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Introduction 
 
Fluorescence in situ hybridization (FISH) is a powerful single-cell technique that harnesses the 
specificity afforded by Watson-Crick base pairing to reveal the abundance and positioning of 
cellular RNA and DNA molecules in fixed samples. Originally introduced as a radioactive in situ 
hybridization method in the late 1960s (1–3), FISH has undergone a series of optimizations that 
have improved its detection efficiency and sensitivity (4–7). Many of these refinements have 
centered on the preparation and labeling of the probe material, which traditionally has been 
derived from cellular DNA or RNA, and include the introduction of the nick translation method 
that increases the specific activity of labeling (8, 9) and the development of suppressive 
hybridization techniques that limit background originating from repetitive sequences contained in 
many probes (10). 
 
More recently, advances in DNA synthesis technology have afforded researchers the 
opportunity to construct FISH probes entirely from synthetic oligonucleotides (oligos). Oligo 
probes offer many potential advantages, as they can be selected to have specific 
thermodynamic properties, engineered to avoid repetitive sequences, designed against any 
sequenced genome, and endowed with many different types and densities of labels. While the 
use of oligo probes was initially restricted to the interrogation of multi-copy targets such as 
repetitive DNA (11–13) and messenger RNA (14–16) using one to a few dozen oligo probes, the 
recent development of oligo libraries produced by massively parallel array synthesis (17) has 
empowered a new generation of FISH technologies able to target single-copy chromosomal 
regions with highly complex libraries of hundreds to many thousands of oligo probes (18–20).  
 
We have previously introduced Oligopaints, a method for the generation of highly efficient 
probes for both RNA FISH and DNA FISH from libraries composed of dozens to many 
thousands of unique oligo species (20). A key feature of Oligopaints is their programmability, 
wherein the genomic and non-genomic sequences that compose each probe oligo can be 
specified precisely. This fine level of control has enabled several important technical advances 
in FISH imaging, including the single-molecule super-resolution imaging of chromosome 
structure at non-repetitive targets (21, 22), the development of probes that can distinguish 
genomically unique regions of homologous chromosomes (21), and the introduction of a method 
able to label dozens of chromosomal loci (23). The general programmability of oligo FISH 
probes has also enabled the creation of related methods that utilize aspects of the Oligopaints 
approach to enable the highly multiplexed visualization of dozens to >1000 distinct mRNA 
species in the same sample (24, 25). 
 
Despite the rapid maturation of new FISH technologies reliant upon oligo probes, comparatively 
little progress has been made in the development of computational tools to facilitate the design 
of these oligos. While computational utilities exist to create small numbers of oligo probes 
against targets such as bacterial ribosomal RNA (26, 27) and to design large pools of oligo pairs 
such as PCR primers (28–31) or padlock probes (32, 33), to our knowledge no bioinformatic 
utility has been created for the explicit purpose of designing oligo hybridization probes at the 
genome-wide scale. Consequently, older utilities such as the microarray design program 
OligoArray (34) have been repurposed to facilitate probe design. Although OligoArray has 
produced effective oligo FISH probes (20–24), it can only provide limited throughput, with large 
genomes such as those of human and mouse taking 1–2 months of continuous cluster 
computing to mine with a single set of parameters (20) and smaller regions still requiring hours 
of cluster computing to complete. Additionally, OligoArray offers the user a limited amount of 
control over the probe discovery process, as users interact only with a compiled executable 
Java Archive file and cannot change the nature or order of steps taken or the values of many of 
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parameters used for thermodynamic calculations and specificity checking. 
 
Here, we introduce OligoMiner, a rapid and flexible genome-scale design environment for oligo 
hybridization probes. The modular, open source OligoMiner pipeline is written in Python and 
Biopython (35) and uses standard bioinformatic file formats at each step in the probe mining 
process, greatly simplifying probe discovery. Additionally, OligoMiner introduces a novel method 
of assessing probe specificity that employs supervised machine learning to predict 
thermodynamic behavior from genome-scale sequence alignment information. The OligoMiner 
pipeline can readily be deployed on any sequenced genome and can mine the entirety of the 
human genome in minutes to hours and smaller <10 Mb regions in mere minutes on a standard 
desktop or laptop computer, greatly reducing the time and computational resource cost of probe 
discovery. We also demonstrate the effectiveness of probes produced by our approach with 
both conventional and single-molecule super-resolution microscopy. 
 
Results 
 
Identification of Candidate Probes. 
 
The OligoMiner workflow begins with a FASTA-formatted input file (36) containing the genomic 
sequence to be searched for probes, which can be masked by a program such as 
RepeatMasker (37) to exclude regions containing repetitive elements. This input file is first 
passed to the blockParse script (Fig. 1A and Fig. S1), which screens for prohibited sequences 
such as homopolymeric runs and ‘N’ bases and allows users to specify allowable ranges of 
probe length, percent G+C content (GC%), and adjusted melting temperature (Tm) calculated 
using nearest neighbor thermodynamics (38). Candidate probe sequences passing all checks 
are outputted in FASTQ format (39) to facilitate input into next generation sequencing (NGS) 
alignment programs such as Bowtie/Bowtie2 (40, 41) and BWA (42), which can be used to 
assess off-target potential. Importantly, these NGS alignment programs are optimized for the 
extremely rapid alignment of millions of short sequences to a reference genome in parallel, thus 
allowing the specificity check step of the pipeline to proceed much more quickly than 
approaches like OligoArray that use BLAST (43) in serial. 
 
Predicting Probe Specificity. 
 
