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Abstract  
Perceptual decision-making is biased by previous events, including the history of preceding choices: 

Observers tend to repeat (or alternate) their judgments of the sensory environment more often than 

expected by chance. Computational models postulate that these so-called choice history biases result 

from the accumulation of internal decision signals across trials. Here, we provide psychophysical 

evidence for such a mechanism and its adaptive utility. Male and female human observers performed 

different variants of a challenging visual motion discrimination task near psychophysical threshold. In a 

first experiment, we decoupled categorical perceptual choices and motor responses on a trial-by-trial 

basis. Choice history bias was explained by previous perceptual choices, not motor responses, 

highlighting the importance of internal decision signals in action-independent formats. In a second 

experiment, observers performed the task in stimulus environments containing different levels of auto-

correlation and providing no external feedback about choice correctness. Despite performing under 

overall high levels of uncertainty, observers adjusted both the strength and the sign of their choice 

history biases to these environments. When stimulus sequences were dominated by either repetitions 

or alternations, the individual degree of this adjustment of history bias was about as good a predictor 

of individual performance as individual perceptual sensitivity. The history bias adjustment scaled with 

two proxies for observers’ confidence about their previous choices (accuracy and reaction time). 

Taken together, our results are consistent with the idea that action-independent, confidence-

modulated decision variables are accumulated across choices in a flexible manner that depends on 

decision-makers’ model of their environment. 

 

Significance statement: 
Decisions based on sensory input are often influenced by the history of one’s preceding choices, 

manifesting as a bias to systematically repeat (or alternate) choices. We here provide support for the 

idea that such choice history biases arise from the context-dependent accumulation of a quantity 

referred to as the decision variable: the variable’s sign dictates the choice and its magnitude the 

confidence about choice correctness. We show that choices are accumulated in an action-

independent format and a context-dependent manner, weighted by the confidence about their 

correctness. This confidence-weighted accumulation of choices enables decision-makers to flexibly 

adjust their behavior to different sensory environments. The bias adjustment can be as important for 

optimizing performance as one’s sensitivity to the momentary sensory input. 

 
Introduction 
It has been known for almost a century that people’s judgments of sensory stimuli do not only depend 

on the current sensory input, but also on their preceding choices (Fernberger, 1920). Several studies 

have found that humans and other species repeat (or alternate) their perceptual judgments more often 

than expected by chance (Gold et al., 2008; Busse et al., 2011; de Lange et al., 2013; Akaishi et al., 

2014; Fischer and Whitney, 2014; Fründ et al., 2014; Abrahamyan et al., 2016; Pape and Siegel, 

2016; St. John-Saaltink et al., 2016; Fritsche et al., 2017; Hwang et al., 2017; Urai et al., 2017). Such 
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choice history biases occur also in other domains of decision-making (Leopold et al., 2002; Allefeld et 

al., 2013; Padoa-Schioppa, 2013).   

 Computational models posit that choice history biases result from the temporal accumulation of 

signals from past decisions (Yu and Cohen, 2009; Glaze et al., 2015; Bonaiuto et al., 2016). Such a 

mechanism may serve to continuously update the decision-makers’ prior belief about the upcoming 

stimulus category and adjust their choice behavior to structured environments (Yu and Cohen, 2009; 

Glaze et al., 2015). In laboratory perceptual tasks, stimulus sequences are typically uncorrelated by 

design, so that across-trial accumulation degrades performance (Abrahamyan et al., 2016). By 

contrast, when stimulus sequences exhibit auto-correlations (Goldfarb et al., 2012; Glaze et al., 2015; 

Abrahamyan et al., 2016; Kim et al., 2017), history biases should improve performance, provided that 

the accumulation is context-dependent. Specifically, the accumulation should switch sign between 

environments dominated by either stability or change (Glaze et al, 2015). 

 Perceptual decisions often have to be made under uncertainty due to weak or ambiguous 

evidence. This uncertainty (or its complement: confidence) might be important for controlling behavior 

under conditions, in which the decision-maker receives no immediate external feedback. Indeed, 

fluctuations of confidence play a key role in a normative model, which postulates the accumulation of 

the internal decision variable over time (Glaze et al, 2015). The decision variable is the basis of both 

the categorical choice (Bogacz et al., 2006; Gold and Shadlen, 2007) as well as the confidence about 

its correctness (Kepecs et al, 2008). Correlates of the decision variable are distributed across many 

brain regions (Gold and Shadlen, 2007; Siegel et al., 2011; Brody and Hanks, 2016) and expressed as 

motor plans (Gold and Shadlen, 2007; Donner et al., 2009; de Lange et al., 2013) or in action-

independent formats (Bennur and Gold, 2011; Hebart et al., 2012; O’Connell et al., 2012; Hebart et al., 

2016). These decision-related neural signals also reflect the graded confidence about the choice 

(Kiani and Shadlen, 2009; Hebart et al., 2016).  

 Our current study addressed three questions. First, do choice history biases originate from 

signals in motor or action-independent formats? Second, can these signals be accumulated in a 

sufficiently flexible manner, so as to adjust history biases to repetitive as well as alternating 

environments? Third, is the strength of such bias adjustment scaled by confidence? We modeled 

human choice behavior under experimental manipulations tailored to answering these questions.  

 

Materials and Methods 
Participants 

We analyzed data from 28 participants and two experiments (referred to as Experiment 1 and 2) in 

total. All participants gave their written informed consent.  

 

Experiment 1  

Six healthy participants (2 male and 4 female, mean age: 25; range: 22–29 years) took part in the 

experiment, which was approved by the ethics committee of the Department of Psychology of the 

University of Amsterdam (reference number 2011-OP-1588).  
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Experiment 2  

26 healthy participants (11 male and 15 female, mean age: 26, range: 20 - 36) took part in the 

experiment, which was approved by the local ethical review board (Ärztekammer Hamburg, reference 

number PV4714). Four participants were excluded from the data analysis, so that 22 participants 

remained for the data analysis. Three of the excluded participants did not complete all sessions and 

one exhibited substantially worse performance than the rest of the group (64 percent correct overall, 

63 percent correct for the easiest three motion coherence levels).  

 

 

Experimental design 

The data from both experiments allowed for quantifying choice history biases during a random dot 

motion discrimination (up vs. down) task. We used large random dot motion patterns in both 

experiments, so as to minimize stochastic fluctuations in the effective motion energy across trials (Urai 

et al., 2017). 

 

Experiment 1 

The following description summarizes the aspects of the experimental design that were most important 

to the current paper; a comprehensive description can be found in (Tsetsos et al., 2015). Random dot 

kinematograms (Figure 1A) were composed of 785 (average) white dots on a black screen. The dots 

were moving within a circular aperture of 9.1° radius. A red fixation cross of 0.4° x 0.4° was centered 

in the middle of the circle. The dot density was 12.07 dots per deg2. The population of dots was split 

into “signal dots” and “noise dots”. The signal dots moved either upwards or downwards with a velocity 

of 2.6°/s. The noise dots changed position randomly from frame to frame. The percentage of signal 

dots defined the motion coherence, a measure of motion strength. On each trial, three different 

sequences of dot motion (at the same coherence and direction) were presented in an interleaved 

fashion, making the effective speed of signal dots 0.87 °/s. One of six different levels of motion 

coherence, (0.05, 1.26, 3.15, 7.92, 19.91 and 50%) and one of six different viewing durations (150, 

300, 600, 1200, 2400, and 4800 ms) were chosen randomly, under the constraint that they occurred 

equally often within a block of 144 trials. Stimuli were presented on a 22-inch CRT monitor with a 

resolution of 800 x 600 pixel and a frame rate of 100 Hz at a viewing distance of 68 cm. The 

participants were instructed to maintain their gaze on the red cross throughout the trial and judge the 

net motion direction. The motion viewing interval was followed by a variable delay (uniform distribution 

ranging from 200 to 400 ms), after which the observers had to report their choice by pressing one of 

two buttons on a computer keyboard, with either the left or the right index finger. Participants received 

auditory feedback after incorrect responses (a 1000 Hz tone of 100 ms). Perceptual choices (‘up’ vs. 

