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Abstract 

 

Drug development depends on accurately identifying 

molecular targets that both play a causal role in a disease 

and are amenable to pharmacological action by small 

molecule drugs or bio-therapeutics, such as monoclonal 

antibodies.  

 

Errors in drug target specification contribute to the 

extremely high rates of drug development failure.   

 

Integrating knowledge of genes that encode druggable 

targets with those that influence susceptibility to common 

disease has the potential to radically improve the probability 

of drug development success.  

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 30, 2017. ; https://doi.org/10.1101/170142doi: bioRxiv preprint 

mailto:a.hingorani@ucl.ac.uk
https://doi.org/10.1101/170142
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 
 

Part 1: System flaws in drug development 

 

‘The greatest obstacle to discovery is not ignorance – it is 

the illusion of knowledge’ 

 

- Attributed to Daniel J. Boorstin (Historian, 

1914-2004).  

 

Background 

 

The patent and drug regulatory systems encourage 

innovation by rewarding risky but potentially transformative 

research and development (R&D).  However, since 96% of 

drug development programmes currently fail1 2, the 

imbalance between risk and reward in the pharmaceutical 

sector has led to a range of undesirable consequences.   

 

Chief among these is the inflationary pressure on drug 

prices. This is imposed by the need to recoup the incurred 

cost of historical failures through any development 

successes, so as to continue to provide shareholders with a 

return on their investment3.  This cost is borne by healthcare 

systems and transferred to citizens via health insurance 

premiums or taxation.   

 

All too frequently, high-profile failures of anticipated 

‘blockbuster’ or ‘niche-buster’4 drugs lead pharmaceutical 

companies to restructure and refocus in-house R&D, leading 

to job losses, site closures, off-shoring, or mergers and 

acquisitions, aimed at containing cost and supporting the 

company share price in the short to mid-term5 6 7 8. Small 

and medium sized companies (SMEs) in the biotech sector, 

alongside increased public funding of academic translational 

research9, absorb some of the early stage R&D risk.  

However, the interest of these organisations may be less in 

the ultimate therapeutic success of a new drug and more in 

its value as an asset-with-prospects.  Value is often added 

by incremental (rather than definitive) preclinical or early 

clinical phase proof-of-concept studies, before the 

compound, know-how and patent for a disease indication is 

then licensed to the next developer in the chain, and so on.  

Under this model, no single organisation has an end-to-end 

capability or responsibility for taking a potential treatment 

from concept to licence.  

 

With high risk and infrequent reward, R&D can become 

misdirected from the innovative to the derivative 10. This is 

because both the patent and regulatory systems are 

vulnerable to some element of gaming.  New compounds 

with identical mechanisms of action (so called ‘me-too 

treatments’), and minor changes in formulation (e.g. the 

separation of the pharmacologically active stereoisomer 

from an already effective racemic mixture, slow-release 

delivery vehicles for existing drugs, and new combinations 

of old drugs) can occasion a new license and, in effect, the 

same level of patent protection as a drug with a truly novel 

mechanism of action.  Sometimes, patients reap real benefit 

from the improved compound or formulation. More often, 

the process is simply a means for companies to extend 

patent life (ever-greening) 11.  

 

However, healthcare providers are now raising the 

therapeutic bar, such that even newly licensed drugs cannot 

be guaranteed to capture a market share sufficient to recoup 

R&D costs, unless they demonstrate a genuine cost-

effective advance over existing therapies12 13. 

 

In response, governments, who are conflicted in their need 

to ensure cost-efficient healthcare on the one hand, but to 

support the pharmaceutical sector as a major employer and 

taxpayer on the other, have explored schemes to reduce 

barriers to market access. Examples include the 

breakthrough designation scheme in the US14, the priority 

medicines scheme (PRIME) in Europe15, and the Early 

Access to Medicines scheme in the UK16. However, the 

success of such initiatives is reliant on truly innovative and 

transformative products emerging efficiently from 

pharmaceutical R&D pipelines, which has not been the 

experience of the last few decades.  

 

As a consequence, the economic sustainability of the current 

model of drug development has been questioned and calls 

made for some form of disruptive solution to improve both 
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scientific and market efficiency, and to fuel innovation17 18 

19. 

 

Reasons for the high drug development failure rate 

 

To understand how drug development efficiency could be 

improved, it is necessary to understand the reasons for 

failure.  Box 1 summarises the process of drug 

development. 

 

Box 1. The process of drug development20 

Developing a drug with a new mechanism of action requires 

fulfilling a series of tasks in sequence:  

1) Selecting a disease for which there is a deficit in existing 

therapies;  

2) Identifying a pathogenic mechanism and potential drug 

target (almost all of which are proteins);  

3) Screening for and optimising a compound (sometimes a 

small molecule or, increasingly, a monoclonal antibody or 

peptide) that specifically modulates the function of the 

target protein, is free of toxicity and has the desired 

pharmacokinetic properties;  

4) Demonstrating target engagement by the compound 

(through the use of biomarkers or surrogate measures of the 

disease process); and,  

5) Demonstrating efficacy against the disease end-point in 

tandem with an adequate safety profile. 

 

Operationally, this is achieved in two stages: preclinical and 

then clinical. Preclinical studies utilise isolated cells, 

organoid cultures, tissue preparations ex vivo, and (if 

available) animal models of human disease. They test the 

hypothesis that the selected target plays a controlling role in 

the disease of interest (proof of concept) and that the 

compound has an adequate safety profile. If preclinical 

studies are encouraging, a critical decision is made to 

progress to clinical evaluation. This is initially through 

healthy volunteer studies for pharmacokinetics, dose finding 

and tolerability (Phase 1); and then exposure of a small 

number of patients often evaluating surrogate measures of 

disease (Phase 2). If these studies appear promising, a larger 

randomised (Phase 3) outcome trial will follow, typically 10 

or more years after programme initiation, following several 

hundred million pounds of investment.   

 

During the lengthy development process, there is relentless 

attrition of programmes and products. Even for compounds 

reaching clinical phase, only around 10% of entrants emerge 

as licensed drugs.1 2 21 The key productivity-limiting 

obstacle turns out to be ‘late-stage failure’ during phase 2 or 

phase 3 randomised trials22. This has major consequences, 

particularly for smaller pharmaceutical companies with a 

thin therapeutic pipeline and limited financial resources to 

absorb such failures.   

 

But why is late-stage failure a recurrent problem? Two 

decades ago, unfavourable pharmacokinetics was the most 

frequent single cause of clinical phase attrition23. By a 

decade later, this problem had largely been resolved such 

that two thirds of late-stage failures of first-in-class 

compounds can now be attributed to a different problem: 

lack of efficacy in the intended disease, despite adequate 

engagement of the target protein and apparently favourable 

signals from preclinical and early phase clinical studies.24 25 

26 27 28. Thus, most late-stage failures now occur because the 

target turns out not to play the causal role in the disease 

that was hypothesised at the outset.  Late-stage failure for 

lack of efficacy therefore exposes a critical problem in drug 

development: matching the correct drug targets to each 

disease.  The established system of drug development has 

been poor at this crucial task because of two key system 

flaws. 

 

First system flaw: preclinical studies are unreliable 

predictors of development success 

 

Preclinical studies in cell culture systems, tissues, isolated 

organs and animal models that are widely used for drug 

target identification (and validation) have a range of 

acknowledged limitations29.  Cells provide an incomplete 

picture of responses in tissues, which are composed of a 

wide range of interacting cell types. In turn, responses in 

whole organs ex vivo may not reflect the response of the 

whole animal. Experiments in animals may be poorly 
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representative of responses in humans because of species 

differences in pathophysiology, while some animal disease 

models may be an artifice of the human disorder30 31 32. 

Concerns are also now being raised that most (perhaps 

>90%)33 of the nominally positive preclinical research 

studies undertaken in academia (perhaps in industry too), 

and which sometimes seed a drug development programme, 

are often not only poorly representative of human 

pathophysiology but are also frequently irreproducible.  

Investigating the causes of irreproducibility is becoming an 

area of funded research34.  Reasons for irreproducibility 

encompass data selection to flatter or overestimate any real 

effect, and flaws in experimental design, including the 

failure to routinely randomise experimental interventions, 

and to blind the assessment of outcome. A pervasive cause 

of irreproducibility occurs from errors of statistical 

inference arising from common misconceptions about P 

values, including confusion between significance and 

hypothesis testing35 36, which contributes to high rates of 

false discovery37. Box 2 expands on the reasons for the high 

false discovery rate in biomedical research.   

 

Box 2. False discovery rate (𝐹𝐷𝑅) in biomedical research 

A frequent misconception in biomedical research is that the 

false discovery rate (𝐹𝐷𝑅) and the Type 1 (false positive) 

error rate (𝛼) are equivalent 37, 38.  The reason this is not the 

case is illustrated by a hypothetical example. Imagine a field 

of study in which experiments are undertaken with robust 

design: all interventions are allocated at random and, in each 

experiment, the estimated treatment effect has informed the 

sample size such that the experimental false positive error 

rate (𝛼) is 0.05 and the Type 2 (false negative) error rate 

(𝛽), is 0.2. The power, (1 −  𝛽), which can be 

conceptualised as the detection rate for a real effect, is 

therefore 0.8.   We introduce a third parameter (𝛾), the 

proportion of true relationships out of all those tested in the 

field. In the current illustration, we assume 𝛾 = 0.1.  Table 

1a illustrates that, despite the robust experimental design, 

these parameters dictate that 36% (not 5%) of nominally 

positive experimental outcomes are false discoveries. In 

general, 𝐹𝐷𝑅 is related to 𝛼, 𝛽 and 𝛾 as follows: 

 

𝐹𝐷𝑅 =  
 𝛼(1−𝛾) 

(1−𝛽) 𝛾 + 𝛼 (1−𝛾)
    

(Equation 1)  

              

Table 1b and Table 2 demonstrate how 𝐹𝐷𝑅 varies at 

different values of 𝛼, 𝛽 and 𝛾.  Reducing 𝛼 has the effect of 

reducing 𝐹𝐷𝑅. Increasing 𝛽 (equivalent to reducing power, 

e.g. from 0.8 to 0.2, which is close to the mean power 

recently found in a survey of preclinical studies in the field 

of neuroscience)39 increases 𝐹𝐷𝑅 (from 36% to 69% in this 

example, so that false discoveries would then outnumber 

true discoveries by about 2:1). 𝐹𝐷𝑅 increases as the 

proportion of true relationships (𝛾) decreases. In addition, it 

is not widely appreciated that real effects, even when 

present can be overestimated by small studies, because a 

positive finding must be extreme for it to exceed the usual 

experimental significance threshold (a similar notion to 

small study bias in clinical trials, and the winner’s curse40).  

 

Many previous discussions of the extent of the 𝐹𝐷𝑅 

problem have been somewhat abstract in nature.  But is it 

possible to estimate real-world 𝐹𝐷𝑅, and, if so, to compute 

the impact on drug development success rates?   

 

By setting some simplifying assumptions and 

approximating certain parameters, we now estimate 𝐹𝐷𝑅 

for preclinical studies that usually provide a start point for 

drug development.   

 

Understanding disease aetiology can frequently be distilled 

to understanding which of the proteins encoded in the 

genome plays a controlling or causal role in each disease 

process. Drug targets are also almost exclusively proteins. 

We therefore introduce the following: 

 

Assumption 1: Each gene encodes a unique protein with a 

single function 

Assumption 2: A given protein can influence the risk of 

more than one disease  

Assumption 3: The probability of a protein influencing the 

pathogenesis of one disease is independent of the 

probability that it influences any other  

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 30, 2017. ; https://doi.org/10.1101/170142doi: bioRxiv preprint 

https://doi.org/10.1101/170142
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 
 

We recognise that these assumptions, as well as others we 

will introduce in due course, represent very substantial 

oversimplifications, and many exceptions can be identified 

from current drugs and diseases. However, they can also 

help to estimate certain ‘base-case’ probabilities.  Later in 

this article we dissect these assumptions, as well as others 

we introduce later, and explore the impact of any 

modifications on the base-case probabilities.  

 

The key parameters needed for the estimation of 𝐹𝐷𝑅 in 

biomedical research are the number of human diseases of 

interest; the number of protein coding genes; and the 

average number of proteins that are likely to play a causal 

role in any given disease.  

 

Taking the complexities and inaccuracies of disease 

definition into account (see Box 3 and Table 3 for details), 

we assume, as a start point, that the number of complex 

(multifactorial) diseases is close to 10,000, and that the 

number of human protein coding genes41 is around 

20,000 (Figure 1). Box 4 provides a historical overview of 

the route to establishing this estimate.  

 

Box 3.  Estimating the number of human disease entities 

Estimating the exact number of human diseases is a 

surprisingly challenging task. Clinical priorities have led to 

definitions of disease that rely on characteristic clusters of 

symptoms and signs supported to a varying degree by 

biophysical, laboratory, radiological or histological tests that 

detect abnormalities of structure or function.  Defining 

disease on the basis of manifestations rather than cause 

means that diagnoses may be remote from the molecular 

mechanisms leading to disease, many of which remain 

unknown.  In this paper, we set aside rare monogenic 

conditions, focusing instead on common (multifactorial) 

human diseases of potential therapeutic interest that have 

both a genetic and environmental contribution. A list of 

medical coding schemes covering such diseases, from 

clinical terminologies to disease classification systems, is 

shown in Table 3. Standard vocabularies of medical terms 

such as SNOMED CT (Systematised Nomenclature of 

Medicine - Clinical Terms) which includes Read Clinical 

Terms Version 3 (CTV3), which are used in electronic 

health records, capture clinically relevant data related to 

individuals and their care. The difficulty with using these 

vocabularies to enumerate diseases is that multiple codes 

can refer to a single disease, both because of duplicate terms 

(largely rectified in SNOMED CT) and the hierarchical 

nature of these vocabularies. In addition, disease diagnoses 

comprise only a proportion of the descriptive terms, with 

many covering symptoms, procedures, treatments, drugs 

and healthcare administration. The International 

Classification of Diseases (ICD) is widely regarded as the 

authoritative classification system for causes of death and 

illnesses. Its use in recent revisions has been broadened to 

medical records indexing and reimbursement. 

Approximately 4,000 of over 12,000 classes in the tenth 

revision, ICD-10, refer to health administration and external 

causes of morbidity and mortality and their consequences. 

Of the more than 8,000 remaining classes, (fewer than 500 

of which are specific for rare diseases)42 43, overlaps occur 

within the hierarchical coding structure, such that a 

particular disease may be described by several codes. The 

same is true of disease and phenotype ontologies. 

Categorisation schemes such as the Clinical Classification 

Software developed by the US Agency for Healthcare 

Research and Quality (AHRQ), the Expanded Diagnostic 

Clusters (EDC) developed at Johns Hopkins University and 

the PheWAS Catalog designed at Vanderbilt University, 

collapse ICD codes into a smaller number of clinically 

meaningful categories that can be useful for presenting 

descriptive statistics.   

 

Box 4. Estimating the number of protein coding genes in the 

human genome 

As summarised by Pertea and Salzberg44, estimates of the 

number of human protein-coding genes have been revised 

progressively downward since the early 1960s.  Very early 

estimates, predating the first draft of the human genome by 

around 40 years, were based on extrapolation from 

emerging information on the amino acid sequences of 

proteins45, or theoretical considerations46.  When the human 

genome project was at its planning stage, the number of 

human genes was projected to stand at 50-100,000 (National 
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Institutes of Health/Department of Energy report on the 

Human Genome Project).  However, when the initial results 

emerged, the estimate was revised to around 25-30,000 

genes47.  With more exhaustive sequencing of the genome 

and its transcripts, more detailed annotation of sequence, 

comparative analysis of proteomic and sequence data, and 

the construction of a tissue based map of the human 

proteome48, the consensus estimate of the number of protein 

coding genes has fallen yet again49.   Summary statistics on 

the human genome are now regularly updated by the 

GENCODE project.   The resource has catalogued a 

consensus value for the number of human genes since 2009, 

at which time 22,250 protein-coding genes were listed.  In 

the latest data freeze (March 2016, Version 25), the number 

of genes listed is 19,950.  

 

To estimate the average number of protein-coding genes 

that play a causal role in any given disease, we draw on 

experience from previous genome wide association studies 

(GWAS; see Box 5).  This is the only routinely used study 

design that estimates the influence of every gene (and 

protein) on a disease systematically.  The ability to detect 

disease-causing genes differs from one GWAS to the next, 

depending both on the underlying genetic effect in the 

disease of interest and the available sample size. We 

therefore confine our consideration to those GWAS and 

meta-analysis of GWAS (meta-GWAS) with the very 

largest sample sizes.  Examples of such meta-GWAS 

include inflammatory bowel disease (60,000 individuals 

studied; 99 loci identified)50, type 2 diabetes (150,000 

individuals; 150 loci)51, and coronary heart disease (200,000 

individuals; 46 loci)52.  Thus, each of these meta-GWAS has 

identified in the order of 100 susceptibility loci per disease. 