Ultrafast alignment programs can provide a wealth of information about the relatedness of a 
given input sequence to other sequences present in a genome assembly. OligoMiner allows 
users to evaluate probe specificity using two distinct approaches, in either case using the script 
outputClean to process the Sequence Alignment/Map (SAM) file (44) produced by the alignment 
program and outputting Browser Extendable Data (BED) format (45) files; BED files are 
designed for visualizing sequence features in genome browsers and are fully compatible with 
our previously described tools that facilitate the design and ordering of Oligopaint probe libraries 
(20) (http://genetics.med.harvard.edu/oligopaints) and utilities such as BEDTools (46) (Fig. 1A 
and Fig. S2). The first approach, termed ‘Unique Mode’ (UM), uses the number of reported 
alignments to differentiate between candidate probes predicted to only have one genomic target 
from those with multiple potential binding sites; candidates with more than one reported 
alignment or that fail to align are filtered, while candidate probes that align uniquely are passed 
to the output. ‘Unique Mode’ thus enables users to experiment with different groups of alignment 
parameters in order to find an optimal combination for a given application.  
 
Ideally, the thermodynamics of hybridization between a candidate probe and potential off-target 
sites would be modeled in silico and employed as a means of identifying probe oligos likely to 
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only bind their intended targets in a given set of reaction conditions. While powerful utilities such 
as NUPACK (47–49) are capable of performing such simulations, the limited throughput of 
these programs renders a direct thermodynamic approach impractical for genome-scale probe 
design. Yet, we hypothesized that features in rapidly calculated data such as alignment scores 
may be predictive of thermodynamic behavior and could thus serve as a proxy for the 
information that would be produced by thermodynamic simulations. Inspired by this idea, we first 
selected 800 ‘probe’ sequences identified by blockParse in the human hg38 assembly that 
represented three commonly used probe length ranges (26–32, 35–41, 40–46 nt) (Methods). In 
order to simulate the types of binding sites that these ‘probes’ might encounter in situ during a 
FISH experiment in a complex genome, we next generated 406,014 variant versions of the 
‘probe’ sequences in silico that each contained one or more point mutation, insertion, deletion, 
or large truncation, creating in combination with the 800 ‘probe’ sequences a pool of 406,814 
‘target sites’ (Methods) (Fig. 1B). We then aligned each ‘probe’ to its corresponding ‘target sites’ 
in pairwise alignments using Bowtie2 with ultrasensitive settings (Methods), generating a set of 
406,814 alignment scores (Fig. 1B). In parallel, we also computed the probability of a duplex 
forming between each ‘probe’ and each of its corresponding ‘target sites’ in FISH conditions (2X 
SSC, 50% formamide at 32, 37, 42, 47, 52, or 57 °C) in pairwise test tube simulations using 
NUPACK (Methods) (Fig. 1B).  
 
In order to connect our alignment scores and duplexing probabilities, we next performed 
supervised machine learning using linear discriminant analysis (LDA) on 60% of the combined 
datasets with scikit-learn (50). Specifically, we built six temperature-specific LDA models that 
predict whether the duplexing probability of a ‘probe’ – ‘target site’ pair will be above a threshold 
level of 0.2 (i.e. <5-fold weaker than a fully paired duplex) given the length and GC% of the 
‘probe’ sequence and the score of the alignment of the two sequences (Methods) (Fig. 1C). We 
tested these LDA models on the remaining 40% of the data and found that all six performed 
exceptionally well, with each producing areas under receiver operating characteristic curves of 
≥0.97 (Fig. 1D) and support-weighted F1 scores ≥0.92 (Fig. 1D and Fig. S3). Notably, all six 
models also performed strongly when tested against data simulated at hybridization 
temperatures 5°C higher or lower than the training temperature (support-weighted F1 score 
range 0.79–0.92, mean 0.86; Fig. 1E), indicating that the models are all capable of predicting 
duplexing behavior over a relatively broad range of reaction conditions. Collectively, our data 
argue that the LDA model identifies potentially problematic ‘probe’ – ‘target site’ interactions (i.e. 
those with a probability of duplexing >0.2) effectively as well as the much slower thermodynamic 
simulations. We have integrated the six LDA models into outputClean to create the second 
specificity evaluating approach, ‘LDA Mode’ (LDM): candidate probes are first aligned to the 
reference genome of interest using the same Bowtie2 scoring settings used to construct the 
LDA models (Methods), and the resulting SAM file is processed by a selected temperature-
specific LDA model such that candidate probes predicted to have more than one 
thermodynamically relevant target site (probability of duplexing >0.2) are filtered (Fig. 1A and 
Fig. S2). 
 
Post-Processing Functionalities. 
 
We have written a series of utility scripts to augment the core OligoMiner pipeline (Fig. 1F). 
These utility scripts accept and return BED files, making them compatible with both output files 
created by outputClean (Fig. 1A) and files created by the previous Oligopaint probe discovery 
method (20) and adding additional functionalities. For instance, kmerFilter enables the user to 
perform another layer of specificity checking by calling Jellyfish (51) to screen probe sequences 
for the presence of high abundance k-mers (e.g. 16mers or 18mers) that may be missed by 
alignment programs due to their short lengths and could lead to off-target binding (52, 53). 
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Users can also identify and filter probe sequences predicted to adopt secondary structures in a 
given set of experimental conditions using structureCheck, which depends on NUPACK. 
Several additional tools facilitate the processing of probe files for specific applications, including 
the conversion of probe sequences to their reverse complements by probeRC for strand-specific 
DNA or RNA FISH and the collapsing of overlapping probes by bedChainer for the design of 
high-density probe sets. Finally, we have created additional modularity with pair of scripts 
‘fastqToBed’ and ‘bedToFastq’ that allow users to convert between the BED and FASTQ format 
files. 
 
