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Abstract  43 

 44 

Variance in IQ is associated with a wide range of health outcomes, and 1% of the 45 

population are affected by intellectual disability. Despite a century of research, the 46 

fundamental neural underpinnings of intelligence remain unclear. We integrate 47 

results from genome-wide association studies (GWAS) of intelligence with brain 48 

tissue and single cell gene expression data to identify tissues and cell types 49 

associated with intelligence. GWAS data for IQ (N = 78,308) were meta-analyzed 50 

with an extreme-trait cohort of 1,247 individuals with mean IQ ~170 and 8,185 51 

controls. Genes associated with intelligence implicate pyramidal neurons of the 52 

somatosensory cortex and CA1 region of the hippocampus, and midbrain embryonic 53 

GABAergic neurons. Tissue-specific analyses find the most significant enrichment 54 

for frontal cortex brain expressed genes. These results suggest specific neuronal cell 55 

types and genes may be involved in intelligence and provide new hypotheses for 56 

neuroscience experiments using model systems.  57 
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 Genome-wide association studies (GWAS) have successfully identified 58 

statistical associations with a wide range of behavioral phenotypes and 59 

neuropsychiatric disorders 1–3. Increasing sample sizes has begun to yield findings 60 

for intelligence 4–6. The largest and most recent study of intelligence reported 18 loci 61 

significantly associated with intelligence 4. Significant genetic correlations were 62 

observed between intelligence and a variety of behavioral (educational attainment, 63 

smoking behaviors), anthropometric (cranial morphology, height, body composition), 64 

and psychiatric phenotypes (schizophrenia, autism, depressive symptoms), mirroring 65 

epidemiological evidence for correlations between intelligence and a broad range of 66 

health-related outcomes 4,7. 67 

Considered alone, not all associations identified by GWAS precisely localize 68 

biological mechanisms amenable to subsequent experimentation. For instance, the 69 

most associated variant in a significant locus may not be the causal variant 8,9, there 70 

may be multiple causal variants in a locus 10, loci may act through altering the 71 

expression of distant genes 11, and the associations identified by GWAS of complex 72 

traits are often spread across the genome 12–14. To extract meaningful biological 73 

inferences from GWAS results, it is necessary to integrate data from other sources, 74 

such as studies of gene expression 15. Results from gene-wise analyses in Sniekers 75 

et al. (2017) identified expression predominant in the brain for 14 of the 44 genes 76 

with significant association, although some transcription was inferred for most genes 77 

across most tissues 4. Integration of genomic results with data on biological 78 

pathways suggested a prominent role for nervous system development in 79 

intelligence.  80 

In silico functional annotation of GWAS results is dependent on high-quality 81 

biological reference data. Recently, data from the Karolinska Institutet (KI) mouse 82 
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superset of single-cell RNA sequencing (scRNAseq) of ~10,000 single cells from 83 

multiple brain regions was used to map schizophrenia GWAS results to brain cell 84 

types 16. Genes that previously showed association with schizophrenia were 85 

expressed with higher specificity in pyramidal cells, medium spiny neurons, and 86 

interneurons than in 20 other brain cell types. This demonstrates the potential of cell-87 

type specific annotation to enable the construction of new functional hypotheses for 88 

complex traits. 89 

We sought to develop a better understanding of the neurobiological 90 

underpinnings of intelligence through combining GWAS results with a number of 91 

data sources concerned with tissue and cell-type specific gene expression. To this 92 

end, we meta-analyzed the most recent GWAS of intelligence 4 with an extreme-trait 93 

GWAS that compared individuals of very high intelligence to a group from the 94 

general population (HiQ) 17. We then analyzed the enrichment of associations with 95 

intelligence in single cell expression data from the KI mouse superset 16, and in brain 96 

genomic and transcriptomic data from the GTEx project 18. Finally, we combined 97 

genomic and tissue-specific expression data with information from biological, 98 

disease-relevant and drug-target pathway databases to further assess the potential 99 

impact of biological mechanisms explaining variance in intelligence. 100 

   101 
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Results 102 

 103 

Meta-analysis  104 

The genetic correlation between Sniekers et al. (2017) and HiQ was 0.92 (SE: 105 

0.07) and was sufficiently high to justify meta-analysis. 25 loci met genome-wide 106 

significance with intelligence (i.e., p < 5 x 10-8; Table 1, Figure 1a). Of these, 13 were 107 

genome-wide significant in Sniekers et al. (2017) and 12 were novel (Table 1; 108 

Supplementary Table 1). The single locus previously identified in the HiQ sample 109 

was not genome-wide significant in this analysis (p = 0.00595; 17). 110 

Assessment of genome-wide inflation yielded a median GC of 1.24. The LD 111 

score regression intercept from was 1.004 (SE: 0.01), suggesting that this inflation is 112 

caused by polygenicity rather than confounding (Figure 1b) 19. Annotation of specific 113 

genomic loci to databases of interest suggested overlapping loci between 114 

intelligence and a variety of phenotypes (Supplementary Table 2). The largest 115 

overlap was observed with educational attainment (14/25 loci), but overlap at 116 

multiple loci was widespread, including with age at menarche, height, body mass 117 

index, autoimmune disease, and schizophrenia. Genes previously implicated in 118 

intellectual disability or developmental delay (ID/DD) were present within 9/25 loci.  119 

 120 

Heritability and partitioned heritability 121 

LD Score regression yielded a SNP-heritability estimate of 0.221 (SE: 0.01) in 122 

line with the previously reported SNP-heritability in Sniekers et al (2017). Partitioning 123 

this heritability across 58 functional SNP annotations identifies conserved regions as 124 

significantly enriched contributors to the heritability of intelligence (proportion of 125 

heritability = 0.340, enrichment = 13.3 fold, p = 3.26 x 10-8), consistent with previous  126 
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Locus Chr Locus BP Index SNP Pos A1 A2 Dir FreqA1 Zscore p 