The number of disease-associated loci may not equate 

precisely to the number of causal genes per disease, and it 

may also be anticipated that yet larger sample sizes will 

yield yet more loci, because much of the heritability of 

common disorders remains unexplained53. There is also a 

school of thought that all genes (and proteins) play some 

role in all diseases – the infinitesimal54 or omnigenic55 

model – which we discuss in more detail later. However, 

with these caveats, let us assume, initially, that there are 100 

causal genes per disease on average. 

 

We now define the following: 

 

{𝐺} is the set of protein − coding genes  

{𝐷} is the set of common human diseases  

{𝐺𝐷} is the set of all possible gene − disease pairs   

{𝐶} is the set of causal genes for a given disease 

{𝐶𝐷} is the set of all causal gene − disease pairs  

 

 𝑁𝐺 =  Total number of protein − coding genes =  20,000  

𝑁𝐷  =  Total number of complex human diseases =  10,000  

𝑁𝐺𝐷   =  Total number of possible gene − disease pairs

= 10,000 ×  20,000 =  200 x 106 

𝐶 = the number of causal genes in a given disease 

𝐶̅ =  the average number of causal genes per disease =  100  

 𝑁𝐶𝐷   =  Total number of causal gene − disease pairs  

=  100 ×  10,000 =  1 x 106 

 

Based on assumptions 1-3, the probability (𝑃𝑐) that any 

gene- (or, equivalently, any protein)-disease pairing selected 

at random from the set of all possible gene-disease pairs 

{𝐺𝐷} also belongs to the set of causal gene-disease pairs 

{𝐶𝐷} is given by: 

 

𝑃𝐶  =
𝑁𝐶𝐷

𝑁𝐺𝐷

 

(Equation 2) 

2 

=
1 ×  106

200 × 106
 

 

=  
1

200
 

 

= 0.005 

 

This can also be written as: 

 

𝑃𝐶  =  
𝐶̅

𝑁𝐺

  

(Equation 3) 

3 
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=  
100

20,000
 

=
1

200
 

= 0.005 

 

𝑃𝐶  =
1

20
 if 𝐶̅  = 1000, but 𝑃𝐶  falls to 

1

2000
 if 𝐶̅ = 10.  

 

As follows from Equation 3, 𝑃𝑐  is independent of the 

number of diseases under consideration, as long as 𝐶̅ is 

constant. As an illustration, focusing on 5000 diseases 

(rather than 10,000) would shrink the sample space by half 

to 5000 ×  20,000 (= 100 ×  106) gene (protein)-disease-

pairings, but would also reduce the number of causal gene 

(protein)-disease pairs in the sample space by the same 

proportion, from 1 ×  106 to 500,000.  

 

Importantly, 𝑃𝐶  can also be interpreted as the proportion of 

true hypotheses for tests of causality amongst all possible 

gene-disease pairings, and can hence also be represented as 

𝛾𝐶 (see Box 2). In this case, 𝛾𝐶 refers to the probability of a 

true causal gene-disease pairing occurring within the sample 

space {𝐺𝐷}.  Therefore: 

 

𝑃𝐶  =  𝛾𝐶   

(Equation 4) 

4 

Let us now consider preclinical experiments designed such 

that 𝛼 = 0.05, and a detection rate (power) for causal 

pairings (1 −  𝛽)  = 0.8.   

 

𝐹𝐷𝑅 =  
 𝛼(1−𝛾) 

(1−𝛽) 𝛾 + 𝛼 (1−𝛾)
    

(Equation 1) 

 

If 𝐶̅ = 100 and 𝛾𝐶  = 0.005:  

 

𝐹𝐷𝑅 =  92.6%  

 

This 𝐹𝐷𝑅 value for biomedical research is very close to that 

estimated previously by Ioannidis33.  

 

However, scientists, it might be argued, do not select 

protein-disease pairings at random: they work on particular 

diseases and proteins that have been seemingly confidently 

paired on the basis of previous research.  Scientists are also 

not generally interested in identifying a protein that is causal 

for any disease, but rather in identifying proteins 

contributing to the pathogenesis of a particular disease of 

interest, a point to which we return in a later section.  But if, 

as Ioannidis and others have argued, there is strong 

empirical evidence from many research fields of extremely 

high rates of false discovery, leading to pervasive 

unreliability of the evidence base, then seemingly informed 

hypotheses may turn out to be spurious56. In Bayesian 

terms, the prior probability of correctly pairing a gene (or 

protein) with a disease may be close to that of the 

background probability of a success in a random pick from 

the sample space. The proportion of false discoveries in the 

medical literature could be inflated further because of the 

greater likelihood of positive than negative findings being 

submitted and accepted for publication57.   

 

For now, in summary, preclinical research is poorly 

predictive of drug development success partly because of 

the poor external validity of cell, tissue and animal models, 

partly because of flaws in experimental design and 

significance chasing and publication bias, but perhaps 

mainly because of the pervasive 𝐹𝐷𝑅 problem.  This occurs 

because: 

 

a) Preclinical studies are often too small to detect true 

positive associations because the actual power 

(1 −  𝛽) is lower than that pre-specified at the 

study design stage because of over-optimistic 

estimates of effect sizes: when real associations are 

detected, the effect sizes will be overestimated.  

b) The usual experimental false positive rate (𝛼) of 

0.05 leads to an excess of false discoveries 

because;  

c) Causally-relevant gene (or protein)-disease 

pairings (true disease hypotheses) in most areas of 

research are greatly outnumbered by the number of 
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non-causal ones, that is the value of 𝛾𝐶 tends to be 

small, often far below 0.1.   

 

It is easy to envisage how these conditions could lead to 

drug development programmes being initiated on the basis 

of misleading preclinical research, progressing into the 

clinical phase of development only to stumble expensively 

at phase 2 or 3.   

 

Expensive late-stage failure would appear to be an 

consequence of the high 𝐹𝐷𝑅 in preclinical target validation 

studies. But is it avoidable? 

 

 Lessons can be learnt from the field of common disease 

genetics, which overcame the high 𝐹𝐷𝑅 problem in the era 

of candidate gene association studies. Resolution was 

achieved through a complete re-examination of the way in 

which research in that field was conducted.  As a 

consequence, genetic association studies now yield some of 

the most reproducible findings in any field of biomedicine, 

detecting loci throughout the genome influencing a wide 

range of diseases and biomarkers58. The steps taken to 

rescue common disease genetics from the epidemic of false 

discoveries in the ‘candidate gene era’ are summarized in 

Box 559.  

 

Box 5. Resolution of the high false discovery rate problem 

in the field of common disease genetics  

Three major factors contributed to the resolution of the high 

𝐹𝐷𝑅 problem in the field of common disease genetics in the 

candidate gene era. These were: 

a) The development of fixed content genotyping arrays that, 

to a first approximation, could interrogate all genes in a 

genome, not just a subset of them, triggering the move from 

candidate gene to whole-genome (genome-wide) association 

studies (GWAS);  

b) Recognition that a much more stringent -value 

threshold would be needed in such studies to minimize false 

discoveries, as can be observed from Table 2, where 

changing 𝛼 from 0.05 to 5 ×  10−8 (the now widely used 

genome wide Type I error rate) reverses 𝑇𝐷𝑅 and 𝐹𝐷𝑅 

c) Understanding that larger sample sizes than had been 

usual up to that time would be needed to retain power in the 

context of the much stricter -value threshold.  As a 

consequence, clinicians and scientists began to assemble 

large collections of patients with diseases of interest (and 

controls) and, by necessity, to work together in consortia to 

achieve datasets of the necessary size, pooling information 

from individual studies in a statistically robust way using 

meta-analysis, a technique which, by then, had already 

become well-established in the clinical trial setting.  A 

GWAS incorporating data from over 200,000 individuals 

by meta-analysis would now be viewed as unexceptional.  

The findings from GWAS are curated by a number of 

repositories 60 61 including the NHGRI-EBI GWAS catalog 

at https://www.ebi.ac.uk/gwas/.  

 

Yet, while the problem of high false discovery rates has led 

to a root and branch change in the field of complex disease 

genetics, a similar transformation is yet to take place in 

preclinical laboratory science that precedes most drug 

development.  The 𝛼-value of 0.05 remains almost 

universal in preclinical studies.  The power (1 − 𝛽) 

continues to be lower than asserted because of the over-

estimation of effect sizes and consequent under-estimation 

of necessary sample sizes. Moreover, the prior probability 

of a hypothesis being true, (𝛾), may not be much greater 

than for a randomly selected hypothesis, given that many of 

the research findings purported to support the tested 

hypothesis may themselves be false discoveries. 

 

Second system flaw: the definitive target validation 

experiment is delayed to the end of drug development 

pipeline 

 

The phase 3 randomised controlled trial (RCT) is often 

regarded simply as a test of the efficacy and safety of a new 

compound for a particular disease indication.  However, 

when the compound evaluated is the first in its class, the 

RCT is also the first human test of the causal relevance of a 

previously untested drug target in a particular disease. This 

exposes the second major system flaw in the development 

of drugs with a novel mechanism of action: the most 
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important target identification and validation experiment is 

the concluding not the initiating step.  Risk therefore 

accumulates rather than diminishes as a drug development 

programme progresses towards the RCT, accounting for the 

high actual and opportunity cost of late-stage failure.  

A theoretical solution to this problem would be to obtain 

large-scale randomised human evidence on a target and 

disease state earlier in a drug development programme, 

without recourse to developing a medicinal compound to 

obtain the necessary evidence.  Though this might seem 

unattainable at first glance, human genomics again provides 

a solution.  Population genetic association studies can be 

viewed as 'natural randomized trials’ without drugs 62 63 64 65. 

This is because germ line genetic variants such as single 

nucleotide polymorphisms (SNPs), which associate with 

differences in expression or activity of an encoded protein, 

assort at random according to Mendel’s Law, in an 

analogous way to drug treatment allocation in a randomised 

clinical trial.   

 

In comparisons of genetic associations in populations with 

drug treatment effects in clinical trials, using a set of 

biomarkers and disease outcomes common to both study 

types, SNPs in a gene encoding a potential drug target have 

been observed to anticipate the mechanism-based effect of 

pharmacological action on the same protein. The approach 

is sometimes referred to as Mendelian randomisation for 

drug target validation (see Appendix 1, Ref 1),  since it was 

inspired by, and represents a special case of the Mendelian 

randomisation paradigm, developed initially to help 

determine the causal relevance of environmental exposures 

or disease related biomarkers66.  Mendelian randomisation 

for drug target validation is disease agnostic, though it may 

be unsuited to aspects of cancer drug development, where 

somatic rather than germ line mutations perturb the targets 

of interest, or to the development of anti-infective drugs, in 

cases where the therapeutic drug target is in the pathogen 

rather than the human host.  

 

Importantly, genotyping arrays containing many thousands 

of SNPs across the genome, including those in genes 

encoding potential drug targets, provide the opportunity to 

interrogate systematically the influence of genetically 

mediated target perturbation on hundreds (eventually 

perhaps thousands) of biomarkers and disease outcomes in 

parallel, in a manner analogous to high-throughput 

compound screening (HTS) against a target.  In this way, a 

genome-wide extension of the Mendelian randomisation 

paradigm could be used for drug target identification. 

 

Genomic studies for disease-specific target identification 

 

There are sound reasons for thinking that genomic studies to 

specify drug targets for a human disease is likely to be a 

more reliable approach than the standard hypothesis-driven, 

non-genomic preclinical research in cells, tissues and animal 

models described previously. This is because: 

 

a) The evidence obtained in GWAS comes from intact 

humans, the species of interest, not isolated cells, 

tissues studied ex vivo, or animal models  

b) GWAS are some of the most statistically robust study 

designs in any field of biomedicine by virtue of their 

low false discovery rates, large sample sizes and the 

routine replication of positive findings 

c) Genetic associations are protected from certain biases 

that affect other human observational study designs by 

virtue of the natural randomisation of genetic variants, 

which mimics treatment allocation in an RCT. 

d) With appropriate coverage of the set of genes encoding 

human drug targets, and an adequate sample size, 

GWAS can be conducted for most (if not all) human 

drug targets simultaneously 

 

Indeed, the same arguments apply to studies in which whole 

exome or whole genome sequencing (rather than 

genotyping) is used as the primary means of acquiring 

information on naturally occurring genetic variation and its 

association with disease.  

 

Evidence is already emerging that such genetic association 

studies can help systematically match the correct drug 

targets to the correct disease. This comes partly from the 

like-with-like comparisons of the effects of licensed drugs 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 30, 2017. ; https://doi.org/10.1101/170142doi: bioRxiv preprint 

https://doi.org/10.1101/170142
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 
 

on biomarkers and disease outcomes in clinical trials with 

the association of variants in the gene encoding 

corresponding drug target in population studies, examples of 

which, now span several diseases (Appendix 1). It also 

comes from the apparently sporadic ‘rediscovery’ by 

GWAS of drug targets already exploited for the treatment of 

the corresponding disease, as well as rediscoveries of the 

known mechanism-based adverse effects of several drug 

classes.  We provide examples of this in Table 4 and a 

linked paper67.   

 

But are such rediscoveries fortunate coincidences or 

predictable occurrences that can be harnessed for the 

purposes of drug development? 

 

To address this question, we formalise some further 

assumptions. Again, we discuss their validity in a later 

section. 

 

Assumption 4: Drug treatments for human disease target 

proteins encoded in the germ linea 

Assumption 5: DNA sequence variants in and around a 

gene encoding a drug target, that alter expression or activity 

of the encoded protein (cis-acting variants) are ubiquitous in 

the genome 

Assumption 6: The association of cis-acting variants with 

biomarkers and disease end-points in a population genetic 

study accurately predict the effects of pharmacological 

modification of the encoded target in a clinical trial  

Assumption 7: Genotyping arrays used in GWAS provide 

comprehensive, appropriately powered coverage of the 

genome, and associations discovered at any one gene are 

independent of those detected at any other 

 

Among those diseases that have at least one licensed drug 

treatment, the total number of targets will vary.  For 

example, nine drug classes (corresponding to nine different 

drug targets) contain compounds currently licensed for the 

treatment of type 2 diabetes (insulin, metformin, 

                                                        
a We exclude drug targets encoded by the abnormal genome of cancer cells 

as well as antimicrobials, which typically target proteins encoded in the 

genomes of pathogens. For further discussion, see Part 4 

sulphonylureas, meglitinides, glitazones, DPP IV inhibitors, 

GLP-1 receptor agonists, SGLT-2 inhibitors and acarbose), 

but only two therapeutic classes (cholinesterase inhibitors 

and NMDA-receptor antagonists) contain compounds 

licensed for treatment of dementia.  We can safely assume, 

from the efficacy of these drugs, that their targets (along 

with others, yet to be identified) play a causal role in those 

diseases.  

 

Consider a hypothetical disease (𝑑1) for which there are 𝑛1 

independent genes encoding targets of drugs that have 

already been licensed on the basis of proven efficacy in the 

condition. We denote these as genes 𝑔1, 𝑔2 … 𝑔𝑛.  Let us 

assume that a GWAS in disease 𝑑1 utilises a genotyping 

array with adequate coverage of all 𝑛1 licensed drug target 

genes, and that there is a probability ((1 − 𝛽1), (1 −  𝛽2) … 

(1-𝛽𝑛1
) of detecting the genetic association at each of these 

loci. Thus (1 − 𝛽𝑖) is the power (or the detection rate) for a 

real effect of gene 𝑔𝑖  in disease 𝑑1. 

