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2		

ABSTRACT 27	

Single-particle tracking (SPT) has become an important method to bridge 28	

biochemistry and cell biology since it allows direct observation of protein binding and 29	

diffusion dynamics in live cells. However, accurately inferring information from SPT studies 30	

is challenging due to biases in both data analysis and experimental design. To address analysis 31	

bias, we introduce “Spot-On”, an intuitive web-interface. Spot-On implements a kinetic 32	

modeling framework that accounts for known biases, including molecules moving out-of-33	

focus, and robustly infers diffusion constants and subpopulations from pooled single-molecule 34	

trajectories. To minimize inherent experimental biases, we implement and validate 35	

stroboscopic photo-activation SPT (spaSPT), which minimizes motion-blur bias and tracking 36	

errors. We validate Spot-On using experimentally realistic simulations and show that Spot-On 37	

outperforms other methods. We then apply Spot-On to spaSPT data from live mammalian 38	

cells spanning a wide range of nuclear dynamics and demonstrate that Spot-On consistently 39	

and robustly infers subpopulation fractions and diffusion constants.	  40	
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INTRODUCTION  41	

Advances in imaging technologies, genetically encoded tags and fluorophore 42	

development have made single-particle tracking (SPT) an increasingly popular method for 43	

analyzing protein dynamics (Liu et al., 2015). Recent biological application of SPT have 44	

revealed that transcription factors (TFs) bind mitotic chromosomes (Teves et al., 2016), how 45	

Polycomb interacts with chromatin (Zhen et al., 2016), that “pioneer factor” TFs bind 46	

chromatin dynamically (Swinstead et al., 2016), that TF binding time correlates with 47	

transcriptional activity (Loffreda et al., 2017) and that different nuclear proteins adopt distinct 48	

target search mechanisms (Izeddin et al., 2014; Rhodes et al., 2017). Compared with indirect 49	

and bulk techniques such as Fluorescence Recovery After Photobleaching (FRAP) or 50	

Fluorescence Correlation Spectroscopy 51	

(FCS), SPT is often seen as less biased and 52	

less model-dependent (Mueller et al., 2013; 53	

Shen et al., 2017). In particular, SPT makes 54	

it possible to directly follow single 55	

molecules over time in live cells and has 56	

provided clear evidence that proteins often 57	

exist in several subpopulations that can be 58	

characterized by their distinct diffusion 59	

coefficients (Mueller et al., 2013; Shen et 60	

al., 2017). For example, nuclear proteins 61	

such as TFs and chromatin binding proteins 62	

typically show a quasi-immobile chromatin-63	

bound fraction and a freely diffusing 64	

fraction inside the nucleus. However, while 65	

SPT of slow-diffusing membrane proteins is 66	

an established technology (Weimann et al., 67	

2013), 2D-SPT of proteins freely diffusing 68	

inside a 3D nucleus introduces several 69	

biases that must be corrected for in order to 70	

obtain accurate estimates of subpopulations. 71	

First, while a frame is acquired, fast-72	

	
Figure 1. Bias in single-particle tracking (SPT) 
experiments and analysis methods. (A) “Motion-blur” 
bias. Constant excitation during acquisition of a frame will 
cause a fast-moving particle to spread out its emission 
photons over many pixels and thus appear as a motion-
blur, which make detection much less likely with common 
PSF-fitting algorithms. In contrast, a slow-moving or 
immobile particle will appear as a well-shaped PSF and 
thus readily be detected. (B) Tracking ambiguities. 
Tracking at high particle densities prevents unambiguous 
connection of particles between frames and tracking errors 
will cause displacements to be misidentified. (C) 
Defocalization bias. During 2D-SPT, fast-moving particles 
will rapidly move out-of-focus resulting in short trajectories, 
whereas immobile particles will remain in-focus until they 
photobleach and thus exhibit very long trajectories. This 
results in a bias toward slow-moving particles, which must 
be corrected for. (D) Analysis method. Any analysis method 
should ideally avoid introducing biases and accurately 
correct for known biases in the estimation of subpopulation 
parameters such as DFREE, FBOUND, DBOUND. 
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diffusing molecules move and spread out their emitted photons over multiple pixels causing a 73	

“motion-blur” artifact (Berglund, 2010; Deschout et al., 2012; Izeddin et al., 2014), whereas 74	

immobile or slow-diffusing molecules resemble point spread functions (PSFs; Figure 1A). 75	

This results in under-counting of the fast-diffusing subpopulation. Second, high particle 76	

densities tend to cause tracking errors when localized molecules are connected into 77	

trajectories. This can result in incorrect displacement estimates (Figure 1B). Third, since SPT 78	

generally employs 2D imaging of 3D motion, immobile or slow-diffusing molecules will 79	

generally remain in-focus until they photobleach and therefore exhibit long trajectories, 80	

whereas fast-diffusing molecules in 3D rapidly move out-of-focus, thus resulting in short 81	

trajectories (we refer to this as “defocalization”; Figure 1C). This results in a time-dependent 82	

under-counting of fast-diffusing molecules (Kues and Kubitscheck, 2002). Fourth, SPT 83	

analysis methods themselves may introduce biases; to avoid this, an accurate and validated 84	

method is needed (Figure 1D).  85	

Here, we introduce an integrated approach to overcome all four biases. The first two 86	

biases must be minimized at the data acquisition stage and we describe an experimental SPT 87	

method to do so (spaSPT), whereas the latter two can be overcome using a previously 88	

developed kinetic modeling framework (Hansen et al., 2017; Mazza et al., 2012) now 89	

extended and implemented in Spot-On. Spot-On is available as a web-interface 90	

(https://SpotOn.berkeley.edu) as well as Python and Matlab packages. 	91	

 92	

 93	

RESULTS  94	

Overview of Spot-On 95	

Spot-On is a user-friendly web-interface that pedagogically guides the user through a 96	

series of quality-checks of uploaded datasets consisting of pooled single-molecule trajectories. 97	

It then performs kinetic model-based analysis that leverages the histogram of molecular 98	

displacements over time to infer the fraction and diffusion constant of each subpopulation 99	

(Figure 2). Spot-On does not directly analyze raw microscopy images, since a large number of 100	

localization and tracking algorithms exist that convert microscopy images into single-101	

molecule trajectories (for a comparison of particle tracking methods, see (Chenouard et al., 102	

2014)).	103	
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To use Spot-On, a user uploads their SPT trajectory data in one of several formats 104	

(Figure 2). Spot-On then generates useful meta-data for assessing the quality of the 105	

experiment (e.g. localization density, number of trajectories etc.). Spot-On also allows a user 106	

to upload multiple datasets (e.g. different replicates) and merge them. Spot-On then calculates 107	

and displays histograms of displacements over multiple time delays. The next step is model 108	

fitting. Spot-On models the distribution of displacements for each subpopulation using 109	

Brownian motion under steady-state conditions without state transitions (full model 110	

description in Materials and Methods). Spot-On also accounts for localization errors (either 111	

user-defined or inferred from the SPT data). Crucially, Spot-On corrects for defocalization 112	

bias (Figure 1C) by explicitly calculating the probability that molecules move out-of-focus as 113	

a function of time and their diffusion constant (Video 1). In fact, Spot-On uses the gradual 114	

loss of freely diffusing molecules over time as additional information to infer the diffusion 115	

constant and size of each subpopulation.  116	

Spot-On considers either 2 or 3 subpopulations. For instance, TFs in nuclei can 117	

generally exist in both a chromatin-bound state characterized by slow diffusion and a freely 118	

diffusing state associated with rapid diffusion. In this case, a 2-state model is generally 119	

appropriate (“bound” vs. “free”). Spot-On allows a user to choose their desired model and 120	

parameter ranges and then fits the model to the data. Using the previous example of TF 121	

dynamics, this allows the user to infer the bound fraction and the diffusion constants. Finally, 122	

once a user has finished fitting an appropriate model to their data, Spot-On allows easy 123	

download of publication-quality figures and relevant data (Figure 2).  124	

 125	

Validation of Spot-On using simulated SPT data and comparison to other 126	

methods 127	

	
Figure 2. Overview of Spot-On interface. Overview of Spot-On. To use Spot-On, a user uploads raw SPT data in 
the form of pooled SPT trajectories to the Spot-On web-interface. Spot-On then calculates displacement histograms. 
The user inputs relevant experimental descriptors and chooses a model to fit. After model-fitting, the user can then 
download model-inferred parameters, meta-data and download publication-quality figures. 
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We first evaluated whether Spot-On could accurately infer subpopulations (Figure 1D) 128	

and successfully account for known biases (Figure 1C) using simulated data. We compared 129	

Spot-On to a popular alternative approach of first fitting the mean square displacement (MSD) 130	

of individual trajectories of a minimum length and then fitting the distribution of estimated 131	

diffusion constants (we refer to this as “MSDi”) as well as a sophisticated Hidden-Markov 132	

Model-based Bayesian inference method (vbSPT) (Persson et al., 2013). Since most SPT data 133	

is collected using highly inclined illumination (Tokunaga et al., 2008) (HiLo), we simulated 134	

TF binding and diffusion dynamics (2-state model: “bound vs. free”) confined inside a 4 µm  135	

radius mammalian nucleus under realistic HiLo SPT experimental settings subject to a 25 nm 136	

localization error (Figure 3 – Figure Supplement 1). We considered the effect of the exposure 137	

time (1 ms, 4 ms, 7 ms, 13 ms, 20 ms), the free diffusion constant (from 0.5 µm²/s to 14.5 138	

µm²/s in 0.5 µm²/s increments) and the bound fraction (from 0% to 95% in 5% increments) 139	

yielding a total of 3480 different conditions that span the full range of biologically plausible 140	

dynamics (Figure 3 – Figure Supplement 2-3; Appendix 1). 	141	

Spot-On accurately inferred subpopulation sizes with minimal error (Figure 3A-B, 142	

Table 1), but slightly underestimated the diffusion constant (-4.8%; Figure 3B; Table 1). 143	

However, this underestimate was due to particle confinement inside the nucleus: Spot-On 144	

correctly inferred the diffusion constant when the confinement was relaxed (Figure 3 – Figure 145	

Supplement 4; 20 µm nuclear radius instead of 4 µm). This emphasizes that diffusion 146	

constants measured by SPT inside cells should be viewed as apparent diffusion constants. In 147	

contrast, the MSDi method failed under most conditions regardless of whether all trajectories 148	

were used (MSDi (all)) or a fitting filter applied (MSDi (R2>0.8); Figure 3A-B; Table 1). 149	

vbSPT performed almost as well as Spot-On for slow-diffusing proteins, but showed larger 150	

deviations for fast-diffusing proteins (Figure 3 – Figure Supplement 2-3).  151	
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7		

To illustrate how the methods could give such divergent results when run on the same 152	

SPT data, we considered two example simulations (Figure 3C-D; more examples in Figure 3 – 153	

Figure Supplement 3). First, we considered a mostly bound and relatively slow diffusion case 154	

(DFREE: 2.0 µm²/s; FBOUND: 70%; Δτ: 7 ms; Figure 3C). Spot-On and vbSPT accurately inferred 155	

both DFREE and FBOUND. In contrast, MSDi (R2>0.8) greatly underestimated FBOUND (13.6% vs. 156	

70%), whereas MSDi (all) slightly overestimated FBOUND. Since MSDi-based methods apply 157	

two thresholds (first, minimum trajectory length: here 5 frames; second, filtering based on R2) 158	
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in many cases less than 5% of all trajectories passed these thresholds and this example 159	

illustrate how sensitive MSDi-based methods are to these thresholds. Second, we considered 160	

an example with a slow frame rate and fast diffusion, such that the free population rapidly 161	

moves out-of-focus (DFREE: 14.0 µm²/s; FBOUND: 50%; Δτ: 20 ms; Figure 3D). Spot-On again 162	

accurately inferred FBOUND, and slightly underestimated DFREE due to high nuclear confinement 163	

(Figure 3 – Figure Supplement 4). Although vbSPT generally performed well, because it does 164	

not correct for defocalization bias (vbSPT was developed for bacteria, where defocalization 165	

	
Figure 3. Validation of Spot-On using simulations and comparisons to other methods. 
(A-B) Simulation results. Experimentally realistic SPT data was simulated inside a spherical mammalian nucleus with 
a radius of 4 μm subject to highly-inclined and laminated optical sheet illumination (Tokunaga et al., 2008) (HiLo) of 
thickness 4 μm illuminating the center of the nucleus. The axial detection window was 700 nm with Gaussian edges 
and particles were subject to a 25 nm localization error in all three dimensions. Photobleaching corresponded to a 
mean trajectory length of 4 frames inside the HiLo sheet and 40 outside. 3480 experiments were simulated with 
parameters of DFREE=[0.5;14.5] in steps of 0.5 μm2/s and FBOUND=[0;95% in steps of 5% and the frame rate 
correspond to Δτ=[1,4,7,10,13,20] ms. Each experiment was then fitted using Spot-On, using vbSPT (maximum of 2 
states allowed) (Persson et al., 2013), MSDi using all trajectories of at least 5 frames (MSDi (all)) or MSDi using all 
trajectories of at least 5 frames where the MSD-curvefit showed at least R2>0.8 (MSDi (R2>0.8)). (A) shows the 
distribution of absolute errors in the FBOUND–estimate and (B) shows the distribution of relative errors in the DFREE–
estimate. (C) Single simulation example with DFREE = 2.0 µm2/s; FBOUND = 70%; 7 ms per frame. The table on the 
right uses numbers from CDF-fitting, but for simplicity the fits to the histograms (PDF) are shown in the three plots. 
(D) Single simulation example with DFREE = 14.0 µm2/s; FBOUND = 50%; 20 ms per frame. Full details on how SPT 
data was simulated and analyzed with the different methods is given in Appendix 1. 
Figure Supplement 1. Overview of SPT simulations  
Figure Supplement 2. Comparison of Spot-On, vbSPT and MSDi estimates of DFREE and FBOUND to ground-truth 
simulation results inside a 4 µm radius nucleus.  
Figure Supplement 3. Representative fits for Spot-On, vbSPT and MSDi to ground-truth simulations. 
Figure Supplement 4. Comparison of Spot-On, vbSPT and MSDi estimates of DFREE and FBOUND to ground-truth 
simulations inside a 20 µm radius nucleus. 
Figure Supplement 5. Effect of defocalization bias correction. 
Figure Supplement 6. Evaluation of the 3-states model. 
Figure Supplement 7. Sensitivity of Spot-On to the axial detection range estimate. 
Figure Supplement 8. Sensitivity of Spot-On to the number of time points considered. 
Figure Supplement 9. Comparison of Spot-On and MSDi estimates of DFREE and FBOUND to ground-truth simulation 
results inside a 4 µm radius nucleus using PDF-fitting. 
Figure Supplement 10. Sensitivity of Spot-On to state changes and comparison with vbSPT. 
Figure Supplement 11. Robustness of localization error estimates from Spot-On. 
Figure Supplement 12. Sensitivity of Spot-On, vbSPT and MSDi (R2>0.8) to sample size. 
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bias is minimal), vbSPT strongly overestimated FBOUND in this case (Figure 3D). Consistent 166	

with this, Spot-On without defocalization-bias correction also strongly overestimates the 167	

bound fraction (Figure 3 – Figure Supplement 5). We conclude that correcting for 168	

defocalization bias is critical. The MSDi-based methods again gave divergent results despite 169	

seemingly fitting the data well. Thus, a good fit to a histogram of log(D) does not necessarily 170	

imply that the inferred DFREE and FBOUND are accurate. A full discussion and comparison of the 171	

methods is given in Appendix 1. Finally, we extended this analysis of simulated SPT data to 3 172	

states (one “bound”, two “free” states) and compared Spot-On and vbSPT. Spot-On again 173	

accurately inferred both the diffusion constants and subpopulation fractions of each 174	

population and slightly outperformed vbSPT (Figure 3 – Figure Supplement 6). 	175	

Having established that Spot-On is accurate, we next tested whether it was also robust. 176	