1 1 22354246-22470115 rs7526484 22451845 T C ++ 0.257 5.46 4.82x10-8

2 1 41748897-41850182 rs12744310 41773502 T C -- 0.208 -5.51 3.63x10-8

3 1 98149785-98660622 rs72737821 98581337 A T ++ 0.712 5.48 4.37x10-8

4 1 103548734-103703521 rs6577362 103632361 A G -- 0.666 -5.77 8.05x10-9

5 2 71434829-71701353 rs6745907 71609073 A G -- 0.433 -5.82 5.78x10-9

6 2 100576304-101031561 rs13010010 100852734 T C ++ 0.390 6.57 5.09x10-11

7 2 144152539-144272229 rs13428598 144250487 T C ++ 0.375 5.85 4.95x10-9

8 2 161903399-162071338 rs10930013 162070325 A G -- 0.475 -5.55 2.87x10-8

9 2 217286343-217397419 rs13411858 217306698 T G -- 0.843 -5.57 2.60x10-8

10 3 23839884-24207650 rs7646501 24079291 A G ++ 0.749 6.67 2.62x10-11

11 3 49381898-50247824 rs1987628 49399259 A G ++ 0.319 5.49 4.01x10-8

12 4 106066982-106316427 rs2647257 106199505 A T ++ 0.636 5.54 2.98x10-8

13 5 176855627-176898619 rs2545797 176864202 T C ++ 0.455 5.53 3.12x10-8

14 6 98310291-98591810 rs12206087 98582900 A G ++ 0.504 6.8 1.05x10-11

15 6 108856378-109020032 rs768023 108876002 A G ++ 0.564 7.2 5.84x10-13

16 7 32209459-32399658 rs10236197 32291761 T C ++ 0.654 6.03 1.61x10-9 

17 7 32472099-32831680 rs6949851 32493807 T G ++ 0.675 5.45 4.97x10-8 

18 7 133130940-133727497 rs4728302 133630463 T C -- 0.582 -5.66 1.48x10-8

19 9 23344737-23407386 rs11794152 23345347 A G -- 0.589 -6.23 4.72x10-10

20 9 72014104-72213799 rs11138902 72103314 A G ++ 0.537 6.02 1.77x10-9

21 13 106580722-106688603 rs2251499 106639856 T C ++ 0.250 6.85 7.60x10-12

22 14 103987140-104018455 rs10149470 104017953 A G -- 0.486 -5.49 4.04x10-8

23 16 28490517-28917746 rs12928404 28847246 T C ++ 0.663 5.59 2.26x10-8

24 20 47413079-47938626 rs6095360 47532536 A G -- 0.693 -6.16 7.26x10-10

25 22 51089716-51151631 rs5770820 51150473 A G -- 0.209 -5.63 1.82x10-8

Table 1: Genome-wide significant variants from single-variant association analyses. 127 

Loci significant in Sniekers et al. (2017) are in bold.  128 

FreqA1 = A1 frequency in non-Finnish samples from the 1000 Genomes project.  129 

Dir = direction of effect in Sniekers and in TIP. 130 

  131 
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 132 
 133 

Figure 1: a) Manhattan plot and b) QQ plot of meta-analysis results 134 

 135 

reports in a subset of our meta-analyzed cohorts 20. Four extended annotations were 136 

also significantly enriched (p < 8.62 x 10-4; Figure 2), suggesting that genetic 137 

variation located in the vicinity of conserved regions, enhancers (specifically 138 

H3K4me1 elements) and open chromatin in brain dorsolateral prefrontal cortex 21 139 

and fetal cells) are enriched in heritability for intelligence. 140 

 141 

Gene-wise analyses 142 

93 genes at 41 loci were identified at genome-wide significance (p < 2.65 x 143 

10-6, Bonferroni threshold for 18,839 genes; Table 2, Supplementary Figure 1). 28 of 144 

these genes (20 loci) were also identified in Sniekers et al. (2017). 11 of the 93 145 

genes were previously implicated in intellectual disability or developmental delay, 146 

although this overlap does not significantly from what is expected under the null 147 

hypothesis of no enrichment (p = 0.073, hypergeometric test; Table 2). 148 

 149 
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 150 
 151 

Figure 2: Heritability enrichment of genomic annotations. Horizontal line is p = 152 

8.62x10-4, Bonferroni-corrected threshold for 58 annotations. Vertical line is 153 

enrichment = 1 (that is, no enrichment)   154 
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Locus Gene Names Chr Pos SNPS P 

1 
CDC42  
WNT4 

1 22347138-2479067 
188 
197 

5.32x10-7 
6.33x10-7 

2 FOXO6 1 41431939-41830086 130 1.86x10-8 

Chr1:71.8-72.8 Mb NEGR1 1 71861623-72748417 1424 1.09x10-6 

4 COL11A1 2 103403088-103773269 1027 4.25x10-7 

5 
ZNF638 
DYSF 

2 71381822-71702582 
492 
621 

1.41x10-8

3.48x10-7 

7 ARHGAP15 2 144151161-144356509 1088 2.10x10-7

8 DPP4 2 161868668-162319725 100 1.25x10-6 

Chr3:16.8-17.2 Mb PLCL2 3 16844159-17132086 712 2.30x10-9 

10 
THRB 
RPL15 

3 23961762-24190184 
818 
86 

1.12x10-8 
3.04x10-7 

11 

TCTA 
AMT 

RHOA 
DAG1 
NICN1 
TRAIP 
BSN 

GPX1 CTD-
2330K9.3 
AMIGO3 
GMPPB 
IP6K1 
MST1 

MON1A 
CAMKV 
RNF123 

FAM212A 
CDHR4 
MST1R 
UBA7 
RBM6 
GNAT1 
APEH 
USP4 

SEMA3F 

3 48725014-50125108 

68 
60 

127 
132 
60 
70 

173 
51 
57 
53 
53 

116 
50 
77 
52 
72 
59 
60 
54 
52 

256 
66 
52 

104 
93 

2.03x10-9 
8.39x10-9 
1.88x10-8 
3.26x10-8 
3.78x10-8 
3.97x10-8 
5.25x10-8 
5.86x10-8 
7.08x10-8 
1.50x10-7 
1.50x10-7 
1.58x10-7 
1.65x10-7 
1.66x10-7 
1.91x10-7 
2.13x10-7 
2.25x10-7 
2.52x10-7 
2.81x10-7 
3.69x10-7 
4.33x10-7 
9.27x10-7 
9.76x10-7 
1.25x10-6 
1.46x10-6 

12 TET2 4 106044468-106428563 289 2.22x10-6 

Chr5:139.5-139.6 Mb CYSTM1 5 139554227-139661637 214 1.45x10-6 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 31, 2017. ; https://doi.org/10.1101/170712doi: bioRxiv preprint 

https://doi.org/10.1101/170712
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 