‘down’ motion direction) were decoupled from motor responses (left vs. right button press) by varying 

their mapping from trial to trial. This mapping was instructed before motion viewing in one condition 

(‘Pre’ condition) and after motion viewing in the other (‘Post’ condition), by means of a visual cue that 

presented each direction (as an arrow) on the left or right side (i.e. two possible mappings). This 
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mapping cue was randomly selected on each trial. Conditions alternated across blocks. Observer 1-5 

participated in both conditions. Observer 6 participated only in the Post condition. The analyses of 

participants 1-5 presented here were collapsed across both conditions. We obtained the same pattern 

of results when analyzing the data from both conditions separately (data not shown).  

 

 
 
Figure 1. Quantifying choice history bias and behavioral task. 

(A), (B) Behavioral tasks.  Observers judged the net direction (up vs. down) of a dynamic random dot pattern of 

variable direction and coherence. (A) Experiment 1, decoupling choice and motor response. After a blank fixation 

interval, a choice-response mapping cue was shown before (Pre) or after the presentation (Post) of the motion 

stimulus, which also varied in duration. Observers responded after dot motion offset in the Pre-condition and after 

mapping cue offset in the Post-condition. Auditory feedback was provided after incorrect responses. (B) 

Experiment 2, manipulating stimulus repetition probabilities. Left: Random dot motion and fixation cross were 

shown throughout the trial. A beep indicated the onset of the evidence interval, which contained some level of 

coherent motion (0% on some trials). A second beep indicated the evidence offset and start of the response 

interval (deadline: 3 s). Right: Three repetition probabilities between motion directions across trials yielded three 

environmental conditions: Neutral (repetition probability of 0.5), Repetitive (repetition probability of 0.8) and 

Alternating (repetition probability of 0.2). (C) Signed motion coherence levels (cyan) and categorical choices 

(purple) from a sequence of 15 trials recorded in Neutral in Experiment 2. Positive values of stimulus intensity 

correspond to upward motion and negative ones to downward motion. (D) Psychometric functions conditioned on 

previous choice in Neutral exhibit history biases in three example participants. See main text for details. 

 

Experiment 2 

To test for the adaptability of choice history biases, we manipulated the sequential stimulus statistics 

between experimental sessions, to make people perform the task in ‘Repetitive’, ‘Neutral’ (no 

sequential dependence), or ‘Alternating’ environments (Figure 1B). Stimuli, task, and procedure for 

Experiment 2 were identical to Experiment 1, with the following exceptions. The circle within which the 

dots were moving had an outer radius of 12° and an inner radius of 2°. The density of dots was 1.7 

dots/deg2 and each dot had a diameter of 0.2°. The dots moved with a velocity of 11.5°/s. Signal dots 
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had a maximum lifetime of 6 frames. We used the following coherence levels: 0, 5, 10, 20, 40 and 

60% (equally many trials per coherence level). A red bulls-eye fixation target at the center of the 

screen as well as randomly moving dots (0% coherence) were presented throughout each block. The 

first trial of each block started with a baseline interval of 5 s. A beep (duration: 50 ms, sine wave at 

440 Hz) indicated the onset of the evidence interval with variable coherence levels and directions (see 

above) after a fixed duration of 0.75 s. A second beep indicated the offset of the evidence interval and 

prompted the observers’ response. Observers reported their perceptual choices by pressing one of 

two keyboard buttons, with the index finger of the left or right hand. After button press or a response 

deadline of 3 s, the inter-trial interval started. Inter-trial intervals were uniformly distributed between 1 

and 5 s. Observers received auditory feedback during the training sessions, but no feedback during 

the subsequent six sessions of the main experiment. The motion viewing duration of 0.75 s was 

selected because previous work in monkeys (Kiani et al., 2008) and humans (Tsetsos et al., 2015) 

found little integration of motion information beyond that duration. We used a fixed mapping between 

choices and motor responses, whereby the two possible mappings (right-hand button for up, left-hand 

for down, or vice versa) were counterbalanced across participants. Experiment 2 consisted of seven 

sessions per participant (one for training and six main sessions), whereby each session was divided 

into 10 blocks of 60 trials. 

 Critically, the transition probabilities between the two alternative stimulus categories (i.e. up vs. 

down regardless of coherence) over trials were manipulated across experimental sessions (Figure 1B, 

right). Specifically, the probability of a repetition was defined as  

𝑃 𝑠𝑡𝑖𝑚𝑢𝑙𝑢𝑠 𝑟𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛 = 1 − 𝑃 𝑠𝑡𝑖𝑚𝑢𝑙𝑢𝑠 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑜𝑛 = 𝑃 𝑠𝑡𝑖𝑚𝑢𝑙𝑢𝑠! = 𝑢𝑝  𝑠𝑡𝑖𝑚𝑢𝑙𝑢𝑠!!! = 𝑢𝑝) =

𝑃(𝑠𝑡𝑖𝑚𝑢𝑙𝑢𝑠!  =  𝑑𝑜𝑤𝑛 | 𝑠𝑡𝑖𝑚𝑢𝑙𝑢𝑠!!! =  𝑑𝑜𝑤𝑛),   eq. 1 

 whereby n indexes trials. The repetition probability was held constant within each session, but varied 

across the main experimental sessions between the following values: 0.5 in the ‘Neutral’ condition, 0.8 

in the ‘Repetitive’ condition, and 0.2 in the ‘Alternating’ condition. The Neutral condition allowed for 

quantifying observers’ intrinsic choice history bias, which we used as a baseline for quantifying their 

adjustment to the biased sequential statistics of the Repetitive and Alternating conditions. 

 During the training session, the motion direction on each trial was chosen randomly and 

independently. All participants started with the Neutral condition in session 1 of the main experiment, 

which was repeated in session 4. Half of the participants then performed the Repetitive condition in 

sessions 2 and 5 and the Alternating condition in sessions 3 and 6 and conversely for the other half of 

participants.  

 Observers were instructed to maintain stable fixation and perform the motion discrimination task 

as accurately as possible. They were informed that the sequential statistics of the stimulus identities 

would change from session to session, but stay constant within each session. To this end, we told 

them that the stimulus sequences could be ‘as if produced by a coin flip’ (Neutral), ‘more likely 

repeating than alternating’ (Repetitive), or ‘more likely alternating than repeating’ (Alternating). 

Observers were not informed about (i) the order of these conditions, (ii) the exact transition 

probabilities, (iii) the use of this information for optimizing their behavioral performance. 
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Modeling choice history bias 

We used logistic regression to model observers’ choice history biases under the different experimental 

conditions. The basic approach consisted of adding a linear combination of different components of 

trial history (which depended on the experiment), as a bias term to a logistic function model of the 

choice probability (Fründ et al., 2014; Urai et al., 2017). We here used a variant that quantified the 

relative contributions of previous stimuli, choices, and (for Experiment 1) motor responses.  