Spot-On’s ability to infer DFREE and FBOUND was robust to misestimates of the axial detection 177	

range of ~100-200 nm (Figure 3 – Figure Supplement 7), was minimally affected by the 178	

number of timepoints considered and fitting parameters (Figure 3 – Figure Supplement 8-9; 179	

see also Appendix 2 for parameter considerations) and was not strongly affected by state 180	

changes (e.g. binding or unbinding) provided the time-scale of state changes is significantly 181	

longer than the frame rate (Figure 3 – Figure Supplement 10). Moreover, Spot-On inferred the 182	

localization error with nanometer precision provided that a significant bound fraction is 183	

present (Figure 3 – Figure Supplement 11). Finally, we sub-sampled the data sets and found 184	

that just ~3000 short trajectories (mean length ~3-4 frames) were sufficient for Spot-On to 185	

reliably infer the underlying dynamics (Figure 3 – Figure Supplement 12). We conclude that 186	

Spot-On is robust.  	187	

Taken together, this analysis of simulated SPT data suggests that Spot-On successfully 188	

overcomes defocalization and analysis method biases (Figure 1C-D), accurately and robustly 189	

estimates subpopulations and diffusion constants across a wide range of dynamics and, 190	

finally, outperforms other methods.  191	

 192	

  DFREE   FBOUND  
Analysis method bias std iqr bias std iqr 
Spot-On (all) -4.8% 3.3% 3.5% -1.7% 1.2% 1.8% 
vbSPT (2-state) 0.8% 12.5% 6.8% 5.0% 4.6% 6.1% 
MSDi (R2>0.8) 8.0% 28.5% 4.9% -20.6% 26.4% 32.1% 
MSDi (all) -39.6% 41.8% 19.0% 22.0% 15.8% 17.8% 
Table 1. Summary of simulation results and comparison of methods. 193	
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The table shows the bias (mean error), “std” (standard deviation) and “iqr” (inter-quartile 194	
range: difference between the 75th and 25th percentile) for each method for all 3480 195	
simulations. The left column shows the relative bias/std/iqr for the DFREE-estimate and the 196	
right column shows the absolute bias/std/iqr for the FBOUND-estimate. 197	

 198	

spaSPT minimizes biases in experimental SPT acquisitions 199	

Having validated Spot-On on simulated data, which is not subject to experimental 200	

biases (Figure 1A-B), we next sought to evaluate Spot-On on experimental data. To generate 201	

SPT data with minimal acquisition bias we performed stroboscopic photo-activation SPT 202	

(spaSPT; Figure 4A), which integrates previously and separately published ideas to minimize 203	

experimental biases. First, spaSPT minimizes motion-blurring, which is caused by particle 204	

movement during the camera exposure time (Figure 1A), by using stroboscopic excitation (Elf 205	

et al., 2007). We found that the bright and photo-stable dyes PA-JF549 and PA-JF646 (Grimm et 206	

al., 2016a) in combination with the HaloTag (“Halo”) labeling strategy made it possible to 207	

achieve a signal-to-background ratio greater than 5 with just 1 ms excitation pulses, thus 208	

providing a good compromise between minimal motion-blurring and high signal (Figure 4B). 209	

Second, spaSPT minimizes tracking errors (Figure 1B) by using photo-activation (Figure 4A) 210	

(Grimm et al., 2016a; Manley et al., 2008). Tracking errors are generally caused by high 211	

particles densities. Photo-activation allows tracking at extremely low densities (£1 molecule 212	

per nucleus per frame) and thereby minimizes tracking errors (Izeddin et al., 2014), whilst at 213	

the same time generating thousands of trajectories. To consider the full spectrum of nuclear 214	

protein dynamics, we studied histone H2B-Halo (overwhelmingly bound; fast diffusion; 215	

Figure 4C), Halo-CTCF (Hansen et al., 2017) (largely bound; slow diffusion; Figure 4D) and 216	

Halo-NLS (overwhelmingly free; very fast diffusion; Figure 4F) in human U2OS cells and 217	

Halo-Sox2 (Teves et al., 2016) (largely free; intermediate diffusion; Figure 4E) in mouse 218	

embryonic stem cells (mESCs). We labeled Halo-tagged proteins in live cells with the 219	

HaloTag ligands of PA-JF549 or PA-JF646 (Grimm et al., 2016a) and performed spaSPT using 220	

HiLo illumination (Video 2). To generate a large dataset to comprehensively test Spot-On, we 221	

performed 1064 spaSPT experiments across 60 different conditions.  222	

 223	

Validation of Spot-On using spaSPT data at different frame rates	224	

First, we studied whether Spot-On could consistently infer subpopulations over a wide 225	

range of frame rates. We experimentally determined the axial detection range (Figure 4 – 226	

Figure Supplement 1) and performed spaSPT at 200 Hz, 167 Hz, 134 Hz, 100 Hz, 74 Hz and 227	
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50 Hz using the four cell lines. Spot-On consistently inferred the diffusion constant (Figure 228	

4G) and total bound fraction across the wide range of frame rates (Figure 4H). This is notable 229	

since all four proteins exhibit apparent anomalous diffusion (Figure 4 – Figure Supplement 2) 230	

and this demonstrates that Spot-On is also robust to anomalous diffusion despite modeling 231	

Brownian motion. While the ground-truth is unknown when considering experiments, Spot-232	

On gave biologically reasonable results: histone H2B was overwhelmingly bound and free 233	

Halo-3xNLS was overwhelmingly unbound (comparison with vbSPT: Figure 4 – Figure 234	

Supplement 3). These results provide additional validation for the bias corrections 235	

implemented in Spot-On. Finally, we demonstrated above that just ~3000 short trajectories 236	

(mean length ~3-4 frames) were sufficient for Spot-On to accurately infer DFREE and FBOUND 237	

(Figure 3 – Figure Supplement 12). Here we obtain well above 3000 trajectories per cell even 238	

at ~1 localization/frame. More generally, with spaSPT this should be generally achievable for 239	

	
Figure 4. Overview of spaSPT and experimental results. (A) spaSPT. HaloTag-labeling with UV (405 nm) photo-
activatable dyes enable spaSPT. spaSPT minimizes tracking errors through photo-activation which maintains low 
densities. (B) Example data. Raw spaSPT images for Halo-CTCF tracked in human U2OS cells at 134 Hz (1 ms 
stroboscopic 633 nm excitation of JF646). (C-F) Histograms of displacements for multiple Δτ of histone H2B-Halo in 
U2OS cells (C), Halo-CTCF in U2OS cells (d), Halo-Sox2 in mES cells (E) and Halo-3xNLS in U2OS cells (F). (G-H) 
Effect of frame-rate on DFREE and FBOUND. spaSPT was performed at 200 Hz, 167 Hz, 134 Hz, 100 Hz, 74 Hz and 50 
Hz using the 4 cell lines and the data fit using Spot-On and a 2-state model. Each experiment on each cell line was 
performed in 4 replicates on different days and ~5 cells imaged each day. Error bars show standard deviation 
between replicates. (I) Motion-blur experiment. To investigate the effect of “motion-blurring”, the total number of 
excitation photons was kept constant, but delivered during pulses of duration 1, 2, 4, 7 ms or continuous (cont) 
illumination. (J-K) Effect of motion-blurring on DFREE and FBOUND. spaSPT data was recorded at 100Hz and 2-state 
model-fitting performed with Spot-On. The inferred DFREE (J) and FBOUND (K) were plotted as a function of excitation 
pulse duration. Each experiment on each cell line was performed in 4 replicates on different days and ~5 cells 
imaged each day. Error bars show standard deviation between replicates. 
Figure Supplement 1. Experimental measurement of axial detection range. 
Figure Supplement 2. Sensitivity of Spot-On to anomalous diffusion. 
Figure Supplement 3. Re-analysis of experimental data using vbSPT. 
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all but the most lowly expressed nuclear proteins. Thus, this now makes it possible to study 240	

biological cell-to-cell variability in TF dynamics.  241	

 242	

Effect of motion-blur bias on parameter estimates	243	

Having validated Spot-On on experimental SPT data, we next applied Spot-On to 244	

estimate the effect of motion-blurring on the estimation of subpopulations. As mentioned, 245	

since most localization algorithms (Chenouard et al., 2014; Sergé et al., 2008) achieve super-246	

resolution through PSF-fitting, this may cause motion-blurred molecules to be undersampled, 247	

resulting in a bias towards slow-moving molecules (Figure 1A). We estimated the extent of 248	

the bias by imaging the four cell lines at 100 Hz and keeping the total number of excitation 249	

photons constant, but varying the excitation pulse duration (1 ms, 2 ms, 4 ms, 7 ms, constant; 250	

Figure 4I). For generality, we performed these experiments using both PA-JF549 and PA-JF646 251	

dyes (Grimm et al., 2016a). We used Spot-On to fit the data and plotted the apparent free 252	

diffusion constant (Figure 4J) and apparent total bound fraction (Fig. 4K) as a function of the 253	

excitation pulse duration. For fast-diffusing proteins like Halo-3xNLS and H2B-Halo, 254	

motion-blurring resulted in a large underestimate of the free diffusion constant, whereas the 255	

effect on slower proteins like CTCF and Sox2 was minor (Figure 4J). Regarding the total 256	

bound fraction, motion-blurring caused a ~2-fold overestimate for rapidly diffusing Halo-257	

3xNLS (Figure 4K), but had a minor effect on slower proteins like H2B, CTCF and Sox2. 258	

Importantly, similar results were obtained for both dyes, though JF549 yielded a slightly lower 259	

bound fraction for Halo-3xNLS (Figure 4J-K). We note that the extent of the bias due to 260	

motion-blurring will likely be very sensitive to the localization algorithm. Here, using the 261	

MTT-algorithm (Sergé et al., 2008), motion-blurring caused up to a 2-fold error in both the 262	

DFREE and FBOUND estimates. 263	

 Taken together, these results suggest that Spot-On can reliably be used even for SPT 264	

data collected under constant illumination provided that protein diffusion is sufficiently slow 265	

and, moreover, provides a helpful guide for optimizing SPT imaging acquisitions (we include 266	

a full discussion of considerations for SPT acquisitions and a proposal for minimum reporting 267	

standards in SPT in Appendix 3 and 4).  268	

 269	

DISCUSSION  270	
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In summary, SPT is an increasingly popular technique and has been revealing 271	

important new biological insight. However, a clear consensus on how to perform and analyze 272	

SPT experiments is currently lacking. In particular, 2D SPT of fast-diffusing molecules inside 273	

3D cells is subject to a number of inherent experimental (Figure 1A-B) and analysis (Figure 274	

1C-D) biases, which can lead to inaccurate conclusions if not carefully corrected for.  275	

Here, we introduce approaches for accounting for both experimental and analysis 276	

biases. Several methods are available for localization/tracking (Chenouard et al., 2014; Sergé 277	

et al., 2008) and for classification of individual trajectories (Monnier et al., 2015; Persson et 278	

al., 2013). Spot-On now complements these tools by providing a bias-corrected, 279	

comprehensive open-source framework for inferring subpopulations and diffusion constants 280	

from pooled SPT data and makes this platform available through a convenient web-interface. 281	

This platform can easily be extended to other diffusion regimes. Moreover, spaSPT provides 282	

an acquisition protocol for tracking fast-diffusing molecules with minimal bias. We hope that 283	

these validated tools will help make SPT more accessible to the community and contribute 284	

positively to the emergence of “gold-standard” acquisition and analysis procedures for SPT.	285	

	  286	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 26, 2017. ; https://doi.org/10.1101/171983doi: bioRxiv preprint 

https://doi.org/10.1101/171983
http://creativecommons.org/licenses/by-nc-nd/4.0/


14		

Acknowledgements	287	
We are very grateful to Davide Mazza who inspired this work and provided invaluable 288	
comments on Spot-On, to Florian Mueller for suggestions on the web-application, Christophe 289	
Zimmer for insightful discussions, David McSwiggen and Sheila Teves for kindly providing 290	
cell lines, Carolyn Elya and Chiahao Tsui for the name “Spot-On”, and to members of the 291	
Tjian/Darzacq labs and Maxime Dahan for discussions. We also thank Astou Tangara and 292	
Anatalia Robles for microscope maintenance.  ASH is a postdoctoral fellow of the Siebel 293	
Stem Cell Institute. This work was supported by NIH grants UO1-EB021236 and U54-294	
DK107980 (XD), the California Institute of Regenerative Medicine grant LA1-08013 (XD), by 295	
the Howard Hughes Medical Institute (003061, RT) and used the computational and storage 296	
services (TARS cluster) provided by the IT department at Institut Pasteur, Paris. 297	
 298	
Competing interests 299	
RT is a member of eLife’s Board of Directors. JBG and LDL declare competing financial 300	
interests. The other authors declare no competing interests. 301	
 302	
Author contributions	303	
ASH, MW and XD conceived the project. ASH and MW developed Spot-On, performed 304	
simulations, analyzed experiments and drafted the manuscript. ASH performed experiments. 305	
JBG and LDL developed and contributed JF dyes. RT and XD supervised the project. All 306	
authors edited the manuscript. ASH and MW contributed equally and are listed in 307	
alphabetical order on the first page.  308	
	  309	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 26, 2017. ; https://doi.org/10.1101/171983doi: bioRxiv preprint 

https://doi.org/10.1101/171983
http://creativecommons.org/licenses/by-nc-nd/4.0/


15		

MATERIALS AND METHODS  310	
 311	
Spot-On model  312	
Spot-On implements and extends a kinetic modeling framework first described in Mazza et al. 313	
(Mazza et al., 2012) and later extended in Hansen et al. (Hansen et al., 2017). Briefly, the 314	
model infers the diffusion constant and relative fractions of two or three subpopulations from 315	
the distribution of displacements (or histogram of displacements) computed at increasing lag 316	
time (1∆𝜏, 2∆𝜏, ...). This is performed by fitting a semi-analytical model to the empirical 317	
histogram of displacements using non-linear least squares fitting. Defocalization is explicitly 318	
accounted for by modeling modeling the fraction of particles that remain in focus over time as 319	
a function of their diffusion constant. 320	
Mathematically, the evolution over time of a concentration of particles located at the origin as 321	
a Dirac delta function and which follows free diffusion in two dimensions with a diffusion 322	
constant D can be described by a propagator (also known as Green’s function). Properly 323	
normalized, the probability of a particle starting at the origin ending up at a location r = (x,y) 324	
after a time delay, ∆𝜏, is given by:  325	

𝑃 𝑟, ∆𝜏 = 𝑁
𝑟

2𝐷∆𝜏 𝑒
+,-
./∆0 326	

Here N is a normalization constant with units of length. Spot-On integrates this distribution 327	
over a small histogram bin window, Δr, to obtain a normalized distribution, the distribution of 328	
displacement lengths to compare to binned experimental data. For simplicity, we will 329	
therefore leave out N from subsequent expressions. Since experimental SPT data is subject to 330	
a significant mean localization error, 𝜎, Spot-On also accounts for this (Matsuoka et al., 331	
2009): 332	

𝑃 𝑟, ∆𝜏 =
𝑟

2 𝐷∆𝜏 + 𝜎3 𝑒
+,-

. /∆045-  333	

Many proteins studied by SPT can generally exist in a quasi-immobile state (e.g. a chromatin-334	
bound state in the case of transcription factors) and one or more mobile states. We will first 335	
consider the 2-state model. Under most conditions, state transitions can be ignored ((Hansen 336	
et al., 2017) and Figure 3 – Figure Supplement 10). Thus, the steady-state 2-state model 337	
considered by Spot-On becomes: 338	