Rapid Genome-Scale Probe Discovery. 
 
In order to assess the scalability of OligoMiner, we performed genome-wide probe discovery in 
the human hg38 genome assembly. We first developed three sets of input parameters spanning 
a range of commonly used probe lengths and experimental conditions: a ‘coverage’ set 
designed to maximize the number of probes discovered (26–32 nt length, 37°C hybridization), a 
‘stringent’ set designed to maximize probe binding affinity and thus permit stringent hybridization 
and washing conditions (40–46 nt, 47°C hybridization), and a ‘balance’ set that seeks to 
compromise between coverage and binding affinity (35–41 nt, 42°C hybridization) (Fig. 2A). We 
next deployed OligoMiner using these parameter settings in both UM and LDM, in both cases 
using Bowtie2 for the alignment step and also including the optional kmerFilter specificity check 
(Methods). Excitingly, both approaches were able to mine the entire hg38 assembly very rapidly 
using all three parameter sets, with UM averaging a rate of 1.70 Mb/minute and a total time of 
97 minutes per chromosome across all three parameter settings (Fig. 2 B and C) and LDM 
averaging a similar rate of 1.48 Mb/minute and a total time of 104 minutes per chromosome 
(Fig. 2 C and D). These rates support mining the entire human genome in as little as 24–48 
hours if each chromosome was run in serial on a laptop or desktop computer and tens of 
minutes if parallel computing (e.g. ~100–400 simultaneous jobs) was instead employed, in 
either case achieving a dramatic increase in speed from the 1–2 months of parallel computing 
needed in our previous approach (20).  
 
The modularity of OligoMiner allows users to monitor how the parameters chosen at each step 
in the probe discovery process affect the final number of output probes. We have used this 
capability to examine changes in probe density (e.g. probes per kilobase) that occurred during 
the genome-wide probe discovery runs in hg38. As expected, blockParse discovered the 
highest density of candidate probes using the ‘coverage’ (c) settings, followed by ‘balance’ (b) 
and ‘stringent’ (s) (c: 8.5, b: 5.7, s: 3.4 probes/kb) (Fig. 2 F and G). Yet, we observed striking 
differences following outputClean depending on the mode used, with UM preserving the same 
order (c: 7.3, b: 4.7, s: 2.7 probes/kb) but the density of the ‘coverage’ oligos plummeting in 
LDM (c: 2.6, b: 5.0, s: 3.0 probes/kb) (Fig. 2 F and G, Note S1). We also observed large relative 
decreases in the density of ‘coverage’ oligos following the application of kmerFilter, but only a 
modest reduction with the other sets (UM c: 3.1, b: 4.6, s: 2.6 probes/kb; LDM c: 1.6, b: 4.8, s: 
2.9 probes/kb) (Fig. 2 F and G); this effect is likely due to the use of 16mer dictionary with 
‘coverage’ sets but an 18mer dictionary with the ‘balance’ and ‘stringent’ sets (Fig. 2A), a choice 
informed by differences in k-mer binding affinities at the different simulated hybridization 
temperatures (Fig. S4 and Note S1).  
 
Collectively, our hg38 probe sets are similar in probe density to previous sets designed with 
Oligoarray (20, 21) and suggest that when taking the thermodynamics of hybridization into 
account, longer oligo probes that can support higher hybridization temperatures can effectively 
provide higher probe densities, as observed with the UM and LDM ‘balance’ sets (Fig. 2 F and 
G). Intriguingly, this phenomenon appears to depend on genome size and complexity; the same 
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ordering of the three parameter sets was also observed in whole-genome probe discovery was 
performed using LDM and kmerFilter in the mouse mm10 and zebrafish danRer10 assemblies, 
but the ‘coverage’ set provided the highest densities in the smaller D. melaongaster dm6, C. 
elegans ce11, and A. thaliana tair10 assemblies (Fig. 2H and Note S1). The resulting probes 
discovered by these genome-scale probe discovery runs and additional LDM + kmerFilter 
whole-genome runs in the ce6, dm3, hg19, and mm9 assemblies will be made available on the 
Oligopaints website (http://genetics.med.harvard.edu/oligopaints). 
 
OligoMiner Enables Conventional and Super-Resolution Imaging. 
 
In order to test the efficacy of oligo probes designed with OligoMiner in situ, we first performed 
3D FISH (54, 55) in XX 2N WI-38 human fetal lung fibroblasts with a set of 4,776 40–45mer 
Oligopaint probes designed using UM without kmerFilter targeting 817 kb at Xq28 (Table S1). In 
line with previous Oligopaint experiments using probes designed by OligoArray (20, 21), we 
observed highly efficient staining, with 100% of nuclei displaying at least one FISH signal and 
90.3% of nuclei displaying two signals (n  = 185; Fig. 3 A and B). We observed similarly efficient 
staining after performing 3D FISH in XY 2N PGP-1 fibroblasts with a set of 3,678 35–41mer 
Oligopaint probes designed using LDM with kmerFilter targeting 1,035 kb at 19p13.2 (Table S1) 
(100% nuclei with ≥1 signal, 79.2% with 2 signals, n = 144; Fig. 3 B and C), demonstrating the 
effectiveness of both the UM and LDM probe design approaches. We also validated our ability 
to design custom hybridization patterns by performing 3D FISH with two additional sets of 40–
45mer Oligopaint probes designed using UM without kmerFilter targeting Xq28 in WI-38 cells, 
which led to the expected three-color co-localization pattern in situ (Fig. 3E).  
 