 

Basic choice model using psychometric function fit  

The probability of making one of the two choices 𝑟! = 1 (𝑟! = 1 for ‘choice up’, 𝑟! = −1 for ‘choice 

down’) on trial t, given the signed stimulus intensity 𝑠! (i.e., motion coherence times stimulus category) 

(up or down, coded as 1 and -1) was described by:  

𝑃 𝑟! = 1 𝑠! =  𝛾 +  1 –  𝛾 −  𝜆  𝑔 𝛿 +  𝛼𝑠! ,    eq. 2 

where 𝛾 and 𝜆 were the lapse rates for the choices 𝑟! = 1 and 𝑟! = −1, and 𝑔 𝑥 = !
!!!!!

  was the 

logistic function. The bias term 𝛿, the offset of the psychometric function, described the overall bias for 

one specific choice. 𝛼 was the slope of the stimulus-dependent part of the psychometric function, 

quantifying perceptual sensitivity. 

 For visualizing the effect of previous on current choice (Figure 1D), we separated the trials from 

Neutral into two subsets, conditioned on the choice from the previous trial, and fitted the psychometric 

function separately to the observed proportion of upward choices in both subsets. Results from three 

example observers are shown in Figure 1D and discussed in Results. 

 

Modeling the contributions of past stimuli, choices, and motor responses to current choice bias 

We estimated the contribution of the previous seven stimulus categories and choices by adding a 

history-dependent bias term to the argument of the logistic function (Fründ et al., 2014): 

𝑃 𝑟! = 1 𝑠! ,𝒉𝒕 =  𝛾 +  1 –  𝛾 −  𝜆  𝑔 𝛿(𝒉𝒕) +  𝛼𝑠!  eq. 3 

𝛿 𝒉𝒕 =  𝛿! +  𝛿!"#$ 𝒉𝒕 =  𝛿! + 𝜔!ℎ!"!"
!!!     eq. 4 

The history bias 𝛿!"#$ 𝒉𝒕 = 𝜔!ℎ!"!"
!!!  consisted of the sum of the preceding seven responses 𝑟!!! to 

𝑟!!! and the preceding seven stimulus categories 𝑧!!! to 𝑧!!!, each multiplied with a weighting factor 

𝜔!. The vector 𝒉! was written as: 

𝒉! = 𝑟!!!, 𝑟!!!, 𝑟!!!, 𝑟!!!, 𝑟!!!, 𝑟!!!, 𝑟!!! , 𝑧!!!, 𝑧!!!, 𝑧!!!, 𝑧!!!, 𝑧!!!, 𝑧!!!, 𝑧!!! . 

All terms in 𝒉!  were coded as -1 or 1, with the exception of terms coding for stimuli with zero 

coherence, which were set to zero. The weighting factors 𝜔! thus modeled the influence of each of the 

seven preceding responses and stimulus categories on the current choice. Positive values of 𝜔! 

indicated a bias to repeat the choice or stimulus category at the corresponding lag, and negative 

values of 𝜔! indicated a tendency to alternate. In this and all subsequent analyses, the parameters of 

the logistic regression model were fit by maximizing the log-likelihood 𝐿 =  log𝑃 𝑟! = 1 𝑠! ,𝒉𝒕!  using 

an expectation maximization algorithm (Fründ et al., 2014). 

 In Experiment 1, perceptual choices and motor responses were further decoupled through a 

mapping that varied from trial to trial. Thus, we could independently estimate the relative contribution 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 1, 2017. ; https://doi.org/10.1101/172049doi: bioRxiv preprint 

https://doi.org/10.1101/172049
http://creativecommons.org/licenses/by/4.0/


	 
8 

of previous choices and motor responses to the current choice bias. We added the last seven choices 

𝑐!!!, 𝑐!!!, 𝑐!!!, 𝑐!!!, 𝑐!!!, 𝑐!!!, 𝑐!!! , each one multiplied with a separate set of history weights 𝜔′!, to the 

history bias term 𝛿!"#$ 𝒉𝒕, 𝒄𝒕 .  

𝛿 𝒉𝒕, 𝒄𝒕 =  𝛿! +  𝛿!"#$ 𝒉𝒕, 𝒄𝒕  =  𝛿! + 𝜔!ℎ!"!"
!!! + 𝜔!

!𝑐!"!
!!!    eq. 5 

Experiment 1 contained not only trial-to-trial variations in motion direction and coherence, but also in 

the duration of the dot motion stimulus. To assess the effect of this manipulation, we first fitted the 

psychometric functions separately for each of the six different motion-viewing durations (on the current 

trial) and compared the resulting weights within each observer. The viewing duration had only 

negligible impact on the history weights (data not shown), indicating that the history contributions were 

invariant across viewing durations. Consequently, we fitted the psychometric functions to the data from 

all trials, and analyzed the history weights, irrespective of viewing duration.  

 Experiment 1 also contained two conditions (Pre and Post), in which observers were instructed 

about the required mapping between choice and response either before or after the presentation of the 

sensory evidence. The analyses presented in Results collapsed across both conditions, but we also 

verified that there were no differences between these conditions when analyzing them separately 

(data not shown).  

 

Modeling the contributions of past correct (and incorrect) choices to current bias 

The weights for previous correct and incorrect choices were estimated by re-combining the weights for 

previous stimuli and choices estimated by means of equations 3 and 4. Specifically, the weights for 

correct choices were computed as the sum of choice and stimulus weights and the weights for 

incorrect choices were computed as the difference between choice and stimulus weights (Fründ et al., 

2014). Please note that this is equivalent to fitting a regression model with predictors encoding correct 

or incorrect choices, along with the chosen category (Busse et al, 2011; Abrahamyan et al, 2016). 

 

Modeling the contribution of past decision confidence to current bias 

We used a model of statistical decision confidence based on signal detection theory (Kepecs et al. 

2008; Sanders et al. 2016; Urai et al. 2017) in order to define two behavioral proxies of confidence that 

could be used in the present study. The model assumes that choices are made based on an internal 

decision variable (dv), which is computed as a transformation of sensory input, corrupted by noise. A 

choice is made by comparing dv to a criterion c. Confidence is a function of the distance between dv 

and c. When dv is far from c, the choice is likely to be correct; the probability of the choice being 

correct approaches chance as dv approaches c. Specifically, 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒! = 𝑓( 𝑑𝑣! − 𝑐 )  where 

𝑓 𝑥 = !
!
1 + erf !

 ! ! 
 is a monotonic sigmoid function that maps the distance metric 𝑥  on the 

probability of making a correct choice (Kepecs et al, 2008; Lak et al. 2014). The model predicts that 

confidence (i) is larger on correct than on error trials, and (ii) scales oppositely as a function of 

stimulus strength for correct and error trials. We used two behavioral proxies of the so-defined 

confidence to investigate its impact on the adjustment of choice history biases: (i) Choice accuracy, 

with correct choices being associated with larger confidence than incorrect choices for all levels of 
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evidence strength in the model described above; and (ii) reaction times (RT), which has been found to 

reflect decision confidence as defined above in empirical work (Sanders et al., 2016; Urai et al., 2017).   

 When assessing the confidence-dependence of the bias adjustment (i.e. changes in history 

weights), we restricted the model to the immediately preceding trial (lag 1), at which the bias 

adjustment was expected to be strongest, but we now estimated the weights separately for each of the 

different levels of previous motion coherence. This enabled us to control for the trial-to-trial variations 

of stimulus strength, thus isolating the impact of internal trial-to-trial fluctuations of confidence.  