𝑃 𝑟, ∆𝜏 = 𝐹BOUND
𝑟

2 𝐷BOUND∆𝜏 + 𝜎3
𝑒

+,-
. /BOUND∆045-339	

+ 1 − 𝐹BOUND
𝑟

2 𝐷FREE∆𝜏 + 𝜎3
𝑒

+,-
. /FREE∆045-  340	

Here, the quasi-immobile subpopulation has diffusion constant, 𝐷BOUND, and makes up a 341	
fraction, 𝐹BOUND, whereas the freely diffusing subpopulation has diffusion constant, 𝐷FREE, 342	
and makes up a fraction, 𝐹FREE = 1 − 𝐹BOUND. To account for defocalization bias (Figure 1C), 343	
Spot-On explicitly considers the probability of the freely diffusing subpopulation moving out 344	
of the axial detection range, ∆𝑧, during each time delay, ∆𝜏. This is important. For example, 345	
only ~25% of freely-diffusing molecules will remain in focus for at least 5 frames (assuming 346	
∆𝜏=10 ms; ∆𝑧=700 nm; 1 gap allowed; D=5 µm²/s), resulting in a 4-fold undercounting if 347	
uncorrected for. If we assume absorbing boundaries such that any molecule that contacts the 348	
edges of the axial detection range located at 𝑧MAX = ∆ 𝑧 2 and 𝑧MIN = −∆𝑧 2 is permanently 349	
lost, the fraction of freely diffusing molecules with diffusion constant, 𝐷FREE, that remain at 350	
time delay, ∆𝜏, is given by (Carslow and Jaeger, 1959; Kues and Kubitscheck, 2002): 351	
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𝑃remaining ∆𝜏, ∆𝑧, 𝐷FREE352	

=
1
∆𝑧 1

∆M 3

+∆M 3
353	

− −1 N erfc
2𝑛 + 1 ∆𝑧

2 − 𝑧

4𝐷FREE∆𝜏
+ erfc

2𝑛 + 1 ∆𝑧
2 + 𝑧

4𝐷FREE∆𝜏

S

NTU

d𝑧 354	

However, this analytical expression overestimates the fraction lost since there is a significant 355	
probability that a molecule that briefly contacted or exceeded the boundary re-enters the axial 356	
detection range. The re-entry probability depends on the number of gaps allowed in the 357	
tracking (𝑔), ∆𝜏, and ∆𝑧 and can be approximately accounted for by considering a corrected 358	
axial detection range, ∆𝑧corr, larger than ∆𝑧: ∆𝑧corr > ∆𝑧: 359	

∆𝑧corr ∆𝑧, ∆𝜏, 𝐷FREE, 𝑔 = ∆𝑧 + 𝑎 ∆𝑧, ∆𝜏, 𝑔 𝐷FREE + 𝑏 ∆𝑧, ∆𝜏, 𝑔  360	
Although ∆𝑧corr depend on the number of gaps (g) allowed in the tracking, we will leave it out 361	
for simplicity in the following. We determined the coefficients a and b from Monte Carlo 362	
simulations. For a given diffusion constant, D, 50,000 molecules were randomly placed one-363	
dimensionally along the z-axis drawn from a uniform distribution from 𝑧MIN = −∆𝑧 2 to 364	
𝑧MAX = ∆ 𝑧 2. Next, using a time-step ∆𝜏, one-dimensional Brownian diffusion was 365	
simulated along the z-axis using the Euler-Maruyama scheme. For time delays from 1∆𝜏 to 366	
15∆𝜏, the fraction of molecules that were lost was calculated in the range of D=[1;12] μm2/s. 367	
𝑎 ∆𝑧, ∆𝜏, 𝑔  and 𝑏 ∆𝑧, ∆𝜏, 𝑔  were then estimated through least-squares fitting of 368	
𝑃remaining ∆𝜏, ∆𝑧corr, 𝐷  to the simulated fraction remaining. The process was repeated over a 369	
grid of plausible values of (∆𝑧, ∆𝜏, 𝑔) to derive a grid of 134,865 (a,b) parameter pairs. This 370	
pre-calculated library of (a,b) parameters enables Spot-On to perform model fitting on nearly 371	
any SPT dataset with minimal overhead.  372	
Thus, the 2-state model Spot-On uses for kinetic modeling of SPT data is given by: 373	

𝑃3 𝑟, ∆𝜏 = 𝐹BOUND
𝑟

2 𝐷BOUND∆𝜏 + 𝜎3
𝑒

+,-
. /BOUND∆045-374	

+ 𝑍CORR ∆𝜏, ∆𝑧corr, 𝐷FREE 1 − 𝐹BOUND
𝑟

2 𝐷FREE∆𝜏 + 𝜎3
𝑒

+,-
. /FREE∆045-  375	

where: 376	
𝑍CORR ∆𝜏, ∆𝑧corr, 𝐷FREE377	

=
1

∆𝑧corr
1

∆Mcorr
3

+∆Mcorr
3

378	

− −1 N erfc
2𝑛 + 1 ∆𝑧corr

2 − 𝑧

4𝐷FREE∆𝜏
+ erfc

2𝑛 + 1 ∆𝑧corr
2 + 𝑧

4𝐷FREE∆𝜏

S

NTU

d𝑧 379	

Having derived the 2-state model, generalization to a 3-state model with 1 bound and 2 380	
diffusive states is straightforward. If the three subpopulations have diffusion constants 381	
𝐷BOUND, 𝐷SLOW, 𝐷FAST, and fractions 𝐹BOUND, 𝐹SLOW, 𝐹FAST, such that 𝐹BOUND + 𝐹SLOW +382	
𝐹FAST=1, then the 3-state model considered by Spot-On becomes: 383	
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𝑃b 𝑟, ∆𝜏 = 𝐹BOUND
𝑟