In order to further showcase the performance of oligos designed using OligoMiner in situ, we 
visualized 3D FISH using Stochastic Optical Reconstruction Microscopy (STORM) (56) and 
DNA-based Points Accumulation in Nanoscale Topography (DNA-PAINT) (57) – these single-
molecule super-resolution imaging techniques spatiotemporally isolate the fluorescent 
emissions of individual molecules and are capable of achieving <20 nm lateral and <50 nm axial 
resolution, which represent an order of magnitude or more below the diffraction limit (58). 
Specifically, we performed STORM imaging of Oligopaints (OligoSTORM) (21) of human 
19p13.2 with two sets of 35–41mer oligos designed using LDM with kmerFilter targeting either a 
1,035 kb region with 3,768 oligos (Table S1) (Fig. 4 A and B) or a 20 kb region with 104 oligos 
(Table S1) (Fig. 4 C and D) and in both cases were readily able to resolve the nanoscale 
morphologies of these foci, including features <40 nm (Fig. 4D), values comparable to those 
obtained using probes designed by OligoArray (21). We also performed DNA-PAINT imaging of 
Oligopaints (OligoDNA-PAINT) (21) to visualize our 817 kb Xq28 probe set (Table S1) (Fig. 4 E 
and F) and a set of 167 35–41mer oligos designed using LDM with kmerFilter targeting the Xist 
RNA (59) (Table S1) (Fig. 4 G and H), which also enabled us to reveal <40 nm structural 
features in the super-resolved images (Fig. 4 F and H). Taken together, these super-resolution 
experiments demonstrate the OligoMiner oligos can readily enable the single-molecule super-
resolution imaging of a broad range of target types and sizes. 
 
Discussion 
 
OligoMiner provides a framework for the rapid design of oligo hybridization probes on the 
genome-wide scale. We have demonstrated the ease and scalability of our pipeline by mining 
the human hg38 genome assembly with three distinct parameter sets and in two specificity-
checking modes, a feat that would have otherwise required many months of cluster computing, 
and further highlighted the effectiveness of our approach with conventional and single-molecule 
super-resolution imaging. Written in open source Python and Biopython and freely available via 
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GitHub (https://github.com/brianbeliveau/OligoMiner), OligoMiner can readily be run on any 
standard laptop or desktop computer and exclusively uses standard bioinformatic file formats, 
providing users the opportunity to integrate OligoMiner scripts into existing pipelines and readily 
allowing additional and updated programs to be seamlessly integrated into the workflow. 
Critically, OligoMiner is capable of discovering the thousands to tens of thousands of oligo 
probes commonly ordered as pools from commercial suppliers in mere minutes, freeing the 
researcher to tailor the design of each probe set to the experimental question at hand instead of 
relying on pre-existing collections of probe sequences obtained from previous probe mining runs 
or online databases (20). Accordingly, we anticipate that OligoMiner could be employed more 
broadly to design hybridization probes for a wide range of experimental assays beyond in situ 
hybridization. 
 
Methods 
 
Genome Sequences. 
The hg19, hg38, mm9, mm10, ce6, ce11, danRer10, dm3, and dm6 genome assemblies were 
downloaded both with and without repeat masking from http://genome.ucsc.edu. The tair10 
assembly was downloaded from http://arabidopsis.org. To generate a repeat-masked version of 
tair10, transposable element locations identified by TASR (60) were converted to BED format 
and used as a guide for masking by pyfaidx (61). 
 
Pipeline Construction and Implementation. 
OligoMiner is written for Python 2.7 and depends on Biopython (35) and scikit-learn 0.17+ (50). 
Additional optional dependencies include Jellyfish 2.0+ (51) for k-mer screening and NUPACK 
3.0 (47–49) for secondary structure analysis. To generate data for this study, scripts were either 
executed locally in an OS X Anaconda Python 2.7 environment (Continuum Analytics) created 
with the command ‘conda create --name probeMining biopython scikit-learn’ or in a CentOS 
Linux environment on the Orchestra High Performance Compute Cluster at Harvard Medical 
School. 
 
LDA Model Construction. 
Two sets of ‘probe’ and ‘target site’ sequences were used for the LDA model construction. For 
the first, all possible k-mers ≥8 were generated from 500 40–46mer sequences from hg38 chrX 
that were identified as candidate probes by blockParse, resulting in a total pool of 337,514 
truncated and full-length sequences. In the second, 100 26–32mer, 100 35–41mer, and 100 40–
46mer sequences from hg38 chr7 identified as candidate probes by blockParse were used as a 
starting pool of sequences. A Python script was then used to generate variant sequences 
containing 1–10 point mutations, 1–3 insertions of 1–6 bases each, or 1–3 deletions of 1–6 
bases each, resulting in a total pool of 69,300 parental and variant sequences. These two pools 
were then combined to create a final pool of 406,814 sequences. In order to generate Bowtie2 
alignment scores for each ‘probe’ – ‘target-site’ pairing, the ‘probe’ sequence flanked by 3 ‘T’ 
bases on both the 5’ and 3’ ends was used to create a Bowtie2 alignment index, against which 
the ‘target-site’ sequence was aligned using the settings: ‘--local -D 20 -R 3 -N 1 -L 10 -i S,1,0.5 
--score-min G,1,1 -k 1.’ To generate NUPACK duplexing probabilities for each pairing at a given 
temperature, the ‘complexes’ executable was first called and given an input of the reverse 
complement of the ‘probe’ sequence flanked by 3 ‘T’ bases on both the 5’ and 3’ ends and the 
‘target-site’ sequence in a two-strand simulation with a maximum complex size of two strands. 
To account for FISH conditions, the Na+ concentration was set to 390 mM and the input 
temperature was increased by 31°C (0.62 * 50) to account for the presence of 50% formamide. 
The resulting partition function outputted by ‘complexes’ was then passed to the ‘concentrations’ 
executable, with each strand being assigned an initial concentration of 1 µM. The percentage of 
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the ‘probe’ oligo contained in the ‘probe-target’ complex was then stored as the duplexing 
probability. If the probability of duplexing was <0.2, the pairing was assigned to the ‘not likely to 
bind stably’ / (-1) class; If the probability of duplexing was ≥ 0.2, the pairing wa assigned to the 
‘likely to bind stably’ / (1) class. LDA model building, testing, and validation was performed using 
scikit-learn 0.17 (50). 
 