 

We consider testing for a genetic association at the locus 

encoding each drug target in each hypothetical GWAS of 𝑑1 

to be an independent trial (Assumption 7), where success 

equates to detection of an association at the locus and failure 

to overlooking the association. Consider a situation in which 

there are 3 licensed drug targets in disease 𝑑1 that are 

available for rediscovery, and that power to detect true 

associations is the same at all 3 target loci (i.e. (1 − 𝛽1) =

(1 −  𝛽2)  =  (1 − 𝛽3) = (1 −  𝛽)). The probability of 

missing such a target, is the false negative rate 𝛽.  A GWAS 

in 𝑑1 might detect 0, 1, 2 or all 3 of the known drug targets, 

and the probability that each of these situations occurs is 

given by the binomial distribution: 

 

𝑃 (𝑥) = (
𝑛1

𝑥
) (1 − 𝛽)𝑥𝛽𝑛1−𝑥   

  

𝑃 (𝑥) =  the probability of detecting 𝑥 licensed drug targets  

𝑛1 = the number of licensed drug targets in disease 𝑑1 

𝑛1 − 𝑥 =  the number of undetected  licensed drug targets  
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𝛽 = Type II (false negative) error rate at each genetic locus 

 

If 𝑛1 = 3, and 𝛽 = 0.2, the probability (𝑃) that a GWAS in 

disease 𝑑1: 

 Detects none of the three licensed drug target 

genes, 𝑃(𝑥 = 0) =  𝛽3 =  0.008 

 Detects only one of the three licensed drug target 

genes but misses the remaining two, 𝑃(𝑥 = 1) = 

3𝛽2 (1 − 𝛽)  =  0.096 

 Detects only two of the three licensed drug target 

genes but misses the other, 𝑃(𝑥 = 2) =  3𝛽 (1 −

𝛽) 2  =  0.384 

 Detects all three licensed drug target genes, 

𝑃(𝑥 = 3) =  (1 − 𝛽) 3  =  0.512 

 Detects at least one of the three licensed drug 

target genes, 𝑃(𝑥 > 0) =  1 – 𝛽3   =  1 −

 0.008 =  0.992 

 

In general, the expected (average) number of licensed drug 

target rediscoveries (𝐸𝑑) detected in a GWAS of a disease 

𝑑 with 𝑛𝑑 licensed drug targets will be:   

 

𝐸𝑑  =  (1 − 𝛽1,𝑑)  + (1 − 𝛽2,𝑑)  + (1 − 𝛽3,𝑑)  + ⋯ + (1-

𝛽𝑛𝑑,𝑑) 

 

If power at all loci is (1 − 𝛽): 

 

𝐸𝑑  =  𝑛𝑑 (1 − 𝛽) 

 

The variance (𝑉𝑑) is given by: 

 

𝑉𝑑  =  𝑛𝑑 𝛽  (1 −  𝛽) 

 

For example, for a GWAS conducted in disease 𝑑 with (1 −

𝛽)  =  0.8 at all three loci encoding the targets of licensed 

drugs: 

 

 𝐸𝑑 =  3 ×  0.8 =  2.4 

 

The variance (𝑉𝑑) =  3 ×  0.8 ×  0.2 =  0.48   

 

The standard deviation (𝑆𝐷𝑑)  = √𝑉𝑑 =  0.7 

 

In the worked example, we would therefore expect 

2.4 (𝑆𝐷 =  0.7) of the 3 possible licensed drug targets to be 

rediscovered, on average. 

 

Suppose we do one GWAS for each of 𝐾 different diseases 

(𝑑1, 𝑑2 … 𝑑𝐾) where, for each disease, the number of 

licensed targets available for rediscovery is (𝑛1, 𝑛2, … 𝑛𝐾). 

If we assume that the power to detect an association at gene 

i encoding the target of  licensed drug is the same for all 

drug targets in all GWAS j, regardless of disease  (i.e. (1 −

𝛽𝑖,𝑗)  =  (1 − 𝛽) for all 𝑖 and 𝑗), then the expected number 

of true drug target-indication rediscoveries (𝐸𝑇) across the 

𝐾 GWAS would be the sum of the expected rediscoveries in 

each GWAS. Therefore:  

 

𝐸𝑇   =  𝐸1  +  𝐸2  +  … + 𝐸𝐾      

 

𝐸𝑇    =  (1 −  𝛽)𝑛1  +  (1 −  𝛽)𝑛2  +  … +  (1 −  𝛽)𝑛𝐾   

 

𝐸𝑇 =    (1 −  𝛽)(𝑛1  +  𝑛2  +  … + 𝑛𝐾)    

 

Thus, 

 

𝐸𝑇   =  (1 −  𝛽)𝑁𝐾  

 

Where 

 

𝑁𝐾 =  (𝑛1  +  𝑛2  +  … + 𝑛𝐾)= the total number of 

licensed drug targets for 𝐾 diseases 

 

Dividing and multiplying the above equation by 𝐾, we 

obtain: 

 

𝐸𝑇 =  𝐾(1 −  𝛽)𝑁𝐾/𝐾   

 

𝐸𝑇  =  𝐾 (1 −  𝛽)�̅�  

 

Where; 
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�̅�  =  𝑁𝐾/𝐾= the average number of targets of licensed 

drugs per disease  

 

The standard deviation (𝑆𝐷𝑇) is given by: 

 

𝑆𝐷𝑇 =  √𝛽(1 − 𝛽) �̅� 𝐾  

 

Suppose a GWAS was done for each of 200 different 

diseases, each with power (1 − 𝛽)  =  0.8 to detect each 

true licensed target, and �̅� = 3 (i.e. an average of 3 targets 

per disease and 𝑁𝐾 = �̅�𝐾 = 600 potentially re-discoverable 

target-disease combinations in total). 

 

The total number of licensed drug target rediscoveries from 

the combined dataset would be expected to be: 

 

𝐸𝑇   =  (1 −  𝛽)𝑁𝐾 =  480   

 

𝑆𝐷𝑇 =  √0.2 × 0.8 ×  600 = 9.8  

 

Values of 𝐸𝑇  for a range of plausible values of 𝛽 and �̅�, 

given 𝐾 = 200 are provided in Table S1 

 

It seems reasonable to ask if the number of licensed drug 

target rediscoveries already made by GWAS is close to that 

expected from these arguments. However, the answer is not 

straightforward.  It requires enumerating the number of 

GWAS that have already been done for conditions that 

correspond to either a treatment indication or a mechanism 

based adverse effect for at least one licensed drug target, 

and counting the total number of licensed drug targets 

represented across all these conditions (since some diseases 

may be connected with multiple licensed drug targets). 

These efforts are hampered by different disease 

terminologies being used when cataloguing GWAS, drug 

indications and adverse effects.  There is also a requirement 

to make strong assumptions about the average power of 

eligible GWAS to detect a true association at a gene 

encoding a licensed drug target.  

 

However, the question can be inverted: given the observed 

number of rediscoveries, what was the average power of 

GWAS to rediscover loci encoding licensed drug targets for 

the same indication or through a known mechanism-based 

adverse effect?  We previously reported that GWAS to 2015 

had encompassed 315 unique MeSH disease terms and led 

to the ‘rediscovery’ of 74 of the 670 or so known licensed 

drug targets, either through treatment indication, or 

mechanism-based adverse effect associations67.  

 

To estimate average power, we use: 

 

𝐸𝑇  =  𝐾(1 −  𝛽) �̅�  

 

(1 −  𝛽) =   
𝐸𝑇

�̅� 𝐾
 

 

(1 −  𝛽) =   
74

�̅�  × 315
 

 

(1 −  𝛽) =   
74

315
×

1

�̅� 
 

 

(1 −  𝛽) =   
0.23

�̅� 
 

 

If �̅�  = 1, (1 − 𝛽) = 0.23 

If �̅�  < 1, (1 − 𝛽) > 0.23 (as would be the case if some 

GWAS concerned diseases with no licensed drug target 

available for rediscovery) 

If �̅�  > 1, (1 − 𝛽) < 0.23 

 

Despite the modest estimated average power, the discovery 

by GWAS of around 70 of the 600 or so known licensed 

targets (see Box 6), suggests the approach shows promise as 

a means of identifying target-disease indication pairings 

more systematically in the future, particularly if power were 

to be enhanced. We return to this point in a later section. 

 

Estimating the yield of all druggable targets by GWAS 

 

In the previous section, we discussed the rediscovery of 

known licensed drug targets by GWAS.  In this section, we 

discuss the potential for GWAS to specify new drug targets 

for common diseases prospectively.  
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To estimate the total number of drug target - disease 

indication discoveries that might be possible in adequately 

powered GWAS with comprehensive coverage of the 

genome, we return to the concept of a sample space 

demarcated by 20,000 human genes and 10,000 common 

diseases.  

 

Since only a portion of the genome encodes proteins that are 

readily accessible to small molecule drugs, monoclonal 

antibodies or peptides that currently comprise the major 

chemical categories of medicines, we now define the 

following:   

 

{T}  =  the set of genes encoding druggable targets (the 

druggable genome – See Box 6 for definition) 

 

𝑁𝑇 =  Total number of genes encoding druggable targets =

 4000 (see Box 6) 

 

Box 6. The druggable genome 

In 2002, at a time when the human genome was thought to 

contain ~30,000 protein coding genes, Hopkins and Groom 

estimated that 120 targets had already been exploited by 

licensed drugs but that ~3000 genes in total encoded 

proteins potentially accessible to small molecule agents, 

coining the term ‘the druggable genome 68.   Subsequent 

estimates of the druggable genome have included between 

2000 and 10,000 genes depending on the data set used and 

assumptions made69 70.  Our recent work in developing a 

genotyping array with marker coverage of genes encoding 

actual or potential drug targets, led to a revised estimate that 

approximately 4000 human genes (or about one fifth of the 

protein-coding genome; see Box 4) encode druggable 

proteins 67.  We use this estimate in the calculations that 

follow. Notably more than half of the known small molecule 

drug targets belong to four key gene families: class I G-

protein coupled receptors (GPCRs), nuclear receptors, and 

ligand- or voltage gated ion channels, while targets for 

monoclonal antibodies or peptide therapeutics are cell 

membrane-bound or secreted and circulating proteins71.  

Rask-Anderson et al72 note around 555 targets are already 

exploited by currently licensed drugs (around 12% of the 

druggable genome) with a further 475 unique targets being 

the subject of investigation in clinical trials. More recently, 

Santos et al. estimated that FDA approved drugs for human 

diseases target 667 proteins encoded by the human 

genome71.  Therefore, in combination, about a quarter of the 

druggable genome (one-twentieth of the whole genome), 

has already been drugged by licensed therapies or those in 

clinical phase development.  Note again that antimicrobial 

treatments that interfere with targets in a pathogen rather 

than human host, and cancer treatment targets encoded by 

an abnormal cancer cell genome, distinct from the germ 

line, are excluded from these estimates.  

 

With 𝑁𝐺 =  20,000, and 𝐶̅ = 100, we showed the 

probability 𝑃𝐶  of selecting a causal protein-disease pairing 

from the sample space at random (Equation 3) is given by: 

 

𝑃𝐶  =  
𝐶̅

𝑁𝐺

=
100

20,000
=

1

200
 

 

The probability (𝑃𝑇) of selecting a druggable gene 

(protein)-disease pairing at random from the sample space is 

independent of the number of diseases, and is given by: 

 

𝑃𝑇  =  
𝑁𝑇

𝑁𝐺
  

(Equation 5) 

 

=
4,000

20,000
=

1

5
 

                                                                                                                   

To estimate the probability 𝑃𝐶𝑇  of selecting a disease-

causing, druggable protein-disease pairing at random from 

the sample space we introduce a further assumption. 

 

Assumption 8: The probability that a protein affects disease 

pathogenesis and the probability the protein can be targeted 

by a drug is independent. 

 

Therefore,  

 

𝑃𝐶𝑇 =  𝑃𝑐 ×  𝑃𝑇      
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(Equation 6) 

 

𝑃𝐶𝑇 =  
1

200
 ×  

1

5
 

 

𝑃𝐶𝑇 =  
1

1000
  

   

(see Figure 2).  

 

Corresponding probabilities and counts for scenarios in 

which 𝐶̅ = 100, and 𝐶̅ = 1000 are shown in Figure S1 and 

S2 and Table S2. Note that these probabilities are 

independent of 𝑁𝐷, the number of common diseases.  

 

Following the arguments presented previously (see 

Equation 4), 𝑃𝐶𝑇  can also be interpreted as 𝛾𝐶𝑇, the true 

proportion of causal, druggable gene-disease pairs from the 

sample set of all gene-disease pairings.  

 

These probabilities are of general interest, but the 

probability of more direct interest is that of identifying a 

druggable, disease-causing gene having already specified 

the disease of therapeutic interest.  

 

Since we assume the probability of a protein influencing the 

pathogenesis of one disease is independent of the 

probability that it influences any other (Assumption 3), the 

values for 𝑃𝐶 , 𝑃𝑇 and 𝑃𝐶𝑇  are the same for each individual 

disease as they are for the complete sample set.  

 

We can therefore write, for any given disease, with 𝐶 causal 

genes: 

 

𝑃𝑐 =
𝐶

𝑁𝐺
  

 

𝑃𝑇 =
𝑁𝑇

𝑁𝐺
  

 

𝑃𝐶𝑇 = (
𝐶

𝑁𝐺
) (

𝑁𝑇

𝑁𝐺
)  

 

 

These estimates can now be used to re-assort all genes in the 

genome for a given disease from a therapeutic perspective 

(Figure 3).   

 

For example, in the hypothetical disease (𝑑1), where 𝐶 =

100, the expected number of causal and druggable genes is 

given by: 

 

 𝑃𝐶𝑇  × 𝑁𝐺 =  (
100

20,000
) (

4000

20,000
) ×  20,000 =   20 

 

Eighty of the 100 causal genes would therefore be 

categorized as non-druggable.  Of the remaining 19,900 

non-causal genes, one fifth (3980) would be expected to be 

druggable but not causal in disease 𝑑1  (though of course 

they might be causal and of therapeutic interest in a 

different disease).  The remaining 15,920 genes would be 

classified as neither causal for 𝑑1, nor druggable. 

 

Assuming a GWAS in 𝑑1 interrogates each of the causal 

protein-coding genes with power (1 − 𝛽)  = 0.8, the 

expected number of causal, druggable targets (𝐸𝐶𝑇,𝑑1) 

identified by such a GWAS is given by: 

 

𝐸𝐶𝑇,𝑑1 =  𝑛𝐶𝑇,𝑑1 (1 − 𝛽) 

 

(where 𝑛𝐶𝑇,𝑑1 is the true number of causal, druggable targets 

in 𝑑1) 

 

𝐸𝐶𝑇,1 =  20 × 0.8 = 16 

𝑆𝐷𝐶𝑇,1 = √𝑛𝐶𝑇,𝑑1 𝛽 (1 − 𝛽) = 1.8 

 

The probability of a GWAS detecting 𝑥 =

 0, 1, 2, 3, 4 , …  all 20 of the available causal, druggable 

targets is again given by the binomial distribution: 

 

𝑃 (𝑥) = (
𝑛𝐶𝑇,𝑑1 

𝑥
) (1 − 𝛽)𝑥(𝛽)𝑛𝐶𝑇,𝑑1 −𝑥  

 

where: 

 

𝑃 (𝑥) is the probability of detecting 𝑥 causal, druggable targets 
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𝑛𝐶𝑇,𝑑1  is the number of causal, druggable targets in disease 𝑑1 (20 

in this example) 

𝑛𝐶𝑇,𝑑1 − 𝑥 is the number of causal, druggable targets not detected 

in the GWAS 

(1 − 𝛽) is the power of the GWAS to detect a true association at a 

genetic locus (set at 0.8 in this analysis and assumed to be 

homogeneous for all loci) 

 

In summary, with 𝐶̅ = 100, 𝑃𝐶 =  
1

200
 , 𝑃𝑇  =  

1

5
, i.e. 𝑃𝐶𝑇 =

 
1

1000
, a GWAS with power 1 − 𝛽 = 0.8 at all loci would be 

expected to discover 16 (𝑆𝐷 1.8) of the 20 available, 

causal, druggable targets, on average.  Moreover, it would 

be extremely unlikely that a GWAS with (1 − 𝛽 = 0.8) at 

all loci, would discover fewer than 10 druggable targets.   

 

The exceedingly stringent type I error rate (𝛼) incorporated 

in such studies (e.g. 5 ×  10−8) also makes the probability 

of even one false target discovery being present among the 

declared associations very low indeed (Figure 3). These 

calculations suggest that adequately powered GWAS 

(designed with appropriate consideration of the distribution 

of genetic effect sizes, sample size and comprehensive 

coverage of sequence variation in protein coding genes) 

should provide a highly accurate and reliable way of 

specifying drug targets for human diseases, addressing the 

high 𝐹𝐷𝑅 problem that underpins inefficiency in drug 

development.   

 

 

Part 2: Probability of drug development success 

 

‘The Industry must rethink its process culture.  Success in 

the pharmaceutical industry depends on the random 

occurrence of a few ‘black swan’ products.’ 

 

- Bernard Munos. Lessons from 60 years of 

pharmaceutical innovation. Nature Rev. Drug 

Discov. 2009 8, 959–968 

 

If our assessment is accurate, the use of genomic 

information to support drug target identification should 

offer an opportunity to improve drug development success 

rates by bringing statistically robust, large-scale, 

randomised evidence from humans much earlier (even to the 

very start) of a drug development programme.  But is it 

possible to quantify what the improvement in drug 

development efficiency might be?   