DBN1 
GRK6 
F12 

PRR7 

5 176848019-176909800

35 
45 
23 
44 

6.60x10-9

1.19x10-8 
1.31x10-7 
2.07x10-7 

Chr6:26.5-26.6Mb BTN1A1 6 26501449-26510650 139 1.74x10-6 

15 FOXO3 6 108856378-109020332 211 1.35x10-12

17 PDE1C 7 32259273-32858489 1634 1.75x10-9

Chr7:86.2-86.5 Mb GRM3 7 86273230-86494200 424 1.13x10-6 

18 EXOC4 7 132950174-133734597 1171 9.61x10-8

20 APBA1 9 72014104-72213075 365 7.88x10-9

Chr10:64.9-65.3 Mb JMJD1C 10 64926981-65225722 525 1.99x10-6

Chr10:94.0-94.2 Mb MARCH5 10 94050920-94113721 110 1.55x10-7 

Chr11:133.7-133.9 Mb IGSF9B 11 133778459-133826880 170 1.50x10-6 

Chr11:123.9-124.1 Mb 
OR10D3 
VWA5A 

11 123986069-124056952
136 
184 

1.92x10-6 
2.24x10-6 

Chr11:124.1-124.2 Mb OR8D2 11 124189134-124190184 113 2.16x10-6 

Chr12:49.3-49.5 Mb 

PRKAG1 
KMT2D 

DDN 
RHEBL1 

12 49388932-49463808 

36 
60 
30 
42 

4.33x10-7 
4.43x10-7 
5.76x10-7 
2.48x10-6 

Chr12:93.1-93.4 Mb 
EEA1 

PLEKHG7 
12 93115281-93323107 

351 
155 

5.69x10-8

1.54x10-6 

Chr12:123.4-123.7 Mb PITPNM2 12 123468027-123634562 174 2.46x10-6 

Chr14:69.5-69.7 Mb DCAF5 14 69517598-69619867 190 1.37x10-6

22 
CKB 

BAG5 
14 103833065-104186052

75 
73 

2.47x10-6 
2.64x10-6 

Chr15:82.4-82.6 Mb 
EFTUD1

FAM154B 
15 82422571-82577271 

414 
154 

4.08x10-8

4.09x10-8 

Chr16:12.9-13.4 Mb SHISA9 16 12995477-13334272 952 5.33x10-7 

23 

ATXN2L
TUFM 
SH2B1 

ATP2A1 

16 28298418-29008079 

47 
57 
92 
66 

2.27x10-8

7.72x10-8 
1.87x10-7 
5.37x10-7 

Chr16:72.0-72.1 Mb DHODH 16 72042487-72058954 202 9.60x10-8 
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Chr17:34.5-35.0 Mb 

GGNBP2 
DHRS11 
MYO19 

TBC1D3H 
TBC1D3G 

17 34581086-34957235 

85 
28 

112 
4 
4 

7.38x10-7 
8.31x10-7 
1.57x10-6 

2.28x10-6 
2.28x10-6 

Chr18:12.9-13.0 Mb SEH1L 18 12947132-12987535 181 2.35x10-6 

Chr18:49.8-51.1 Mb DCC 18 49866542-51057784 3737 5.86x10-8

Chr19:31.7-31.9 Mb TSHZ3 19 31765851-31840453 166 3.64x10-7 

24 

CSE1L
STAU1 

ARFGEF2 
PREX1 
DDX27 

20 47422577-47933479 

206 
213 
364 
658 
156 

1.14x10-10

5.86x10-10 
7.58x10-10 
8.50x10-8 
4.65x10-7 

Chr22:31.7-31.8 Mb LINC01521 22 31742875-31744670 72 1.69x10-6 

Chr22:42.3-42.5 Mb 

WBP2NL
SEPT3 

FAM109B 
SMDT1 

22 42372276-42480288 

157 
143 
50 
45 

1.78x10-7

6.95x10-7 
1.56x10-6 
1.78x10-6 

25 
SHANK3 

ACR 
22 51083118-51155826 

162 
66 

2.22x10-8

7.08x10-7 

 155 

Table 2: Genome-wide significant genes from gene-wise association analyses. 156 

Genetic locus is that identified in single-variant analyses, or the genomic region 157 

otherwise. P value from competitive test in MAGMA. Loci in bold were significantly 158 

associated in Sniekers et al. (2017). Genes in italics have previously been implicated 159 

in developmental delay or intellectual disability. 160 

  161 
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Tissue- and cell-specific gene expression 162 

Tissue-specific enrichment analysis identified an enrichment of genes with 163 

high brain-specific expression associated with intelligence (pMAGMA = 4.43 x 10-9, 164 

pLDSC = 4.23 x 10-6; Figure 3a, Supplementary Table 3a). Across 10 brain regions in 165 

GTEx18, stronger gene associations with intelligence were associated with increased 166 

specificity of gene expression to the frontal cortex (pMAGMA = 0.00305, pLDSC = 2.66 x 167 

10-4; Figure 3b, Supplementary Table 3b). 168 

 In the KI level 1 (broad cell groups) cell-type specific analyses, both linear 169 

regression (MAGMA) 22 and heritability enrichment-based analyses (LD Score) 23 170 

supported enrichment of genes with high specificity to pyramidal neurons in the 171 

somatosensory neocortex (pMAGMA = 1.41 x 10-6, pLDSC = 5.81 x 10-4) and in the CA1 172 

region of the hippocampus (pMAGMA = 9.08 x 10-5, pLDSC = 1.12 x 10-3), as well as to 173 

midbrain embryonic GABAergic neurons (pMAGMA = 9.47 x 10-5, pLDSC = 1.61 x 10-3; 174 

Figure 3c, Supplementary Table 3c). Level 2 analyses (narrowly-defined cell types) 175 

suggested significant enrichment of genes with high specificity to type pyramidal 176 

cells of the CA1 region (pMAGMA = 2.16 x 10-4, pLDSC = 1.19 x 10-4), although 177 

considerable variability was observed between methods at this level of granularity 178 

(Figure 3d, Supplementary Table 3d). 179 

Cell-type specific analyses were repeated conditioning on each enriched cell-180 

type in turn. When controlling for gene expression in pyramidal neurons of the 181 

somatosensory neocortex, the previously observed enrichment in CA1 pyramidal 182 

cells is lost. In contrast, the patterns of enrichment observed when conditioning on 183 

expression in CA1 pyramidal cells or in midbrain embryonic GABAergic neurons 184 

were consistent with those observed without conditioning (Figure 4).  185 

 186 
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 187 
 188 

Figure 3: Results of tissue- and cell-specific analyses. a) Whole-body analyses; b) 189 