2 𝐷BOUND∆𝜏 + 𝜎3
𝑒

+,-
. /BOUND∆045-384	

+ 𝑍CORR ∆𝜏, ∆𝑧corr, 𝐷SLOW 𝐹SLOW
𝑟

2 𝐷SLOW∆𝜏 + 𝜎3
𝑒

+,-
. /SLOW∆045-385	

+ 𝑍CORR ∆𝜏, ∆𝑧corr, 𝐷FAST 1 − 𝐹BOUND386	

− 𝐹SLOW
𝑟

2 𝐷FAST∆𝜏 + 𝜎3
𝑒

+,-
. /FAST∆045-  387	

Where 𝑍CORR ∆𝜏, ∆𝑧corr, 𝐷  is as described above. 388	
 389	
Numerical implementation of models in Spot-On  390	
Spot-On calculates the empirical histogram of displacements based on a user-defined bin 391	
width. Spot-On allows the user to choose between PDF- and CDF-fitting of the kinetic model 392	
to the empirical displacement distributions; CDF-fitting is generally most accurate for smaller 393	
datasets and the two are similar for large datasets (Figure 3 – Figure Supplement S9). The 394	
integral in 𝑍CORR ∆𝜏, ∆𝑧corr  was numerically evaluated using the midpoint method over 200 395	
points and the terms of the series computed until the term falls below a threshold of 10-10. 396	
Model fitting and parameter optimization was performed using a non-linear least squares 397	
algorithm (Levenberg-Marquardt). Random initial parameter guesses are drawn uniformly 398	
from the user-specified parameter range. The optimization is then repeated several times with 399	
different initialization parameters to avoid local minima. Spot-On constrains each fraction to 400	
be between 0 and 1 and for the sum of the fractions to equal 1.  401	
 402	
Theoretical characteristics and limitations of the model	403	
Although Spot-On performs well on both experimental and simulated SPT data, the model 404	
implemented by Spot-On has several limitations. First, the kinetic model assumes diffusion to 405	
be ideal Brownian motion, even though it is widely acknowledged that the motion of most 406	
proteins inside a cell shows some degree of anomalous diffusion. Nevertheless, Figure 4G-H 407	
and Figure 4 –Figure Supplement 2 shows that the parameter inference for experimental data 408	
of proteins presenting various degrees of anomalous diffusion is quite robust. 409	
Second, Spot-On models the localization error as the static mean localization error and this 410	
feature can be used to infer the actual localization error from the data. However, the 411	
localization error is affected both by the position of the particle with respect to the focal plane 412	
(Lindén et al., 2017) and by motion blur (Deschout et al., 2012). Even though a high signal-413	
to-background ratio and fast framerate/stroboscopic illumination help to mitigate these 414	
disparities, it is likely that the localization error of fast moving particles will be higher than 415	
the bound/slow-moving particles. In that case, one would expect Spot-On to infer a 416	
localization error that is the weighted mean of the “bound/static” localization error and the 417	
“free” localization error. However, in many situations Dfree∆𝜏>> 𝜎3 (even assuming a 2µm²/s 418	
particle imaged at a 5 ms framerate with a ~30 nm localization error, there is still an order of 419	
magnitude difference between the two terms). As a consequence, the estimate of 𝜎 reflects the 420	
static localization error (that is, the localization error of the bound fraction), and the 421	
localization error estimate becomes less reliable if the bound fraction is very small (Figure 3- 422	
Figure Supplement 11).  423	
Third, following (Kues and Kubitscheck, 2002) the axial detection profile is assumed to be a 424	
step function, which is an approximation. However, all simulations here were performed 425	
using a detection profile with Gaussian edges (Figure 3 – Figure Supplement 1) and as shown 426	
in Figure 3A-B Spot-On still works quite well and moreover is relatively robust to slight 427	
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mismatches in the axial detection range (Figure 3 – Figure Supplement 7).  428	
Fourth, unlike the original implementation by Mazza et al. (Mazza et al., 2012), Spot-On 429	
ignores state transitions. This reduces the number of fitted parameters and simplifies the 430	
generalization to more than 2 states, but as shown in Figure 3 – Figure Supplement 10 it also 431	
causes the parameter inference to fail unless the timescale of state changes is at least 10-50 432	
times longer than the frame rate. Thus, in cases where a molecule is known to exhibit state 433	
changes on a time-scale of tens to a few hundreds of milliseconds, Spot-On may not be 434	
appropriate.  435	
Fifth and finally, Spot-On ignores correlations between adjacent displacements, although 436	
taking such information into account can potentially improve the parameter inference 437	
(Vestergaard et al., 2014). 438	
 439	
 440	
Cell Culture 441	
 Halo-Sox2 (Teves et al., 2016) knock-in JM8.N4 mouse embryonic stem cells (Pettitt et al., 442	
2009) were grown on plates pre-coated with a 0.1% autoclaved gelatin solution (Sigma-443	
Aldrich, G9391) under feeder free conditions in knock-out DMEM with 15% FBS and LIF 444	
(full recipe: 500 mL knockout DMEM (ThermoFisher #10829018), 6 mL MEM NEAA 445	
(ThermoFisher #11140050), 6 mL GlutaMax (ThermoFisher #35050061), 5 mL Penicillin-446	
streptomycin (ThermoFisher #15140122), 4.6 μL 2-mercapoethanol (Sigma-Aldrich M3148), 447	
90 mL fetal bovine serum (HyClone FBS SH30910.03 lot #AXJ47554)) and LIF. mES cells 448	
were fed by replacing half the medium with fresh medium daily and passaged every two days 449	
by trypsinization. Halo-3xNLS, H2B-Halo-SNAP and knock-in C32 Halo-CTCF(Hansen et 450	
al., 2017) Human U2OS osteosarcoma cells were grown in low glucose DMEM with 10% 451	
FBS (full recipe: 500 mL DMEM (ThermoFisher #10567014), 50 mL fetal bovine serum 452	
(HyClone FBS SH30910.03 lot #AXJ47554) and 5 mL Penicillin-streptomycin 453	
(ThermoFisher #15140122)) and were passaged every 2-4 days before reaching confluency. 454	
For live-cell imaging, the medium was identical except DMEM without phenol red was used 455	
(ThermoFisher #31053028). Both mouse ES and human U2OS cells were grown in a Sanyo 456	
copper alloy IncuSafe humidified incubator (MCO-18AIC(UV)) at 37°C/5.5% CO2. Cell lines 457	
were pathogen tested and authenticated through STR profiling (U2OS) as described 458	
previously (Hansen et al., 2017; Teves et al., 2016). 459	
 460	
Single-molecule imaging  461	
The indicated cell line was grown overnight on plasma-cleaned 25 mm circular no 1.5H cover 462	
glasses (Marienfeld High-Precision 0117650) either directly (U2OS) or MatriGel coated 463	
(mESCs; Fisher Scientific #08-774-552 according to manufacturer’s instructions just prior to 464	
cell plating). After overnight growth, cells were labeled with 5-50 nM PA-JF549 or PA-JF646 465	
(Grimm et al., 2016a) for ~15-30 min and washed twice (one wash: medium removed; PBS 466	
wash; replenished with fresh medium). At the end of the final wash, the medium was changed 467	
to phenol red-free medium keeping all other aspects of the medium the same. Single-molecule 468	
imaging was performed on a custom-built Nikon TI microscope equipped with a 100x/NA 469	
1.49 oil-immersion TIRF objective (Nikon apochromat CFI Apo TIRF 100x Oil), EM-CCD 470	
camera (Andor iXon Ultra 897; frame-transfer mode; vertical shift speed: 0.9 μs; -70°C), a 471	
perfect focusing system to correct for axial drift and motorized laser illumination (Ti-TIRF, 472	
Nikon), which allows an incident angle adjustment to achieve highly inclined and laminated 473	
optical sheet illumination (Tokunaga et al., 2008). The incubation chamber maintained a 474	
humidified 37°C atmosphere with 5% CO2 and the objective was also heated to 37°C. 475	
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Excitation was achieved using the following laser lines: 561 nm (1 W, Genesis Coherent) for 476	
PA-JF549; 633 nm (1 W, Genesis Coherent) for PA-JF646; 405 nm (140 mW, OBIS, Coherent) 477	
for all photo-activation experiments. The excitation lasers were modulated by an acousto-478	
optic Tunable Filter (AA Opto-Electronic, AOTFnC-VIS-TN) and triggered with the camera 479	
TTL exposure output signal. The laser light is coupled into the microscope by an optical fiber 480	
and then reflected using a multi-band dichroic (405 nm/488 nm/561 nm/633 nm quad-band, 481	
Semrock) and then focused in the back focal plane of the objective. Fluorescence emission 482	
light was filtered using a single band-pass filter placed in front of the camera using the 483	
following filters: PA-JF549: Semrock 593/40 nm bandpass filter; PA-JF646: Semrock 676/37 484	
nm bandpass filter. The microscope, cameras, and hardware were controlled through NIS-485	
Elements software (Nikon). 486	
	487	
spaSPT experiments and analysis  488	
The spaSPT experimental settings for Figure 4G-H were as follows: 1 ms 633 nm excitation 489	
(100% AOTF) of PA-JF646 was delivered at the beginning of the frame; 405 nm photo-490	
activation pulses were delivered during the camera integration time (~447 μs) to minimize 491	
background and their intensity optimized to achieve a mean density of £1 molecule per frame 492	
per nucleus. 30,000 frames were recorded per cell per experiment. The camera exposure times 493	
were: 4.5 ms, 5.5 ms, 7 ms, 9.5 ms, 13 ms and 19.5 ms.  494	
For the motion-blur spaSPT experiments (Figure 4I-K), the camera exposure was fixed to 9.5 495	
ms and photo-activation performed as above. To keep the total number of delivered photons 496	
constant, we generated an AOTF-laser intensity calibration curve using a power meter and 497	
adjusted the AOTF transmission accordingly for each excitation pulse duration. The 498	
excitation settings were as follows: 1 ms, 561 nm 100% AOTF, 633 nm 100% AOTF; 2 ms, 499	
561 nm 43% AOTF, 633 nm 40% AOTF; 4 ms, 561 nm 28% AOTF, 633 nm 27% AOTF; 7 500	
ms, 561 nm 20% AOTF, 633 nm 19% AOTF; constant illumination, 561 nm 17% AOTF, 633 501	
nm 16% AOTF.  502	
spaSPT data was analyzed (localization and tracking) and converted into trajectories using a 503	
custom-written Matlab implementation of the MTT-algorithm (Sergé et al., 2008) and the 504	
following settings: Localization error: 10-6.25; deflation loops: 0; Blinking (frames): 1; max 505	
competitors: 3; max D (µm2/s): 20. The spaSPT trajectory data was then analyzed using the 506	
Matlab version of Spot-On (v1.0; GitLab tag 1f9f782b) and the following parameters: dZ=0.7 507	
µm; GapsAllowed=1; TimePoints: 4 (50 Hz), 6 (74 Hz), 7 (100 Hz), 8 (134 Hz), 9 (167 and 508	
200 Hz); JumpsToConsider=4; ModelFit=2; NumberOfStates=2; FitLocError=0; 509	
LocError=0.035 µm; D_Free_2State=[0.4;25]; D_Bound_2State=[0.00001;0.08];  510	
 511	
SPT simulations  512	
We developed a utility to simulate diffusing proteins in a confined geometry (simSPT). 513	
Briefly, simSPT simulates the diffusion of an arbitrary number of populations of molecules 514	
characterized by their diffusion coefficient, under a steady state assumption. Particles are 515	
drawn at random between the populations and their location in the 3D nucleus is initialized 516	
following a uniform law within the confinement volume. The lifetime of the particle (in 517	
frames) is also drawn following an exponential law of mean lifetime 𝛽. Then, the particle 518	
diffuses in 3D until it bleaches. Diffusion is simulated by drawing jumps following a normal 519	
law of parameters 𝑁 0, 2𝐷∆𝜏 , where D is the diffusion coefficient and ∆𝜏 the exposure time. 520	
Finally, a localization error (𝑁 0, 𝜎 ) is added to each (x,y,z) localization in the simulated 521	
trajectories. For this work, we parameterized simSPT to consider that two subpopulations of 522	
particles diffuse in a sphere (the nucleus) of 8 µm diameter illuminated using HiLo 523	
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illumination (assuming a HiLo beam width of 4 µm), with an axial detection range of ~700 524	
nm, centered at the middle of the HiLo beam. Molecules are assumed to have a mean lifetime 525	
of 4 frames (when inside the HiLo beam) and of 40 frames when outside the HiLo beam. The 526	
localization error was set to 25 nm and the simulation was run until 100,000 in-focus 527	
trajectories were recorded. More specifically, the effect of the exposure time (1 ms, 4 ms, 7 528	
ms, 13 ms, 20 ms), the free diffusion constant (from 0.5 µm²/s to 14.5 µm²/s in 0.5 µm²/s 529	
increments) and the fraction bound (from 0 % to 95 % in 5 % increments) were investigated, 530	
yielding a dataset consisting of 3480 simulations. More details on the simulations, including 531	
scripts to reproduce the dataset, are available on GitLab as detailed in the “Computer code” 532	
section. Full details on how the simulations were analyzed by Spot-On, vbSPT and MSDi are 533	
given in Appendix 1. 534	
 535	
Data availability  536	
All raw 1064 spaSPT experiments (Figure 4) as well as the 3480 simulations (Figure 3) are 537	
freely available in Spot-On readable Matlab and CSV file formats in the form of SPT 538	
trajectories at Zenodo. The experimental data is available at: 539	
https://zenodo.org/record/834781; The simulations are available in Matlab format at: 540	
https://zenodo.org/record/835541; The simulations are available in CSV format at: 541	
https://zenodo.org/record/834787; And supplementary software used for MSDi and vbSPT 542	
analysis as well as for generating the simulated data at: https://zenodo.org/record/835171  543	
 544	
Computer code  545	
Spot-On is fully open-source. The web-interface can be found at: https://SpotOn.berkeley.edu. 546	
All raw code is available at GitLab: https://gitlab.com/tjian-darzacq-lab. The web-interface 547	
code can be found at https://gitlab.com/tjian-darzacq-lab/Spot-On; the Matlab command-line 548	
version of Spot-On can be found at: https://gitlab.com/tjian-darzacq-lab/spot-on-matlab; the 549	
Python command-line version of Spot-On can be found at https://gitlab.com/tjian-darzacq-550	
lab/Spot-On-cli; finally, the SPT simulation code (simSPT) can be found at: 551	
https://gitlab.com/tjian-darzacq-lab/simSPT. 552	
 553	
	  554	
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FIGURE LEGENDS 555	
 556	
Figure 1. Bias in single-particle tracking (SPT) experiments and analysis methods. (A) 557	
“Motion-blur” bias. Constant excitation during acquisition of a frame will cause a fast-moving 558	
particle to spread out its emission photons over many pixels and thus appear as a motion-559	
blur, which make detection much less likely with common PSF-fitting algorithms. In contrast, 560	
a slow-moving or immobile particle will appear as a well-shaped PSF and thus readily be 561	
detected. (B) Tracking ambiguities. Tracking at high particle densities prevents unambiguous 562	
connection of particles between frames and tracking errors will cause displacements to be 563	
misidentified. (C) Defocalization bias. During 2D-SPT, fast-moving particles will rapidly move 564	
out-of-focus resulting in short trajectories, whereas immobile particles will remain in-focus 565	
until they photobleach and thus exhibit very long trajectories. This results in a bias toward 566	
slow-moving particles, which must be corrected for. (D) Analysis method. Any analysis 567	
method should ideally avoid introducing biases and accurately correct for known biases in 568	
the estimation of subpopulation parameters such as DFREE, FBOUND, DBOUND. 569	
 570	
Figure 2. Overview of Spot-On interface. Overview of Spot-On. To use Spot-On, a user 571	
uploads raw SPT data in the form of pooled SPT trajectories to the Spot-On web-interface. 572	
Spot-On then calculates displacement histograms. The user inputs relevant experimental 573	
descriptors and chooses a model to fit. After model-fitting, the user can then download 574	
model-inferred parameters, meta-data and download publication-quality figures. 575	
  576	
Figure 3. Validation of Spot-On using simulations and comparisons to other methods. 577	
(A-B) Simulation results. Experimentally realistic SPT data was simulated inside a spherical 578	
mammalian nucleus with a radius of 4 μm subject to highly-inclined and laminated optical 579	
sheet illumination (Tokunaga et al., 2008) (HiLo) of thickness 4 μm illuminating the center of 580	
the nucleus. The axial detection window was 700 nm with Gaussian edges and particles 581	
were subject to a 25 nm localization error in all three dimensions. Photobleaching 582	
corresponded to a mean trajectory length of 4 frames inside the HiLo sheet and 40 outside. 583	
3480 experiments were simulated with parameters of DFREE=[0.5;14.5] in steps of 0.5 μm2/s 584	
and FBOUND=[0;95% in steps of 5% and the frame rate correspond to Δτ=[1,4,7,10,13,20] ms. 585	
Each experiment was then fitted using Spot-On, using vbSPT (maximum of 2 states allowed) 586	
(Persson et al., 2013), MSDi using all trajectories of at least 5 frames (MSDi (all)) or MSDi 587	
using all trajectories of at least 5 frames where the MSD-curvefit showed at least R2>0.8 588	
(MSDi (R2>0.8)). (A) shows the distribution of absolute errors in the FBOUND–estimate and (B) 589	
shows the distribution of relative errors in the DFREE–estimate. (C) Single simulation example 590	
with DFREE = 2.0 µm2/s; FBOUND = 70%; 7 ms per frame. The table on the right uses numbers 591	
from CDF-fitting, but for simplicity the fits to the histograms (PDF) are shown in the three 592	
plots. (D) Single simulation example with DFREE = 14.0 µm2/s; FBOUND = 50%; 20 ms per 593	
frame. Full details on how SPT data was simulated and analyzed with the different methods 594	
is given in Appendix 1. 595	
Figure Supplement 1. Overview of SPT simulations  596	
Figure Supplement 2. Comparison of Spot-On, vbSPT and MSDi estimates of DFREE and 597	
FBOUND to ground-truth simulation results inside a 4 µm radius nucleus.  598	
Figure Supplement 3. Representative fits for Spot-On, vbSPT and MSDi to ground-truth 599	
simulations. 600	
Figure Supplement 4. Comparison of Spot-On, vbSPT and MSDi estimates of DFREE and 601	
FBOUND to ground-truth simulations inside a 20 µm radius nucleus. 602	
Figure Supplement 5. Effect of defocalization bias correction. 603	
Figure Supplement 6. Evaluation of the 3-states model. 604	
Figure Supplement 7. Sensitivity of Spot-On to the axial detection range estimate. 605	
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Figure Supplement 8. Sensitivity of Spot-On to the number of time points considered. 606	
Figure Supplement 9. Comparison of Spot-On and MSDi estimates of DFREE and FBOUND to 607	
ground-truth simulation results inside a 4 µm radius nucleus using PDF-fitting. 608	
Figure Supplement 10. Sensitivity of Spot-On to state changes and comparison with 609	
vbSPT. 610	
Figure Supplement 11. Robustness of localization error estimates from Spot-On. 611	
Figure Supplement 12. Sensitivity of Spot-On, vbSPT and MSDi (R2>0.8) to sample size. 612	
 613	
Figure 4. Overview of spaSPT and experimental results. (A) spaSPT. HaloTag-labeling 614	
with UV (405 nm) photo-activatable dyes enable spaSPT. spaSPT minimizes tracking errors 615	
through photo-activation which maintains low densities. (B) Example data. Raw spaSPT 616	
images for Halo-CTCF tracked in human U2OS cells at 134 Hz (1 ms stroboscopic 633 nm 617	
excitation of JF646). (C-F) Histograms of displacements for multiple Δτ of histone H2B-Halo in 618	
U2OS cells (C), Halo-CTCF in U2OS cells (d), Halo-Sox2 in mES cells (E) and Halo-3xNLS 619	
in U2OS cells (F). (G-H) Effect of frame-rate on DFREE and FBOUND. spaSPT was performed at 620	
200 Hz, 167 Hz, 134 Hz, 100 Hz, 74 Hz and 50 Hz using the 4 cell lines and the data fit using 621	
Spot-On and a 2-state model. Each experiment on each cell line was performed in 4 622	
replicates on different days and ~5 cells imaged each day. Error bars show standard 623	
deviation between replicates. (I) Motion-blur experiment. To investigate the effect of “motion-624	
blurring”, the total number of excitation photons was kept constant, but delivered during 625	
pulses of duration 1, 2, 4, 7 ms or continuous (cont) illumination. (J-K) Effect of motion-626	
blurring on DFREE and FBOUND. spaSPT data was recorded at 100Hz and 2-state model-fitting 627	
performed with Spot-On. The inferred DFREE (J) and FBOUND (K) were plotted as a function of 628	
excitation pulse duration. Each experiment on each cell line was performed in 4 replicates on 629	
different days and ~5 cells imaged each day. Error bars show standard deviation between 630	
replicates. 631	
Figure Supplement 1. Experimental measurement of axial detection range. 632	
Figure Supplement 2. Sensitivity of Spot-On to anomalous diffusion. 633	
Figure Supplement 3. Re-analysis of experimental data using vbSPT. 634	
 635	
VIDEO LEGENDS 636	
 637	
Video 1. Related to Figure 1. Illustration of defocalization bias. Illustration of a single-638	
particle tracking experiment with two subpopulations (one "immobile", D=0.001 µm²/s, the 639	
other "free", D=4 µm²/s with a 1:1 ratio, observed using 20 ms time interval). The red region 640	
corresponds to the axial detection range (1 µm) and molecules randomly appear when they 641	
photo-activate. For each trajectory, the detected localizations inside the detection range are 642	
shown as red spheres and undetected localizations outside the detection range are shown 643	
as white spheres. Each particle has a mean lifetime of 15 frames, 25 nm localization error 644	
and trajectories consisting of at least two frames are plotted. Epi illumination is assumed. 645	
The SPT data was simulated and plotted using simSPT (available at 646	
https://gitlab.com/tjian-darzacq-lab/simSPT). 647	
 648	
Video 2. Related to Figure 4. Representative raw spaSPT movie (Halo-hCTCF at 134 649	
Hz). spaSPT movie (1 ms of 633 nm laser delivered at the beginning of each frame; 405 nm 650	
laser photo-activation pulses delivered in between frames) of endogenously tagged CTCF 651	
(C32 Halo-hCTCF) in human U2OS cells imaged at ~134 Hz (7.477 ms per frame). Dye: PA-652	
JF646. One pixel: 160 nm.  653	
	  654	
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Legends for Figure Supplements 655	