Whole-Genome Probe Discovery. 
Genome assemblies in FASTA format without repeat masking were used to build Bowtie2 
alignment indices and Jellyfish files. Repeat-masked input files were used for probe discovery. 
The blockParse script was run with the settings indicated in Figure 2A and all other values set to 
their defaults (Fig. S1). Bowtie2 was run with ‘--very-sensitive-local –k 2 -t’ in UM and ‘--local -D 
20 -R 3 -N 1 -L 20 -i C,4 --score-min G,1,4 -k 2 -t’ in LDM. The outputClean script was run with 
default values (Fig. S2) in either LDM or UM. The kmerFilter script was used with the k-mer 
lengths indicated in Figure 2A and ‘-k/--kmerThreshold’ set to 5. To minimize file sizes and 
maximize speed, Jellyfish files were created such that k-mers occurring 0 or 1 times were not 
recorded and all kmers occurring >255 times were reported as ‘255’, i.e. the counts were 
recorded with 1 bit. Jellyfish hash size was set to roughly the size of the genome assembly. E.g. 
the command ‘jellyfish count -s 3300M -m 18 -o hg38_18.jf --out-counter-len 1 -L 2 hg38.fa’ was 
used to create the 18mer dictionary for hg38. Bowtie 2.2.4 and Jellyfish 2.2.4 were used. The 
resulting probe files for all whole-genome runs described in Figure 2 as well as whole-genome 
runs with the ‘c’, ‘b’, and ‘s’ parameter sets in the hg19, mm9, dm3, and ce6 assemblies using 
LDM and kmerFilter will be made available at http://genetics.med.harvard.edu/oligopaints.  
 
Mining Speed Calculations. 
Genome-scale hg38 mining runs were conducted on the Orchestra Compute cluster, with each 
chromosome being run as its own individual job (i.e. without further parallelization) for each step 
in the probe design process (blockParse, Bowtie2, outputClean, kmerFilter). Wall clock times for 
the three OligoMiner Python scripts were reported via the Python ‘timeit’ module and written to 
meta files by flagging the ‘-M/--Meta’ option present in the three scripts. Bowtie2 wall clock time 
was reported by flagging the ‘-t’ option and read from the printed output. Graphs presenting 
probe mining speed and probe densities were created in Python using seaborn (62).  
 
Oligopaint Probe Synthesis. 
For the OligoMiner settings used to design each Oligopaint FISH probe set, please see Table 
S1. Probe sets were synthesized using the previously described gel extraction (20) (Xq28 
probes) or T7 methods (24) (19p13.2 probes) and generated from complex oligo libraries 
ordered from Custom Array (Bothell, WA). For a stepwise synthesis protocol, please see (63). 
The Xist RNA FISH probe set was ordered as a set of individually column synthesized oligos 
from Integrated DNA Technologies (Coralville, IA). For a list of primer sequences used, please 
see Table S2. 
 
Cell Culture. 
Human WI-38 (ATCC CCL-75), MRC-5 (ATCC CCL-171), and PGP-1 fibroblasts (Coriell 
Institute GM23248) were grown at 37°C in the presence of 5% CO2 in Dulbecco’s Modified 
Eagle Medium (Gibco 10564) supplemented with 10% (vol/vol) serum (Gibco 10437), 50�U/ml 
penicillin, and 50�μg/ml streptomycin (Gibco 15070). The PGP-1 fibroblasts were also 
supplemented with MEM non-essential amino acids solution (Gibco 11140050). 
 
3D DNA FISH. 
3D DNA FISH (54, 55) was essentially performed as described previously (20–22, 63). WI-38, 
IMR-90, or PGP-1 fibroblasts were seeded at ~20% confluence into the wells of Labtek-II 
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Coverglass Chambers, ididi coverglass chambers, or onto #1.5 coverglass and allowed to grow 
to ~70-90% confluence in a mammalian tissue culture incubator. Samples were then rinsed with 
1x PBS and fixed for 10 min in 1x PBS + 4% (wt/vol) paraformaldehyde, then rinsed again with 
1x PBS. Samples were next permeabilized by a rinse in 1x PBS + 0.1% (vol/vol) Tween-20, 
then a 10 min incubation in 1x PBS + 0.5% (vol/vol) Triton X-100, then a 5 minute incubation in 
0.1 N HCl. Samples were then transferred to 2x SSC + 0.1% (vol/vol) Tween-20 (SSCT), then to 
2x SSCT + 50% (vol/vol) formamide. Samples were then incubated in 2x SSCT + 50% 
formamide at 60°C for 20–60 min, after which a hybridization solution consisting of 2x SSCT, 
50% formamide, 10% (wt/vol) dextran sulfate, 40 ng/µl RNase A (Thermo Fisher EN0531), and 
Oligopaint FISH probe sets at 1.6 or 2.5 µM was added. Samples were denatured at 78°C for 3 
minutes on a water-immersed heat block or flat-block thermocycler (Eppendorf Mastercycler 
Nexus) and then allowed to hybridize for 24+ hours at 47–52°C either in a humidified chamber 
placed in an air incubator or on a flat-block thermocycler. After hybridization, samples were 
washed in 2x SSCT at 60°C for 5 minutes four times, then 2x SSCT at room temperature two 
times, then transferred to 1x PBS. Unlabeled secondary oligos (21) and tertiary oligos bearing 
Alexa Fluor 405 and 647 dyes (22) (Table S2) at 0.5–1 µM were subsequently hybridized to the 
19p13.2 samples for 1 hour in 2x SSC + 30% formamide + 10% dextran sulfate at room 
temperature and washed three times for 5 min each in 2x SSC + 30% formamide. SlowFade 
Gold + 4’,6-diamidino-2-phenylindole (DAPI) (ThermoFisher S36938) was added to samples 
prepared for diffraction-limited imaging. Samples for super-resolution imaging were stained in a 
1 µg/ml DAPI solution in 1x PBS or 2x SSCT for 5 min at 37°C, followed by a brief rinse in 1x 
PBS or 2x SSCT at room temperature. 
 