Recent analyses have considered the influence of genomic 

evidence on drug development success rates but mainly 

from a retrospective viewpoint based on observed 

frequencies: e.g. ‘what are the observed rates of progression 

from one developmental phase to the next’ and, ‘to what 

extent have successful vs. unsuccessful drug development 

programmes had prior genetic support for the target?’  27 73.   

 

Instead, we consider: 

 

(a) The a priori probability of accurate target 

identification comparing orthodox (non-genomic) 

with genomic approaches.  

(b) The number of orthodox (non-genomic) drug 

development programmes that need to be pursued 

in parallel to ensure 90% probability of at least one 

licensing success 

(c) The probability of repurposing success 

(d) Preclinical target identification as a ‘predictive 

test’ for drug development success, comparing 

orthodox (non-genomic) with genomic approaches 

 

We then go on to use observed rates of preclinical and 

clinical development success to estimate the proportion of 

true target-disease relationships that are studied in 

contemporary drug development. Finally, we gauge the 

impact of the target selection step on ultimate success rate, 

which is necessary in orthodox (non-genomic) but not 

genomic preclinical development  

 

A priori probability of accurate target identification  

 

Around 
4

100
 preclinical drug development programmes yield 

licensed drugs1 2.  However, this estimate is based on the 

success rates of compounds rather than targets.  The success 

in early development of a first-in-class molecule for a given 

disease indication is often followed by a flurry of 
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development programmes, distributed across several 

companies, based on the same target and disease indication. 

The consequence is that multiple drugs may emerge, all in 

the same class (e.g. there are 7 different HMG coA 

reductase inhibitors (statins) licensed for lowering LDL-

cholesterol for coronary heart disease prevention, and >12 

different angiotensin converting enzyme inhibitors for the 

treatment of hypertension, heart failure and related 

conditions.  Using the ChEMBL database, we estimate a 

median of 2 (mean of 4) licensed drugs per efficacy target 

(Figure 4).  Therefore, the overall developmental success 

rate for targets could be around half that of compounds i.e.  

 

1

2
 ×

4

100
=

2

100
 (

1

50
).   

 

Drug development success depends on correctly identifying 

a causal, druggable target-disease indication pairing, and 

then demonstrating the validity of the target in preclinical 

studies, and the efficacy of target modification in clinical 

trials.   

 

We showed previously (see Equation 6) that the a prior 

probability (𝑃𝐶𝑇) of selecting a disease-causing, druggable 

protein-disease pairing at random is: 

 

𝑃𝐶𝑇  =  𝛾𝐶𝑇 =  𝑃𝐶  ×  𝑃𝑇   

  

From Equations 3 and 5; 

 

𝑃𝐶  =   
�̅�

𝑁𝐺
  in the general case, or 𝑃𝐶 =  

𝐶

𝑁𝐺
  in the case of a 

specific disease, where 𝐶̅ = average number of causal 

genes per disease, and 𝐶 =the number of causal genes in the 

disease of interest. 

 

Thus, for a given disease: 

 

𝛾𝐶𝑇 =  (
𝐶

𝑁𝐺
) (

𝑁𝑇

𝑁𝐺
 )     

   

(Equation 7) 

      

Based on Equation 7,  𝛾𝐶𝑇  could be increased, in theory, by 

increasing 𝐶, increasing 𝑁𝑇, or by reducing 𝑁𝐺 .  

 

Table S2 and S3 illustrate the influence of different 

estimates of 𝐶 on the probability on 𝑃𝐶  =   𝛾𝐶 and 𝑃𝐶𝑇  = 

 𝛾𝐶𝑇 .  

 

𝐶, however, is not amenable to manipulation, being largely 

determined by evolutionary forces; 

𝑁𝐺, is also fixed;  

𝑁𝑇, however, could be increased by developing 

technologies that allow a broader range of gene products to 

be targeted therapeutically.  

 

It can be argued that the development of therapeutic 

monoclonal antibodies has already increased 𝑁𝑇 by 

permitting targeting of proteins that were not previously 

amenable to a small molecule therapeutic strategy74.  (The 

development of therapeutic antisense RNA and related 

technologies is likely to further extend future therapies into 

the RNA target space). 

 

However, there are also ways of reducing the number of 

genes under consideration in a given disease, so as to 

increase 𝛾𝐶𝑇 .   

 

Consider focusing solely on the druggable genome in a 

given disease. We can then write: 

 

𝛾𝐶𝑇 =  (
𝐶

𝑁𝐺
) (

𝑁𝑇

𝑁𝑇
 )  

 

Therefore; 

 

𝛾𝐶𝑇 =  (
𝐶

𝑁𝐺

) × 1  

 

If 𝐶 = 100,  

 

𝛾𝐶𝑇 =  
1

200
 

 

Thus, among the set of druggable genes, all causal genes are 
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automatically both causal and druggable. Therefore, if 𝐶 =

100, the simple expedient of focusing target identification in 

a specific disease on the 4000 or so druggable genes, rather 

than the genome as a whole, increases 𝛾𝐶𝑇  by a factor of 

five from 
1

1000
 to 

1

200
.  

 

Alternatively, we could remove genes from consideration 

that we perceive to have a low probability of playing a 

causal role in the disease of interest, instead focusing on a 

subset of the genome 𝑁𝐶′, where 𝑁𝐶′ = the set of likely to 

be causal genes in the disease of interest. 

 

We could then write: 

 

𝛾𝐶𝑇 =  𝑃𝐶𝑇 =  (
𝐶

𝑁𝐶′
) (

𝑁𝑇

𝑁𝐺

 ) 

 

If it were possible to enrich the sample space by 

progressively eliminating all non-causal while retaining all 

causal genes, then: 

 

lim
𝑁𝐶′→𝐶

(
𝐶

𝑁𝐶′
) (

𝑁𝑇

𝑁𝐺
 )  →  1 × (

𝑁𝑇

𝑁𝐺
 ) =

1

5
     

 

Thus, in the limiting case, among an exclusively causal set 

of genes, the probability of being causal and druggable is 

simply the probability of being druggable (see Box 6 and 

Assumption 8).  

 

Eliminating non-causal while retaining causal genes is the 

crux of the target identification problem.  For reasons we 

outlined previously, an adequately powered GWAS in a 

disease of interest, with a stringent 𝛼 has the capability to 

exclude the non-causal while identifying the set of causal 

genes for any disease, of which 1/5th on average (
𝑁𝑇

𝑁𝐺
 ) is 

expected to be druggable under Assumption 8.  

 

In summary, the probability of selecting a causal, druggable 

target for a disease of interest based on a random pick from 

the whole genome is 
1

1000
 (assuming 𝐶 = 100), but 

1

200
 

based on a random pick from the druggable genome. We 

note that these probabilities from a random pick are not 

vastly different to the observed rates of drug development 

success: 
4

100
 for compounds (perhaps closer to 

2

100
 for novel 

targets).  In a later section, we show that these estimates are 

also similar in order to values for 𝛾𝐶𝑇 (the proportion of 

causal and druggable target-disease pairs available for 

discovery) calculated a posteriori from reported preclinical 

and clinical development success rates 2.    

 

Taken together, the calculations suggest that the current, 

mainly non-genomic preclinical approach to target 

identification only weakly enriches the sample space for 

causal target-disease pairings that are then taken forward 

into clinical development. 

 

Number of parallel development programmes required, 

to ensure 90% probability of at least one licensing 

success 

 

A common industry strategy to address low developmental 

success rates has been to pursue multiple drug development 

programmes in parallel, recognizing that the majority will 

fail, but that even a single success could ensure profitability 

because of revenues generated through the patent system. 

For example, 1120 unique pipeline drug programmes for 

Alzheimer’s disease were initiated across the industry in the 

period 1995 – 201475.  But, with the estimated current 

developmental success rate of around 2% for targets, on 

average, how many programmes would need to be pursued 

in parallel to have a 90% chance of at least one success?  

This can be calculated as follows. Let: 

 

 𝑃𝑠 =  within − programme success rate. 

 

Assuming all programmes are independent, the probability 

of all N programmes failing is: 

 

(1 − 𝑃𝑠)𝑁  

 

A 90% probability of at least 1 success equates to a 10% 

probability of no success in any programme (i.e. a 10% 

probability of all programmes failing) 
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(1 − 𝑃𝑠)𝑁 = 0.1  

𝑁  log(1 − 𝑃𝑠) = log 0.1 

𝑁 =
log 0.1

log(1 − 𝑃𝑠)
 

 

Let us assume:  

 

𝑃𝑠 =  within − programme success rate

= estimated target development success rate

=
2

100
or 0.02 

 

Therefore, 

 

𝑁 =
log 0.1

log(1 − 0.02)
= 114 

 

Thus, when 𝑃𝑠 =  0.02, industry needs to pursue 114 

independent programmes in parallel, on average, to have a 

90% probability of at least one developmental success; 34 

programmes would need to be pursued to have an 50% 

(evens) chance of at least one success.  Values of 𝑁 for a 

range of hypothetical values of 𝑃𝑠 are shown in Table S4. 

 

Probability of repurposing success 

Another approach to address poor drug development 

success rates is to try to identify new disease indications for 

drugs that failed to show efficacy for the original indication, 

but which have proved safe in man; or to expand indications 

for a drug already effective in one disease to another 

condition.  However, repurposing or indication expansion 

relies on the assumption that different diseases share at least 

some common drug targets.  How likely is this to be the 

case? 

 

Again, this can be tackled from a probabilistic perspective 

using two of the previous simplifying assumptions: 

 

Assumption 3: The probability of a protein influencing the 

pathogenesis of one disease is independent of the 

probability that it influences any other  

 

Assumption 8: The probability that a gene (protein) affects 

disease pathogenesis and the probability that a gene encodes 

a druggable protein is independent 

 

Repurposing or indication expansion can be considered 

from three perspectives: 

 

 How many diseases are likely to be influenced by 

the perturbation of a single therapeutic target? 

 How many diseases need to be considered for at 

least one pair to share a common therapeutic target, 

under the assumption of independence? 

 How many diseases need to be studied to find at 

least one that will be affected by pharmacological 

perturbation of a particular target of interest? 

 

Diseases influenced by perturbation of a single protein: We 

showed previously that the probability( 𝑃𝐶) of identifying a 

causal gene-disease pairing 𝐶𝐷 from the sample space 

comprising all genes and diseases, 𝐺𝐷, assuming 𝐶̅ = 100 

and 𝑁𝐷 = 10,000, is: 

 

𝑃𝐶  =
𝑁𝐶𝐷

𝑁𝐺𝐷
  

(Equation 2) 

2 

= 1 ×  106  200⁄ × 106 =
1

200
= 0.005 

 

Under Assumption 3, the expected number diseases (𝐸𝐷) 

affected by any given gene is given by: 

 

𝐸𝐷 =  𝑃𝐶 × 𝑁𝐷 = 0.005 ×  10,000 = 50  

 

With standard deviation equal to: 

 

𝑆𝐷 =  √(1 − 𝑃𝐶) × 𝑃𝐶 ×  𝑁𝐷

= √0.995 ×  0.005 ×  10,000 = 7 

 

𝐸𝐷 declines the fewer diseases under consideration, or if 

𝐶̅ < 100. (Table S2). Since the estimate of 𝐸𝐷 should be 

precisely the same for a gene encoding a druggable as a 
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non-druggable target, under Assumption 8, it can be 

inferred that even the most specific of therapies is likely to 

influence a range of conditions; leading either to 

mechanism-based adverse effects, efficacy in more than one 

condition, or some combination of the two. In fact, under 

the assumptions above, perturbation of most therapeutic 

targets will affect between 36 and 64 diseases and only 1 in 

1000 targets would affect 28 or fewer conditions. 

 

Shared therapeutic targets: The second question is akin to a 

well-known statistical problem of how many people need to 

be assembled for at least one pair to share the same 

birthday. 

 

Consider two diseases. Again, we assume 𝐶̅ = 100. The 

first disease in the pair could have any 100 of the 20,000 

genes in the genome as its causal set.  The probability of the 

second disease sharing a number 𝑥 of the 100 genes already 

involved in the first disease is given by the hypergeometric 

distribution: 

 

𝑃(𝑥1) =
(100

𝑥1
) (20000−100

100−𝑥1
)

(20000
100

)
 

 

So, the probability that they do not share any gene is: 

 

𝑃(𝑥1 = 0) =
(100

0
)(20000−100

100−0
)

(20000
100

)
= 0.605 

 

If we study a third disease, the probability of that disease 

not sharing any of the 200 genes involved in the previous 

two diseases would be: 

 

𝑃(𝑥2) =
(200

𝑥2
) (20000−200

100−𝑥2
)

(20000
100

)
 

 

 

So, the probability of the third disease not sharing a single 

gene with the other two (𝑥2= 0) is: 

 

𝑃(𝑥2 = 0) =
(200

0
)(20000−200

100−0
)

(20000
100

)
= 0.365 

 

So the total probability of the three diseases not sharing any 

of the genes is: 

 

𝑃(𝑥1 = 0)  ×  𝑃(𝑥2 = 0)  =  0.605 ×  0.365 = 0.221 

 

With four diseases, the probability of none of them sharing 

a gene is < 5%, and for eight diseases it is less than 1 in a 

million: it is almost certain that at least two diseases from 

this pool of eight, will share at least one common 

susceptibility gene. 

 

Number of diseases that need to be studied to identify at 

least one that is affected by perturbation of a given target: 

The answer to the third question follows the same reasoning 

as that used previously to estimate the number of drug 

development programmes that need to be pursued in parallel 

to have at least a 90% or greater chance of at least one 

development success.  With 𝑃𝐶 =
1

200
 (i.e. focusing on the 

druggable genome), 459 diseases would need to be studied 

to have ≥ 90% chance of identifying at least one condition 

that is causally affected by perturbation of a particular target 

of interest. If  𝐶̅ = 1000, the number of diseases that need 

to be studied is 45.   

 

Despite these considerations, the ultimate challenge for 

repurposing remains the same as that for de novo drug 

development: knowing precisely which targets are important 

in which diseases and therefore which targets are shared 

among a set of diseases of interest. This, we believe, can 

only be tackled systematically by the genomic approach we 

have described in previous sections. 

 

Preclinical target identification as a ‘predictive test’ for 

drug development success 

  

We next reduce drug development to a two-stage process: a 

preclinical component whose function is to predict target-

disease pairings destined for clinical phase success (stage 

1), and a clinical component (stage 2) whose function is to 
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evaluate target-disease pairings brought forward from stage 

1. Success in stage 2 is thus dependent on the predictive 

performance of stage 1. 

 

Since clinical drug development failure, a consequence of 

incorrect target specification, currently accounts for around 

two in every three late-stage failures 22 28, we introduce one 

further simplifying assumption. 

 

Assumption 9.  Inaccurate target selection is the exclusive 

reason for clinical phase (stage 2) drug development failure.   

 

Key variables in the following section are indexed by the 

lower-case suffix 𝑝𝑐 to denote preclinical and the lower case 

suffix 𝑐 to denote clinical stage development.  

 

Possible outcomes from pre-clinical and clinical phase 

development are summarized in the embedded tables below.  