 656	
Figure 3 - Figure Supplement 1. Overview of SPT simulations. (A) Trajectories were 657	
simulated in a confined volume: a “nucleus” of 8 µm diameter, in which molecules are 658	
photoactivated at random and photobleach when located within the HiLo volume (a ~4 µm 659	
thick slice). Molecules are detected when they are within the axial detection range of the 660	
objective (~700 nm). (B) confinement within the nucleus was achieved by specular 661	
reflections against the nuclear envelope: a particle bumping on the nuclear envelope in 662	
ballistically reflected inside. (C) axial detection profile used for the simulation (blue): flat-top 663	
Gaussian with 600nm plateau and 100nm FWHM for the Gaussian edges. (red): 664	
approximated axial detection profile assumed by Spot-On (step function with 700nm width).	665	
 666	
 667	
Figure 3 - Figure Supplement 2. Comparison of Spot-On, vbSPT and MSDi estimates of 668	
DFREE and FBOUND to ground-truth simulation results inside a 4 µm radius nucleus. 669	
Heatmaps showing errors in Spot-On, vbSPT and MSDi estimates of DFREE (A) and FBOUND 670	
(B). To comprehensively test Spot-On and alternative analysis methods such as vbSPT and 671	
MSDi (Appendix 1), we analyzed 3480 simulations using these methods. The simulations are 672	
available for download (see “Data availability”) and the code used for the simulations is 673	
available at GitLab (https://gitlab.com/tjian-darzacq-lab/simSPT). Briefly, experimentally 674	
realistic SPT experiments were simulated assuming 2-state (free or bound) Brownian motion 675	
inside a nucleus of 4 µm radius illuminated using HiLo illumination (assuming a HiLo beam 676	
width of 4 µm), with an axial detection range of ~700 nm, centered at the middle of the HiLo 677	
beam. In (A), the heatmaps show the relative error and in (B) the heatmaps show the 678	
absolute error. In a few rare cases (marked by black squares), the MSDi-method failed such 679	
that no estimate was possible.  680	
Cumulative distribution function (CDF) plots of the relative error in the DFREE–estimate (C) 681	
and the absolute error in the FBOUND–estimate (D). 682	
 683	
Figure 3 - Figure Supplement 3. Representative fits for Spot-On, vbSPT and MSDi to 684	
ground-truth simulations. (A) fits to simulation where DFREE = 2.0 µm2/s; FBOUND = 75%; 1 685	
ms per frame. First column: Spot-On CDF-fit with JumpsToConsider=4; only CDF-fit at 3Dt is 686	
shown. Second column: Spot-On CDF-fit using all jumps; only CDF-fit at 3Dt is shown. Third 687	
column: MSDi-CDF-fit to log10(DFREE) considering only trajectories of at least 5 frames, where 688	
the MSD-fit to a single trajectory was good (R2>0.8). Fourth column: MSDi-CDF-fit to 689	
log10(DFREE) considering only trajectories of at least 5 frames, but without a MSD-fit threshold. 690	
Fifth column: table comparing all the four methods as well as vbSPT (2-state) estimates of 691	
DFREE and FBOUND to the ground truth used for the simulations. (B) fits to simulation where 692	
DFREE = 10.0 µm2/s; FBOUND = 10%; 4 ms per frame. Each column is described in (A). (C) fits 693	
to simulation where DFREE = 6.0 µm2/s; FBOUND = 5%; 7 ms per frame. Each column is 694	
described in (A). (D) fits to simulation where DFREE = 2.5 µm2/s; FBOUND = 40%; 10 ms per 695	
frame. Each column is described in (A). (E) fits to simulation where DFREE = 3.5 µm2/s; FBOUND 696	
= 70%; 13 ms per frame. Each column is described in (A). (F) fits to simulation where DFREE = 697	
13.0 µm2/s; FBOUND = 55%; 20 ms per frame. Each column is described in (A).  698	
 699	
Figure 3 - Figure Supplement 4. Comparison of Spot-On, vbSPT and MSDi estimates of 700	
DFREE and FBOUND to ground-truth simulations inside a 20 µm radius nucleus. Heatmaps 701	
showing errors in Spot-On, vbSPT and MSDi estimates of DFREE (A) and FBOUND (B). To 702	
comprehensively test Spot-On and alternative analysis methods such as vbSPT (Persson et 703	
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al., 2013) and MSDi (Appendix 1), we analyzed 3480 simulations (described in Figure 3 – 704	
Figure Supplement 2) using these methods. In (A), the heatmaps show the relative error and 705	
in (B) the heatmaps show the absolute error. In a few rare cases (marked by black squares), 706	
the MSDi-method failed such that no estimate was possible. Note that whereas Spot-On 707	
would always underestimate DFREE inside a small 4 µm radius nucleus, when the confinement 708	
is largely relaxed by considering a 20 µm radius nucleus, Spot-On now shows essentially no 709	
bias in its DFREE–estimate. 710	
Cumulative distribution function (CDF) plots and summary tables of the relative error in the 711	
DFREE–estimate (C) and the absolute error in the FBOUND–estimate (D). Bias refers to the 712	
mean error, “std” is the standard deviation and “iqr” is the inter-quartile range (difference 713	
between the 75th and 25th percentile).   714	
 715	
Figure 3 - Figure Supplement 5. Effect of defocalization bias correction. In order to 716	
determine how important correcting for defocalization bias is, we analyzed the 3480 717	
simulations using Spot-On (all) and exactly the same parameters as in Figure 3A-B except 718	
without the defocalization bias correction, ZCORR. Heatmaps show errors in Spot-On (all; with 719	
ZCORR) and Spot-On (all; without ZCORR) estimates of DFREE (A) and FBOUND (B). Histogram 720	
plots and summary statistics tables of the relative error in the DFREE–estimate (C) and the 721	
absolute error in the FBOUND–estimate (D). 722	
As can be seen, correcting for defocalization bias slightly improves the DFREE–estimate, but is 723	
essential for an accurate FBOUND–estimate. As expected, the longer the lag time, the more 724	
important it is to correct for defocalization bias. 725	
 726	
Figure 3 – Figure Supplement 6. Evaluation of the 3-states model. Trajectories were 727	
simulated using simSPT for a 3-state model. Three representative fractions were picked and 728	
for each of them, one state was always bound (DBOUND=0.001 µm²/s) and the two other states 729	
were varied (0.5-12 µm²/s), together with the framerate (1-20 ms), yielding 720 conditions. 730	
The simulations were then either fitted with Spot-On or vbSPT constrained to infer up to 731	
three states. (A) Distribution of the error of five of the inferred parameters (DSLOW, DFAST, 732	
FBOUND, FSLOW, FFAST) with respect to ground truth for Spot-On (red) and vbSPT (blue). The 733	
top row shows the distribution and the bottom row the cumulative distribution. (B-G) For each 734	
of the 3 fractions configurations (25/25/50, 25/50/25, 50/25/25%, for B-C, D-E, F-G, 735	
respectively), detailed error on five inferred parameters (columns) for different frame rates 736	
(rows) and various DSLOW and DFAST (rows and columns of the matrix, respectively). (H) 737	
summary table showing the mean error (bias) and standard deviation over all the 738	
simulations. 739	
 740	
Figure 3 – Figure Supplement 7. Sensitivity of Spot-On to the axial detection range 741	
estimate. Heatmaps showing errors in Spot-On estimates of DFREE (A) and FBOUND (B) as a 742	
function of the axial detection range, Dz. The simulations were as described in Figure 3 – 743	
Figure Supplement 2. Rather than an unrealistic step function, the simulated axial detection 744	
range has Gaussian edges with FWHM of 700 nm. Spot-On analysis parameters were 745	
exactly as for Spot-On (all) in Figure 3 – Figure Supplement 2, except the axial detection 746	
range, Dz, was set to either 500 nm, 600 nm, 700 nm, 800 nm or 900 nm. As can be seen, 747	
Spot-On is only mildly sensitive to small errors (~100 nm) in the axial detection range 748	
estimate. In (A), the heatmaps show the relative error and in (B) the heatmaps show the 749	
absolute error.  750	
Cumulative distribution function (CDF) plots of the relative error in the DFREE–estimate (C) 751	
and the absolute error in the FBOUND–estimate (D) as well as summary tables.  752	
 753	
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Figure 3 – Figure Supplement 8. Sensitivity of Spot-On to the number of time points 754	
considered. Heatmaps showing errors in Spot-On estimates of DFREE (A) and FBOUND (B) as 755	
a function of the number of time points considered. Note that if TimePoints=n, the number of 756	
displacements that will be considered goes from 1 to (n-1). The simulations were as 757	
described in Figure 3 – Figure Supplement 2. Spot-On analysis parameters were exactly as 758	
for Spot-On (all) in Figure 3 – Figure Supplement 2, except the TimePoints parameter was 759	
set to either 3, 5, 7, 9 or dependent on the frame rate (TimePoints(Dt)) as in Figure 3 – 760	
Figure Supplement 2 and described in Appendix 1. As can be seen, Spot-On is not very 761	
sensitive to how many TimePoints were considered. However, when working with small 762	
datasets of experimental data, if there is not enough data at higher TimePoints values, noise 763	
can make the estimates unreliable. In (A), the heatmaps show the relative error and in (B) 764	
the heatmaps show the absolute error.  765	
Cumulative distribution function (CDF) plots of the relative error in the DFREE–estimate (C) 766	
and the absolute error in the FBOUND–estimate (D) as well as summary tables.  767	
 768	
Figure 3 – Figure Supplement 9. Comparison of Spot-On and MSDi estimates of DFREE 769	
and FBOUND to ground-truth simulation results inside a 4 µm radius nucleus using PDF-770	
fitting. Heatmaps showing errors in Spot-On and MSDi estimates of DFREE (A) and FBOUND 771	
(B). The analysis was performed identically to Figure 3 – Figure Supplement 2 except PDF-772	
fitting was performed instead of CDF-fitting. In (A), the heatmaps show the relative error and 773	
in (B) the heatmaps show the absolute error.  774	
Cumulative distribution function (CDF) plots of the relative error in the DFREE–estimate (C) 775	
and the absolute error in the FBOUND–estimate (D). 776	
 777	
Figure 3 – Figure Supplement 10. Sensitivity of Spot-On to state changes and 778	
comparison with vbSPT. For six different representative conditions (combinations of DFREE 779	
and FBOUND; DBOUND = 0.001 µm²/s; s = 25 nm), we simulated 100,000 trajectories using 780	
simSPT and included state transitions (e.g. transition from bound to free) considering six 781	
different lag time (1, 4, 7, 10, 13 and 20 ms) and kON values from 0.1 s-1 to 200 s-1 yielding a 782	
total of 396 simulations. The data were analyzed using Spot-On (all) as in Figure 3A-B. (A) 783	
For one example parameter set, (A) shows how the histogram of displacements and the 784	
goodness of the Spot-On model-fit changes as state transition go from more frequent than 785	
the frame rate (left) to very infrequent (right).  786	
(B-G), 1st row: shows sensitivity of the Spot-On estimate of DFREE to the timescale of state 787	
transitions. The values of DFREE and FBOUND are shown above the plot. (B-G), 2nd row: shows 788	
sensitivity of the Spot-On estimate of FBOUND to the timescale of state transitions. (B-G), 3rd 789	
row: shows sensitivity of the vbSPT estimate of DFREE to the timescale of state transitions. 790	
The values of DFREE and FBOUND are shown above the top plot. (B-G), 4th row: shows 791	
sensitivity of the vbSPT estimate of FBOUND to the timescale of state transitions.  792	
As expected, since Spot-On ignores state transitions, the inference breaks down when the 793	
timescale of state transitions becomes comparable to the frame rate. Perhaps surprisingly, 794	
vbSPT also breaks down when state transitions are frequent despite explicitly modeling this 795	
in the Hidden Markov Model. Also as expected, a faster frame rate (e.g. 1 ms in dark blue) 796	
can support a faster state transition rate. Nevertheless, as long as the timescale of 797	
transitions is at least a few hundred milliseconds, Spot-On is not strongly affected. For 798	
comparison, the residence time of most mammalian transcription factors is tens of seconds.  799	
 800	
Figure 3 – Figure Supplement 11. Robustness of localization error estimates from 801	
Spot-On. For six different representative conditions (combinations of DFREE and FBOUND; 802	
DBOUND = 0.001 µm²/s), we simulated 100,000 trajectories using simSPT keeping everything 803	
as in Figure 3A-B except varying the localization error (s) from 10 nm to 75 nm in 5 nm steps 804	
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and considering six different lag time (1, 4, 7, 10, 13 and 20 ms) yielding a total of 504 805	
simulations. The data were analyzed using Spot-On (all) as in Figure 3A-B except here the 806	
localization error was inferred from the fitting. (A-F), top row: show how well the Spot-On 807	
inferred the localization error vs. the simulated localization error and the lag times are color 808	
coded. The values of DFREE and FBOUND are shown above the plot. (A-F), bottom row: 809	
histograms showing the distribution of errors in the localization error estimate across all lag 810	
time and s-values for a given combinations of DFREE and FBOUND. (G) Table showing summary 811	
statistics from the fitting in (A-F).  812	
We note that in all cases where the bound fraction is significant (>10%), Spot-On robustly 813	
infers the localization error (mean error below 1.5 nm), whereas in cases where the bound 814	
fraction is small (10% or below), the localization error estimate becomes less robust (mean 815	
error ~3-6 nm). This is because Spot-On can most reliably use how the displacement 816	
distribution of the bound fraction changes over time to infer the localization error (see also 817	
Materials and Methods).  818	
 819	
Figure 3 – Figure Supplement 12. Sensitivity of Spot-On, vbSPT and MSDi (R2>0.8) to 820	
sample size. (A) Jack-knife data sampling for simulation with DFREE = 2.0 µm2/s; FBOUND = 821	
75%; 1 ms per frame. Simulated data (inside a 4 µm radius nucleus) was used. 100,000 822	
trajectories with a mean photo-bleaching life-time of 4 frames were simulated and then 823	
subsampled 50 times without replacement. Sample sizes of either 30, 100, 300, 1,000, 824	
3,000, 10,000, 30,000 or 100,000 trajectories were then fit using Spot-On (all), vbSPT (2-825	
state model) or MSDi (R2>0.8) as described in the analysis of simulations section. Error bars 826	
show standard deviation among the 50 sub-samplings. We note that occasionally, no more 827	
than ~5% of the time in the case of 30 trajectories, not a single trajectory of sufficient length 828	
for Spot-On or MSDi (R2>0.8) was found. In these cases, we re-sampled to obtain at least 829	
one trajectory of sufficient length. Left plot shows effect of sample size on the DFREE–830	
estimate. Right plot shows effect of sample size on the FBOUND–estimate. The dashed line 831	
shows the ground truth used to simulate the SPT data.  832	
(A) Jack-knife data sampling for simulation with DFREE = 10.0 µm2/s; FBOUND = 10%; 4 ms per 833	
frame. Everything else is as described in (A). 834	
(C) Jack-knife data sampling for simulation with DFREE = 3.5 µm2/s; FBOUND = 50%; 7 ms per 835	
frame. Everything else is as described in (A). 836	
(D) Jack-knife data sampling for simulation with DFREE = 3.5 µm2/s; FBOUND = 70%; 13 ms per 837	
frame. Everything else is as described in (A). 838	
(E) Jack-knife data sampling for simulation with DFREE = 13.0 µm2/s; FBOUND = 55%; 20 ms per 839	
frame. Everything else is as described in (A).  840	
 841	
Figure 4 – Figure Supplement 1. Experimental measurement of axial detection range. 842	
To determine the axial detection range, mESC C59 Halo-mCTCF (Hansen et al., 2017) and 843	
U2OS C32 Halo-hCTCF (Hansen et al., 2017) cells were grown overnight on plasma-cleaned 844	
coverslips, labelled with 250 pM JF646, fixed in 4% PFA in PBS for 20 min, washed with PBS 845	
and then imaged in PBS with 0.01% (w/v) NaN3. We imaged the fixed cells using longer 846	
exposure times and very low 633 nm laser intensity to minimize photo-bleaching and 847	
collected a 6 µm z-stack spanning most of a nucleus using 20 nm steps. We optimized the 848	
imaging conditions to give near identical signal-to-noise to our spaSPT conditions and the 849	
data shown is merged data from at least 15 different cells for each cell line. We then 850	
localized and “tracked” molecules to determine the experimental axial detection range. (A-B) 851	
show empirical survival probability distribution for PFA-fixed mESC C59 JF646Halo-mCTCF (A) 852	
and PFA-fixed U2OS C32 JF646Halo-hCTCF (B). A minimal threshold, tMIN, was set to filter out 853	
noise and the left plot shows tMIN=10 frames and the right plot tMIN=15 frames. The raw data 854	
is shown in red and a model-fit is overlaid. The estimated axial detection range is also 855	
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shown. We note that the numbers depend somewhat on the threshold set and differ a bit 856	
between U2OS and mES cells. As an approximate average, we used 700 nm here. 857	
Importantly, we note that Spot-On is relatively robust to the axial detection range estimate 858	
and that changing it by 100 nm only marginally changes the results (Figure 3 – Figure 859	
Supplement 7) (C) summary of the model that was fit to the data and the key model 860	
parameters. The model assumes that photo-bleaching is a Poisson process and that the 861	
axial detection range can be modeled as a Gaussian CDF. Raw data used to plot (A-B) and 862	
code for reproducing this figure and the model-fitting is available on GitLab: 863	
https://gitlab.com/tjian-darzacq-lab/estimateaxialdetectionrange  864	
 865	
Figure 4 – Figure Supplement 2. Sensitivity of Spot-On to anomalous diffusion. (A) 866	
MSD-fit and Spot-On for U2OS H2B-Halo PA-JF646 spaSPT at 134 Hz. First column: A 867	
power law was fit to the time- and –ensemble-averaged mean squared displacement (MSD) 868	
and the anomalous diffusion coefficient, a, inferred. To calculate the MSD from only the free 869	
population, vbSPT with an enforced 2-state model was used to classify trajectories into either 870	
bound or free and the MSD calculated from the vbSPT-classified free population. Error bars 871	
were obtained from jackknife sampling: random 50% subsamples of the data were taken, the 872	
MSD calculated and this repeated 20 times. Error bars show standard deviation among 873	
subsamplings. The best-fit a-value as well as 95% confidence intervals (CI) are shown. 874	
Second column: Spot-On inferred DFREE and FBOUND from spaSPT experiments at a range of 875	
frame rates from 50 Hz to 200 Hz. Despite anomalous diffusion, Spot-On is nevertheless 876	
able to estimate reasonably consistent DFREE and FBOUND across a wide range of frame-rates. 877	
Third to fifth column: Spot-On (JumpsToConsider=4; 2-state model) CDF-fits at three 878	
selected time-points, showing that even with significant anomalous diffusion and only 3 fitted 879	
parameters, Spot-On can nonetheless fit the data reasonably well. (B) MSD-fit and Spot-On 880	
for U2OS C32 Halo-CTCF PA-JF646 spaSPT at 134 Hz. Each column is described in (A). 881	
(C) MSD-fit and Spot-On for mESC C3 Halo-Sox2 PA-JF646 spaSPT at 134 Hz. Each 882	
column is described in (A). (D) MSD-fit and Spot-On for U2OS Halo-3xNLS PA-JF646 883	
spaSPT at 134 Hz. Each column is described in (A). (E) MSD-fit and Spot-On for simulated 884	
data with DFREE = 3.5 µm2/s; FBOUND = 50%; 7 ms per frame. 885	
 886	
Figure 4 – Figure Supplement 3. Re-analysis of experimental data using vbSPT. We re-887	
analyzed the experimental data shown in Figure 4G-K using vbSPT (allowing up to 2 states) 888	
instead of Spot-On. (A-B) Effect of frame-rate on DFREE and FBOUND. spaSPT was performed 889	
at 200 Hz, 167 Hz, 134 Hz, 100 Hz, 74 Hz and 50 Hz using the 4 cell lines and the data 890	
analyzed using vbSPT (max 2 states). Each experiment on each cell line was performed in 4 891	
replicates on different days and ~5 cells imaged each day. Error bars show standard 892	
deviation between replicates. (C) Motion-blur experiment. To investigate the effect of 893	
“motion-blurring”, the total number of excitation photons was kept constant, but delivered 894	
during pulses of duration 1, 2, 4, 7 ms or continuous (cont) illumination. (D-E) Effect of 895	
motion-blurring on DFREE and FBOUND. spaSPT data was recorded at 100Hz and the data 896	
analyzed using vbSPT (max 2 states). The inferred DFREE (D) and FBOUND (E) were plotted as 897	
a function of excitation pulse duration. Each experiment on each cell line was performed in 4 898	
replicates on different days and ~5 cells imaged each day. Error bars show standard 899	
deviation between replicates. 900	
Compared to Spot-On (Figure 4G-K; repeated below), vbSPT generally reports a higher 901	
bound fraction (e.g. vbSPT reports a total bound fraction of ~60-65%, which is much higher 902	
than previously reported (Teves et al., 2016)). vbSPT most likely overestimates the bound 903	
fraction because it does not account for defocalization bias.  904	
 905	
	  906	
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APPENDIX 1: Fitting of simulations using Spot-On, vbSPT and MSDi 907	
To systematically evaluate the performance of Spot-On as well as other common 908	

analysis tools such as MSDi and vbSPT (Persson et al., 2013), we developed simSPT, a 909	
simulation tool to generate a comprehensive set of 3480 realistic SPT simulations spanning 910	
the range of plausible dynamics (almost a billion trajectories were simulated in total). simSPT 911	
is freely available at GitLab: https://gitlab.com/tjian-darzacq-lab/simSPT. simSPT simulates 912	
3D SPT trajectories arising from an arbitrary number of subpopulations confined inside a 913	
sphere under HiLo illumination and takes into account a limited axial detection range, 914	
realistic photobleaching rates and optionally state interconversion. The simulation methods 915	
are described in detail at GitLab. All 3480 simulated datasets are also available (see Data 916	
Availability section). 	917	