RNA FISH.  
RNA FISH was performed exactly as described for ‘3D DNA FISH’, except that the 3 min 
denaturation at 78°C was replaced with a 5 min incubation at 60°C, RNase A was omitted from 
the hybridization buffer, and hybridization was carried out at 42°C for 16 hours. 
 
Diffraction-Limited Imaging and Quantification of FISH Efficiency. 
Diffraction-limited imaging of 3D DNA FISH samples was conducted on an inverted Zeiss Axio 
Observer Z1 using a 63x Plan-Apochromat Oil DIC (N.A. 1.40) objective. Samples were 
illuminated using Colibri light source using a 365 nm, 470 nm, 555 nm, or 625 nm LED. DAPI 
was visualized using a filter set composed of a 365 nm clean-up filter (G 365), a 395 nm long-
pass dichroic mirror (FT 395), and a 445/50 nm bandpass emission filter (BP 445/50). ATTO 
488 was visualized using a filter set composed of a 470/40 nm excitation filter (BP 470/40), a 
495 nm long-pass dichroic mirror (FT 495), and a 525/50 nm bandpass emission filter (BP 
525/50). ATTO 565 was visualized using a filter set composed of a 545/25 nm excitation filter 
(BP 545/25), a 570 nm long-pass dichroic mirror (FT 570), and a 605/70 nm bandpass emission 
filter (BP 605/70). Alexa Fluor 647 was visualized using a filter set composed of a 640/30 nm 
excitation filter (BP 640/30), a 660 nm long-pass dichroic mirror (FT 660), and a 690/50 nm 
bandpass emission filter (BP 690/50). Images were acquired using a Hamamatsu Orca-Flash 
4.0 sCMOS camera with 6.5 µm pixels, resulting in an effective magnified pixel size of 103 nm. 
Z-stacks were acquired using an interval of 240 nm. Images were processed using Zeiss Zen 
software and Fiji/ImageJ (64). FISH foci were identified manually by scanning through Z-stacks; 
signals whose center-to-center distance was <1 µm were considered to be a single focus. 
 
STORM Imaging. 
STORM imaging was performed on a commercial Nikon N-STORM 3.0 microscope featuring a 
Perfect Focus System and a motorized TIRF illuminator at the Nikon Imaging Center located at 
Harvard Medical School. STORM was performed using highly inclined and laminated optical 
sheet illumination (HILO) (65) and with pulsed activation of the 405 nm laser, followed by 647 
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nm, and then 561. Light was focused through a CFI Apo TIRF 100x Oil (N.A. 1.49) objective. 
The 561 nm laser was used at 2% (out of 50 mW) to image 200 nm orange FluoSpheres 
(F8809, ThermoFisher), which were used as fiducial makers to facilitate drift correction. The 405 
nm laser was used to enhance the blinking rate at 0–5% (out of 20 mW), and the 647 nm laser 
was used at 100% power (out of 125 mW measured at fiber optic). Emission light was spectrally 
filtered (Chroma ET600/50m for 561; Chroma ET700/75m for 647) and imaged on an EMCCD 
camera (Andor iXon X3 DU-897) with 16 µm pixels using a CCD readout bandwidth of 10 MHz 
at 16�bit, 1 bit pre-amp gain and no electron-multiplying gain on the center 256 x 256 or 186 x 
190 pixels, resulting in an effective pixel size of 160 nm. 6,250 or 12,500 10 ms frames were 
acquired. Single-molecule localization events were identified using in-house MATLAB software 
(66) that calls a 2D fitting algorithm (67). Individual localization events were blurred with 2D 
Gaussian functions whose ‘sigma’ parameter was set according to the global drift-independent 
localization precision as determined by Nearest Neighbor based Analysis (NeNA) (68). NeNA 
values: 19p13.2 1035 kb– 12.6 nm sigma, 29.6 nm supported resolution; 19p13.2 20 kb– 11.8 
nm sigma, 27.6 nm supported resolution. 1- and 2-component Gaussian fits of the line traces 
presented in Figure 4A–D were calculated using the ‘Gaussian Mixture Model’ module in scikit-
learn (50). 
 