 

Stage 1: 

Preclinical 

development 

 (𝒑𝒄) 

True 

relationship  

No true 

relationship 

All 

Declared  

success 

𝑇𝑃𝑝𝑐 = 𝛾𝑝𝑐(1 − 𝛽𝑝𝑐)  𝐹𝑃𝑝𝑐 = 𝛼𝑝𝑐(1 − 𝛾𝑝𝑐)  𝑆𝑝𝑐  

Declared 

 failure 

𝐹𝑁𝑝𝑐 = 𝛾𝑝𝑐𝛽𝑝𝑐  𝑇𝑁𝑝𝑐 = (1 − 𝛼𝑝𝑐)(1 − 𝛾𝑝𝑐)  1 − 𝑆𝑝𝑐  

 𝛾𝑝𝑐  1 − 𝛾𝑝𝑐  1 

 

Stage 2: 

Clinical 

Development 

 (𝒄) 

True relationship  No true 

relationship 

All 

Declared  

success 

𝑇𝑃𝑐 = 𝛾𝑐(1 − 𝛽𝑐)  𝐹𝑃𝑐 = 𝛼𝑐(1 − 𝛾𝑐)  𝑆𝑐  

Declared  

failure 

𝐹𝑁𝑐 = 𝛾𝑐𝛽𝑐  𝑇𝑁𝑐 = (1 − 𝛼𝑐)(1 − 𝛾𝑐)  1 − 𝑆𝑐  

 𝛾𝑐 = 𝑇𝐷𝑅𝑝𝑐 1 − 𝛾𝑐  1 

 

𝛾 = proportion of true target-disease relationships  

𝑇𝑃 = true positive rate 

𝐹𝑃 = false positive rate 

𝑇𝑁 = true negative rate 

𝐹𝑁 = false negative rate 

𝑆 = declared success rate 

1 − 𝑆 = declared failure rate 

 

 

Declared preclinical successes (𝑆𝑝𝑐) comprise both true and 

false positive findings. Therefore: 

 

𝑆𝑝𝑐 = 𝑇𝑃𝑝𝑐 +  𝐹𝑃𝑝𝑐 = 𝛾𝑝𝑐(1 − 𝛽𝑝𝑐)   + 𝛼𝑝𝑐(1 − 𝛾𝑝𝑐) 

 

The proportion of true positive findings among reported 

preclinical successes equates to the preclinical true 

discovery rate (𝑇𝐷𝑅𝑝𝑐), where: 

 

𝑇𝐷𝑅𝑝𝑐 = 
𝑇𝑃𝑝𝑐

𝑆𝑝𝑐
 = 

𝑇𝑃𝑝𝑐

𝑇𝑃𝑝𝑐+𝐹𝑃𝑝𝑐
 = 

𝛾𝑝𝑐(1−𝛽𝑝𝑐)

𝛾𝑝𝑐(1−𝛽𝑝𝑐)  + 𝛼𝑝𝑐(1−𝛾𝑝𝑐)
 

 

 (𝐹𝐷𝑅𝑝𝑐 = 1 − 𝑇𝐷𝑅𝑝𝑐)  

 

If a clinical phase drug development programme follows 

every declared preclinical success, the proportion of true 

target disease relationships in clinical phase development is 

equivalent to the preclinical true discovery rate, so we can 

write: 

 

𝛾𝑐 = 𝑇𝐷𝑅𝑝𝑐 

(Equation 8)  

 

Similarly, for clinical phase (stage 2) development: 

 

𝑆𝑐= 𝑇𝑃𝑐 +  𝐹𝑃𝑐 = 𝛾𝑐(1 − 𝛽𝑐)   + 𝛼𝑐(1 − 𝛾𝑐) 

 

𝑇𝐷𝑅𝑐  = 
𝑇𝑃𝑐

𝑇𝑃𝑐+𝐹𝑃𝑐
 = 

𝛾𝑐(1−𝛽𝑐)

𝛾𝑐(1−𝛽𝑐)  + 𝛼𝑐(1−𝛾𝑐)
  

 

 

 

Since 𝛾𝑐 = 𝑇𝐷𝑅𝑝𝑐 (Equation 8)   

       

𝑇𝐷𝑅𝑐  = 
𝑇𝐷𝑅𝑝𝑐 (1−𝛽𝑐)

𝑇𝐷𝑅𝑝𝑐(1−𝛽𝑐)  + 𝛼𝑐(1−𝑇𝐷𝑅𝑝𝑐)
  

 

(Equation 9) 

 

𝑆𝑐 =  𝑇𝐷𝑅𝑝𝑐(1 − 𝛽𝑐)   +  𝛼𝑐(1 − 𝑇𝐷𝑅𝑝𝑐)  

E 

These equations underline the close mathematical 

relationship between preclinical and clinical discovery and 

success rates, which can be formalised as follows: 

 

𝑇𝐷𝑅𝑐  = 
𝑇𝐷𝑅𝑝𝑐 (1−𝛽𝑐)

𝑇𝐷𝑅𝑝𝑐(1−𝛽𝑐)  + 𝛼𝑐(1−𝑇𝐷𝑅𝑝𝑐)
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Dividing the numerator and denominator by 𝑇𝐷𝑅𝑝𝑐 (1 − 𝛽𝑐)  

and then rearranging: 

 

𝑇𝐷𝑅𝑐  = 
1

1+(
𝛼𝑐

1−𝛽𝑐
)(

1−𝑇𝐷𝑅𝑝𝑐

𝑇𝐷𝑅𝑝𝑐
)
 

 

𝑇𝐷𝑅𝑐  = 
1

1+(
𝛼𝑐

1−𝛽𝑐
)(

1

𝑇𝐷𝑅𝑝𝑐
−1)

 

 

Since, 

 

𝑇𝐷𝑅𝑝𝑐 = (
𝛾𝑝𝑐(1−𝛽𝑝𝑐)

𝛾𝑝𝑐(1−𝛽𝑝𝑐)  + 𝛼𝑝𝑐(1−𝛾𝑝𝑐)
) 

 

1

𝑇𝐷𝑅𝑝𝑐
=

𝛾𝑝𝑐(1−𝛽𝑝𝑐)  + 𝛼𝑝𝑐(1−𝛾𝑝𝑐)

𝛾𝑝𝑐(1−𝛽𝑝𝑐)
  

 

Consequently, 

 

𝑇𝐷𝑅𝑐  = 
1

1+(
𝛼𝑐

1−𝛽𝑐
)(

𝛼𝑝𝑐(1−𝛾𝑝𝑐)

𝛾𝑝𝑐(1−𝛽𝑝𝑐)
)
 

 

 

Rearranging, 

 

 

𝑇𝐷𝑅𝐶 =
1

1+(
𝛼𝑐

1−𝛽𝑐
)(

𝛼𝑝𝑐

1−𝛽𝑝𝑐
)(

1−𝛾𝑝𝑐

𝛾𝑝𝑐
)
  

(Equation 10) 

 

Equation 10 illustrates that the clinical phase discovery rate 

can be resolved mathematically into terms that encompass 

clinical phase power and false positive rate (the term 
𝛼𝑐

1−𝛽𝑐
), 

preclinical phase power and false positive rate (the term 

𝛼𝑝𝑐

1−𝛽𝑝𝑐
), and the true relationships available for discovery (the 

term 
1−𝛾𝑝𝑐

𝛾𝑝𝑐
).  In this sense, Equation 10 can be conceived as 

a mathematical summary of the probabilities and parameters 

determining drug development success. 

 

Consider orthodox non-genomic preclinical (stage 1) drug 

development programmes with base case parameters 

defined by the sample space, 𝑁𝐺 × 𝑁𝐷 where: 

 

𝑁𝐺   =  Total number of protein − coding genes =  20,000  

𝑁𝐷  =  Total number of complex human diseases =  10,000  

𝐶̅ =  Average number of causal genes per disease =  100  

𝑁𝑇 =  Total number of genes encoding druggable targets 

=  4000 

 

From Equation 7, we can infer that; 

 

𝛾𝑝𝑐 =  (
𝐶̅

𝑁𝐺

) (
𝑁𝑇

𝑁𝐺

 ) =
1

1000
 

 

Setting 𝛼𝑝𝑐 and 𝛽𝑝𝑐 to 0.05 and 0.2 respectively, as is as 

standard for (non-genomic) preclinical experiments, and 

assuming it were somehow possible to evaluate every 

protein in every disease in such studies, then 𝑇𝐷𝑅𝑝𝑐  =

 0.016 and 𝐹𝐷𝑅𝑝𝑐  =  0.984.  𝑇𝐷𝑅𝑝𝑐  increases to 0.14 and 

the 𝐹𝐷𝑅𝑝𝑐  falls to 0.86 if 𝐶̅ =  1000 (𝛾𝑝𝑐 =
1

100
), but the 

corresponding values are 0.002 and 0.998 if 𝐶̅ =  10 

(𝛾𝑝𝑐 =
1

10,000
) (Table 2).    

 

In striking contrast, with the same sample space but a 

genomic approach to target identification, where (1 − 𝛽)  =

0.8, 𝛼 = 5 ×  10 −8 and all 20,000 targets encoded by the 

genome are, by definition, interrogated simultaneously, 

𝑇𝐷𝑅𝑝𝑐 = 0.999, and 𝐹𝐷𝑅𝑝𝑐 = 0.001. This is a reversal of 

𝑇𝐷𝑅𝑝𝑐 and 𝐹𝐷𝑅𝑝𝑐values when compared to the orthodox 

(non-genomic) preclinical approach.   The performance of 

genomic studies for target identification, based on these 

values of 𝛼 and 1 − 𝛽, is little affected by 100-fold 

differences in 𝐶 ̅ and 𝛾𝑝𝑐 (Table 2).  

 

As we showed previously, if sampling were restricted to the 

a sample space demarcated by the druggable genome, 𝑁𝑇 ×

𝑁𝐷, where; 

 

𝑁𝐷  =  Total number of complex human diseases =  10,000  

𝑁𝑇 =  Total number of genes encoding druggable targets =

 4000  

𝐶̅ =  Average number of causal genes per disease =  100  

𝑁𝑇𝐷   =  Total number of possible druggable gene

− disease pairs = 4,000 ×  20,000 

=  40 x 106 
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𝛾𝑝𝑐 =  (
𝐶̅

𝑁𝐺

) (
𝑁𝑇

𝑁𝑇

 ) =
1

200
 

 

Focusing orthodox (non-genomic) preclinical studies on this 

restricted sample space (with conventional values for 𝛼 and 

1 − 𝛽) marginally increases the 𝑇𝐷𝑅𝑝𝑐(from 0.016 to 0.08) 

and reduces 𝐹𝐷𝑅𝑝𝑐 but also only marginally (from 0.998 to 

0.920).  Applying the genomic approach in the same sample 

space, where (1 − 𝛽)  = 0.8, and 𝛼 = 5 ×  10 −8, and all 

4,000 druggable targets encoded by the genome are 

interrogated simultaneously, the already high 𝑇𝐷𝑅𝑝𝑐  

increases to 0.9999, and the already low 𝐹𝐷𝑅𝑝𝑐 would fall 

further to 0.0001. (Table 2). 

 

It might be argued that  𝑇𝐷𝑅𝑝𝑐 and 𝑆𝑝𝑐 in conventional 

(non-genomic) preclinical pipelines could also be enhanced 

by simply setting a more stringent false positive rate in 

experiments involving cells, tissues and animal models.  

This is correct, but the change would have practical 

consequences. Very substantial increases in sample size 

would be required to maintain power. This might be 

perceived as being at odds with efforts to reduce the number 

of animals used in medical research, for example. However, 

in the long run, larger, more definitive large-scale animal 

experiments conducted early in the exploration of a 

hypothesis might actually make an important contribution to 

the goal of reducing the number of animals sacrificed, by 

minimizing wasted research. However, attending to the type 

1 error rate issue alone fails to address the problem of the 

questionable validity of many animal models of human 

disease. It is also predicated on being able to evaluate every 

protein in every disease, a task we know to be beyond the 

capability of orthodox (non-genomic) preclinical studies 

based on cells, tissues and animal models. We return this 

issue in a later section. 

 

Turning now to clinical (stage 2) development, 𝛼𝑐 and 

1 − 𝛽𝑐 are typically set to 0.05 and 0.8 respectively, so it is 

also possible to examine the influence of variation in 𝛾𝑝𝑐, 

𝛼𝑝𝑐 and 𝛽𝑝𝑐 on preclinical (𝑆𝑝𝑐), clinical ( 𝑆𝑐  ) and overall 

success (𝑆𝑜 = 𝑆𝑝𝑐  ×  𝑆𝑐), using Equations 9 and 10. The 

results are summarised in Table 2. 

 

For orthodox (non-genomic) preclinical development, with 

sampling from the whole genome (where 𝐶̅ = 100, 1 −

𝛽𝑝𝑐 = 0.8, 𝛼𝑝𝑐 = 0.05, 𝛾𝑝𝑐 =
1

1000 
), 𝑆𝑝𝑐 = 0.05 (𝑇𝐷𝑅𝑝𝑐 =

0.016; 𝐹𝐷𝑅𝑝𝑐  =  0.984) and 𝑆𝑐 =  0.06 (𝑇𝐷𝑅𝑐 =0.2; 

𝐹𝐷𝑅𝑐 = 0.8) giving an overall declared drug development 

success rate 𝑆𝑜 = 𝑆𝑝𝑐 × 𝑆𝑐 = 0.003 (Table 2). 

 

With the same parameters (𝐶̅ = 100, 𝛾𝑝𝑐 =
1

1000 
), but with 

the genomic approach replacing orthodox non-genomic 

preclinical programmes, 𝑆𝑝𝑐 = 0.0008 (𝑇𝐷𝑅𝑝𝑐 =

0.99994; 𝐹𝐷𝑅𝑝𝑐  =  0.00006), 𝑆𝑐 =  0.79995 (𝑇𝐷𝑅𝑐  =

0.999996; 𝐹𝐷𝑅𝑐 = 0.000004), and  𝑆𝑜 = 0.00064.    

 

It may at first seem surprising that 𝑆𝑝𝑐 (and 𝑆𝑜) is actually 

lower for genomic than orthodox (non-genomic) stage 1 

development, because of a higher stage 1 ‘failure’ rate. 

However, a ‘failure’ in a GWAS simply refers to a null 

association with the disease of interest of a specific gene 

(from all 20,000 evaluated), which is very different from 

the expensive failure of a lengthy orthodox preclinical 

development programme focusing on a single target at a 

time. The high ‘failure rate’ (i.e. high rate of null 

associations) in GWAS reflects the much more stringent 

𝛼𝑝𝑐 in this type of study design, which results in a much 

lower 𝐹𝐷𝑅𝑝𝑐 and much higher 𝑇𝐷𝑅𝑝𝑐. Since 𝑇𝐷𝑅𝑝𝑐= 𝛾𝑐, 

the GWAS design ensures fewer false relationships are 

carried forward into clinical development when compared to 

the non-genomic approach.  Consequently, 𝑇𝐷𝑅𝑐  is much 

increased with the genomic (compared to non-genomic) 

preclinical target identification.  In summary, the 

calculations indicate that a genomic approach to preclinical 

target validation has the potential to reverse the probability 

of drug development success when compared to the 

established (non-genomic) approach. 
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Estimating the proportion of true target-disease 

relationships currently studied based on observed 

development success rates 

 

The preceding estimates of 𝛾𝑝𝑐 and the corresponding 

estimates of 𝑆, 𝐹𝐷𝑅 and 𝑇𝐷𝑅 are based on naïve pairings of 

genes (or proteins) and diseases (selection at random), using 

the sample spaces defined by common human diseases and 

either the whole genome or the druggable genome. But how 

closely do these estimates reflect current drug development?  

 

Since observed values for 𝑆𝑝𝑐 and 𝑆𝑐  have been reported 2 28, 

it should be possible to make a posteriori estimates of 𝛾𝑐 

and 𝛾𝑝𝑐 and other relevant metrics, and compare them to the 

a priori estimates based on a random pick of target-disease 

pairings in the sample space.  

 

Both 𝛾𝑐 and 𝛾𝑝𝑐 can be estimated from observed preclinical 

and clinical success rates as follows: 

 

 

𝑆𝑐= 𝑇𝑃𝑐 +  𝐹𝑃𝑐  

 

𝑆𝑐= 𝛾𝑐(1 − 𝛽𝑐)   +  𝛼𝑐(1 − 𝛾𝑐)   

 

𝑆𝑐= 𝛾𝑐 − 𝛽𝑐𝛾𝑐 + 𝛼𝑐 − 𝛼𝑐𝛾𝑐 

 

𝑆𝑐 − 𝛼𝑐  = 𝛾𝑐 − 𝛽𝑐𝛾𝑐 − 𝛼𝑐𝛾𝑐 

 

𝑆𝑐 − 𝛼𝑐  = 𝛾𝑐(1 − 𝛽𝑐 − 𝛼𝑐) 

 

 

Therefore, 

 

 

𝛾𝑐= 
𝑆𝑐−𝛼𝑐

(1−𝛽𝑐)−𝛼𝑐
 

(Equation 11) 

We previously established (Equation 8) that  

 

 

𝛾𝑐 = 𝑇𝐷𝑅𝑝𝑐 =  
𝑇𝑃𝑝𝑐

𝑆𝑝𝑐
     

 

Since 𝑇𝑃𝑝𝑐 = 𝛾𝑝𝑐(1 − 𝛽𝑝𝑐) 

 

 

𝛾𝑐 = 
𝛾𝑝𝑐(1−𝛽𝑝𝑐)

𝑆𝑝𝑐
 

 

 

Rearranging, we have 

 

 

𝛾𝑝𝑐 = 
𝛾𝑐𝑆𝑝𝑐

(1−𝛽𝑝𝑐)
 

(Equation 12) 

 

 

The reported clinical success rate 2 28, 𝑆𝑐 = 0.1 

 

Assuming 𝛼𝑐 = 0.05, 𝛽𝑐 = 0.2 (commonly used false 

positive and negative rates for clinical trials) and using 

Equation 11: 

 

𝛾𝑐= 
𝑆𝑐−𝛼𝑐

(1−𝛽𝑐)−𝛼𝑐
 = 0.0667, 

 

Since, 

 

𝑇𝐷𝑅𝑐  = 
𝑇𝑃𝑐

𝑆𝑐
 

 

𝑇𝐷𝑅𝑐  = 
𝛾𝑐(1−𝛽𝑐)

𝑆𝑐
 

 

𝑇𝐷𝑅𝑐  = 
0.067 × 0.8

0.1
 

 
 

𝑇𝐷𝑅𝑐  = 0.56 

 

 

𝐹𝐷𝑅𝑐 = 1−0.56=0.44 

 

 

This calculation suggests that nearly one in two declared 

clinical trial successes may be a false discovery. 