Briefly, we parameterized simSPT to consider that particles diffuse inside a sphere 918	
(the nucleus) of 8 µm diameter illuminated using HiLo illumination (assuming a HiLo beam 919	
width of 4 µm), with an axial detection range of ~700 nm with Gaussian edges, centered at 920	
the middle of the HiLo beam. Molecules are assumed to have a mean lifetime of 4 frames 921	
(when inside the HiLo beam) and of 40 frames when outside the HiLo beam. The localization 922	
error was set to 25 nm and the simulation was run until 100,000 in-focus trajectories were 923	
recorded. More specifically, the effect of the exposure time (1 ms, 4 ms, 7 ms, 13 ms, 20 ms), 924	
the free diffusion constant (from 0.5 µm²/s to 14.5 µm²/s in 0.5 µm²/s increments) and the 925	
fraction bound (from 0% to 95% in 5% increments) were investigated, yielding a dataset 926	
consisting of 3480 simulations. The advantage of simulations is that the ground truth is 927	
known. 	928	

For more specific simulations, extra parameters were varied, such as the width of the 929	
axial detection range (Figure 3 – Figure Supplement 7), localization error (Figure 3 – Figure 930	
Supplement 11), the number of states (Figure 3 – Figure Supplement 6), or the 931	
presence/absence of interconversion between states (Figure 3 – Figure Supplement 10).	932	

In the case of the main 3480 simulation SPT datasets, we analyzed the data using the 933	
Matlab version of Spot-On (either using JumpsToConsider=4 or all), MSDi (either R2>0.8 or 934	
all) or vbSPT. We describe the analysis in details below. 	935	

 936	
Spot-On (4 jumps) 937	

Rational and parameters: Spot-On allows a user to use the entirety of each trajectory 938	
or to use only the first n jumps by adjusting the parameter, JumpsToConsider. For example, 939	
consider a trajectory of consisting of 6 localizations and without gaps. If JumpsToConsider=4 940	
and TimePoints=6, then this trajectory will contribute 4 displacements to the 1∆𝜏 histogram, 4 941	
displacements to the 2∆𝜏 histogram, 3 displacements to the 3∆𝜏 histogram, 2 displacements to 942	
the 4∆𝜏 histogram and 1 displacement to the 5∆𝜏 histogram. Thus, even though the trajectory 943	
contains 5 1∆𝜏 displacements, only the first 4 will be used for analysis if 944	
JumpsToConsider=4. While on simulated data, using a subset of the trajectories is always 945	
slightly less accurate than using the entire trajectory since it slightly underestimates the bound 946	
fraction, we previously (Hansen et al., 2017) used this as an empirical way of compensating 947	
for all the other experimental biases that cause undercounting of freely diffusing molecules 948	
that cannot fully be taken into account in simulations. We therefore also tested this approach 949	
in the simulations. To fit the simulations using Spot-On we fed the following parameters to 950	
the function SpotOn_core.m (v1.0; GitLab tag 1f9f782b): 951	

• dZ = 0.700; 952	
• GapsAllowed = 1; 953	
• BinWidth = 0.010;  954	
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• UseAllTraj = 0; 955	
• JumpsToConsider = 4; 956	
• MaxJump = 6.05; 957	
• ModelFit = 2; 958	
• DoSingleCellFit = 0; 959	
• NumberOfStates = 2; 960	
• FitIterations = 2; 961	
• FitLocError = 0;  962	
• LocError = 0.0247; 963	
• D_Free_2State = [0.4 25]; 964	
• D_Bound_2State = [0.00001 0.08]; 965	
• TimePoints: 10 if 1 ms; 9 if 4 ms; 8 if 7 ms; 7 if 10 ms; 6 if 13 ms; 5 if 20 ms; 966	
• The empirical a,b parameters used to correct for defocalization bias were as 967	

follows: 968	
o ∆𝜏 = 1 ms; ∆𝑧 = 0.7 µm; 1 gap: a = 0.0387 s1/2; b = 0.3189 µm; 969	
o ∆𝜏 = 4 ms; ∆𝑧 = 0.7 µm; 1 gap: a = 0.1472 s1/2; b = 0.2111 µm; 970	
o ∆𝜏 = 7 ms; ∆𝑧 = 0.7 µm; 1 gap: a = 0.1999 s1/2; b = 0.2058 µm; 971	
o ∆𝜏 = 10 ms; ∆𝑧 = 0.7 µm; 1 gap: a = 0.2379 s1/2; b = 0.2017 µm; 972	
o ∆𝜏 = 13 ms; ∆𝑧 = 0.7 µm; 1 gap: a = 0.2656 s1/2; b = 0.2118 µm; 973	
o ∆𝜏 = 20 ms; ∆𝑧 = 0.7 µm; 1 gap: a = 0.3133 s1/2; b = 0.2391 µm; 974	

CDF-fitting was then performed in MATLAB R2014b using the Matlab version of 975	
Spot-On (v1.0; GitLab tag 1f9f782b) and the estimated free diffusion constant, 𝐷FREE, and 976	
bound fraction, 𝐹BOUND, recorded for each of the 3480 simulations. The estimated 𝐷FREE and 977	
𝐹BOUND were then compared to the ground truth known from the simulations. 3 parameters were 978	
estimated in the fit. 979	

Performance evaluation: Spot-On (4 jumps) performs slightly worse than Spot-On 980	
(all) when it comes to estimating 𝐹BOUND as expected and essentially identically to Spot-On 981	
(all) for estimating 𝐷FREE. The mean error (bias) for estimating 𝐹BOUND was -6.4%, the inter-982	
quartile range (IQR) was 5.9% and the standard deviation 3.6%. The origin of the error is the 983	
undercounting of the bound population due to considering only the first 4 jumps. Since bound 984	
molecules remain in focus until they bleach, they always yield only a single trajectory, 985	
whereas a single freely diffusing molecule has a probability of yielding multiple trajectories 986	
by diffusing in-focus for a while, then moving out-of-focus for a while and then moving back 987	
in-focus.  For estimating 𝐷FREE the bias for Spot-On (4 jumps) was -5.4%, the IQR 3.6% and 988	
the standard deviation 3.2%. However, as shown in Figure 3 – Figure Supplement 2,4, the 989	
slight underestimate of the free diffusion constant is not due to a limitation of Spot-On, but 990	
instead due to confinement inside the nucleus (Figure 3 – Figure Supplement 4). For example, 991	
a diffusing molecule close to the nuclear boundary moving towards the nuclear boundary will 992	
“bounce back” resulting in a large distance travelled, but only a smaller recorded 993	
displacement. We validated that this indeed is the origin of the underestimate of 𝐷FREE by 994	
considering a nucleus with virtually no confinement (20 μm radius) and found that the 𝐷FREE-995	
underestimate was now minimal (Figure 3 – Figure Supplement 4). Finally, Spot-On always 996	
estimated the bound diffusion constant, 𝐷BOUND, with minimal error unlike MSDi or vbSPT, 997	
which were not able to accurately estimate 𝐷BOUND. However, since there is generally less 998	
interest in 𝐷BOUND, we did not use this further for evaluating the performance of the different 999	
methods.  	1000	

 1001	
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Spot-On (all) 1002	
Rational and parameters: Spot-On (all) was run on the simulations identically to 1003	

Spot-On (4 jumps) except the entirety of each trajectory was used for calculating the 1004	
histograms. To fit the simulations using Spot-On we fed the following parameters to the 1005	
function SpotOn_core.m (v1.0; GitLab tag 1f9f782b): 1006	

• dZ = 0.700; 1007	
• GapsAllowed = 1; 1008	
• BinWidth = 0.010;  1009	
• UseAllTraj = 1; 1010	
• MaxJump = 6.05; 1011	
• ModelFit = 2; 1012	
• DoSingleCellFit = 0; 1013	
• NumberOfStates = 2; 1014	
• FitIterations = 2; 1015	
• FitLocError = 0;  1016	
• LocError = 0.0247; 1017	
• D_Free_2State = [0.4 25]; 1018	
• D_Bound_2State = [0.00001 0.08]; 1019	
• TimePoints: 10 if 1 ms; 9 if 4 ms; 8 if 7 ms; 7 if 10 ms; 6 if 12 ms; 5 if 20 ms; 1020	
• The empirical a,b parameters used to correct for defocalization bias were as 1021	

follows: 1022	
o ∆𝜏 = 1 ms; ∆𝑧 = 0.7 µm; 1 gap: a = 0.0387 s1/2; b = 0.3189 µm; 1023	
o ∆𝜏 = 4 ms; ∆𝑧 = 0.7 µm; 1 gap: a = 0.1472 s1/2; b = 0.2111 µm; 1024	
o ∆𝜏 = 7 ms; ∆𝑧 = 0.7 µm; 1 gap: a = 0.1999 s1/2; b = 0.2058 µm; 1025	
o ∆𝜏 = 10 ms; ∆𝑧 = 0.7 µm; 1 gap: a = 0.2379 s1/2; b = 0.2017 µm; 1026	
o ∆𝜏 = 13 ms; ∆𝑧 = 0.7 µm; 1 gap: a = 0.2656 s1/2; b = 0.2118 µm; 1027	
o ∆𝜏 = 20 ms; ∆𝑧 = 0.7 µm; 1 gap: a = 0.3133 s1/2; b = 0.2391 µm; 1028	

As above, CDF-fitting was performed and the 𝐷FREE-estimate and 𝐹BOUND-estimate 1029	
compared to the ground truth for each of the 3480 simulations for which the ground truth is 1030	
known. 3 parameters were estimated in the fit. 1031	

Performance evaluation: Spot-On (all) out-performed all other approaches. The 1032	
mean error (bias) for estimating 𝐹BOUND was -1.7%, the inter-quartile range (IQR) was 1.8% 1033	
and the standard deviation 1.2%. For estimating 𝐷FREE the bias for Spot-On (all) was -4.8%, 1034	
the IQR 3.5% and the standard deviation 3.3%. But as mentioned above, the slight 1035	
underestimate of 𝐷FREE is simply due to diffusion being confined inside a 4 μm radius nucleus 1036	
(Figure 3 – Figure Supplement 4). This also helps to emphasize the point that diffusion 1037	
constants measured inside a nucleus should be interpreted as apparent diffusion constants. 1038	

 1039	
MSDi (R2>0.8) 1040	

Rational and parameters: A large number of papers have use different variations of 1041	
the MSDi approach (Knight et al., 2015; Li et al., 2016; Liu et al., 2014; Schmidt et al., 2016; 1042	
Zhen et al., 2016)(Knight et al., 2015; Li et al., 2016; Schmidt et al., 2016; Zhen et al., 2016). 1043	
This approach is of course very sensitive to how the MSD is estimated. For example, it is 1044	
well-known that accurately estimating diffusion constants from short trajectories (<100 1045	
frames) subject to significant localization error is all but impossible as shown by Michalet and 1046	
Berglund (Michalet and Berglund, 2012). Nevertheless, several papers assign diffusion 1047	
constants to individual trajectories based on a MSD-fit. While the exact method differs 1048	
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somewhat from paper to paper, the most popular approach is to set a threshold of a certain 1049	
number of localizations per trajectory (most commonly 5; though we note that some reports 1050	
explicitly attempt to compensate for the bias introduced by setting such a threshold (Zhen et 1051	
al., 2016)). Each trajectory with at least 5 localizations are then fit, often using the Matlab 1052	
library MSDAnalyzer (Tarantino et al., 2014), and thus assigned an apparent diffusion 1053	
constant. An additional threshold is then applied: only if the fit to the MSD curve is judged 1054	
sufficiently good, is the diffusion constant then used. Otherwise the trajectory is ignored. This 1055	
fitting threshold is frequently set based on the coefficient of determination as R2>0.8 in some 1056	
recent papers (Knight et al., 2015; Li et al., 2016; Schmidt et al., 2016). Next, after analyzing 1057	
all trajectories in this way, a distribution of diffusion constants is then obtained. The analysis 1058	
is then performed on the logarithm of these diffusion constants (“LogD histogram”) (Knight 1059	
et al., 2015; Li et al., 2016; Schmidt et al., 2016). Both the CDF (Knight et al., 2015) and PDF 1060	
(Knight et al., 2015; Li et al., 2016; Schmidt et al., 2016; Zhen et al., 2016) can be considered. 1061	
These are then fitted with a sum of Gaussian distributions: either two (Knight et al., 2015; 1062	
Schmidt et al., 2016; Zhen et al., 2016) or three (Schmidt et al., 2016; Zhen et al., 2016). We 1063	
note that it is not immediately clear which distribution fitted diffusion constants should 1064	
actually follow (e.g. Log-normal, Gamma, Normal, etc.). No justification is given for sums of 1065	
Gaussians (Knight et al., 2015; Li et al., 2016; Schmidt et al., 2016), though we note that the 1066	
fit is often quite good both in the previous reports (Knight et al., 2015; Li et al., 2016; 1067	
Schmidt et al., 2016) and also here as shown in Figure 3 – Figure Supplement 3. Please note 1068	
that fitting a sum of normal distributions to the LogD histogram is equivalent to fitting a sum 1069	
of log-normal distributions to the D histogram. We also note here, that in a theoretical study 1070	
Michalet previously showed that the distribution of diffusion constants is approximately 1071	
Gaussian, but only under a set of stringent criteria (Michalet, 2010). Since CDF-fitting is 1072	
generally less susceptible to noise from binning and since in this comparison Spot-On also 1073	
uses CDF-fitting, we fit the LogD histogram with a sum of 2 Gaussians using CDF-fitting. 1074	
We refer to this whole procedure as MSDi (R2>0.8). Examples of fits are shown in Figure 3 1075	
and Figure 3 – Figure Supplement 3 and the Matlab code to perform the fitting is available 1076	
together with the data (see “Data availability’). 5 parameters were estimated in the fit. 1077	