DNA-PAINT Imaging. 
DNA-PAINT imaging was performed on a commercial Nikon N-STORM 3.0 microscope 
featuring a Perfect Focus System and a motorized TIRF illuminator. DNA-PAINT was performed 
using HILO with a 15-30% of a 200 mW 561 nm laser (Coherent Sapphire) using a CFI Apo 
TIRF 100x Oil (N.A. 1.49) objective at an effective power density of ~0.5–1 kW/cm2. 561 nm 
laser excitation light was passed through a clean-up filter (Chroma ZET561/10) and directed to 
the objective using a multi-band beam splitter (Chroma ZT405/488/561/647rpc). Emission light 
was spectrally filtered (Chroma ET600/50m) and imaged on an EMCCD camera (Andor iXon X3 
DU-897) with 16 µm pixels using a CCD readout bandwidth of 3 MHz at 14�bit, 5.1 pre-amp 
gain and no electron-multiplying gain on the center 256 x 256 pixels, resulting in an effective 
pixel size of 160 nm. 15,000 100 ms frames were acquired for each image using 1–3 nM of 
Cy3B-labeled 10mer oligo in 1x PBS + 125–500 nM NaCl. 40 nm gold nanoparticles (Sigma-
Aldrich 753637) were used as fiducial markers to facilitate drift correction. Single-molecule 
localization events were identified using in-house MATLAB software (66) that calls a 2D fitting 
algorithm (67). Individual localization events were blurred with 2D Gaussian functions whose 
‘sigma’ parameter was set according to the global drift-independent localization precision as 
determined by NeNA (68). NeNA values: Xq28– 5.6 nm sigma, 13.2 nm supported resolution; 
Xist RNA– 5.1 nm sigma, 12.0 nm supported resolution. 1- and 2-component Gaussian fits of 
the line traces presented in Figure 4E–H were calculated using the ‘Gaussian Mixture Model’ 
module in scikit-learn (50). 
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Figure Legends 
 
Fig. 1. Implementing OligoMiner. (A) Schematic overview of the OligoMiner pipeline. (B and C) 
Schematic overviews of Linear Discriminant Analysis (LDA) model (B) creation and (C) 
implementation. (D) Receiver Operating Characteristic curves for each temperature-specific 
LDA model. ‘auc’ = area under the curve. (E) Heat map showing the support-weighted F1 score 
for each temperature-specific LDA model when tested against validation data simulated at each 
of the six indicated temperatures. (F) Description of utility scripts also developed as part of 
OligoMiner.  
 
Fig. 2. Genome-scale probe discovery with OligoMiner. (A) Description of three parameter sets 
used for genome-scale mining runs. (B-E) Boxplots displaying overall mining times and rates for 
Unique Mode (UM) (B and C) and LDA Mode (LDM) (D and E). Each chromosome was run 
separately and reported, resulting in 24 data points per parameter setting and a total of 72 data 
points per plot. The mean rate or time for all 72 data points is displayed beneath each boxplot. 
(F and G) Swarmplots displaying changes in probe density (i.e. probes/kb) that occurred over 
the course of the pipeline in (F) UM and (G) LDM. ‘bP’ = blockParse; ‘oC’ = outputClean; ‘kF’ = 
kmerFilter. (H) Swarmplot displaying probe densities in the C. elegans (ce11), D. melaongaster 
(dm6), zebrafish (danRer10), human (hg38), mouse (mm10), and A. thaliana (tair10) genome 
assemblies after whole-genome mining using LDM and kmerFilter. 
 
Fig. 3. OligoMiner enables highly efficient FISH. (A and B) Representative image (A) and 
quantification (B) of 3D-FISH experiment performed with a probe set consisting of 4,776 UM 
oligos targeting 817 kb at Xq28 in human XX 2N WI-38 fibroblasts. (C and D) Representative 
image (C) and quantification (D) of 3D-FISH experiment performed with a probe set consisting 
of 3,678 LDM oligos targeting 1,035 kb at 19p13.2 in human XY 2N PGP-1 fibroblasts. (E) 
Three-color 3D FISH experiment performed using ATTO 488 labeled “X1” (green), ATTO 565 
labeled “X2” (magenta), and Alexa Fluor 647 labeled “X3” UM probe sets targeting adjacent 
regions on Xq28 in WI-38 fibroblasts. All images in (A–E) are maximum intensity projections in 
Z. DNA is stained with DAPI (blue). Scale bars: 10 µm. 
 
Fig. 4. Single-molecule super-resolution imaging of OligoMiner oligos. (A and B) Diffraction-
limited (A) and super-resolved STORM (B) images of a probe set consisting of 3,678 LDM 
oligos targeting 1,035 kb at 19p13.2 in human XY 2N PGP-1 fibroblasts. (C and D) Diffraction-
limited (C) and super-resolved STORM (D) images of a probe set consisting of 104 LDM oligos 
targeting 20 kb at 19p13.2 in PGP-1 fibroblasts. (E and F) Diffraction-limited (E) and super-
resolved DNA-PAINT (F) images of a probe set consisting of 4,776 UM oligos targeting 817 kb 
at Xq28 in human XY 2N MRC-5 fibroblasts. (G and H) Diffraction-limited (G) and super-
resolved DNA-PAINT (H) images of a probe set consisting of 176 LDM oligos targeting 11 kb of 
the Xist RNA in human XX 2N WI-38 fibroblasts. (i–viii) present normalized single-molecule 
counts along the indicated 1-dimensional line traces (blue bars) and 1- or 2-component 
Gaussian fits to the underyling data (black lines). Super-resolution data is presented using a 
‘Hot’ colormap in which single-molecule localization density scales from black (lowest) to red to 
yellow to white (highest). Scale bars: 500 nm. 
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Fig. S1. Description of blockParse. (A) Schematic diagram illustrating the nature and order of 
checks used to screen candidate probe sequences. (B) Description of command-line options 
and the default values/settings for each. 
 