Brain tissue analyses; c) KI level 1 cell analyses; d) KI level 2 cell analyses (only 190 

those significant in MAGMA competitive analyses after correction for multiple testing 191 

shown). Vertical lines are the Bonferroni threshold for each analysis. Results shown 192 

are from MAGMA analyses - tissues and cell-types also significant in LDSC analyses 193 

are indicated with †. Full results are shown in Supplementary Table 3. 194 

  195 
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 196 
 197 

Figure 4: Conditional cell-type enrichment analysis. X-axis lists target cell-types. Y-198 

axis lists other cell-types. Colors correspond to the enrichment probability of the 199 

other cell type after conditioning (P). Values of log(P) approaching zero indicate no 200 

enrichment after conditioning. Barplot on the right shows the minimum value of P for 201 

each cell-type across all conditional analyses (excluding analyses of the target cell-202 

type with itself); the vertical line marks p=0.05. Red box highlights the loss of 203 

significant enrichment in CA1 pyramidal neurons when conditioning on 204 

somatosensory (SS) neurons. 205 
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Predicted tissue-specific gene expression 207 

Across the 10 GTEx brain tissues, results from MetaXcan suggested 208 

significant effects on the expression of 16 genes (p < 1.60x10-6; Table 3). Eight of 209 

these genes are situated at locus 11 (Chr3, 48.7-50.2 Mb). Genetic variation was 210 

predicted to upregulate 6 genes and downregulate 10 genes, with both single-region 211 

(9 genes) and multiple-region (7 genes) patterns of altered expression implied. Three 212 

genes (NAGA, TUFM and GMPPB) have previously been implicated in ID.  213 

 214 

Tissue-specific pathway analysis 215 

Tissue-specific pathway analyses identified 32 nested pathways with p ≤ 216 

5.34x10-6 (Bonferroni correction for 9,361 effectively independent pathways), of 217 

which 29 contained genes that were significant in the gene-wise analysis 218 

(Supplementary Table 4; Supplementary Figure 2). 7 pathways remained significant 219 

after further correcting for all tissue-specific tests: "self-reported educational 220 

attainment", "modulation of synaptic transmission", "neurodegenerative disease", 221 

"neuron spine", "schizophrenia", "rare genetic neurological disorder", and "potentially 222 

synaptic genes" (Table 4).  223 

 224 
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 226 

Locus Gene Tissues Direction P Genewise?

11 RNF123 

Putamen basal ganglia 
Nucleus accumbens basal ganglia

Frontal cortex 
Cerebellar Hemisphere 

- 
- 
- 
- 

5.77x10-7 
3.98x10-10 
1.84x10-7 
6.37x10-7 

No 

11 NPRL2 Cortex + 1.06x10-7 No 

11 MST1 Hypothalamus + 1.33x10-7 Yes 

11 MST1R 
Cerebellum 

Cerebellar Hemisphere 
- 
- 

2.25x10-7 
8.98x10-7 

Yes 

11 RBM6 Frontal cortex + 2.28x10-7 Yes 

11 FAM212A Cerebellar Hemisphere - 4.40x10-7 Yes 

11 AMIGO3 Cortex - 1.31x10-6 Yes 

11 GMPPB Cortex - 1.38x10-6 Yes 

Chr12: 58.3-58.4 Mb XRCC6BP1 

Nucleus accumbens basal ganglia
Hypothalamus 

Cortex 
Caudate basal ganglia 

+ 
+ 
+ 
+ 

1.15x10-6 
1.50x10-6 
9.27x10-7 
9.33x10-7 

No 

15 FOXO3 Nucleus accumbens basal ganglia - 4.93x10-10 Yes 

23 TUFM 
Putamen basal ganglia 

Nucleus accumbens basal ganglia
- 
- 

4.89x10-7 
1.38x10-7 

Yes 

23 NPIPB6 Caudate basal ganglia - 1.33x10-6 No 

Chr17:34.9-35.0 Mb DHRS11 
Putamen basal ganglia 

Nucleus accumbens basal ganglia
Caudate basal ganglia 

- 
- 
- 

3.75x10-7 
1.39x10-6 
1.09x10-6 

No 

Chr18:12.9-13.2Mb CEP192 Cortex + 9.41x10-8 No 

Chr22:42.4-42.5 Mb NAGA 
Putamen basal ganglia 

Cerebellum 
Cerebellar Hemisphere 

- 
- 
- 

1.29x10-7 
2.67x10-7 
2.19x10-7 

No 

Chr22:42.5-42.6 Mb CYP2D6 Hypothalamus + 5.70x10-7 No 

 227 

Table 3: Genes predicted to be upregulated (+) or downregulated (-) in specific 228 

tissues. Genetic locus is that identified in single-variant analyses, or the genomic 229 

region otherwise. Genewise = genome-wide significant in gene-wise analyses. 230 

Genes in italics have previously been implicated in developmental delay or 231 

intellectual disability. 232 
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Pathway Name Tissues significant Significant genes 
Min p 

[Tissue] 

Self Reported 
Educational 
Attainment 

Adipose, Artery, Bladder, Brain, Breast 
Mammary Tissue, Cells Transformed 
fibroblasts, Cervix, Colon, Fallopian 

Tube, Liver, Lung, Nerve Tibial, Ovary, 
Unweighted, Small Intestine Terminal 
Ileum, Spleen, Uterus, Whole Blood, 
Amygdala, Anterior cingulate cortex 

(BA24), Caudate (basal ganglia), 
Cortex, Frontal Cortex (BA9), 

Hippocampus, Hypothalamus, Nucleus 
accumbens (basal ganglia), Putamen 

(basal ganglia), Spinal cord (cervical c1)

ATXN2L, RNF123, 
NEGR1, DPP4, BTN1A1, 

JMJD1C 

1.03 x 10-9 

[Frontal Cortex 
(BA9)] 

GO:Neuron Spine 

Artery, Bladder, Cells EBVtransformed 
lymphocytes, Cervix, Esophagus, Lung, 

Minor Salivary Gland, Unweighted, 
Uterus, Vagina, Cerebellar Hemisphere, 

Cerebellum, Hypothalamus 

ARFGEF2, SHANK3, 
EEA1, GRM3 

5.29 x 10-8 
[Cerebellum] 

 

GO:Modulation Of 
Synaptic 

Transmission 

Artery, Bladder, Cells EBVtransformed 
lymphocytes, Cervix, Esophagus, 
Ovary, Thyroid, Uterus, Vagina, 

Hippocampus 

STAU1, PLCL2, DBN1, 
SHANK3, SHISA9, GRM3, 

IGSF9B 

2.77 x 10-8 
[Uterus] 

 

Schizophrenia 
Brain, Pituitary, Testis, Cortex, Frontal 

Cortex .BA9. 