 

Since 𝛾𝑐 = 𝑇𝐷𝑅𝑝𝑐  and 𝑇𝐷𝑅𝑝𝑐 = 1 − 𝐹𝐷𝑅𝑝𝑐 

 

𝑇𝐷𝑅𝑝𝑐 = 0.0667  

 

𝐹𝐷𝑅𝑝𝑐 = 1 − 0.0667 = 0.9333 

 

These a posteriori estimates for 𝑇𝐷𝑅𝑝𝑐 and 𝐹𝐷𝑅𝑝𝑐 are of a 

similar order to the a priori estimates documented earlier. 

 

Now, 

 

𝛾𝑝𝑐 = 
𝛾𝑐𝑆𝑝𝑐

1−𝛽𝑝𝑐
  

 

The reported preclinical success rate 2, 𝑆𝑝𝑐 = 0.4 

 

Using the value 𝛾𝑐 = 0.0667, and setting power for 

preclinical studies at (1 − 𝛽𝑝𝑐) = 0.8, we have: 
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𝛾𝑝𝑐 = 
0.0667 × 0.4

0.8
 

 

𝛾𝑝𝑐 = 0.03335  

 

 

In estimating 𝛼𝑝𝑐, we use the following: 

 

𝑆𝑝𝑐 = 𝑇𝑃𝑝𝑐 +  𝐹𝑃𝑝𝑐  

 

𝑆𝑝𝑐= 𝛾𝑝𝑐(1 − 𝛽𝑝𝑐)   +  𝛼𝑝𝑐(1 − 𝛾𝑝𝑐)   

 

𝑆𝑝𝑐= 𝛾𝑝𝑐 − 𝛽𝑝𝑐𝛾𝑝𝑐   + 𝛼𝑝𝑐 −  𝛼𝑝𝑐𝛾𝑝𝑐   

 

𝛼𝑝𝑐 − 𝛼𝑝𝑐𝛾𝑝𝑐 = 𝑆𝑝𝑐 − 𝛾𝑝𝑐 + 𝛽𝑝𝑐𝛾𝑝𝑐 

 

𝛼𝑝𝑐(1 −  𝛾𝑝𝑐) = 𝑆𝑝𝑐 − 𝛾𝑝𝑐(1 − 𝛽𝑝𝑐) 

 

𝛼𝑝𝑐 = 
𝑆𝑝𝑐−𝛾𝑝𝑐(1−𝛽𝑝𝑐)

(1− 𝛾𝑝𝑐)
  

 

Note: the term 𝑆𝑝𝑐 − 𝛾𝑝𝑐(1 − 𝛽𝑝𝑐) = 𝑆𝑝𝑐 − 𝑇𝑃𝑝𝑐 = 𝐹𝑃𝑝𝑐  

 

 

Therefore 𝛼𝑝𝑐 = 
𝐹𝑃𝑝𝑐

(1− 𝛾𝑝𝑐)
(see embedded table) 

 

 

With 𝑆𝑝𝑐 = 0.4; 𝛾𝑝𝑐 = 0.03335; and 1 − 𝛽𝑝𝑐 = 0.8; 

 

𝛼𝑝𝑐 = 0.386  

 

 

Values of 𝛾𝑝𝑐 and 𝛼𝑝𝑐 for a range of values for 1 − 𝛽𝑝𝑐 from 

0.2 to 0.8, and a fixed value of 𝛾𝑐 = 0.067, are illustrated in 

Figure 5. For values of 1 − 𝛽𝑝𝑐, in this range, values for 𝛾𝑝𝑐 

lie in the range 0.033 to 0.133, representing 6.5-fold to 26.5-

fold enrichment of true relationships over a random pick 

from a sample space demarcated by all diseases and the 

druggable genome (𝛾𝑝𝑐 =
1

200
 = 0.005). Although these 

enrichment rates for established preclinical drug 

development appear substantial, the very low values of 𝛾𝑝𝑐 

mean that they are insufficient to prevent a large proportion 

of false target-disease relationships being pursued during 

clinical phase development, which accounts for the low 

rates of clinical success, and the possibility that a large 

proportion of declared clinical successes are actually false 

discoveries. 

 

 

The impact of the target selection step in orthodox (non-

genomic) preclinical development on rug development 

success  

 

The calculations presented thus far assume that it is possible 

for orthodox (non-genomic) studies based on cells, tissues 

and animal models to evaluate every protein in every 

disease but, in contrast to the genomic approach, this is 

clearly not feasible. Although numerous orthodox (non-

genomic) preclinical programmes, investigating scores of 

targets at a time, can and do proceed in parallel, the number 

of such parallel target evaluation programmes is limited by 

logistics and cost.  This imposes the need for a selection 

step in which a subset of targets must first be prioritized for 

inclusion in a small number of parallel early phase drug 

development programmes. By contrast a GWAS for target 

identification, by definition, interrogates every target in 

parallel.    

 

This selection step in standard (non-genomic) preclinical 

drug development therefore introduces a further probability 

consideration.   

 

The probability that 0, 1, 2, … 𝐴 causal targets is present in a 

sample of size 𝑁 (where each member of the sample 

corresponds to an independent development programme 

based on a different drug target and encoding gene), drawn 

without replacement from the pool of 4000 druggable genes 

(proteins), of which 𝐶 are causal for the disease of interest, 

is given by the hypergeometric distribution where: 

 

𝑃(𝐴) =
(

𝐶
𝐴

) (
4,000 − 𝐶 

𝑁 − 𝐴
)

(
4,000

𝑁
)

 

 

The expected number of causal, druggable targets 𝐸(𝐴) in 

the sample is given by: 

 

𝐸(𝐴) = 𝑁 (
𝐶

4,000
),  SD = √

𝑁 𝐶 (4,000−C)(4,000−𝑁)

4,0002(4,000 – 1)
 

 

Expected values for A based on a range of values of N and C 

are shown in Table S3.  Unless 𝑁 is very large (e.g. 200 
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independent preclinical programmes proceeding in parallel, 

each evaluating a different target), there is a very low 

probability of a causal, druggable target being included in 

the set selected for preclinical studies, based on a random 

pick. This emphasises the need for very strong priors before 

embarking on a drug development programme. 

 

However, there are yet further considerations.  Let us 

assume that a company pursues all 𝑁 targets in parallel 

preclinical programmes.  A true causal target in the sample 

will have a probability of being correctly detected (true 

positive rate) corresponding to the power of the relevant 

experiments (1 − 𝛽). The probability of a non-causal target 

being erroneously inferred as causal is given by the 

experimental Type 1 error rate (𝛼).  The probability of 

missing a causal, druggable target is the false negative rate 

(𝛽), while the probability of correctly excluding a non-

causal, druggable target (true negative rate) is (1 − 𝛼).   

As previously shown in Figure 3, for any given disease, the 

druggable genome can be resolved into components 

comprising genes that encode causal, druggable targets 

(previously estimated as around 20 per disease), and 

druggable but non-causal targets for that particular disease 

(estimated as 3980).  If all N parallel preclinical 

programmes in the sample progress to completion, four 

outcomes are possible: a) one or more true positives is 

correctly identified with no false positives; b) a mixture of 

one or more true and false positives emerge; c) there are no 

positive findings; or, d) in a worst-case scenario, one or 

more false positive results emerge with no true positives.   

 

Let us imagine that one nominally positive target is pursued 

for clinical development under the three scenarios that 

generate positive findings from preclinical studies 

(regardless of whether they are true or false positives), and 

that correct target selection is the only barrier to eventual 

drug development success (Assumption 9).  Under the first 

scenario, clinical development will always be successful, 

under the second it will sometimes be successful and under 

the fourth never successful.  Consider a thought experiment 

in which a large number of companies repeat the same 

process so as to generate a frequency distribution of 

eventual company successes.  The probabilities of eventual 

development success in this hypothetical drug development 

world are given by equations in the Appendix 2 and the 

results are shown in Table S5 and Figure 6.  Assuming 

there are 20 causal, druggable targets to find, increasing the 

number of parallel preclinical programmes from 20 to 50 to 

200 has a modest impact on drug development success if 

these are picked from the full set of 4000 druggable 

proteins.  However, if it were possible to obtain reliable 

biological information on the relevance (or not) of selected 

targets, such that the sampling frame could be reduced in 

size to 2000, 1000, or perhaps even 200 targets, while 

retaining all 20 causal targets in the sample, success rates 

would improve. 

 

Figure 6 shows the relationship between the expected 

number of true and false positive findings, the number of 

causal, druggable targets in the original sampling frame, and 

the total number of trials.  It is relevant that no matter how 

many parallel drug development programmes are 

undertaken, the expected number of true positives will only 

be greater than the number of false positives if the set of 

targets in the sampling frame is relatively low (< 400 

targets) and all causal, druggable targets are retained in the 

sample.  Clinical phase development programmes therefore 

need to be supported by extremely strong priors. As we 

argue here, genomic evidence provides compelling 

biological priors for the full set of 4000 drugggable targets 

each time a GWAS is done in a particular disease. 

 

Therefore, on the assumption that incorrect target 

specification is the overarching reason for drug 

development failure, these considerations go a long way 

towards explaining the currently low rates of drug 

development success.   They also indicate that the genomic 

approach to drug target identification should outperform the 

orthodox non-genomic approach to preclinical drug 

development at least by several orders of magnitude, even 

providing the potential to reverse the odds of drug 

development success.   
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Part 3: Assumptions, parameters and limitations 

 

‘Seek simplicity and mistrust it’ 

- Alfred North Whitehead, In The Concept of 

Nature (1919), Chapter VII, p.143 

 

‘Your assumptions are your windows on the world. Scrub 

them off every once in a while, or the light won’t come in’ 

 

- Attributed to Isaac Asimov and Alan Alda 

 

The inferences we have drawn depend on the validity of our 

assumptions, and on the parameters we used to calculate the 

various probabilities. We now explore these in more detail 

before addressing some important limitations. 

 

Assumptions 

 

Assumption 1: Each gene encodes a unique protein with a 

single function 

 

We assumed a 1:1 relationship between genes and proteins, 

implicitly arguing that any protein has a single function, 

echoing the historic one-gene one-protein hypothesis of 

Beadle and Tatum76.  However, genes can encode 

alternative mRNA transcripts, some of which may be 

translated into different proteins77.  Ensembl (v.87) contains 

22,264 protein coding genes encoding 87,662 transcripts. 

Post-translational modifications increase the complexity of 

the proteome while some proteins may also contain domains 

that serve distinct functions78. Other proteins, referred to as 

‘moonlighting proteins’ appear to have the ability to 

undertake alternative functions depending on the cellular 

context, even in the absence of splice variants or distinct 

functional domains79. Moreover, some drugs may interact 

with a protein-binding pocket composed of elements of two 

or more protein subunits, each encoded by a different gene.  

(An example is the benzodiazepine class of drugs that bind 

to GABA-A receptors at the interface of two of its 

subunits).  Thus, the assumed 1:1 relationship between 

genes, proteins, protein functions and drug targets, is an 

undoubted simplification, posing an additional challenge for 

drug development to not only target the right protein, but 

also the correct subtype and isoform, sometimes in the right 

cellular context.  

 

Assumption 2: A given protein can influence the risk of 

more than one disease  

 

It has been estimated that nearly 20% of the genes and 5% 

of the SNPs currently curated by the GWAS catalogue 

exhibit (pleiotropic) associations with more than one trait80  

and that many human traits share common genetic 

influences. 81 82  For example, variants in GCKR (type 2 

diabetes, non-alcoholic steatotic hepatitis, uric acid, glucose, 

triglycerides), IL6R (coronary heart disease, asthma, 

abdominal aortic aneurysm) and SH2B3 (haemopoetic traits, 

low-density lipoprotein (LDL)-cholesterol concentration, 

blood pressure, autoimmune conditions, and coronary heart 

disease) have been associated with diverse diseases and 

traits.  Although the potential mechanisms underlying 

pleiotropic associations are numerous83, one explanation is 

that a single protein might play a controlling role in several 

pathophysiological processes.  Since a proportion of such 

genes could encode druggable targets, the corollary is that 

treatments proven to be effective in one disease have the 

potential to be successfully repurposed for another. Prior 

examples of repurposing successes and broadening of 

treatment indications also support this assumption (Table 

5).  A further consequence is that drugs used to treat one 

disease could have adverse effects on other conditions, 

depending on the direction of effect. For example, it is 

known now that statins, which inhibit HMG-coA reductase 

reduce the risk of coronary heart disease by lowering LDL-

cholesterol.  However, they also modestly increase risk of 

type 2 diabetes, an effect shown by Mendelian 

randomisation to be mechanism-based84.  By implication, 

study designs that interrogate the association of variants in 

genes encoding a druggable target with a broad range of 

disease biomarkers and clinical diagnoses in parallel 

(sometimes called phenome wide association analysis – 

PheWAS85) should offer a systematic and comprehensive 

means to identify repurposing and indication expansion 
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opportunities, as well mechanism-based adverse effects. We 

return to this point in a later section. 

 

Assumption 3: The probability of a protein influencing the 

pathogenesis of one disease is independent of the 

probability that it influences any other  

 

We have shown that even in the presence of this 

‘independence’ assumption, it is highly likely that diseases 

share causal proteins, as supported by evidence from 

GWAS82, providing one explanation for the observation of 

genetic pleiotropy.  

 

In reality, the independence assumption is very likely to 

breakdown for certain groups of diseases, with one 

consequence being that certain disease groups are even 

more likely to share common targets, offering increased 

opportunity for therapeutic repurposing.  Autoimmune 

diseases provide some of the clearest examples.  As an 

illustration, monoclonal antibody therapeutics that target 

tumour necrosis factor- for treatment of rheumatoid 

arthritis, also show efficacy in inflammatory bowel 

diseases86.  Ustekinumab, a monoclonal antibody that 

targets interleukin-12/23 receptor developed for psoriasis 

also shows efficacy in inflammatory bowel disease87. Other 

examples are provided by conditions that might, at first 

sight, appear to be less likely to share a therapeutic target. 

For example, monoclonal antibodies targeting vascular 

endothelial growth factor have found use in the treatment of 

age-related macular degeneration as well as certain cancers, 

and it is now known that the pathogenesis of both diseases 

involves angiogenesis88.  However, such agents also raise 

blood pressure and increase risk of thrombotic vascular 

events as a consequence of their mechanism of action89.   

 

If diseases related by common mechanism were to be 

grouped as adjacent columns in the sample space (Figure 

1), and the genes encoding functionally related proteins as 

adjacent rows, with the sample space being marked using 

contours corresponding to probabilities of any target-disease 

paring being disease-causing, then ridges and troughs of 

higher and lower probability would be observed to emerge 

from an otherwise flat, homogenous probability space that 

corresponds to the independence assumption.  In due course, 

we believe the genetic approach we describe will uncover 

more diseases with common underpinning, that this will 

enable reconfiguration of gene and disease relationships in 

the sample space, and will support more rational medication 

repurposing and indication expansion programmes90. 

Nevertheless, at present, given the very broad spectrum of 

human diseases, we consider our simplifying assumption to 

serve as a useful start point for the concepts we develop and 

calculations we make.  

  

Assumption 4: Drug treatments for human disease target 

proteins encoded in the germ line. 

 

We excluded from consideration the treatment of many 

infectious diseases, where proteins in the pathogen rather 

than the host are the therapeutic targets, as well as cancer, 

where treatment targets are mutated or aberrantly expressed 

proteins encoded by the abnormal genome of the cancer 

cell. However, with these restrictions, proteins encoded by 

the germ line serve as the therapeutic targets of >80% of 

licensed drugs91 92.  This simplifying assumption is therefore 

robust for the sample space as we define it.  

 

Assumption 5: DNA sequence variants in and around a 

gene encoding a drug target, that alter expression or 

activity of the encoded protein (cis-acting variants) are 

ubiquitous in the genome 

 

GWAS of mRNA expression and protein concentration 

provide hundreds of empirical examples of SNPs 

influencing the expression of nearby genes (acting in cis) 

leading to the concept of expression (e) and protein (p) 

quantitative trait loci (QTL)93 94 95 96 97 98.  Recently, the 

ENCODE, ROADMAP and GTEX projects have 

catalogued variants with functional effects on both local 

(cis) and distant (trans) gene expression in a variety of cell 

types and tissues99 100 101.  As datasets enlarge and improved 

proteomics platforms encompass a broader set of human 

proteins, we anticipate the catalogue of cis pQTLs will 

expand, providing a larger armamentarium of such variants 
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in genes encoding druggable targets that serve as important 

tools for drug target identification and validation.  

