in	°C.		(C)		The	dTm	values	are	plotted	onto	the	
3D	structure	(using	PDB	ID	3M01),	which	shows	that	pairs	of	 interacting	residues	
have	opposing	effects	on	Tm.		Blue	to	white	to	red	gradient	represents	Tm	shifts	from	
-8.2	to	0	to	8.2	°C.			
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Figure	 5.	 	 Average	 mutation	 conditioned	 on	 high	 concentration	 of	 soluble	
protein	 recovered	 from	 the	 M9	 TEAS	 library.	 	 (A)	 Protein	 concentrations	 are	
plotted	and	the	75%	percentile	establishes	the	cutoff	 for	“high	solubility”	mutants.		
(B)	 The	 preferred	 solubility	 profile	 is	 the	 linear	 combination	 of	 mutation	
frequencies	at	each	position	that	most	accurately	predicts	high	solubility	within	the	
library.	 	 Y-axis	 represents	 each	mutation’s	 contribution	 to	 high	 solubility.	 (C)	The	
mutation	profiles	are	projected	onto	the	preferred	solubility	profile,	where	the	blue	
curve	is	the	probability	of	mutation	for	the	entire	dataset,	and	the	red	curve	is	the	
probability	of	mutation	given	high	protein	solubility.	 	While	their	averages	change,	
the	variances	of	the	two	distributions	do	not	significantly	change,	indicating	there	is	
likely	only	one	direction	of	change	across	the	protein	concentration	dataset	and	an	
analogous	covariance	analysis	was	not	necessary.			
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Figure	6.	 	 Second	order	MNE	analysis	reveals	synergy	between	residues.	 	(A)	
MNE	profiles	of	second	order	effects	 from	the	36	pairs	of	sites	are	shown	in	black	
and	compared	to	the	two	first	order	MNE	profiles	that	have	been	first	scaled	by	the	
MNE	 norm.	 	 The	 difference	 between	 the	 two	 curves	 quantifies	 the	 temperature	
dependence	of	 the	double	mutation	nonlinearity,	or	 the	epistasis	between	the	two	
positions.	All	MNE	filters	were	found	to	be	significant.		(B)	Synergy	calculated	from	
comparisons	 of	 expected	MNE	 effects	 (red	 curve)	 and	 the	 calculated	MNE	 effects	
(black	 curve).	 	 The	 magnitude	 of	 synergy	 (yellow	 shaded	 region)	 is	 exemplified	
using	the	pair	5:6.		C.	Matrix	of	mutational	effect	synergy	between	the	36	pairs.			
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Figure	7.		Effects	of	Synergy	between	pairs	on	Tm	shifts.		(A)	Black	outlined	bars	
represent	effects	on	the	Tms	that	are	predicted	if	the	individual	effects	(from	figure	
4b)	 are	 additive.	 	 The	 red	 bars	 are	 the	 amounts	 of	 Tm	 shifts	 generated	 from	 the	
measured	pairwise	effects.	 	The	differences	between	the	two	bars	demonstrate	the	
role	of	 synergy	 for	 each	pair.	 	 (See	 text	 for	discussion	of	 calculations).	 (B)	 Scatter	
plot	of	pairwise	data	from	dTm	calculated	assuming	additive	pairwise	effect	(x	axis)	
vs.	dTm	from	the	measured	pairwise	effect	(Y	axis).	 	Black	diagonal	 line	represents	
equality.	 	On	average,	pairs	of	mutations	cooperate	to	shift	the	Tm	towards	the	WT	
value,	 even	when	both	positions	 are	 stabilizing	 or	 destabilizing.	 	Orange	 and	blue	
points	represent	pairs	that	shift	Tm	in	the	same	or	opposite	direction,	respectively.	
Black	points	are	pairs	including	positions	7	and	9,	which	minimally	affect	Tm.		Open	
circles	are	averages	which	show	the	deviation	from	equality.	 				
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