 In our analysis of the impact of choice accuracy, separate predictors coded for the choice or 

stimulus categories for each level of (non-zero) previous motion coherence. Because choice accuracy 

was undefined at 0% coherence, we estimated a single choice weight for previous trials where no 

decision-relevant sensory evidence was presented. Specifically, we included six regressors in the 

model that each coded for the previous choice at a given coherence level (zero elsewhere) and we 

included five regressors that each coded for the previous stimulus category at a given non-zero 

coherence level (zero elsewhere). To assess the impact of choice accuracy, the stimulus and choice 

weights were transformed into weights for correct and incorrect choices by re-combining the stimulus 

and choice weights as described in the section Modeling the contributions of past correct (and 

incorrect) choices to current bias above.  

 To assess the effect of RTs, we first normalized RT to make it scale positively with confidence, 

because of its negative scaling with decision confidence (the shortest RTs correspond to the most 

confident trials (Sanders et al., 2016; Urai et al., 2017): For each observer and condition, we 

transformed single-trial RTs as follows: 

       𝑅𝑇𝑐𝑜𝑛𝑓 =  𝑧(𝑚𝑎𝑥(𝑙𝑜𝑔(𝑅𝑇)) –  𝑙𝑜𝑔(𝑅𝑇))    eq. 6 

where 𝑧  denoted z-scoring per individual and condition. This transformation was only applied to 

simplify the interpretation of the corresponding history terms in terms of confidence-weighting. Without 

this transformation, the resulting weights were qualitatively identical but sign-flipped, thus reflecting the 

complement to confidence, decision uncertainty (data not shown).  

 We added a modulation by the above-defined 𝑅𝑇𝑐𝑜𝑛𝑓 variable to the logistic regression model, 

as introduced in (Urai et al., 2017). To this end, we added a term describing the interaction between 

choice and stimulus category at lag 1 with the previous trial’s 𝑅𝑇𝑐𝑜𝑛𝑓 separately for each previous 

coherence level: 𝜔′!ℎ!𝑅𝑇𝑐𝑜𝑛𝑓!"!!
!!! . Specifically, the interaction terms in this model were six 

regressors for previous choice multiplied by previous 𝑅𝑇𝑐𝑜𝑛𝑓 (one for each coherence level) and five 

regressors for previous stimulus category multiplied by previous 𝑅𝑇𝑐𝑜𝑛𝑓  (one for each non-zero 

coherence level), and a nuisance covariate 𝜔′′!𝑅𝑇𝑐𝑜𝑛𝑓!"!
!!!  for the main effect of 𝑅𝑇𝑐𝑜𝑛𝑓. The full 

bias term in this model was as follows: 

𝛿 𝒉𝒕,𝑹𝑻𝒄𝒐𝒏𝒇𝒕 =  𝛿! +  𝛿!"#$ 𝒉𝒕,𝑹𝑻𝒄𝒐𝒏𝒇𝒕  =  𝛿! + 𝜔!ℎ!"!!
!!! + 𝜔′!ℎ!"𝑅𝑇𝑐𝑜𝑛𝑓!" + 𝜔!!

!𝑅𝑇𝑐𝑜𝑛𝑓!"!
!!!  

 eq. 7 

 

Modeling history contributions in synthetic, non-adjusting observers 

We performed two sets of simulations to ensure that the context-dependent shifts in the history 
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weights exhibited by participants in Experiment 2 were not just passively ‘inherited from’ the correlated 

stimulus sequences in the Repetitive and Alternating conditions. The rationale of these simulations 

was to fit the behavior of synthetic observers. These were matched to the behavior of each of our 

participants in all parameters, except for the history weights displayed in the biased conditions.  

 In the first set of simulations, we constructed observers, who based their decisions only on the 

current stimulus. For each participant, we estimated the parameters of the psychometric function 

described by eqs. 3 and 4 from the data of the respective biased conditions. This ‘memory-less 

observer model’ was the set of fitted parameters, but with history bias 𝛿!"#$ 𝒉𝒕  set to zero; it allowed 

us to compute the probability of making an ‘up’-choice (𝑟! = 1) for any given stimulus intensity in the 

absence of any influence of past events. To simulate the model’s performance in the two biased 

experimental conditions (Alternating and Repetitive), we used the original sequences of stimuli (motion 

coherences times directions) seen by each observer in these two conditions, and computed the choice 

probability for each trial by putting the model parameters and stimulus categories in eq.2. Based on 

these choice probabilities, we then drew the choices on each trial by a weighted coin-flip, resulting in a 

sequence of choices generated by the model. We then fitted this choice and stimulus sequence, again 

using the model specified in eqs. 3 and 4 allowing us to estimate the synthetic observers’ stimulus and 

choice weights. The resulting values served as a reference for the history biases expected as a result 

of discriminating a biased sequence of stimuli without memory. 

 The second set of simulations was as the first set of simulations, with the exception that the 

synthetic observers had the same (non-zero) history weights estimated for the real participants in the 

Neutral condition, but did not adjust these biases to the biased environments. Again, this enabled us to 

simulate choice patterns of the synthetic observers exposed to the stimulus sequences used in our 

actual experiment, and to use these choice patterns to estimate the simulated observers’ choice and 

stimulus weights, as described for the first set. 

 In both sets of simulations, we presented the same stimulus sequence 50 times, to average out 

the effect of binomial noise that was needed to generate choices from the logistic function. This 

yielded more precise estimates of the model parameters than was possible in the human observers. 

 

Statistical tests 

We used parametric 2-tailed t-tests for all statistical comparisons of regression weights reported in this 

paper. The rationale was that we could then also provide Bayes factors (Bf), in order to quantify the 

posterior belief in the null hypothesis given the evidence (Rouder et al., 2009). Bf10 < 1/3 indicates 

evidence in favor of the null hypothesis, Bf10 > 3 indicates evidence for the alternative hypothesis, and 

Bf10 = 1 indicates inconclusive evidence. When performing multiple t-tests of regression weights (e.g., 

across seven lags or coherence levels), false discovery rate correction (Benjamini and Hochberg, 

1995) was applied to correct for multiple comparisons.  

 When testing correlation coefficients computed for individual participants (the so-called ‘adaptivity 

indices’ defined in Results) against zero, we first Fisher z-transformed the Pearson correlation 

coefficients and then submitted them to simple t-tests. We used the parametric 2-tailed Steiger’s test 
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(Steiger, 1980) for comparing across-subjects correlations between individual adaptivitiy indices 

(correlation coefficients) and their proportion of correct choices with the corresponding correlations 

between individual perceptual sensitivity and the proportion correct choices.   

 Finally, we used circular statistics, specifically Rayleigh’s test, to assess the clustering of 

orientations of the lines connecting the weights from Neutral with those from either Repetitive or 

Alternating conditions, respectively. A Hotelling test (van den Brink et al., 2014) was used to assess 

the difference in mean directions of adjustment between these two conditions. 

  The results from all the all regression weights and individual adaptivity indices (correlation 

coefficients) in Experiment 2 were analogous when replacing the parametric tests with non-parametric 

permutation tests (Efron and Tibshirani, 1998) with N = 10.000 permutations.  

 

Results 
We here report results from two experiments (referred to as Experiment 1 and 2) quantifying choice 

history biases during the random dot motion discrimination task that is widely used in 

neurophysiological studies of perceptual decision-making (Gold and Shadlen, 2007; Siegel et al., 

2011; Kelly and O’Connell, 2015). The two experiments aimed to manipulate different aspects of 

choice behavior. Analyses of behavior from Experiment 1 were previously published (Tsetsos et al., 

2015), but those analyses did not assess sequential effects. Here, we re-analyzed these data to 

quantify the dependence of choice on previous stimuli, choices, and motor responses.  

 Figure 1C and D illustrates behavioral patterns generated by choice history biases in example 

observers from the Neutral condition of Experiment 2 (i.e. no correlations among successive stimuli). 