 

Assumption 6: The association of cis-acting variants with 

biomarkers and disease end-points in a population genetic 

study accurately predict the effects of pharmacological 

modification of the encoded target in a clinical trial  

 

The reliability of this assumption has been demonstrated by 

comparisons of the associations of cis-acting variants in 

genes encoding the targets of licensed drugs in population 

studies, and the effect of treatments targeting the same 

protein in clinical trials, using a common set of biomarkers 

and disease outcomes as the readout. Applied examples of 

this paradigm have now been used to predict the eventual 

failure in clinical trials of first-in-class drugs for prevention 

and treatment of cardiovascular disease102 103, to separate 

on- from off-target effects of drugs84 104, and to identify 

indication expansion opportunities for established drugs 105.  

This concordance may seem surprising given that drugs 

typically target the action of proteins while variants 

identified by GWAS are typically non-coding, probably 

influencing mRNA and thence protein expression.  

Nevertheless, the empirical findings are compelling, with 

recent studies indicating that the concordance between the 

effects of genetic variants and drugs targeting corresponding 

proteins can extend across scores of biomarkers and disease 

end-points106. These proof-of-concept examples (Appendix 

1) now provide strong motivation for scaling the approach 

to interrogate the association of cis-acting variants in all 

druggable genes against the full spectrum of diseases and 

biomarkers in parallel.   

 

Coding region (loss- and gain-of-function) variants have 

also been shown to be useful tools for drug target selection 

and validation107 108. As falling costs lead to an expansion in 

sequencing studies, including in populations with a high 

rates of consanguinity, thereby enriched for homozygous 

loss of function variants109 110, we also anticipate that a 

broader spectrum of druggable genome variation will be 

discovered encompassing rare, low frequency and common 

variants in both coding regions (influencing function) and 

non-coding regions (influencing expression) that, when 

linked to phenotype and disease outcome, will provide 

invaluable information for target identification and 

validation. 

 

Assumption 7: Genotyping arrays used in GWAS provide 

comprehensive, appropriately powered coverage of the 

genome, and associations discovered at any one gene are 

independent of those detected at any other 

 

We have made the assumption that the genotyping arrays 

used in GWAS provide comprehensive coverage of all 

genes (including all druggable genes), that all such studies 

are conducted such that power is 0.8 at all loci, with 𝛼 =

5 × 10−8, and that the discovery of any one genetic locus is 

independent of any other. We recognise that in reality, 

power in many GWAS is likely to be much lower than 0.8 

suggesting that additional loci are likely to be identified by 

increased sample size. We also recognise that the local 

correlation between SNPs (linkage disequilibrium; LD) can 

lead to ambiguity on the source of the association signal(s) 

at any locus identified by a GWAS (placing uncertainty on 

the role of any implicated drug target).   We showed 

previously that GWAS to date have identied LD regions 

containing a single druggable gene in around 10.5% of 

cases67, and 31.9% of such LD regions contain 2 or more 

genes, at least one of which encodes a druggable target.  

However, to begin to address the issue of verifying the 

causal gene(s) in an associated region, sequencing projects 

have led to haplotype reference panels that enable dense 

imputation and fine mapping of association signals111. In 

silico approaches based on functional annotation of the 

genome have been developed, as have statistical-, pathway-, 

and eQTL- co-localisation methods, to address this problem, 

together with scoring systems that assimilate results from 

multiple methods with various degrees of weighting112.   An 

alternative approach to elucidation of causal signals with 

translational potential is to flip the problem by focusing 

genetic association studies exclusively on cis-acting variants 

within the druggable genome – ‘druggable genome wide 

association studies’.  To that end, we recently designed the 

content of a new genotyping array, with dense marker 
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coverage of genes encoding druggable targets67, facilitating 

a gene-centric approach to disease association studies for 

drug development.  The array design also enables gene-

based, not just SNP-based, association tests. The inclusion 

of common, non-coding as well as less frequent coding 

variation, should also enable the construction of allelic 

series113 (the genetic counterpart of a pharmacological dose 

response relationship). 

 

Assumption 8: The probability that a protein affects 

disease pathogenesis and the probability the protein can be 

targeted by a drug is independent 

 

This assumption is more speculative.  An argument could be 

made that genes included in our recent update of the 

druggable genome67 that encode the protein targets of small 

molecule drugs are more likely than other genes to be 

disease causing.  This is because druggability predictions 

are based, in part, on membership of protein families 

containing licensed drug targets that, by definition, are both 

druggable and play a controlling role in disease 

susceptibility. However, this bias should not apply to the 

2000 or so genes that were included in the druggable set 

because of sequence similarity to drugged proteins, or 

because they encode extracellular regions that are targetable 

by monoclonal antibodies67.  Moreover, the converse 

argument is equally plausible that druggable genes are less 

likely than others to be pathogenic, because the druggable 

set is enriched for proteins with natural ligands that sub 

serve key cellular functions.  Evolutionary forces might 

therefore exert purifying selection on deleterious variants in 

such genes, if they were to affect reproductive fitness. 

Empirical evidence on this issue is limited.  In our own 

recent analysis using findings curated in the GWAS 

catalogue67, we find that the proportion of druggable genes 

present in regions of LD with disease-associated SNPs is an 

approximately constant proportion of all genes present in 

such regions, that this is consistent across disease 

categories, and close to the proportion of druggable genes in 

the genome overall (i.e. ~4000/20,000 = 0.2). This would 

be expected if disease association and druggability were 

independent.  However, others have found an apparent 

enrichment of druggable genes among disease-associated 

loci 73.  We expect this uncertainty will be resolved as more 

GWAS are undertaken in a wider range of diseases with the 

purpose of drug target identification and validation.  

 

Assumption 9: Inaccurate target selection is the exclusive 

reason for clinical phase (stage 2) drug development failure   

 

Drug development can fail for numerous reasons including 

idiosyncratic compound toxicity, incorrect dosing, 

unfavourable pharmacokinetics, incorrect end-point 

selection, mechanism-based adverse effects and commercial 

considerations. Nevertheless, recent reviews have 

documented lack of efficacy (despite adequate target 

engagement) as the reason for clinical phase drug 

development failures in around two-thirds of cases 24 25 28.  

With this asssumption, we will have over attributed failure 

due to inaccurate drug target selection. However, 

adjustment of the relevant estimates by the multiplication 

factor of 2/3 (to account for other reasons for failure) 

would not overturn our broad conclusions, given the orders 

of magnitude improvement in developmental success rates 

predicted from the genomic approach.  

 

Parameters 

We estimated several key parameters when making our 

calculations. Here we review their likely accuracy. 

 

Number of human protein-coding genes: As summarized in 

Box 4, recent estimates of the number of protein coding 

genes, derived from diverse sources of evidence, have 

settled to a figure of close to 20,000.  

 

Number of complex diseases: We recognize that it is 

problematic to define diseases based on the use of coding 

schemes such as ICD-10114, utilized primarily for billing 

and record keeping, which offer a finite list of possible 

disease options, and which classify disease mainly 

according to appearance rather than cause. We also 

recognize that an ultimate outcome of research on the 

genetic basis of human disease may be the reclassification 

of disease according to molecular mechanism rather than 
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appearance.  As diseases often lie on a spectrum, with 

overlaps in both disease phenotypes and genetic causation, 

defining discrete disease entities often involves a degree of 

subjectivity. In the post-genomic era, biomedical ontologies 

have been created to provide controlled terms for biological 

attributes. The emphasis of coverage in the Human 

Phenotype Ontology (HPO) is on phenotypic abnormalities 

and clinical observations rather than diseases, while the 

Experimental Factor Ontology (EFO) describes 

experimental variables from the cellular to disease level in 

the European Bioinformatics Institute (EBI) databases. The 

Human Disease Ontology (DO) is a biomedical resource of 

standardised disease concepts organised by disease 

aetiology.  It addresses the complexity of disease 

nomenclature through extensive cross mapping and 

integration of ICD, Online Mendelian Inheritance in Man 

(OMIM), Orphanet, EFO, National Cancer Institute (NCI) 

Thesaurus, SNOMED CT and MeSH concepts115 116.  As of 

20 January 2016, the DO had 9,196 terms. The number of 

terms in the DO is regularly updated with technical and 

conceptual advances in disease phenotyping and will 

increase with improved understanding of molecular 

pathways. Therefore, given the current state of knowledge, 

we propose that a figure of 10,000 is a reasonable estimate 

of the number of common human diseases with genetic 

susceptibility. However, we explain in earlier sections why 

the various probabilities we have estimated do not depend 

on the absolute number of disease entities under 

consideration. 

 

Number of susceptibility genes for common diseases: 

Estimating a reasonable figure for the number of 

susceptibility genes for common diseases is a critical 

parameter when estimating probabilities of drug 

development success and requires consideration of the 

genetic architecture of these conditions 54 55 117 118 119. This 

area is controversial, as reviewed by Gibson120, and recently 

by Pritchard54.  The approach we took in this article 

implicitly accepts the front-running, common-variant, 

common-disease hypothesis, which states that complex 

diseases and associated biological traits are determined by 

the additive (perhaps occasionally synergistic) action of 

common, small effect variants in a large number of human 

genes. Under this model, every individual carries a different 

repertoire of largely independently inherited variants. (This 

model also has implications for the success or otherwise of 

precision medicine therapies). 

 

The diametrically opposed hypothesis is that the association 

of multiple SNPs at any locus with a disease or trait seen in 

GWAS occurs exclusively because common SNPs mark the 

presence of unobserved, rare (large effect) variants present 

in subsets of the population (a phenomenon referred to as 

‘synthetic association’)121.  Rare variants of this type are 

under-represented in the commonly used genotyping arrays 

used in GWAS, may be difficult to impute from haplotype 

reference panels, and should be better captured by exome or 

whole genome sequencing.    

 

However, evidence from post GWAS fine mapping studies, 

and a recent report on the genetic architecture of type 2 

diabetes, in which whole genome sequencing allowed an 

unbiased survey of both common and rare variant effects in 

tandem, continues to provide evidence for the common 

variant common disease hypothesis122 123 124.  However, it is 

also clear that rare, or infrequent, large effect, coding 

variants can also coexist in any given gene. Evidence from 

GWAS and emerging sequencing studies also suggest that a 

very large number of loci contribute to susceptibility to 

most common diseases and biomedical traits, but that the 

sometimes hundreds of loci exerting the largest effect, 

detected most readily by GWAS, explain only a small 

fraction of the heritability, with the remainder perhaps being 

distributed across the many thousands of remaining genes 

throughout the large expanse of the genome. This 

‘omnigenic’ could be inaccurately interpreted as ‘all genes 

contribute (equally) to all diseases’. However, effect sizes at 

loci beyond ‘core’ (or ‘critical’) genes may be beyond 

detection even by massive expansion in sample sizes120. 

Moreover, even allowing for development of highly potent 

compounds against ‘peripheral’ targets, the biological effect 

may still be too small to be of therapeutic interest and might 

necessitate unfeasibly large clinical trials for any effect to 

be reliably detected. For this reason, we believe the concept 
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of scores or hundreds of causal (‘critical’, ‘core’) genes for 

any disease, i.e. those with the main effect, is still valid. 

 

We estimated the number of such genes for a given disease 

using information from published GWAS of common 

diseases with the largest available datasets. These have 

typically identified hundreds of genetic susceptibility loci.  

As it is conceivable that even more loci will be uncovered 

by further increases in sample size125, we also estimated 

relevant probabilities for 1000 ‘causal’ genes per disease 

(corresponding to around 200 druggable genes per disease).  

We consider a further 10-fold increase in the number of 

causal genes (to 10,000 genes per disease in total) is 

unlikely, if only because the observed rates of drug 

development failure from lack of efficacy would be difficult 

to explain if half of all genes in the genome (corresponding 

to 2000 of the 4000 druggable genes under Assumption 8) 

critically affected risk of any given disease.   

 

Size of the druggable genome: A historical perspective of 

the druggable genome was provided in Box 6.  We recently 

re-estimated the extent of the druggable genome based on 

up to date annotations of protein coding genes, information 

on protein motifs targeted by drugs that have been licensed 

since prior estimates of the druggable genome were made, 

and by incorporating predicted targets of monoclonal 

antibody therapeutics which are either membrane-bound or 

secreted proteins identifiable by specific motifs in their 

primary structure.  This estimate of approximately 4479 

druggable, protein-coding genes was used to inform the 

content of a new genotyping array developed specifically to 

facilitate genetic studies for drug target identification67.  

This figure was rounded (conservatively) to 4000 genes for 

the illustrative calculations used in the current paper.  We 

recognize this estimate is not fixed but likely to be revised 

with time as new therapeutic modalities are developed126, 

evidenced by recent clinical successes of RNA 

therapeutics127, of gene therapy128, and of gene editing 

technologies that may play a therapeutic role in certain rare 

disorders129.  However, we believe it is a reasonable first 

approximation that drugs that act by interfering with the 

action of proteins readily target only a subset of human gene 

products, and that the factors that determine whether a 

protein is druggable and whether it plays a controlling role 

in a disease are somewhat distinct.   This echoes the 

arguments made by others65, that the challenge in drug 

development is to identify the proteins that lie at the 

intersection of druggability and disease regulation, and that 

human genomics is in a unique position to delineate this set 

of proteins for each disease of interest.  

 

Limitations 

 

There are a number of limitations to our analysis. 

 

We have argued that cis-acting variation is widespread in 

the human genome, but it may not be universal.  In the 

absence of natural variation in a gene encoding a drug target 

of interest, influencing its expression or activity, it would be 

impossible to use the approach described to anticipate the 

pharmacological action of a corresponding drug. However, 

there may be ways of addressing this issue in the infrequent 

instances where this occurs. For example, in the absence of 

variants reliably influencing expression of the gene 

encoding interleukin-6, variants in the gene encoding the 

interleukin-6 receptor were used to model the effect of 

interference with interleukin-6 signaling on coronary heart 

disease risk, through pharmacological blockade of the 

receptor rather than the ligand105.  

 

Theoretically, since genetic influences on protein expression 

or activity are present from early life, they may entrain 

developmental adaptation (canalization) through changes in 

other pathways that mitigate any biologically adverse effect 

on the system as a whole66. Thus, the null association of 

variants in a gene encoding a drug target of interest in a 

particular disease need not completely exclude it as a 

therapeutic target. This is because drugs, particularly for 

common diseases, are administered late in life, when 

developmental adaptation is inactive. Yet there are now 

numerous instances of both common (small effect) and rare 

(large effect) variants in genes encoding druggable targets 

that reliably anticipate the effects of drugs for late life 

diseases (see Appendix 1). Thus, it would seem that 
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canalization is a more theoretical than practical 

consideration for genomic identification and validation of 

therapeutic targets. 

 

We have observed that cis-acting variants in a gene 

encoding a drug target can anticipate both the pattern and 

rank order of effects of the corresponding drug on disease 

biomarkers. However, the effect sizes observed, particularly 

with common genetic variants, are typically one fifth to 

tenth that of the cognate drug.  Thus, there remains the 

possibility that if certain biological actions are only 

observed beyond some threshold, achieved through target 

perturbation by a potent drug, but not by the weak effect of 

natural genetic variation, such variants will fail to anticipate 

the full spectrum of effects of drug treatment. Thus, any 

discrepancy in the effects of genetic variants and drug 

action might arise not only from off-target actions of a drug 

(not shared by natural genetic variation), but also because of 

on-target threshold effects. The availability of common 

(weak effect) and rare (large effect) genetic variants in the 

same gene, that allows the construction of an allelic series 

(effectively a genetic dose-response curve), may go some 

way toward mitigating this possibility in specific cases65 113.  

 

We noted previously that local correlation between SNPs 

(LD) might lead to ambiguity on the source of the 

association signal(s) at any locus.   Since LD can extend 

beyond gene boundaries, this issue can affect gene-centric 

as well as whole genome association studies, though 

perhaps less so. In such gene-centric studies, there remains 

the possibility that disease and biomarker associations 

attributed to the local gene of interest in fact arise from 

effects of adjacent genes.  Approaches for exploring and 

accounting for this possibility were discussed earlier. 