Performance evaluation: Overall, MSDi (R2>0.8) generally performs reasonably well 1078	
when it comes to estimating 𝐷FREE, but extremely poorly when it comes to 𝐹BOUND and 1079	
𝐷BOUND. The mean error (bias) for estimating 𝐷FREE was 8.0%, the inter-quartile range (IQR) 1080	
was 4.9% and the standard deviation 28.5%. For estimating 𝐹BOUND the bias for MSDi 1081	
(R2>0.8) was -20.6%, the IQR 32.1% and the standard deviation 26.4%. We note that since 1082	
𝐹BOUND necessarily has to take a value between 0% and 95% in the simulations and since half 1083	
the simulations have 𝐹BOUND<50%, a mean error of -20.6% is actually quite large. Although 1084	
the bias for 𝐷FREE is much smaller, in ~5% of all cases, the error in estimating 𝐷FREE is bigger 1085	
than 2-fold. Moreover, in a few very rare cases, not a single trajectory out of the 100,000 1086	
simulated trajectories pass both thresholds (R2>0.8; at least 5 frames). Why is MSDi (R2>0.8) 1087	
fitting so unreliable? It is instructive to consider an example. In the example dataset provided 1088	
with the MSDi code (simulation with 𝐷FREE=2; 𝐹BOUND =0.75; 1 ms frame rate), the estimated 1089	
𝐷FREE=2.06 is very good, but the estimated 𝐹BOUND =0.16 is extremely poor. Even though the 1090	
simulation dataset contains 100,000 simulated trajectories, only 3726 of them actually pass 1091	
the threshold (R2>0.8; at least 5 frames). Thus, MSDi (R2>0.8) only uses around 4% of the 1092	
data. Since the tiny fraction of the dataset that is used for analysis is chosen based on how 1093	
well it fits an MSD-curve and since displacements of bound molecules are dominated by 1094	
localization errors and therefore generally poorly fit by MSD-analysis, the procedure enriches 1095	
for the free population, which is why the estimated bound fraction (16%) is so much lower 1096	
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than the true bound fraction (75%). Additionally, we note that MSDi-based analysis is 1097	
extremely sensitive to the fitting threshold: if instead of R2>0.8, all trajectories had been used 1098	
the estimated bound fraction would be 87% instead of 16%.  1099	

In conclusion, MSDi (R2>0.8) is unreliable for estimating 𝐹BOUND when short 1100	
trajectories are at stake, which is the usual case when performing intracellular SPT of fast-1101	
diffusing molecules. MSDi (R2>0.8) most likely fails due to a combination of the following 1102	
reasons among others. First, it poorly handles localization errors, which dominate the 1103	
displacements of bound molecules. Second, by only considering trajectories of a certain 1104	
length (normally at least 5 frames), it only analyzes a small subsample of the dataset. Third, 1105	
there is no correction for defocalization bias. Since fast-diffusing molecules move out-of-1106	
focus and thus have shorter trajectories, the 5-frame threshold introduces a large bias against 1107	
freely-diffusing molecules. Fourth, the fitting threshold (R2>0.8) is relatively arbitrary and the 1108	
results of the analysis is extremely sensitive to this threshold. Accordingly, in these 1109	
simulations MSDi (R2>0.8) only analyzes a small fraction (~5%) of all the trajectories; note 1110	
that this bias against the bound population provides a compensatory bias against the bound 1111	
population to account for the bias against the free population due to defocalization bias. Fifth, 1112	
it is difficult to justify the use of Gaussian distributions. Even in cases where the CDF-fit to 1113	
the data is excellent, the fitted 𝐹BOUND-value is often very far off the ground truth. Thus, the 1114	
goodness of the fit cannot be used to judge how well the parameter-estimation went. Finally, 1115	
we note that several variants of the MSDi-based method exist (e.g. the approach used by Zhen 1116	
et al. (Zhen et al., 2016)) is a bit different than the one used here. However, a full validation 1117	
test of all MSDi-based methods is beyond the scope of this work.	1118	

 1119	
MSDi (all) 1120	

Rational and parameters: The MSDi (all) analysis was identical to MSDi (R2>0.8) 1121	
except for a single difference: instead of only using trajectories of at least 5 frames where the 1122	
MSD-fit to individual trajectories was judged good (R2>0.8), all trajectories of at least 5 1123	
frames were used, regardless of how good the MSD-fit was. 5 parameters were estimated in 1124	
the fit. 1125	

Performance evaluation: MSDi (all) analysis performed very poorly both when it 1126	
comes to estimating 𝐷FREE and 𝐹BOUND. The mean relative error (bias) for estimating 𝐷FREE 1127	
was -39.6%, the inter-quartile range (IQR) was 19.0% and the standard deviation 41.8%. For 1128	
estimating 𝐹BOUND the bias for MSDi (all) was 22.0%, the IQR 17.8% and the standard 1129	
deviation 15.8%. Thus, in all but a few edge cases, MSDi (all) cannot reliably estimate 𝐷FREE 1130	
or 𝐹BOUND. As for MSDi (R2>0.8), examples of fits are shown in Figure 3 – Figure Supplement 1131	
3 and the Matlab code to perform the fitting is available together with the data (see “Data 1132	
availability’). In the case of MSDi (all), the main reason for the unreliable estimates is due to 1133	
defocalization bias. Since fast-diffusing molecules move out-of-focus and thus have shorter 1134	
trajectories, the 5-frame threshold introduces a large bias against freely-diffusing molecules. 1135	
Overall, consistent with previous benchmarking efforts on membrane proteins (Weimann et 1136	
al., 2013), MSDi (all) performed least well among the tested methods. 1137	

 1138	
vbSPT 1139	

Rational and parameters: vbSPT performs single-trajectory classification using 1140	
Hidden-Markov Modeling (HMM) and Bayesian inference (Persson et al., 2013) and can 1141	
assign different segments of a single trajectory to different diffusive states, each associated 1142	
with a particular diffusion constant. vbSPT uses the information from all the estimates on 1143	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 26, 2017. ; https://doi.org/10.1101/171983doi: bioRxiv preprint 

https://doi.org/10.1101/171983
http://creativecommons.org/licenses/by-nc-nd/4.0/


33		

single trajectories to consolidate an estimate of diffusion coefficients and associated fractions 1144	
in each state. 1145	

vbSPT additionally uses a statistical model to infer the most likely number of diffusive 1146	
states assuming all states to exhibit Brownian motion. Since the simulations used to evaluate 1147	
vbSPT performed contain only 2 states, it was not clear how to assign 𝐷FREE or 𝐹BOUND in 1148	
cases where e.g. three diffusive states were inferred. Therefore, to optimize the performance 1149	
of vbSPT and perform the fairest comparison, we restricted vbSPT to two states such that 1150	
vbSPT would infer the diffusion coefficient of up to two states and provide the associated 1151	
fractions. This method conceptually differs from the MSDi approach in several ways: 1152	

• The inferred parameters are not based on the MSD 1153	
• A specific and rigorous Bayesian statistical model is used to aggregate 1154	

the parameters estimated on single trajectories to global diffusion states. 1155	
 1156	
vbSPT was initially designed for SPT of diffusing proteins in bacteria (Persson et al., 1157	

2013), where defocalization biases are virtually nonexistent since the axial dimension of most 1158	
bacteria are generally comparable to or smaller than the microscope axial detection range. 1159	
Furthermore, vbSPT does not explicitly model the localization error. It is then expected that 1160	
the software performs poorly when the localization error is high, as can be expected when 1161	
imaging intranuclear factors. 1162	

In practice, the following parameters were used to assess vbSPT performance. The 1163	
software was run on the full set of 3480 simulations. The priors and optimization parameters 1164	
were left as default and the scripts to perform the analysis are provided together with the 1165	
experimental data (please see Data Availability section):	1166	

 dim = 2; 1167	
 trjLmin = 2; 1168	
 runs = 3; 1169	
 maxHidden = 2; 1170	
 bootstrapNum = 10; 1171	
 fullBootstrap = 0; 1172	
 init_D = [0.001, 16]; 1173	
 init_tD = [2, 20]*timestep; 1174	
 1175	
 Performance evaluation: Over the 3480 simulations, vbSPT accurately 1176	

estimated both 𝐷FREE and 𝐹BOUND. The mean relative error (bias) for estimating 𝐷FREE was 1177	
0.8%, the inter-quartile range (IQR) was 6.8% and the standard deviation 12.5%. For 1178	
estimating 𝐹BOUND the bias for vbSPT was 5.0%, the IQR 6.1% and the standard deviation 1179	
4.6%. Thus, vbSPT estimated values were quite consistent (IQR <7% for both 𝐷FREE and 1180	
𝐹BOUND). These values were very close to Spot-On in performance. 	1181	

When looking at the heatmaps (Figure 3 – Figure Supplement 2) more closely, it 1182	
appeared that vbSPT performs poorly on the estimation of the free diffusion constant when 1183	
the mean displacements are small. This case occurs either with small free diffusion constants 1184	
(0.5-2 µm²/s), or with low exposure time (1 ms) and could be explained by the fact that in 1185	
such conditions, the displacements of the free population and localization error have 1186	
comparable magnitudes, and that vbSPT does not account for localization error.	1187	

Regarding the estimate of the fraction bound, vbSPT tends to overestimate it more and 1188	
more as the mean displacement of the free population increases (that is, either the exposure 1189	
time or 𝐷FREE). This is most likely because vbSPT does not correct for defocalization bias. 1190	
Thus, the more free molecules diffuse out-of-focus, the more vbSPT will overestimate 1191	
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𝐹BOUND. Finally, we note that these two biases somewhat compensate for each other: not 1192	
considering localization errors causes a small overestimate of the free population, whereas not 1193	
correcting for defocalization bias causes an underestimate of the free population.  1194	

In summary, for conditions where the mean jump length of the free population can be 1195	
distinguished from the localization error, vbSPT performs reasonably well, while being 1196	
slightly outperformed by Spot-On. 1197	
	  1198	
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APPENDIX 2: Considerations for choosing Spot-On parameters 1199	
In order to run Spot-On, the user has to set a number of parameters. While some are 1200	

determined by the acquisition protocol (e.g. time between frames), others will have to be 1201	
carefully chosen. We provide a discussion of how to choose these here.  1202	

 1203	
JumpsToConsider 1204	

Users can either choose to use all displacements from all trajectories (set “Use all 1205	
trajectories” to “Yes” in the web-version of Spot-On or “UseAllTraj=1” in the Matlab version 1206	
of Spot-On) or to use only a subset by controlling the JumpsToConsider variable. For 1207	
example, consider a trajectory consisting of 6 localizations and without gaps. If 1208	
JumpsToConsider=4 and TimePoints=6, then this trajectory will contribute 4 displacements to 1209	
the 1∆𝜏 histogram, 4 displacements to the 2∆𝜏 histogram, 3 displacements to the 3∆𝜏 1210	
histogram, 2 displacements to the 4∆𝜏 histogram and 1 displacement to the 5∆𝜏 histogram. 1211	
Thus, even though the trajectory contains 5 1∆𝜏 displacements, only the first 4 will be used 1212	
for analysis if JumpsToConsider=4. Why would we want to limit the number of jumps that 1213	
were used? Since freely-diffusing molecules move out-of-focus, almost all very long 1214	
trajectories will be bound molecules. For example, a single trajectory of 21 localizations will 1215	
provide 20 displacements to the 1∆𝜏 histogram, whereas freely diffusing molecules with short 1216	
trajectories will provide fewer (e.g. 10 trajectories with 3 localizations would be necessary to 1217	
also provide 20 displacements to the 1∆𝜏 histogram). Thus, by limiting JumpsToConsider, 1218	
one is biasing the displacement histogram against bound molecules. However, as 1219	
demonstrated in the simulations shown in Figure 3 – Figure Supplement 2, whether all jumps 1220	
or JumpsToConsider=4 is used has almost no effect on the 𝐷FREE-estimate, but using 1221	
JumpsToConsider=4 causes 𝐹BOUND to be underestimated by on average of -5% (percentage 1222	
points) relative to SpotOn (all). We see a similar ~5-10% difference between Spot-On (4 1223	
jumps) and Spot-On (all) on the experimental spaSPT data shown in Figure 4. As we have 1224	
discussed previously (Hansen et al., 2017), restricting JumpsToConsider to 4 is a way one can 1225	
compensate for all the many acquisition biases (such as motion-blur) that generally cause 1226	
undercounting for fast-diffusing molecules and which cannot readily be taken into account in 1227	
simulations. While the optimal value will depend on the trajectory length distribution 1228	
(JumpsToConsider should not take a value much smaller than the mean trajectory length), we 1229	
found that JumpsToConsider=4 provides a good compromise for our experimental data. We 1230	
strongly recommend including experimental controls (such as histone H2B-Halo and Halo-1231	
3xNLS to ensure that experimental and analysis parameters have been reasonably set).  1232	

 1233	
Number of timepoints 1234	

Spot-On considers how the histogram of displacement changes over time for multiple 1235	
∆𝜏. The number of ∆𝜏 that will be considered is equal to the number of timepoints – 1. So, if 1236	
timepoints = 8, the displacements from 1∆𝜏 to 7∆𝜏 will be considered. How many timepoints 1237	
to consider will depend on how much data you have and the frame-rate. For example, if the 1238	
mean trajectory length is 2 frames, setting timepoints to 20 will cause problems since only a 1239	
tiny fraction of trajectories will be at least 20 frames long and thus contribute to the 19∆𝜏 1240	
histogram. Moreover, the correction for defocalization is approximate, so considering 1241	
timepoints where more than >95% of free molecules have moved out-of-focus is also not 1242	
recommended; when this happens will further depend on the free diffusion constant. 1243	
Nevertheless, as long as there is sufficient data to reasonably populate the displacement 1244	
histograms at all timepoints, Spot-On is highly robust to how this parameter is set (Figure 3 – 1245	
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Figure Supplement 8). As a rule of thumb we generally do not recommend setting timepoints 1246	
above 10 or considering ∆𝜏 beyond 80 ms.  1247	

 1248	
Iterations for fitting 1249	

Spot-On almost always converges optimally in the first iteration, so generally 2 or 3 is 1250	
more than sufficient when using the 2-state model. For the 3-state model, the parameter 1251	
estimation is more complicated and here we recommend 8 iterations as a starting point.    1252	

 1253	
PDF or CDF fitting 1254	

Although for large datasets PDF- and CDF-fitting perform similarly as shown in 1255	
Figure 3 – Figure Supplement S9, CDF-fitting tends to provide more reliable estimates of 1256	
𝐷FREE and 𝐹BOUND when the number of trajectories decreases, likely because PDF-fitting is 1257	
more susceptible to binning noise. Thus, for quantitative analysis we always recommend 1258	
CDF-fitting, though PDF-fitting can be convenient for making figures since most people find 1259	
histograms more intuitive.  1260	

 1261	
Fitting localization error 1262	

Spot-On can either use a user-supplied localization error or fit it from the data. As 1263	
long as there is a significant bound fraction, Spot-On will infer this with nanometer precision 1264	
(Figure 3 – Figure Supplement 11), though we note that this is an average localization error 1265	
that mostly reflects the localization error of the bound fraction, and the actual localization 1266	
error for each individual localization will vary (Deschout et al., 2012; Lindén et al., 2017). In 1267	
cases, where the bound population is very small, fitting the localization error can be less 1268	
accurate. Thus, in situations where comparisons are being made between the same protein 1269	
under different conditions or e.g. between different mutants of the same protein, we 1270	
recommend fitting to obtain a mean localization error and then keeping it fixed in the 1271	
comparisons. 	1272	