Figure 1C shows, for one observer, a ‘streak’ of eight repeats of the same choice, followed by five 

repeats of the other choice. These streaks occur in the face of trial-to-trial variations of the direction of 

the random stimuli. Critically, such apparent biases towards one or the other choice emerge only 

locally in time. Choice history biases are therefore distinct from the ‘global’ biases towards one 

particular choice that result from uneven probabilities of the two stimulus categories or uneven payoffs 

for the two options (Bogacz et al., 2006; Mulder et al., 2012; de Lange et al., 2013). One way to isolate 

choice history biases is to fit, for each observer, two separate psychometric functions (relating signed 

stimulus strength to choice probability), each conditioned on the choice the observer made on the 

previous trial. Choice history biases are then evident as horizontal shifts between these two functions. 

Figure 1D displays the resulting functions of three example observers (Neutral condition from 

Experiment 2) with an intrinsic bias to repeat (left panel, same observer as in Figure 1C) or to alternate 

choices (right), or no bias (middle). A more comprehensive approach is to explicitly model the relative 

contribution of previous choices, or other experimental variables from previous trials, to current choice 

bias (Busse et al., 2011; Fründ et al., 2014) (see Materials and Methods, section Modeling choice 

history bias). We used this statistical modeling approach throughout this paper.  

 Our analyses pursued two main objectives. First, we aimed to disentangle and compare the 

contribution of decisional and motor processing stages to the history biases. Second, we aimed to 
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quantify the adjustment of choice history biases to the environment, as a function of varying levels of 

decision confidence, in the absence of external feedback.   

 

Experiment 1: Disentangling the impact of previous stimuli, choices, and motor responses  

In laboratory tasks, perceptual choice and motor response used for reporting the choice are typically 

coupled, but can be decoupled with little effect on performance on the current trial (Tsetsos et al., 

2015). While there is evidence for either decisional or motor origin of history biases (Akaishi et al., 

2014; Pape and Siegel, 2016; St. John-Saaltink et al., 2016), their relative contributions have not yet 

been systematically compared across several trials in the past. To do so, we reanalyzed data from a 

previously published study (Tsetsos et al., 2015), in which observers performed a random dot motion 

task under trial-to-trial variations in the mapping between choice and motor response. The direction of 

motion was chosen randomly and independently on each trial, so that maximizing performance 

required basing choices solely on the current stimulus and not on its history (i.e., previous stimuli, 

choices, or motor responses).  

 
Figure 2. Stronger impact of previous choice than of previous motor response on current bias. 

(A) Impact of previous choices and motor responses as a function of lag. (B) As (A), but for impact of previous 

stimulus categories. Shaded areas, s.e.m.; dots, p < 0.05 (FDR-corrected t-test) across participants. 

 

 Observers showed a significant tendency to repeat their previous choices (indicated by positive 

choice weights), but not their motor responses (Figure 2A). The effect of the previous choice on 

current choice was positive and stronger than the effect of the previous motor response (Figure 2A). 

The response weights did not differ significantly from zero for any lag (Bf10 < 0.45 for all lags). 

Preceding stimulus categories (up/down) exhibited negative, albeit not statistically significant, weights 

at longer lags (Figure 2B), possibly reflecting the impact of long-lasting, repulsive effects of direction-

selective sensory adaptation mechanisms (Kohn, 2007) on choice behavior.  

 These results indicate that the commonly observed choice repetition biases are specifically due to 

previous choices and not the motor responses used to the report them, which has implications for their 

neural bases (see Discussion). We next investigated the adjustment of choice history biases (under 

fixed mapping) to varying environmental statistics in order to gain deeper insights into their functional 

origin and adaptive utility. 
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Experiment 2: Confidence-dependent adjustment of choice history biases to the environment 

In laboratory tasks used to study perceptual choice, it is common to generate random sequences of 

the two alternative stimulus categories. But the states of natural environments, and hence the sensory 

signals generated by them, often exhibit significant auto-correlations across time, so that it might be 

beneficial for decision-makers to adjust their choice history biases to this correlation structure (Yu and 

Cohen, 2009). In Experiment 2, we tested for such adjustments, by systematically manipulating the 

repetition probabilities between the two possible motion directions across three conditions blocked by 

experimental session: Repetitive, Alternating, and Neutral (two sessions per condition; see Figure 1B 

and Materials and Methods). Importantly, observers received no external feedback about the 

correctness of their choices. This enabled us to study the impact of their decision confidence on the 

adjustment of their choice history biases to environmental statistics.  

 

Adjustment of choice history biases to environmental statistics 

The manipulation of the environmental statistics had robust effects on observers’ history biases. We 

visualized those in two complementary ways focusing on different aspects of the data. Both our 

approaches were guided by the statistical structure of the Repetitive and Alternating conditions, which 

yielded characteristic profiles of the probability of stimulus repetitions as a function of lag: For both 

Repetitive and Alternating conditions, repetition probability was most strongly biased (i.e., different 

from 0.5) at lag 1, and progressively approaching 0.5 for larger lags (Figure 3A). Thus, the strongest 

effects were expected for events from the preceding trial (i.e., lag 1). 

  Our first approach, therefore, focused on the weights for lag 1. When plotting the choice weights 

against stimulus weights, data points located in the upper-right triangular part indicated a tendency to 

repeat the previous choice or stimulus categories (up/down), whereas data points in the lower-left 

triangular part indicated a tendency to alternate (Figure 3B, dashed diagonal line). If observers 

adjusted their choice patterns to the Repetitive and Alternating environments, their history weights 

should have shifted in the corresponding directions. This is what we observed (Figure 3B; compare 

dots of different colors). The weights were close to zero in the Neutral condition (group average, red 

‘x’); weights shifted towards repetition in the Repetitive condition (group average, green arrow in 

Figure 3B), and alternation in the Alternating condition (group average, blue arrow in Figure 3B), 

respectively. The vector angles of the shift from Neutral were significantly different from uniform (z = 

7.69, p = 0.0003 in Repetitive and z = 8.64, p < 0.0001 in the Alternating condition, Rayleigh’s test), 

and the shift angles were significantly different between Repetitive and Alternating (F(2, 20) = 60.28, p 

< 0.0001, Hotelling test). The adjustment of choice history bias was also evident when fitting the 

psychometric function conditioned on the previous choice (as in Figure 1D). Both conditions were 

characterized by a history-dependent shift, in opposite directions (Figure 3C; difference in shift 

between Repetitive and Alternating: t(21) = 3.21, p = 0.0042). By contrast, previous choice had no 

effect on the slope of the psychometric function (difference in history-dependent change in the slope 

between Repetitive and Alternating: t(21) = -0.60, p = 0.5532, Bf10 = 0.2627). 

 It is noteworthy that the direction of the shift of history weights between the different 
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environmental statistics was largely along the positive diagonal (Figure 3B) that corresponds to equal 

weights for previous stimuli and choices. Thus, the bias adjustment was largely driven by correct 

choices (where previous choices and stimuli were identical). We thus used the weight of previous 

correct choices (i.e., the sum of choice and stimulus weights, see Materials and Methods) in all 

subsequent analyses as a single metric of the bias adjustment. The importance of previous correct 

choice for the bias adjustment was indicative of the role of decision confidence, an aspect that we 

elaborate on in the section Modulation of choice history bias adjustment by decision confidence below. 

 
Figure 3. Adjustment of choice history biases to environmental statistics. 