FOXO3, ARFGEF2, 
PLCL2, DBN1, APBA1, 

AMT, THRB, GRK6, 
FOXO6, SHANK3, GPX1, 

DCC, EXOC4, F12, 
CDC42, SHISA9,  

NEGR1, GRM3, DPP4, 
IGSF9B 

5.57 x 10-8 

[Pituitary] 
 

Rare Genetic 
Neurological 

Disorder 
Brain, Nerve Tibial, Pituitary 

FOXO3, CSE1L, 
ARFGEF2, PDE1C, DBN1, 

AMT, THRB, GRK6, 
ZNF638, FOXO6, RHOA, 

SHANK3, ATXN2L, DAG1, 
TRAIP, BSN, EEA1, 
GPX1, DCC, TUFM, 

DHODH, EXOC4, F12, 
GMPPB, MARCH5, 

SH2B1, MST1R, DYSF, 
TSHZ3, COL11A1, 

PRKAG1, KMT2D, CDC42, 
ATP2A1, DDN, WNT4, 
ACR, APEH, GRM3, 

DPP4, CYSTM1, SEMA3F, 
JMJD1C, TET2, CKB 

9.09 x 10-8 

[Brain] 
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Neurodegenerative 
Disease 

Testis 

FOXO3, CSE1L, 
ARFGEF2, PDE1C, DBN1, 

APBA1, THRB, GRK6, 
ZNF638, SHANK3, 

ATXN2L, DAG1, BSN, 
EEA1, GPX1, DCC, TUFM, 

EXOC4, F12, MARCH5, 
DYSF, COL11A1, KMT2D, 

CDC42, ATP2A1, ACR, 
APEH, NEGR1, GRM3, 

DPP4, CYSTM1, SEMA3F, 
JMJD1C, VWA5A, SEH1L 

4.75 x 10-8 
[Testis] 

 

Potentially Synaptic 
All 

Brain 

FOXO3, CSE1L, 
ARFGEF2, PDE1C, 

PLCL2, DBN1, APBA1, 
THRB, ZNF638, FOXO6, 

RHOA, SHANK3, ATXN2L, 
EFTUD1, BSN, EEA1, 
GPX1, DCC, TUFM, 

PREX1, EXOC4, IP6K1, 
SH2B1, CAMKV,  

PRR7, ARHGAP15, 
TSHZ3, RBM6, KMT2D, 

CDC42, SHISA9, ATP2A1, 
DDN, SEPT3, NEGR1, 
GRM3, USP4, DPP4, 

DCAF5, IGSF9B, JMJD1C, 
TET2, VWA5A, SEH1L, 

PITPNM2, CKB 

1.16 x 10-7 

[Brain] 
 

 235 

Table 4: Pathways significantly enriched for genes associated with intelligence after 236 

correction for all tissue-effective pathways tests. Genes in italics have previously 237 

been implicated in developmental delay or intellectual disability. 238 
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Conditional gene set enrichment 240 

Results from tissue-specific and gene-set analyses identified a number of 241 

gene sets associated with intelligence. Of specific interest were synaptic genes 242 

(post-synaptic density proteome list; 24), RBFOX family binding partners 25, CELF4 243 

binding partners, and previously reported intellectual disability genes. Additional 244 

analyses were performed to assess whether the association of these gene sets was 245 

independent of the enrichment for gene expression in pyramidal cells of the 246 

somatosensory cortex. Bootstrapped analyses confirmed the association of each 247 

gene set prior to conditional analysis (empirical p < 0.05; Supplementary Table 5). 248 

Conditioning on expression in gene expression in pyramidal cells of the 249 

somatosensory cortex, the enrichment for synaptic genes is no longer significant, 250 

indicating that this enrichment is not independent of that observed in the pyramidal 251 

neurons. This effect was not observed for RBFOX or CELF4 targets. Intellectual 252 

disability genes were weakly enriched prior to conditioning, and conditioning had little 253 

effect on enrichment. However, subdividing ID/DD genes into those associated with 254 

severe and those associated with moderate ID/DD indicated that the enrichment 255 

stemmed predominantly from moderate ID/DD genes, and this was not altered by 256 

conditioning on somatosensory pyramidal neuron gene expression (Supplementary 257 

Table 5).  258 

 259 
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Discussion 261 

 The overall power of our GWAS meta-analysis was equivalent to a sample 262 

size of ~99,000 individuals due to the inclusion of the extreme trait HiQ sample, 263 

which contributes equivalently to a population cohort of ~21,000 individuals, and is 264 

likely to be enriched for alleles associated with intelligence in the normal range. We 265 

mapped results from our GWAS to tissue and cell-type specific gene expression 266 

data, identifying enrichment of specificity at multiple levels: in the brain, the frontal 267 

cortex, midbrain embryonic GABAergic neurons and pyramidal neurons, especially 268 

those in the somatosensory cortex. A number of genes previously implicated in 269 

intellectual disability or developmental delay are predicted from the GWAS results to 270 

show differential gene expression for normal range IQ in different brain regions, and 271 

are associated with variation in intelligence in the normal range from gene-wise 272 

analyses.  273 

RNA sequencing data suggest that genes more strongly associated with 274 

intelligence are enriched for brain-specific expression in general. While the 275 

dominance of brain-specificity over other body tissue specificity is pronounced, 276 

assessing differences within the brain is more difficult. Genes more strongly 277 

associated with intelligence showed higher specificity for frontal cortical expression, 278 

but the differences in cell composition between brain tissues means that cell-type 279 

analyses may be more informative. This can be seen within our results, in that 280 

pyramidal neurons of the somatosensory cortex were significant in the cell-type 281 

specific analysis, but the cortex as a whole is not significant in the GTEx brain-tissue 282 

analysis. This is perhaps due to the fact that the cortex is a highly heterogeneous 283 

mixture of cell-types. Our results suggest expression in pyramidal neurons in one 284 

area of the cortex is relevant in intelligence, but expression in the other cell-types 285 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 31, 2017. ; https://doi.org/10.1101/170712doi: bioRxiv preprint 

https://doi.org/10.1101/170712
http://creativecommons.org/licenses/by-nc-nd/4.0/


and areas of the cortex may not be 26. A further caveat to this interpretation is that 286 

the full cellular composition of the cortex (and the brain overall) is not reflected in the 287 