 1273	
Choosing allowed ranges for diffusion constants	1274	

Spot-On comes with default allowed ranges. For example, for the 2-state model, 1275	
𝐷FREE = 0.5; 25  and 𝐷BOUND = 0.0001; 0.08 . These ranges are generally reasonable, but 1276	
may not be appropriate for all datasets. Whenever Spot-On infers a diffusion constant that is 1277	
equal to the min or max, caution is needed and it may be necessary to change these limits. In 1278	
particular, a molecule is bound to an unusually dynamic scaffold, 𝐷BOUND=0.08 µm²/s is 1279	
almost certainly too high. Thus, we recommend imaging a protein that is overwhelmingly 1280	
bound, such as histone H2B or H3, fitting the histone data with Spot-On and then use the 1281	
inferred 𝐷BOUND for histone proteins or a slightly larger value as the maximally allowed 1282	
𝐷BOUND value.  1283	

 1284	
2-state or 3-state model 1285	

Spot-On considers either a 2-state or 3-state model. Since the 3-state model contains 2 1286	
additional fitted parameters, the 3-state fit is almost always better. While there are many cases 1287	
where a 2-state model would be inappropriate (e.g. a transcription factor that can exist as 1288	
either a monomer or tetramer, thus exhibiting two very different diffusive states), generally 1289	
speaking, we prefer fitting a 2-state model for most transcription factors or similar nuclear 1290	
chromatin-interacting proteins. In part, deviations from the 2-state model will be due to 1291	
anomalous diffusion and confinement inside cells, which cause deviation from the ideal 1292	
Brownian motion model implemented by Spot-On. For this reason, traditional model-1293	
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selection techniques such as Akaike’s Information Criterion (AIC) or the Bayesian 1294	
Information Criterion (BIC) can also be misleading.	  1295	
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APPENDIX 3: SPT acquisition considerations in spaSPT 1296	
experiments 1297	
 1298	
Considerations for minimizing bias in SPT acquisitions 1299	

To obtain a good single-molecule tracking dataset, a series of requirements have to be 1300	
met. First of all, it must be possible to image single-molecules at a high signal-to-noise ratio. 1301	
This is now relatively straightforward thanks to developments in fluorescence labeling 1302	
strategies and imaging modalities (Lavis, 2017; Liu et al., 2015). The development of the 1303	
HaloTag protein-labeling system and bright, photo-stable organic Halo-dyes such as TMR 1304	
and the JF dyes (Grimm et al., 2015) now make it possible to easily visualize single protein 1305	
molecules inside live cells. Moreover, imaging modalities such as highly inclined and 1306	
laminated optical sheet illumination (“HiLo”)(Tokunaga et al., 2008) are relatively 1307	
straightforward to implement and combined with a high-quality EM-CCD camera make it 1308	
possible to image single-molecules at high signal-to-noise suitable for generating high-quality 1309	
2D SPT data. For details of our imaging setup, which combines HaloTag-labeling with HiLo-1310	
illumination and which is relatively common and easy to operate, please see the methods 1311	
section. But we note that many other imaging modalities, e.g. light-sheet or even epi-1312	
fluorescence imaging can generate high-quality single-molecule tracking data.  1313	

Thus, in the following we will assume that the above condition is met: namely, that 1314	
single protein molecules can be tracked inside live cells at high signal-to-noise ratio. 1315	
Nevertheless, even if this condition is met, there are at least 4 other major sources of bias:	1316	

 1317	
1. Detection: minimize “motion-blurring” 1318	
2. Tracking: minimize tracking errors 1319	
3. 3D loss: correct for molecules moving out-of-focus (defocalization 1320	

bias) 1321	
4. Analysis methods: infer subpopulations with minimal bias 1322	

 1323	
Spot-On addresses point 3 and 4, as described elsewhere, but point 1 and 2 must be 1324	

addressed in the experimental design. We discuss strategies to minimize these biases below 1325	
(spaSPT).  1326	
 1327	
1. Detection – minimizing “motion-blurring”  1328	

Almost all localization algorithms achieve sub-diffraction localization accuracy 1329	
(“super-resolution”) by treating individual fluorophores as point-source emitters, which 1330	
generate blurred images that can be described by the Point-Spread-Function (PSF) of the 1331	
microscope. Modeling of the PSF (typically as a 2-dimensional Gaussian) then allows 1332	
extraction of the particle centroid with a precision of 10s of nm. But as illustrated in Figure 1333	
1A, while this works extremely well for bound molecules, fast-diffusing molecules will 1334	
spread out their photons over many pixels during the camera exposure and thus appear as 1335	
“motion-blurs”. Thus, localization algorithms will reliably detect bound molecules, but may 1336	
fail to detect fast-moving molecules as has also been observed previously (Berglund, 2010; 1337	
Deschout et al., 2012; Elf et al., 2007; Izeddin et al., 2014; Lindén et al., 2017). Clearly, the 1338	
extent of the bias will depend on the exposure time and the diffusion constant: the longer the 1339	
exposure and higher D, the worse the problem. Assuming Brownian motion, we can calculate 1340	
the fraction of molecules that will move more than some distance, 𝑟max, during an exposure 1341	
time, 𝑡exp, given a free diffusion constant of 𝐷FREE using the following equation: 	1342	
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𝑃 𝑟 > 𝑟max = 𝑒
+,max-

./FREElexp 1343	
For example, if we define motion-blurring as moving more than 2 pixels (>320 nm 1344	

assuming a 160 nm pixel size) during the excitation, an exposure time of 10 ms and a typical 1345	
free diffusion constant of 3.5 µm2/s (e.g. ~Sox2), we get: 	1346	

𝑃 𝑟 > 0.32µm = 𝑒

+ U.b3µm -

.∙b.pµm
-

s ∙U.UrUs = 48.1 1347	
Thus, even for a relatively slowly diffusing protein, with a 10 ms exposure we should 1348	

expect almost half (48%) of all free molecules to show significant motion-blurring, if we 1349	
assume that molecules move with a constant speed during the exposure. The most 1350	
straightforward solution, therefore, is to limit the exposure time: in the limit of an infinitely 1351	
short exposure time, there is no motion-blur. In practice, most EM-CCD cameras can only 1352	
image at ~100-200 Hz for reasonably sized ROIs. Moreover, it is generally desirable for the 1353	
mean jump lengths to be significantly bigger than the localization error, thus for most nuclear 1354	
factors in mammalian cells it is not desirable to image at above >250 Hz. Accordingly, a 1355	
reasonable solution is therefore to use stroboscopic illumination. That is, using brief 1356	
excitation laser pulses that last shorter than the camera frame rate (e.g. 1 ms excitation pulse, 1357	
10 ms camera exposure time for a 100 Hz experiment): this achieves minimal motion-blurring 1358	
while maintaining a useful frame-rate. However, this highlights a key experimental trade-off: 1359	
shorter excitation pulses minimize motion-blurring, but also minimize the signal-to-noise. 1360	
Therefore, a reasonable compromise has to be determined. Here we use 1 ms excitation 1361	
pulses: this achieves minimal motion blurring (0.067% >320 nm using D=3.5 µm2/s) and still 1362	
yields very good signal (signal-to-background > 5). But users will need to decide this based 1363	
on their expected D and their experimental setup (signal-to-noise). Moreover, different 1364	
localization algorithms (Chenouard et al., 2014) have different sensitivities to motion-1365	
blurring; thus, the extent of the bias will also depend on the user’s localization algorithm. As 1366	
we show here, in the case of the MTT-algorithm (Sergé et al., 2008), the estimation of D is 1367	
quite sensitive to motion-blurring, but the estimation of the bound fraction is less sensitive as 1368	
long as the diffusion constant is < 5 µm2/s. But other localization algorithms may be more or 1369	
less sensitive. Generally speaking, we do not recommend imaging at a signal-to-background 1370	
<3 and do not recommend using excitation pulses > 5 ms, but the optimal conditions will need 1371	
to be determined on a case-by-case basis.  1372	

In conclusion, experimentally implementing stroboscopic excitation makes it possible 1373	
to minimize the bias coming from motion-blurring, while still achieving a sufficient signal for 1374	
reliable localization. 1375	
 1376	
2. Tracking – minimizing tracking errors  1377	

It is necessary to minimize tracking errors in order to obtain high-quality SPT data. 1378	
Tracking errors bias the estimation of essentially all parameters we could want to estimate 1379	
from SPT experiments including diffusion constants, subpopulations, anomalous diffusion 1380	
etc. While many different tracking algorithms exist, it is fundamentally impossible to perform 1381	
tracking, that is connecting localized molecules between subsequent frames, at high densities 1382	
without introducing many tracking errors. Thus, the simplest solution is to image at low 1383	
densities: in principle, if there is only one labeled molecule per cell, there can be no tracking 1384	
errors. Yet, because dyes generally bleach quite quickly under most SPT imaging conditions, 1385	
this has traditionally led to a serious trade-off between data quality and the number of 1386	
trajectories which can be obtained. However, with the recent development of bright photo-1387	
activatable JF-dyes (Grimm et al., 2016a, 2016b) (PA-dye), it is now possible to combine the 1388	
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superior brightness of the Halo-JF dyes with photo-activation SPT (also called sptPALM 1389	
(Manley et al., 2008)). That is, a large fraction of Halo-tagged proteins in a cell can be labeled 1390	
with Halo-PA-JF dyes and then photo-activated one at a time: this allows imaging at 1391	
extremely low densities (< 1 fluorescent molecule per cell per frame) and nevertheless tens of 1392	
thousands of trajectories from a single cell can be obtained. Thus, PA-dyes now make it 1393	
possible to nearly eliminate tracking errors without compromising on signal-to-noise or 1394	
amount of data. In fact, imaging at extremely low densities generally also improves signal-to-1395	
noise since out-of-focus background is reduced and overlapping point emitters are avoided 1396	
(Izeddin et al., 2014). 	1397	

Nevertheless, even with paSPT it is still necessary to decide on an optimal density. 1398	
The key parameters are size of the ROI (ideally the whole nucleus for studies in cells) and D: 1399	
a large nucleus and a slow D can support a higher density than can fast-diffusing molecules in 1400	
a small nucleus. As a general rule of thumb, we recommend a density of ~1 fluorescent 1401	
molecule per ROI per frame. This will keep tracking errors at a minimum and still support 1402	
rapid acquisition of large datasets. All data acquired for this study was acquired at 1403	
approximately this density.  1404	

In practice, keeping an optimal density will require some trial-and-error optimization 1405	
of the 405 nm photo-activation laser intensity. 405 nm excitation does contribute background 1406	
fluorescence, so we prefer to pulse the 405 nm laser during the camera “dead-time” (~0.5 ms 1407	
in our case) to avoid this. Moreover, this also makes it easier to keep the photo-activation 1408	
level constant when changing the frame rate. However, the optimal photo-activation power 1409	
will depend on the expression level of the protein, protein half-life and the dye concentration 1410	
and will therefore have to be optimized in each case. We recommend recording initial datasets 1411	
and then analyzing them using Spot-On which reports the mean number of localizations per 1412	
frame and then using this information to determine the optimal photo-activation level. 1413	
However, even then some cell-to-cell variation may be unavoidable: especially in transient 1414	
transfection experiments where there is large cell-to-cell variation in expression level or when 1415	
studying proteins expressed from stably integrated transgenes (e.g. Halo-3xNLS and H2b-1416	
Halo in our case). In these cases, some cells will likely exhibit too high a density. To deal 1417	
with this, Spot-On includes the option to analyze datasets from individual cells first and then 1418	
excluding a cell with too high a density before analyzing the merged dataset. 	1419	
 1420	
Which datasets are appropriate for Spot-On? 1421	

In the sections above, we have discussed how to minimize common experimental 1422	
biases in SPT experiments and proposed spaSPT as a general solution. However, many 2D 1423	
SPT datasets recorded under different conditions are also appropriate for Spot-On. For 1424	
example, SPT experiments without photo-activation or with continuous illumination may also 1425	
be appropriate for analysis with Spot-On. But since Spot-On uses the loss of fast-diffusing 1426	
molecules over time to correct for bias and to estimate the free population, it is essential that 1427	
all trajectories are included in Spot-On for analysis. For example, some tracking and 1428	
localization algorithms ignore all trajectories below a certain length (e.g. 5 frames), but this 1429	
will cause Spot-On to misestimate the loss of molecules moving out-of-focus and thus it is 1430	
imperative that trajectories of all lengths be included when analyzing data using Spot-On. 1431	
Furthermore, trajectories of only a single localization are required to accurately compute the 1432	
average number of localizations per frame, which is a key quality-control metric for SPT data.  1433	

Moreover, Spot-On does not currently support 3D SPT data. Furthermore, Spot-On 1434	
assumes diffusion to be Brownian. This is a reasonable approximation even for molecules 1435	
exhibiting some levels of anomalous diffusion as shown in Figure 4 – Figure Supplement 2, 1436	
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but Spot-On is not appropriate for molecules undergoing directed motion (e.g. a protein 1437	
moving on microtubules). Additionally, in cases where there are frequent state transitions at a 1438	
time-scale similar to the frame rate (e.g. transcription factor with a 10 ms residence time 1439	
imaged at 100 Hz), Spot-On may give inaccurate results since it ignores state transitions 1440	
(Figure 3 – Figure Supplement 10). Finally, the correction for molecules moving out-of-focus 1441	
assumes that molecules are not fully confined within small compartments, that prevent 1442	
molecules from moving out-of-focus.   1443	
	  1444	
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APPENDIX 4: proposed minimal reporting guidelines for SPT data 1445	
and kinetic modeling analysis 1446	
 1447	

To ensure reproducibility of results and subsequent analyses, datasets statistics and 1448	
analysis metrics should be provided. This should allow the reader to quickly assess the quality 1449	
and statistical significance of the presented results and datasets. So far, to our knowledge, no 1450	
consensus exists on minimal reporting guidelines for single particle tracking datasets and 1451	
kinetic modeling analyses. We note, however, that a recent preprint suggests a similar 1452	
conceptual framework, although less applicable to single-molecule experiments (Rigano and 1453	
Strambio De Castillia, 2017),	1454	

	1455	
We propose that published single-particle datasets be published and reported 1456	

accompanied with the following metadata. We suggest that these metrics constitute a minimal 1457	
reporting guideline for single-particle datasets and subsequent kinetic modeling (though 1458	
additional information may be appropriate and necessary in some cases).	1459	
	1460	
Dataset description 1461	
Criterion How to obtain it Example value 
Exposure time Determined at the acquisition step 5 ms 
Signal-to-background ratio Mean peak value of detected 

particle divided by mean 
background value 

5 

Detection algorithm used  MTT (version xxx) 
Tracking algorithm used  MTT (version xxx) 
Number of particles per frame Provided by Spot-On Mean: 0.76 
Number of detections Provided by Spot-On 360000 
Number of trajectories of length > 3 Provided by Spot-On 10000 
Mean trajectory length Provided by Spot-On 4.5 frames 
Localization error Provided by Spot-On 30 nm 
 1462	
Spot-On parameters 1463	

In addition to these metrics, it is important to report the parameters specified in the 1464	
detection and tracking algorithms, since this can greatly affect the results. For Spot-On, we 1465	
recommend reporting the following parameters:  1466	

• Jump length distribution parameters: BinWidth (µm), Number of timepoints, Jumps to 1467	
consider or Use all trajectories, MaxJump (µm), 	1468	

• Fitting parameters: Number of states (2 or 3), localization error fitted from data (Yes 1469	
or No, if no, specify the value, in nm), dZ (µm), a (s-1/2), b (µm), PDF or CDF fit (PDF 1470	
or CDF), number of iterations. Finally, the bounds used for the fitting algorithm 1471	
should be reported, e.g:	1472	
◦ Dbound: [0.0005, 0.08] µm²/s	1473	
◦ Dfree [0.15, 25] µm²/s	1474	
◦ Fbound [0,1]	1475	
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◦ Obviously, if a 3-state model is used, the bounds for the additional subpopulation 1476	
should also be reported.	1477	

In case a custom-modified version of Spot-On is used, we recommend that the code be 1478	
made available and that a summary of the modifications be included in the methods section.	1479	

 1480	
	  1481	
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