(A) Stimulus repetition probabilities for Repetitive, Alternating and Neutral. In Repetitive, repetition of the motion 

direction from two trials back could occur due to a sequence of two repetitions or two alternations (probability: 0.8 

x 0.8 + 0.2 x 0.2 = 0.68). In Alternating, the probability of repetition of the same direction oscillated around 0.5 as 

a function of lags, with decreasing deviation from 0.5. (B) Impact of previous stimuli and choices on current choice 

for lag 1. Dots, single observers, arrows changes of group mean weights from Neutral (red cross) during 

Repetitive and Alternating, respectively. (C) Psychometric functions conditioned on previous choice (group 

average). Left: Repetitive, leftward shift from dashed to dotted line corresponding to a bias to repeat the previous 

choice. Right: Alternating, leftward shift from dotted to dashed line, indicating a bias to alternate the previous 

choice. (D) Correct weights as functions of lags in Repetitive and Alternating. (E) Adaptitivity indices 

(correlation coefficient with the history template) computed from correct kernels from the Repetitive and 

Alternating conditions. Dotted line, correlation between history templates for Repetitive and Alternating.  Shaded 

areas, s.e.m.; dots, p < 0.05 (FDR-corrected t-test) across participants; *, p < 0.05; **** p < 0.0001. 

 

 Our second approach focused on an assessment of the full time courses of the history weights. 

The temporal profiles of the stimulus repetition probabilities in the two biased conditions exhibited 
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markedly different patterns: In the Repetitive condition the temporal profile exhibited a monotonic 

decay towards 0.5, whereas it exhibited a damped oscillation around 0.5 in the Alternating condition 

(Figure 3A). The correlation between both time courses for Repetitive and Alternating conditions was 

negative. In what follows, we refer to these time courses as ‘history templates’, to indicate that these 

characterize the statistical structure of the environment.  

 Indeed, participants’ history weights exhibited profiles that were similar to those of the history 

templates (Figure 3D, compare with Figure 3A). We use the term ‘history kernel’ to refer to the 

individual courses of the weights for correct choices as a function of lag. We quantified their similarity 

with the corresponding history templates by means of temporal correlation (Figure 3E). These 

correlations were significant in both conditions (Repetitive: t(21) = 2.57, p = 0.0179, Alternating: t(21) = 

4.83, p < 0.0001). Thus, participants adjusted their history biases to the statistical structure of their 

environments with a time course matched to the full environmental statistics. In what follows, we refer 

to this similarity metric as ‘adaptivity index’. 

 One concern might be that even an observer who only discriminates the current sensory 

evidence, without any active accumulation of past experimental events, might exhibit similar shifts in 

the history weights between the Alternating and Repetitive conditions, by virtue of the stimulus 

statistics propagating into the history weights without any active adjustment of the observer. To 

address this concern, we simulated the performance of two types of synthetic observers, which were 

constructed individually for each of our participants. These had the same perceptual sensitivity as 

each participant, but without any adjustment of stimulus and choice weights to the different 

environmental conditions (see Materials and Methods). The first set of synthetic observers had 

stimulus and choice weights of zero. The second set of synthetic observers had the same history 

biases (i.e., non-zero choice and stimulus weights) as our participants in the Neutral condition, but did 

not adjust these to the changing environmental statistics. The choice and stimulus weights obtained 

for both these models were not significantly different from zero (Figure 4A and B) (all p-values > 0.567 

and Bf10 ranging from 0.22 to 0.62).  

 
Figure 4. No differences in history weights for synthetic observers without bias adjustment. 

Results of two simulations of synthetic observers without bias adjustment analyzed as real observer data for 

Figure 3B, D. (A) Synthetic observers with all parameters taken from the real observers’ estimates for Repetitive 

and Alternating, but history weights set to 0. (B) Synthetic observers with all parameters taken from the real 

repeatalternate

-0.4 -0.2 0 0.2 0.4
Previous choice weights

-0.4

-0.2

0

0.2

0.4

Pr
ev

iou
s s

tim
ulu

s w
eig

ht
s

Simulated observers with individual parameters 
from biased conditions and history weights set to 0

B

Repetitive
Alternating

-0.4 -0.2 0 0.2 0.4
Previous choice weights

-0.4

-0.2

0

0.2

0.4

Pr
ev

iou
s s

tim
ulu

s w
eig

ht
s

Repetitive
Alternating

Simulated observers with individual parameters from Neutral
A

alternate

1 2 3 4 5 6 7
Lag

-0.05

0

0.05

Co
rre

ct 
we

igh
ts

1 2 3 4 5 6 7
Lag

-0.05

0

0.05

Co
rre

ct 
we

igh
tsrepeat

Individuals
Repetitive
Individuals
Alternating

Group average shift from 
Neutral in Repetitive
Group average shift from 
Neutral in Alternating

Individuals
Repetitive
Individuals
Alternating

Group average shift from 
Neutral in Repetitive
Group average shift from 
Neutral in Alternating

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 1, 2017. ; https://doi.org/10.1101/172049doi: bioRxiv preprint 

https://doi.org/10.1101/172049
http://creativecommons.org/licenses/by/4.0/


	 
16 

observers’ estimates for Neutral. Note the difference in the y-axis scale between these simulated observers and 

the real observer data in Figure 3. Shaded areas, s.e.m. across synthetic observers. 

 

 These simulation results indicate that the effect of the correlations between stimuli on choice 

patterns was reliably soaked up by the stimulus-dependent part of our statistical model (i.e. the slope 

of the psychometric function). In other words, the systematic deviations of the history weights between 

Repetitive and Alternating conditions evident in the real observers were not just passively ‘inherited 

from’ the correlations evident in the stimulus sequences, but rather due to an active adjustment of their 

biases.  

 

History bias adjustment predicts performance in biased environments 

While the bias adjustment was highly consistent across participants, individuals differed in the extent 

to which they shifted their history biases between conditions (i.e., the magnitude of their adaptivity 

indices, Figure 3E). We correlated the individual adaptivity indices with the proportion of correct 

choices to assess their predictive value for overall task performance (Figure 5A). The more strongly 

observers adjusted, the more successful they were in both, the Repetitive (Figure 5A, left panel) and 

Alternating (middle) condition. We found no evidence for such an effect in the Neutral condition (Figure 

5A, right, Bf10 = 0.4276). As expected, perceptual sensitivity (i.e., the slope of the psychometric 

function) was also strongly predictive of individual performance in all three conditions (Figure 5B).  In 

both biased environments the adaptivity index was similarly predictive of performance as perceptual 

sensitivity (Repetitive: Steiger’s test z = 0.28, p = 0.7791; Alternating: z = 0.4, p = 0.6893), while 

sensitivity was a better predictor in the Neutral environment (z = 2.70, p = 0.0068). In other words, the 

adjustment to the environmental statistic can be about as important for maximizing reward rate as 

sensitivity to the momentary sensory evidence.  
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Figure 5. Behavioral performance depends on bias adjustment and perceptual sensitivity. 

(A) Correlation between adaptivity index and proportion of correct choices. Left: Repetitive. Middle: Alternating. 

Right: Neutral. Insets: Correlations for the simulated observers without bias adjustment (compare Figure 4A). (B) 

Correlation between sensitivity (i.e. slope of the psychometric function) and the proportion of correct choices. Left: 

Repetitive. Middle: Alternating. Right: Neutral.  