Fig. S2. Description of outputClean. (A) Schematic diagram illustrating the task order of the 
script. (B) Description of command-line options and the default values/settings for each. 
 
Fig. S3. Summary information for each temperature-specific LDA model. (A–F) For each 
temperature, the Precision, Recall, support-weighted F1 Score, and Support are given.  
 
Fig. S4. Boxplots depicting the duplexing probabilities of all kmers ≥8 nucleotides (nt) in length 
with the reverse complements of their 40–46mer parental seqeunces at six different simulation 
temperatures in 390 mM Na+ and 50% formamide. 
 
Table S1. Description of Oligopaint probe sets used. 
 
Table S2. Description of oligo sequences used for probe set generation and visualization. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 16, 2017. ; https://doi.org/10.1101/171504doi: bioRxiv preprint 

https://doi.org/10.1101/171504


Oligo
Probes

Specificity
Information

Candidate 
Identifcation

Input 
Sequence

BEDSAMFASTQFASTA outputClean.pyNGS Aligner

Keep only unique
Unique Mode (UM)

-OR-
Filter with LD model

LD Mode (LDM)

Ultrafast
alignment

Sequence screening
NN Tm calculation

blockParse.py

input: BED  output: BED

bedChainer.py Collapses overlapping probes

probeRC.py Flips probe seqs to rev. comps.

structureCheck.py Predicts 2º structure

Filters high-abudance kmerskmerFilter.py

Utility Scripts

Script Function

F

A

D

C

E

B

p(Duplexing)
[A*B] / ([A*]+[A*B]) 0.650.570.78

ACTGACACATACAA
ACTGACACATACAA
ACTCCGACACATACAA
ACAGACACATACAA

Mutate

ACTGACACATACAA

Probe sequences

ACTGACACATACAA
||||||||||||||
ACTGACACATACAA

Generate Alignment Scores
Linear Discriminant Analysis (LDA) Model Construction

=  ASi

=  ASj

=  ASk

Simulate duplexing with parental complement
TTGTATGTGTCAGTACTGACACATACAA

rev. comp.

ACTGACACATACAA
||*|||||||||||
ACAGACACATACAA

ACT--GACACATACAA
|||  |||||||||||
ACTCCGACACATACAA 22 nM

22 nM

78 nM

43 nM

43 nM

57 nM

35 nM

35 nM

65 nM

LDA Model Deployment
Inputs:
(1) LengthA
(2) %GCA 
(3) AS(A + B)

Receiver Operating
Characteristic

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0
0.2
0.4
0.6
0.8
1.0

Tr
ue

 P
os
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ve

 R
at

e

32 ºC (auc = 0.99)
37 ºC (auc = 0.99)

47 ºC (auc = 0.98)
42 ºC (auc = 0.99)

52 ºC (auc = 0.98)
57 ºC (auc = 0.97)

Test Temperature (ºC )

LDM Classifier F1 Score

0.30

0.45

0.60

0.75

0.90

Tr
ai

ni
ng

 T
em

pe
ra

tu
re

 (º
C

 )

32 37 42 47 52 57

32

37

42

47

52

57
0.90

0.80

0.960.79

0.94

0.86

0.76

0.82

0.85 0.94

0.88

0.80

0.930.850.77

0.86 0.92 0.91 0.63

0.71

0.54

0.74

0.66

0.27 0.570.40

0.54

0.20

0.45

0.65

0.68

0.580.700.840.920.93

A: A*:

Predicts:
If pDuplexing(A*, B) > 0.2
At 32, 37, 42, 47, 52, or 57ºC
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26–32 nt homology length
37–42 ºC Tm

37 ºC Hyb. Temp.
16 mer kmer length

Coverage (c)
36–41 nt homology length

42–47 ºC Tm
42 ºC Hyb. Temp.

18 mer kmer length

Balance (b)
40–46 nt homology length

47–52 ºC Tm
47 ºC Hyb. Temp.

18 mer kmer length

Stringent (s)

bP oC kF
Script
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LDM Probe Densities

bP oC kF
Script
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Xq28

19p13.2

4,776 UM oligos, 817 kb at Xq28 in XX WI-38 fibroblasts

3,678 LDM oligos, 1035 kb at 19p13.2 in XY PGP-1 fibroblasts

0 foci 1 focus 2 foci 3 foci 4 foci

0.0 % 1.1 % 90.3 % 7.0 % 1.6 %
n = 185

0 foci 1 focus 2 foci 3 foci 4 foci

0.0 % 3.5 % 79.2 % 4.2 % 13.2 %
n = 144

 X1: 5,415 UM oligos
1324 kb at Xq28

 X2: 6,482 UM oligos
2033 kb at Xq28

 X3: 4,776 UM oligos
817 kb at Xq28

DAPI
X1
X2
X3

Xq28

XX WI-38

A

C

E

B

D
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 OligoSTORM: 3,768 LDM oligos, 1035 kb at 19p13.2
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OligoSTORM: 104 LDM oligos, 20 kb at 19p13.2
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OligoDNA-PAINT: 4,776 UM oligos, 817 kb at Xq28

viii
vii

0 20 40
Position (nm)

0.000
0.010
0.020
0.030
0.040

N
or

m
al

iz
ed

 C
ou

nt
s FWHM = 22 nm

0 40 80
Position (nm)

0.000

0.010

0.020
44.7 nmG H vii viii

OligoDNA-PAINT: 167 LDM oligos, 11 kb of Xist RNA
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