KI mouse superset, and as such our conclusions about wider effects must be 288 

constrained.  289 

Genes with higher specificity to pyramidal neurons were enriched for 290 

associations with intelligence. However, the location of the most interesting neuron 291 

population is not yet clear. Observed enrichment in the pyramidal cells of the CA1 292 

region of the hippocampus was lost when accounting for gene expression in 293 

pyramidal cells of the somatosensory cortex. An uncaptured population of pyramidal 294 

neurons (for example, in the frontal cortex) may exist that similarly overlaps in 295 

expression with the somatosensory pyramidal neurons, and accounts for the 296 

enrichment observed in the latter population. While the KI superset is the largest 297 

brain scRNAseq resource to date, it covers a limited set of regions and 298 

developmental stages 16. 299 

Tissue and cell-specific analyses were performed using related but distinct 300 

approaches, namely linear regression of binned specificity and heritability 301 

enrichment analysis of the top 10% of specific genes. Linear regression tended to 302 

give smaller p-values than heritability enrichment analysis (Supplementary Table 3). 303 

While this may be a statistical artefact generated by the differing assumptions of the 304 

methods, this could also result from the pattern of enrichment. For example, a small 305 

set of genes associated with intelligence, all with very high specificity to a given 306 

tissue would result in a lower p-value from heritability enrichment than if the 307 

association with intelligence was spread more broadly across genes with generally 308 

enriched tissue-specificity.  309 
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The results of analyses in the KI mouse superset for intelligence can be 310 

contrasted with those for schizophrenia 16. Both phenotypes initially demonstrate 311 

enrichment for the same hippocampal and somatosensory pyramidal neuron 312 

populations. However, conditional analyses in schizophrenia demonstrated 313 

significant differences in the results between schizophrenia and intelligence - the 314 

enrichment observed in the somatosensory cortex in schizophrenia could be fully 315 

explained by that in the hippocampus, while the opposite pattern was observed in 316 

intelligence. Additionally, unlike in schizophrenia, genes implicated in intelligence 317 

also showed specificity in midbrain embryonic cells. Analyses in schizophrenia 318 

implicated more level two cell types than were significant in our analyses. Such 319 

differences may reflect differences in the common-variant contribution to variance in 320 

intelligence and schizophrenia; despite a similar effective sample size to the 321 

schizophrenia GWAS (40,675 cases, 64,643 controls, Neff ~ 100K), this GWAS 322 

identified only 25 loci compared with the 140 associated with schizophrenia 27 323 

highlights the potentially more polygenic nature of the observed heritability of 324 

intelligence, which is approximately equal to that of schizophrenia. 325 

The KI mouse superset has a number of strengths; it is the largest and 326 

broadest scRNAseq dataset to date, captures extra-nuclear as well as nuclear 327 

transcripts, and was generated using identical methods 16. However, there are also 328 

limitations to the use of this dataset. One issue is that the expression data used is 329 

derived from mice rather than humans. Gene expression in the brain is conserved 330 

across mammals, such that the principal axes of variation in comparative studies of 331 

gene expression capture inter-tissue, rather than inter-species, variance 28. 332 

Furthermore, there is a high degree of conservation of gene expression between 333 

mouse and human brains specifically 16,29,30. Previous analyses using the KI mouse 334 
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superset have made extensive comparison between mouse and human gene 335 

expression and found high concordance in mapping mouse to human genes 16.  336 

Nevertheless, cell types that are not enriched for genes associated with 337 

intelligence in this study should not be prematurely excluded, as some cell-types are 338 

not present in the dataset and others will have dissimilar functions or have been 339 

exposed to different evolutionary pressures in mouse and in human. Intelligence is a 340 

major characteristic that differentiates humans from other mammals 31. As such, it 341 

may be the case that genes with higher specificity to regions dissimilar between 342 

humans and mice could be enriched for associations with intelligence, which would 343 

not be captured by this approach.  344 

Our results highlight potential insights beyond those gleaned from tissue-345 

specific expression patterns. Several genes previously implicated in ID/DD were 346 

present in loci associated in the GWAS. Perhaps the most interesting example of this 347 

is GMPPB (GDP-Mannose Pyrophosphorylase B), which is in locus 11 of the GWAS 348 

results, and was genome-wide significant in gene-wise analyses. It is a member of 349 

the "rare genetic neurological disorder" gene set (significantly enriched, specifically 350 

in neural tissues), and the expression of GMPPB was predicted to be downregulated 351 

in the cortex of individuals with higher intelligence. Rare loss of function mutations in 352 

the GMPPB gene have been identified as causal mutations in tens of individuals with 353 

muscular dystrophies and myasthenias, many of which present with mild to severe 354 

ID 32–36. The product of this gene is important for the glycosylation of a-DG (alpha-355 

dystroglycan - the dystroglycan gene DAG is also present in locus 11 and is a 356 

significantly associated gene in this analysis; 32). Glycosylation is required for the 357 

interaction of a-DG with extracellular ligands, with a variety of consequences 358 

including the organization of axon guidance 37. Our results, in the context of the 359 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 31, 2017. ; https://doi.org/10.1101/170712doi: bioRxiv preprint 

https://doi.org/10.1101/170712
http://creativecommons.org/licenses/by-nc-nd/4.0/


medical genetic literature, tentatively suggest the effects on axon guidance by 360 

glycosylated a-DG may be an area worthy of further exploration to understand the 361 

biology of intelligence. 362 

However, the observed overall overlap of all ID/DD genes with loci from the 363 

GWAS does not differ from that expected by chance. This lack of significant 364 

enrichment is partly reflected in the pathway analysis - there are several overlapping 365 

gene sets designed to capture ID/DD genes. Of these, only "rare genetic 366 

neurological disorder" was significantly enriched following correction. Further insight 367 

is obtained from conditional gene-set analyses - although the overall "intellectual 368 

disability" gene set is only nominally associated with intelligence, stratifying this gene 369 

set demonstrates considerable enrichment of mild intellectual disability genes, 370 

independent of gene expression in somatosensory pyramidal neurons. The presence 371 

of genes causative of ID/DD in loci associated with intelligence in the normal range, 372 

and the enrichment of specific pathways and gene sets derived from the ID/DD 373 

literature, may indicate shared biology between ID/DD and normal intelligence. 374 