 

 Taken together, our results reported so far supported the idea that participants accumulated 

internal signals from their previous correct decisions into biases for their current choice – a process 

that adjusted their behavior to the statistics of their environment and improved performance. Some 

previous accounts of sequential effects have postulated the accumulation of external variables, such 

as stimulus repetitions (Yu and Cohen, 2009; Meyniel et al., 2016), performance feedback 

(Abrahamyan et al., 2016), or reward (Sugrue, 2004). Our experimental conditions precluded any of 

the above: Observers performed under generally high uncertainty about the veridical stimulus 

identities, and they did not receive external feedback about choice outcomes. We reasoned that, 

under these conditions, observers may have accumulated the internal decision variables, on which 

they based their choices in a context-dependent manner (i.e., with opposite sign for Repetitive and 

Alternating environments). This interpretation is in line with a normative model of sequential effects 

(Glaze et al, 2015). In statistical decision theory, as well as in neural signals observed in the brain, the 

decision variable not only encodes the categorical choice, but also the graded confidence about that 

choice (Kepecs et al., 2008; Kiani and Shadlen, 2009; Hebart et al., 2016). Consequently, we 

reasoned that the impact of previous choices on current bias should depend on the confidence 

associated with the previous choices. Our final set of analyses tested this hypothesis. 
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Modulation of choice history bias adjustment by confidence  

We here use the term ‘decision confidence’ in a statistical sense, to refer to the posterior probability 

that a choice is correct, given the evidence (Kepecs et al., 2008; Pouget et al., 2016; Sanders et al., 

2016; Urai et al., 2017). The key features of a model formalizing this construct are reproduced in 

Figure 6A (Kepecs et al., 2008; Sanders et al., 2016; Urai et al., 2017; see Methods). This definition of 

confidence is agnostic about the link to the subjective sense of confidence, or the ability to report this 

sense of confidence (but see Sanders et al, 2016). 

 We used two experimental variables consistent with this definition of confidence: accuracy and 

RT. Correct choices are overall associated with higher confidence for all non-zero evidence strengths 

(i.e., coherence levels, Figure 6A, top). The scaling of RT with motion coherence exhibited the same 

characteristic signature as uncertainty (i.e., the complement of confidence) as reported in previous 

studies (Sanders et al., 2016; Urai et al., 2017): RT decreased with coherence for correct choices, but 

increased for incorrect choices (Figure 6D, compare to Figure 6A). Linear regression revealed an 

opposite-signed relationship between motion coherence and RT, separately for correct (β = -0.150, 

s.e.m. = 0.027, p = 0.005) and error trials (β = 0.628, s.e.m. = 0.025, p = 0.025).  

 

 
 

Figure 6. Modulation of bias adjustment by proxies of confidence in previous choice. 

(A) Scaling of model-based confidence and uncertainty with evidence strength on correct and error trials. Adapted 

from (Urai et al., 2017) under a CC-BY 4.0 license. (B) Difference between previous choice weights from 

Repetitive and Alternating, sorted by previous choice correctness and coherence. (C) Comparison between 

previous correct and incorrect weights, for Repetitive and Alternating. Weights were first calculated separately for 

each previous coherence level and then pooled across coherence. (D) Reaction time as function of motion 

coherence sorted by correctness (pooled across Repetitive and Alternating). (E) Difference between previous 

𝑅𝑇𝑐𝑜𝑛𝑓 𝑥 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 modulation weights from Repetitive and Alternating, sorted by previous coherence. See main 
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text for details of the multiplicative modulation model. (F) 𝑅𝑇𝑐𝑜𝑛𝑓 𝑥 𝑐𝑜𝑟𝑟𝑒𝑐𝑡weights for Repetitive and Alternating. 

Modulation weights were first calculated separately for each previous coherence level and then pooled across 

coherence. Shaded areas, s.e.m.; dots, p < 0.05 (FDR-corrected t-test) across participants; *, p < 0.05; **, p < 

0.01; ***, p < 0.001, ****, p < 0.0001. 

 

 As predicted, the leverage of the preceding choice on bias adjustment (i.e., difference between 

Repetitive and Alternating) was larger when the previous choice was correct than incorrect, even when 

controlling for the level of previous motion coherence (Figure 6B, C). There was a significant effect of 

previous correct choice at all of the previous coherence levels, while there was no such effect for 

previous incorrect choices at any of the previous coherence levels (Figure 6B; Bf10:  0.23, 0.69, 0.23, 

0.34, and 0.28 for previous coherence levels: 0.05, 0.1, 0.2, 0.4, and 0.6, respectively).  

 When pooled across previous coherence levels, the weights for previous correct choices deviated 

significantly from zero in both conditions (Figure 6C; Repetitive: t(21) = 2.58, p = 0.0174; Alternating: 

t(21) = -4.42, p = 0.0002). Again there was no such effect for previous errors (Figure 6C; Repetitive: 

t(21) = -0.13, p = 0.8985, Bf10 = 0.22; Alternating: t(21) = 0.35, p = 0.7309, Bf10 = 0.24). The weights 

were significantly larger for correct than incorrect previous choices in Repetitive (t(21) = 3.06, p = 

0.0060, and the other way around in the Alternating (t(21) = -5.19, p < 0.0001Figure 6C). Please note 

that while the weights were averaged across previous coherence levels for visualization in Figure 6C, 

they were first estimated separately for each previous coherence in order to factor out effects of trial-

to-trial fluctuations in sensory evidence strength (see Materials and Methods). These results were 

qualitatively identical after random subsampling of the correct trials, so as to match the smaller 

number of incorrect trials for each previous coherence level (data not shown), ruling out the concern 

that the stronger bias adjustment after correct choices may have been due to the larger number of 

correct than error trials. In sum, these results were consistent with the idea that the weight of choices 

in the across-trial accumulation process depended on internal (i.e., stimulus-independent) fluctuations 

in decision confidence. 

 To assess the modulatory effect of the second confidence proxy, RT, on the bias adjustment, we 

built on an extension of the statistical model by multiplicative interaction terms. This quantified the 

degree to which the impact of previous correct choices on current bias was modulated by previous RT 

(see Materials and Methods for details). In these model fits, we transformed RT to scale positively with 

decision confidence, a variable we refer to as 𝑅𝑇𝑐𝑜𝑛𝑓 (Materials and Methods). Again, we split trials 

by their motion coherence to assess the modulatory effect of 𝑅𝑇𝑐𝑜𝑛𝑓 on the impact of correct choices 

(i.e. the weights for the interaction term 𝑅𝑇𝑐𝑜𝑛𝑓 𝑥 𝑐𝑜𝑟𝑟𝑒𝑐𝑡), over and above variations in evidence 

strength.  

 Larger values of 𝑅𝑇𝑐𝑜𝑛𝑓 were associated with a stronger impact of the previous (correct) choice 

on the current bias (Figure 6E, F), an effect that was robust even when we evaluated each previous 

coherence level separately (Figure 6E). When pooled across previous coherence levels, the 

interaction weight was significantly larger than zero in the Repetitive condition (Figure 6F; t(21) = 3.84, 

p = 0.0009), indicating a confidence-dependent enhancement of the tendency to repeat correct 

choices in that condition. Conversely, the interaction weight was significantly smaller than zero in the 
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Alternating condition (Figure 6F; t(21) = -3.71, p = 0.0013), indicating a confidence-dependent 

enhancement of the tendency to alternate correct choices. Thus, even within the correct choices, 

evidence-independent fluctuations in the associated confidence (indexed by 𝑅𝑇𝑐𝑜𝑛𝑓) boosted their 

impact on future choice bias. 

 Taken together, two independent proxies of decision confidence, choice accuracy and reaction 

time, both supported the conclusion that decision confidence boosted the adjustment of choice history 

biases to the structure of the environment.  

 

Discussion  
Choice history biases are a pervasive phenomenon in perceptual decision-making (Fernberger, 1920; 

Fründ et al., 2014). Here, we showed that these biases were largely dominated by categorical choices 

rather than motor responses and could be flexibly adjusted to environmental statistics even in the 

absence of feedback about choice outcome. In line with recent normative accounts, the strength of this 

adjustment was modulated by previous decision confidence. In environments with strong sequential 

structure it governed individual performance to a similar extent as perceptual sensitivity. Taken 

together, our results yield new insights into the functional origins and adaptive utility of choice history 

biases, with direct implications for their neural bases.  

 An important novel contribution of our study is the discovery of a confidence-weighted adjustment 

of choice history biases to changing environments. We propose that this was due to a context-

dependent accumulation of decision variables across trials. A similar accumulation process has been 

proposed to explain sequential effects under strong and unambiguous evidence (Yu and Cohen, 2009; 

Meyniel et al., 2016). Consequently, those latter models describe the accumulation of external 

observables rather than internal decision variables. The latter are often dissociated from external 

observables when the decision-maker is uncertain about the environmental state due to degraded 

evidence. While temporal accumulation is a widely established mechanism in perceptual choice 

(Bogacz et al., 2006; Gold and Shadlen, 2007; Ratcliff and McKoon, 2008; Wang, 2008; Ossmy et al., 

2013), previous models focus on the within-trial accumulation of the momentary sensory evidence. 

Across-trial accumulation of information is long established in the theory of reinforcement learning, but 

there it pertains to the accumulation of rewards (i.e., external signals about choice outcome) and 

spans substantially longer timescales than sensory evidence accumulation (Sutton and Barto, 1998; 

Sugrue, 2004; Glimcher, 2011). Our current results are indicative of an accumulation mechanism that 

operates (i) with a timescale situated in between those established for sensory evidence accumulation 

and action value learning, and (ii) on internal decision variables, which themselves result from the 

faster (within-trial) accumulation of sensory evidence. 

Such a context-dependent across-trial accumulation of decision variables has been postulated by 

a recent normative account (Glaze et al., 2015), and shown to account for history biases in simple 

saccadic choice (Kim et al., 2017). Little is currently known about the neural basis of this process. Our 

current work sets the stage for probing into its neural basis, by experimentally establishing key 

behavioral hallmarks of this accumulation process within the most widely used task in the 
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neurophysiology of perceptual decision-making (Gold and Shadlen, 2007; Siegel et al., 2011; Kelly 

and O’Connell, 2015). It will now be important to explore the underlying mechanisms through direct 

recordings of neural activity under conditions as used here.  

One recent study provided similar evidence for an effective adjustment of human observers to 

changing environmental statistics (Abrahamyan et al., 2016). Our current results and those from 

Abrahamyan et al (2016) complement each other in quantifying the adaptability of human choice 

history biases. In Abrahamyan et al. the nature of the change in the environment was different from 

the one we have used here: In their study, observers received unambiguous feedback about the 

outcome of each choice, and the manipulation of the stimulus sequence depended on the participants’ 

success or failure. Consequently, the process adjusting history biases likely depended on the 

combination of choices and their outcome. By contrast, in our study, the environments differed in their 

statistical structure independent of observers’ choices. Furthermore, participants remained uncertain 

about their choice outcomes, and therefore could only base their history biases on internal signals. 

This was likely the key aspect that mediated the confidence-weighting of the impact of previous 

choices on current bias in our present study. Thus, the adjustment effects in our study and the one 

from Abrahamyan and colleagues (2016) likely resulted from distinct computational mechanisms. 

 The interpretation provided above as well as the normative framework by Glaze et al (2015) offer 

a natural interpretation of the modulatory effect of decision confidence on the adjustment of choice 

behavior. In statistical decision theory, as well as in neural signals observed in the brain, the decision 

variable does not only encode the categorical choice, but also the graded confidence about that choice 

(Kepecs et al., 2008; Kiani and Shadlen, 2009; Hebart et al., 2016). This quantity is the best proxy for 

the true state of the environment available to the decision-maker in the absence of external feedback. 

A decision variable large in magnitude implies large confidence and predicts accurate as well as fast 

decisions (Sanders et al., 2016). Thus, across-trial accumulation of decision variables into choice 

history bias predicts that correct or fast choices have a stronger impact on the history bias adjustment 

to environmental statistics – just as we observed in our second experiment. The same idea can 

account for the observation (Urai et al., 2017) that ‘intrinsic’ history biases emerging under random 

stimulus sequences, regardless of their direction (i.e., towards alternation or repetition), are weaker 

following low-confidence decisions (i.e., long reaction times). In such contexts, corresponding to the 

Neutral condition in our Experiment 2, observers’ biases might result from biased internal 

representations of the environmental structure (i.e., biased ‘subjective hazard rates’ in the model by 

Glaze et al, 2015)). Taken together, confidence-weighting of the impact of previous choices on current 

bias may be a diagnostic feature of the accumulation of graded decision variables across trials that we 

propose as a mechanism underlying the history bias adjustment in our experiment. 

 In our account the strength of history bias adjustment depends on the magnitude of the decision 

variable, which is also the sole source of variations in confidence in the confidence model from Figure 

6A (Kepecs et al, 2008). According to this model the difference in confidence between correct and 

error trials increases as a function of stimulus strength. Thus, one would expect the impact of 

correctness on bias adjustment to also increase as a function of stimulus strength. Such an increase 

was not evident in our data (Figure 6B). A possible explanation is that choice accuracy was less 
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closely coupled to the decision variable than postulated by the confidence model from Figure 6A. For 

example, some errors will be caused by noise downstream from the decision variable and 

consequently not affect the bias adjustment. Thus, motor errors will counteract the dependence of 

history bias adjustment on correctness. Because misperception of the true stimulus category becomes 

less likely with stronger evidence, the relative contribution of motor errors to incorrect choices will 

increases as a function of evidence strength. This might explain why the effect of previous correctness 

on history bias adjustment did not increase as a function of previous evidence strength in our data. 

Similar considerations hold for our second confidence proxy, reaction time. 

 Our analyses revealed that the contributions of previous stimuli, perceptual choices, and motor 

responses were dissociable in terms of their strength, sign, and time course. Importantly, the dominant 

and consistent bias in standard conditions with random stimulus sequences, was to repeat preceding 

choices, rather than motor responses. Two recent studies similarly decoupled perceptual choice and 

motor response (Akaishi et al., 2014; Pape and Siegel, 2016). One of them (Pape and Siegel, 2016) 

showed that a bias to alternate response hands from trial to trial systematically contributed to 

sequential effects, due to activity dynamics within motor cortex. This motor response alternation bias 

was superimposed onto a choice repetition bias in their study, but Pape and Siegel (2016) did not 

compare the magnitude and time course of these two effects directly. When performing such a direct 

comparison, we here found the contribution of previous choices to be significantly stronger, and more 

prolonged in time. The predominance of choices over motor responses is consistent with the results 

(focusing on the preceding decision only) from Akaishi et al (2014). Taken together, the data by 

Akaishi et al (2014) and our present study indicate that history biases in perceptual decision-making 

are governed by decision variables encoded in an abstract, action-independent format. Such 

representations of the decision variable exist in associative brain regions, such as posterior parietal or 

prefrontal cortex (Bennur and Gold, 2011; Hebart et al., 2012, 2016), which also exhibit the short-term 

memory dynamics necessary for the persistence of biases in the decision-making machinery (Wang, 

2002; Bonaiuto et al., 2016; Morcos and Harvey, 2016).  

 We conclude that human observers accumulate action-independent, graded decision variables 

across trials towards biases for upcoming choices in a context-dependent manner. This process 

enables observers to adjust their choice behavior to environmental statistics in the absence of 

unambiguous information about choice outcome. Our findings are in line with normative theory and 

constrain the candidate neural sources of choice history biases. 
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