However, the lack of broad enrichment of all such genes suggests that there may 375 

also be distinct pathways contributing to normal intelligence that are not commonly 376 

affected in ID/DD. ID/DD is not a single condition, but a group of disorders with 377 

differing etiologies - our results are still consistent with a two-group model of ID/DD 378 

etiology 38–40. 379 

 The meta-analysis results presented herein extend previous findings 4. The 380 

results are largely consistent with those previously reported, which is unsurprising. 381 

More genes were identified in our gene-wise analysis due to an analytical decision to 382 

extend the boundaries by which each gene is defined 35kb upstream and 10kb 383 

downstream of the coding region 41,42. Defining genes using this boundary (as 384 
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opposed to no boundary extension) captures additional transcriptional elements - 385 

these may be specific to the target gene, but may also capture elements with more 386 

distal regulatory effects. 387 

Deriving testable biological hypotheses from the statistical associations of 388 

GWAS results is one of the central challenges for the immediate future of complex 389 

genetics 3,15. The provision of high-quality reference datasets encompassing genetic 390 

information from variation to translation, and the integration of genomic data to such 391 

reference data is invaluable to this aim 16,18. We have demonstrated that some 392 

insights into the biology of intelligence can be derived from GWAS, and have 393 

suggested potential avenues for further exploration. Our results could indicate that 394 

intelligence represents optimal pyramidal neuron functioning. Cognitive tests are 395 

highly correlated with general intelligence (g), which may depend on pyramidal 396 

neuron function 7.  397 

Understanding how biology underlies variation in intelligence is an active area 398 

of research that is beginning to yield results. Unifying these new genetic results with 399 

data from multiple approaches, can increase the power of each approach, has the 400 

potential to yield greater understanding of the biology of intelligence, which in turn 401 

could inform the study of many health-related phenotypes with which intelligence is 402 

correlated.   403 
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Online Methods 404 

 405 

Cohort descriptions 406 

 407 

Sniekers intelligence GWAS 4 408 

The cohort analyzed in Sniekers et al. (2017) was drawn from 7 cohorts, 409 

primarily consisting of data from the UK Biobank pilot genotyping release (N = 410 

54,119) and the Childhood Intelligence Consortium (N = 12,441) as well as seven 411 

additional cohorts (N = 11,748). The phenotype for analysis was Spearman's g, or a 412 

primary measure of fluid intelligence that correlates highly with g 4,43. Summary 413 

statistics from this analysis are available at 414 

https://ctg.cncr.nl/software/summary_statistics. Full details on cohort characteristics, 415 

genotyping and analysis are supplied in the Supplementary Material. 416 

 417 

HiQ high-intelligence GWAS 418 

The Duke University Talent Identification Program (TIP) cohort has been 419 

described previously 17. In brief, TIP is a non-profit organization that recruits and 420 

nurtures academically gifted children of extremely high intelligence (top 3%) from the 421 

US population. For genomic study, 1,247 participants from the top 1% of TIP (top 422 

0.03% of population) were selected as a high-intelligence cohort (HiQ). IQ was 423 

inferred from performance on the Scholastic Assessment Test (SAT) or American 424 

College Test (ACT) taken at age 12 rather than the usual age of 18 years. A 425 

population comparison cohort (N = 8,185) was obtained from the The University of 426 

Michigan Health and Retirement Study (HRS). Participants were assumed to be 427 
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drawn from the normal distribution of intelligence. Full details on genotyping and 428 

analysis are supplied in the Supplementary Material. 429 

 430 

Meta-analysis  431 

Summary statistics from Sniekers et al. (2017) and HiQ were meta-analyzed 432 

using METAL 4,44. To account for the increased discovery power afforded by the 433 

extreme-sampling method used in TIP, analyses were weighted by their respective 434 

non-centrality parameters (NCP), estimated using the Genetic Power Calculator 45–435 

47. Specifically, NCPs were estimated assuming a causal variant of 20% frequency, 436 

capturing 0.1% of variance in each phenotype, assuming HiQ controls are drawn 437 

from the normal distribution (+/- 2 SD from the mean) and HiQ cases are sampled 438 

from 4 SD above the mean, consistent with IQ > 160 in 99% of the cohort 17. The 439 

NCP of the Sniekers cohort (N = 78,308) was 78.4, while the NCP of the HiQ cohort 440 

was 21.6, suggesting the HiQ cohort contributes equivalently to a population cohort 441 

of ~21,000 individuals. Only variants present in both cohorts were retained for 442 

analysis.  443 

Following association analysis, genome-wide significant loci were defined via 444 

clumping in PLINK2 48. Index variants (p < 5x10-4) were merged into loci if in linkage 445 

disequilibrium (r2 > 0.1 within 500kb) with a variant with a lower p-value. Loci within 446 

50kb of each other were merged. Manhattan and QQ plots were generated using 447 

FUMA (49. Annotation of genomic results with: data from the EBI GWAS catalog; 448 

OMIM; GENCODE genes; genes previously implicated in autism and in intellectual 449 

disability; copy-number variants previously implicated in psychiatric disorders; and 450 

mouse knockout phenotypes was performed with RegionAnnotator version 1.63 451 

(https://github.com/ivankosmos/RegionAnnotator).  452 
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 453 

Heritability and partitioned heritability 454 

The heritability of intelligence accounted for by common variants was 455 

estimated using LD Score, limited to the HapMap3 variants and pre-computed LD 456 

scores provided with the package 19. Heritability was then partitioned across the 53 457 

genomic annotations provided with the package 23, with the addition of 5 annotations: 458 

open chromatin regions (ATAC and ATAC Bryois extend 500, which increases the 459 

window around the region by 500 bases in both directions), the intersection between 460 

ATAC and conserved regions of the genome (ATAC-conserved) and regions present 461 

in the Neanderthal genome (Neanderthal and Neanderthal extend 500; 21,50. Regions 462 

of open chromatin were identified in prefrontal cortical tissue from 135 schizophrenic 463 

individuals and 137 controls using ATAC sequencing, which identifies stretches of 464 

DNA free of nucleosomes and other DNA-binding proteins 21,51.  465 

 466 

Gene-wise analyses 467 

Results from the meta-analysis were filtered to retain only single nucleotide 468 

variants (SNPs) present in the European superpopulation of 1000 Genomes Phase 3 469 

52. SNPs were annotated to a gene using MAGMA v1.06, assigning SNPs to genes if 470 

they lay between 35kb upstream and 10kb downstream of the gene location (as 471 

supplied on the MAGMA website, build 37; 22. Gene-wise p-values were obtained 472 

from MAGMA as the aggregate of the mean and smallest p-value across all SNPs 473 

annotated to the gene. MAGMA accounts for possible confounders such as gene 474 

size, gene density, linkage disequilibrium and minor allele count. The threshold for 475 

genome-wide significance was defined as p = 2.65 x 10-6, the Bonferroni correction 476 

for the 18,839 genes tested. Genes passing genome-wide significance were defined 477 
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as coming from the same locus if their locations were within 50kb of each other, or if 478 

they lay within clumped loci from the single variant analysis. Significant genes were 479 

cross-referenced to the intellectual disability (ID) gene list provided with 480 

RegionAnnotator. The significance of the observed overlap was quantified as a 481 

hypergeometric test in R 53, using as background 1,366 ID/DD genes in 18,839 482 

autosomal genes. 483 

 484 

Tissue- and cell-specific gene expression 485 

Tissue-specific and cell-type specific proportions of gene expression were 486 

calculated following the method described in detail in 16). Tissue expression data was 487 

drawn from the GTEx Consortium 18, and brain cell-type expression data was drawn 488 

from scRNAseq data from mouse brain 16. For each gene, the value for each tissue 489 

(or cell-type) was calculated by dividing the mean Unique Molecular Identifier (UMI) 490 

counts for the given tissue by the summed mean UMI counts across all tissues 16.  491 

Associations between gene-wise p-values from the meta-analysis and tissue-492 

specific (cell-type specific) gene expression were calculated using two methods, 493 

implemented in MAGMA 22 and in LD Score 19. In MAGMA, genes were grouped into 494 

40 equal bins by specificity of expression, and bin membership was regressed on 495 

gene-wise association with intelligence in the meta-analysis (For these analyses, 496 

gene-wise association was defined as the mean p-value across all SNPs assigned to 497 

the gene.) In LD Score, the 10% of genes with the highest specificity within each 498 

tissue were used as a gene set for partitioned heritability analysis. Results were 499 

considered significant if the association p-values were smaller than the relevant 500 

Bonferroni threshold for both methods. 501 
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Conditional cell-specific analyses were performed as a secondary analysis to 502 

test whether each enriched cell-type observed was independent of all others. Full 503 

details of the method implemented are provided in Skene et al., 2017. In brief, for 504 

each enriched cell-type in turn (the target cell-type), z-scores from gene-wise 505 

association analyses with intelligence were randomly resampled without 506 

replacement. The mean z-score within each expression-specificity decile of the 507 

target cell-type was held constant, but the mean z-score of each specificity decile of 508 

other cell types was randomized. Empirical p-values were derived for each of the 509 

other cell-types, and this procedure was repeated 10,000 times. Expression in each 510 

of the other cell-types is considered to be associated with intelligence independently 511 

of expression in the target cell type if the observed p-value is lower than the 500th 512 

empirical p-value (i.e. 95% of the empirical distribution; 16).  513 

  514 

Predicted tissue-specific gene expression 515 

Results from the variant-level meta-analysis were used to predict gene 516 

expression using MetaXcan and genomic and transcriptomic reference data from the 517 

brain regions assayed in the GTEx project 18,54. Associations between predicted 518 

gene expression levels and intelligence were calculated. Significance was set at 519 

1.60x10-6, the Bonferroni correction for the 31303 gene-tissue pairs tested 54. 520 

Significant genes were cross-referenced to the intellectual disability gene list 521 

provided with RegionAnnotator.  522 

 523 

Pathway analysis 524 

A pathway matrix P was generated with elements Pg,p = 1 if gene g was in 525 

pathway p and Pg,p = 0 otherwise. The elements in the matrix were multiplied by 526 
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binned gene expression weights obtained from GTEx data (as in the foregoing 527 

section on tissue-specific expression) for 13 brain regions and 32 tissues, generating 528 

45 weighted gene/pathway matrices. Only genes with expression data were taken 529 

into account. Association between these tissue-weighted pathways and gene-wise 530 

associations with intelligence was computed using MAGMA. 13,564 pathways were 531 

drawn from OpenTargets (downloaded January 2017; 55), GO ontologies, canonical 532 

pathways drawn from MSigSB v5.2 C2 and C5 datasets 56, and biological pathways 533 

related to psychiatric disorders found in various scientific publications (a link to each 534 

pathway source is provided in Supplementary Table 4). The pathways assessed by 535 

this approach are related to each other in a complex fashion; GO pathways are 536 

hierarchical and MSigDB and OpenTargets pathways capture related gene sets. 537 

Accordingly, in order to control for multiple testing, the effective number of pathways 538 

tested was established by computing the number of principal components 539 

accounting for 99.5% of explained variance in the pathway similarity matrix, obtained 540 

by computing the Tanimoto similarity between pathways. This results in a Bonferroni-541 

corrected threshold of p = 5.34x10-6 for 9,361 effectively independent tests for each 542 

matrix. A more stringent threshold was applied secondarily, taking into account all 543 

tissue-specific pathway matrices for a total for 9,361 x 46 tests and threshold p = 544 

1.16x10-7. 545 

 546 

Conditional gene set enrichment 547 

Gene sets of interest were drawn from the results of pathway analyses. 548 

Specifically, the human postsynaptic density proteome gene set 24 was used to 549 

capture the effects of synaptic and neuronal pathways. Gene sets of RBFOX and 550 

CELF4 targets were included as they showed enrichment that appears to be driven 551 
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by brain-specificity, and have been previously implicated in other brain-related traits 552 

16,25,57. ID/DD gene sets were tested as they are of specific interest to the study of 553 

intelligence. To assess whether the enrichment of these gene sets is independent of 554 

gene expression in somatosensory pyramidal neurons, conditional analyses were 555 

performed following the method described above for conditional cell-type analyses, 556 

modified for the use of gene sets 16.  557 

Data availability 558 

Summary statistics from the GWAS meta-analysis will be made available at 559 

[link available upon publication]. 560 

  561 
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