The genomic approach to target identification and validation 

we describe is also necessarily limited by the range of 

available phenotypes.  Failure to comprehensively capture 

phenotypes influenced by perturbation of the target of 

interest, could lead to incomplete anticipation of the effect 

of drug treatment.  Recently, the monoclonal antibody 

romosozumab targeting sclerostin for the treatment of 

osteoporosis was developed based on the observation that 

patients with rare mutations in the encoding gene have 

increased bone mass. This agent increased bone mineral 

density and reduced osteoporotic fracture rate in two phase 

3 randomised trials but, in one of the trials, the rate of 

serious adverse cardiovascular events was also increased130 

131.  Since prior genetic studies, which had focused mainly 

on patients with rare mutations, had not evaluated 

cardiovascular end-points, it remains uncertain whether the 

apparent adverse signal of cardiovascular safety is real and 

if so, whether it is an on- or off-target, or threshold effect.   

 

Finally, most common disease genetic association studies 

that might inform drug development that have been 

performed to date have been undertaken in population-based 

longitudinal cohorts or case-control control datasets, where 

cases typically represent the first occurrence of a condition 

(e.g. a coronary heart disease event). However, first-in-class 

agents for CHD, and for many other common conditions, 

are tested or used initially patients with established disease, 

for prevention of disease progression or recurrence132. 

Mendelian randomization studies for target identification 

and validation in longitudinal clinical cohorts with 

established disease are few, currently limited by the 

available datasets, and also perhaps by potential biases 

arising from survivorship of, or indexing by, an initial event, 

that may limit inferences that can be drawn133. Nevertheless, 

the rediscovery by GWAS of over 70 drug targets suggests 

that genes influencing disease onset can, in many (but 

perhaps not all) cases, provide useful insight on targetable 

pathways for prevention of progression or recurrence of 

common conditions. 

 

In our a priori and a posteriori calculations of 𝛾𝑝𝑐 and other 

relevant metrics, we artificially reduced drug development 

to two steps:  a preclinical component to predict target-

disease pairings destined for clinical phase success (stage 

1), and a clinical component (stage 2) to evaluate target-

disease pairings brought forward from stage 1. The 

approach allowed the generation of formulas that highlight 

the key variables influencing drug development success, and 

some estimates of their values, based on observed success 

rates. These calculations should be viewed as no more than 
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an illustration to help inform developers of the key variables 

influencing success rates. 

 

Part 4: Summary and implications for drug 

development 

 

“Knowing is not enough; we must apply. Willing is not 

enough; we must do.”  

 

—Johann Wolfgang von Goethe, Writer and Statesman 

(1749-1832) 

 

Summary 

 

Three crucial factors have conspired to inhibit drug 

development success:  

 

(a) The apparently widespread contamination of the 

scientific literature by false discoveries, which undermines 

the validity of the hypotheses used to prioritise the selection 

of drug targets for different diseases;  

 

(b) The poor predictive accuracy of orthodox preclinical 

studies, arising due to animal-human differences in 

pathophysiology; and  

 

(c) The system flaw in drug development that sees the 

definitive target validation step (the RCT) deferred to the 

end of the drug development pipeline.   

 

With reasonable assumptions about the number of protein 

coding genes, druggable proteins and human diseases, and 

using probabilistic reasoning, we estimated that the 

observed success rate in drug development (~
4

100
 

for compounds; ~
2

100
 for targets) only marginally exceeds 

the probability (
1

200
) of correctly selecting a causal, 

druggable protein-disease pair through a random pick from 

a sample space defined by the 4,000 genes that are 

predicted to encode druggable targets and 10,000 diseases, 

assuming an average of 100 causal genes per disease.  With 

a target success rate of  
2

100
, based on the orthodox (non-

genomic) approach to target selection and validation, over 

100 independent drug development programmes for each 

disease need to proceed in parallel to have a 90% 

probability of even one success.  

 

Based on reported clinical and preclinical success rates, and 

making reasonable assumptions about values of clinical 

phase type 1 and type 2 error rates (𝛼𝑐  and 𝛽𝑐), we also 

found evidence that the proportion of true target disease 

relationships studied in preclinical development is small, 

that these form only the minor proportion of nominally 

positive findings that are brought forward into clinical phase 

studies.  This likely contributes to the high preclinical false 

discovery rate and low clinical phase success rate. 

 

Even applying the assumption that the probability of a 

protein influencing the pathogenesis of one disease is 

independent of the probability of it influencing any other, 

we show that it is highly likely that even small groups of 

diseases taken at random share at least one common target.  

This implies numerous opportunities should exist for 

therapeutic repurposing, but also that even highly specific 

modification of any target still runs a high risk of 

mechanism-based adverse effects.  However, knowledge of 

the effect of target-specific perturbation on multiple disease 

outcomes currently remains incomplete because the 

orthodox approach to target identification and validation is 

neither systematic nor comprehensive. 

 

In contrast to established non-genomic, approaches to 

preclinical drug development, GWAS deliver a methodical 

and reliable means of specifying the correct drug targets for 

a disease, provided that the genotyping arrays that are 

deployed have sufficient coverage of the druggable genome, 

and that the studies are adequately powered.  GWAS differ 

from established non-genomic preclinical experiments for 

target identification in that the evidence source is the human 

not an animal model; the false positive (type 1) error rate is 

low (typically set at 5 × 10−8); every potential drug target 

is interrogated in parallel (not just a selected subset); and the 

study design shares features of an RCT, the pivotal step in 

drug development.  For these reasons, we suggest that 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 30, 2017. ; https://doi.org/10.1101/170142doi: bioRxiv preprint 

https://doi.org/10.1101/170142
http://creativecommons.org/licenses/by-nc-nd/4.0/


34 
 

genetic studies will soon be universally regarded as an 

indispensable, though not exclusive element of drug 

development for common diseases.  By improving the 

efficiency and reliability of target identification, GWAS and 

similar genetic study designs offer the potential to overturn 

the currently poor odds of success currently beleaguering 

drug development.   

 

However, GWAS have yet to be optimally designed or 

sufficiently widely deployed to fully realise their potential 

to uncover the correct drug targets for many poorly treated 

diseases.  There are several reasons for this that relate to the 

design of genotyping arrays used in GWAS, the range of 

diseases studied, and the datasets used.   

 

Design of genotyping arrays used in GWAS:  Genotyping 

arrays used in GWAS to date have been designed to provide 

broad coverage of the human genome, while other widely 

used genotyping arrays were designed to fine-map disease-

associated loci identified by prior GWAS.  Neither design 

focuses explicitly on genes encoding druggable targets.  In 

whole genome arrays, local coverage of variants in genes 

encoding druggable targets could be sparse, while in fine-

mapping arrays such coverage could be incomplete.  For 

this reason, we recently specified the content of the Illumina 

DrugDev consortium genotyping array that combines the 

properties of a whole genome array with focal coverage of 

variants in the druggable genome to support genetic 

association studies for drug target selection and validation 

(‘druggable GWAS’) 67.  

 

Diseases represented in GWAS:  The 400 or so unique 

diseases and biomarkers subjected to GWAS so far 

represents only a fraction of the thousands of terms listed by 

disease classification systems or ontologies, or that are 

observed in electronic health record datasets. Moreover, 

retrospective power calculations suggest that sample sizes in 

many GWAS to date may have been insufficient to detect 

all causal, druggable targets.  Despite this, more than 70 of 

the 680 or so known drug targets have already been 

‘rediscovered’ based on therapeutic indications or 

mechanism-based adverse effects, signposting the future 

potential of this approach in drug development.   

 

Datasets used in GWAS:  Datasets subjected to GWAS up to 

now have typically been conducted one disease at a time. 

Yet, when information from such studies is collated, it 

becomes apparent that the same loci, genes or even SNPs 

can contribute to the susceptibility to more than one 

disorder, a phenomenon referred to by geneticists as 

‘pleiotropy’.  Pleiotropy can arise through a number of 

mechanisms83, but an important one for drug development is 

the involvement of the same encoded protein in the 

pathogenesis of more than one disease, flagging potential 

opportunities to repurpose therapies effective in one disease 

for another.  In this paper, we estimated that a single gene 

(and thereby a single druggable target) could affect the risk 

of 50 different disease entities. Undertaking GWAS one 

disease at a time and cross-referencing findings later is a 

relatively inefficient method for pleiotropy detection.  An 

alternative approach to pleiotropy detection at druggable 

targets is to undertake phenome wide association studies 

(PheWAS) using extremely large prospective cohorts, or 

genomic studies within healthcare systems. Though there is 

emerging activity in this area, there is much yet untapped 

potential.  

 

Implications for future drug development 

 

The concepts and calculations in this paper suggest avenues 

by which drug target selection and validation, and hence 

drug development success, might be improved in the future, 

even if a complete reversal of the odds of drug development 

success is only a theoretical rather than practically 

achievable goal.  

 

First, more systematic mining should be undertaken of data 

emerging from GWAS for the purposes of drug target 

identification.  Several groups, including our own, have 

initiated such work67 and new initiatives such as MR Base134 

and Open Targets135, and commercial spinouts (e.g. 

Genomics PLC) suggest there is a growing interest in this 

area. 
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Second, more systematic and comprehensive genomic 

studies of high priority targets could be undertaken 

prospectively against as broad a range of biomarkers and 

disease end-points as possible (drug-target PheWAS) to 

facilitate drug target validation. 

 

Third, to realise the full potential of genomics for both drug 

target identification and validation, genomic studies with 

comprehensive coverage of variation in the druggable 

genome need to be conducted at even larger scale, and with 

attention to multipe (not just single) biomarker and disease 

outcomes - joint genome- and phenome-wide association 

analyses (Figure 7).  This ‘big data’ approach requires 

resources that couple comprehensive genomics with 

extensive phenotype and disease capture.  One route to 

achieving this is to pull together analyses across cohorts, 

consortia and large national biobanks, and there are 

emerging examples of this approach136.  Cohort consortia 

and large national biobanks can also exploit their ability to 

undertake and evaluate emerging technologies in detail (e.g. 

transcriptomics, epigenomic, proteomic and metabolomic 

measures in tissues, blood and urine).  Summary level 

genetic associations with mRNA and protein expression, 

with metabolite level and with disease risk obtained in 

different datasets can subsequently be connected by a 

variety of statistical methods, to elucidate pathways to 

disease, because natural genetic variation (unaffected by 

disease and allocated at random) provides a fixed anchor 

point with which to connect such datasets, exploiting the 

central dogma137 of the unidirectional flow of information 

from DNA to RNA, to protein and via downstream 

mechanisms to disease.  It should be possible in this way to 

gain comprehensive insight on mechanism and pathway, as 

well as the likely downstream consequence of targeting a 

druggable protein pharmacologically. 

 

However, we believe a further step to increase the scale, 

breadth and depth of the approach is to embed genomic 

analysis within the healthcare setting so that information on 

natural genetic variation could be linked to the multiplicity 

of clinical and disease outcome data ascertained during 

routine clinical care138. 

 

To achieve a shift in development of this type, the benefits 

need to be clear to healthcare providers (whether insurers or 

governments), to academia and industry and, most 

importantly of all, to patients and society, addressing 

legitimate concerns that might exist about privacy, security 

and secondary use of health data.  

 

If such concerns can be addressed, through rigorous 

governance and data security, a new model of drug 

development might supervene because healthcare data 

typically resides outside the domain of the pharmaceutical 

industry within the healthcare sector, which, in some 

countries, is wholly or substantially state-run.   

 

In turn, this would dictate that a new funding and delivery 

structure might need to be established, at least for the 

component of drug development that relates to target 

identification and validation.  

 

We explore these issues in greater detail. 

 

Healthcare genomics as a means to increase the scale and 

range of gene-disease associations to improve drug target 

identification:  Most datasets used in prior GWAS have 

either been investigator-led collections of patients with 

single diseases or population based cohort studies.  Efforts 

to expand existing studies or to make new disease 

collections proceed sporadically because they are expensive 

to undertake and unattractive to research funders given that 

the initial creation of the dataset, no specific scientific 

hypothesis is explored.  Population cohort studies measure 

numerous preclinical biomarkers and are increasingly being 

enriched with new proteomic and metabolomics measures.  

However, only relatively modest numbers of cases of 

different disorders accumulate in such datasets over time, 

determined by their natural incidence rates. Consortia of 

cohort studies, and large national biobanks139 have gone 

some way towards achieving the necessary scale but we 
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believe a further step-change is now needed to maximise the 

value of genetic studies for drug target identification.   

 

Based on the arguments developed in this paper, we propose 

that genotyping or eventually sequencing be embedded in 

routine healthcare settings to explicitly aid target 

identification and validation for drug development.  This is 

because routine diagnostic and prognostic tests are 

undertaken, and clinical diagnoses made in patients (as well 

as healthy citizens as part of preventative medicine efforts) 

on a scale and with a range that would be challenging to 

reproduce using investigator-led case collection or cohort 

studies in the conventional research setting.  Indeed, in 

countries with healthcare systems that provide universal 

coverage such as the National Health Service in the UK, the 

theoretical cohort size extends to the whole population (63 

million people in this example), which would encompass 

disease collections of unsurpassed size and breadth. Were 

such healthcare datasets to be connected to information on 

genetic variation, even at summary level, the genotype-

disease associations that would be gathered would enable 

drug targets to be matched accurately, systematically and 

efficiently to the multiplicity of diseases occurring in such 

healthcare settings, with the bonus of capturing multiple 

disease outcomes in the same individual. 

 

There are already precedents to using healthcare data at this 

scale for research.  In the UK, the Clinical Practice Data 

Link140 has provided anonymised primary care records for 

research since 1987 and, more recently, CALIBER141 has 

created a research cohort of ~10 million individuals by 

linking health records from primary care, hospital episodes, 

disease registry and mortality statistics.  Mature efforts to 

utilise routine healthcare data for research have also been 

established in Scandinavia and elsewhere142.  In the USA, 

precedents have already been set for connecting genotyping 

data to healthcare records to help identify disease-

susceptibility and treatment response genes, e.g. in the 

EMERGE consortium143 and the Million Veterans 

Programme144. In the UK, information on genome sequence 

is being connected to health record data in UK Biobank, in 

patients with rare diseases through the Genomics England 

(GEL) project145 and in individuals from ethnic minority 

groups with a high prevalence of certain diseases and a high 

degree of relatedness through the East London Genes and 

Health Initiative146.   

 

A national healthcare genomics effort would build on and 

complement these efforts. It would extend research 

platforms based on electronic health records alone (e.g. 

CPRD and CALIBER) into the genomic space. It would 

surpass the scale and representativeness of existing 

genomics healthcare platforms or initiatives (e.g. EMERGE 

or Geisinger, which have been in the vanguard of these 

developments, but which are confined to participating 

private healthcare systems) as well as the Million Veterans 

Programme which, through its design, includes almost 

exclusively male participants (see Table 6 for other 

examples of genomics and healthcare initiatives).  

Moreover, unlike GEL and the East London Genes and 

Health project, where recruitment is highly targeted, a 

national genomics effort would receive all comers. Until 

costs fall further and informatics pipelines are more 

streamlined, it could also focus on genotyping using fixed 

content arrays, exploiting increases in the number of 

genotyping assays per array and improved reference panels 

for imputation.  This approach would be less expensive and 

less analytically demanding than whole-genome or whole-

exome sequencing.  As sequencing eventually becomes 

more cost-efficient this technology would eventually replace 

genotyping. 

 

The optimal mechanisms for obtaining consent, for bio-

specimen collection, and for data management would need 

to be established, but much could be learnt from pre-

existing efforts. For example, bio-specimen collection might 

occur in hospital (at the point of emergency or elective care, 

during imaging or blood taking), in primary care, and / or by 

a direct-to-patient approach, using a despatched saliva 

collection kit, or some combination.  

 

Justifying a healthcare genomics initiative to healthcare 

providers and users:  The full engagement, understanding 

and support of patients and healthcare providers would need 
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to be gathered at scale, with an open dialogue about the 

potential risks (e.g. of unintended patient data disclosure) 

balanced against individual and societal benefits.   Recent 

enterprises such as the Transforming Genetic Medicine 

Initiative (TGMI)147, the Personal Genome Project148 and 

Patients Like Me149 may have an important role to play, if 

the ideas are to gain traction. 

 

Healthcare providers and users might at first consider any 

potential research benefits from the initiative we describe to 

be too speculative and the benefits too remote.  However, 

we believe the arguments elaborated in this paper and 

elsewhere make the overall scientific and economic case 

compelling.  Moreover, evidence is already emerging that 

genomics has whet the public appetite for wider 

participation in medical research.   For example, direct to 

consumer genotyping has been available for some time 

through 23andme and other providers150, including 

distribution through high street outlets.  Participants 

submitting samples to 23andMe outside the UK have had 

the opportunity to participate in medical research by 

submitting self-reported healthcare data.  Such information 

has already contributed to disease gene discovery in 

Parkinson’s disease151, depression152 and a range of other 

diseases and traits153. Similar efforts are being made by the 

academia led Genes for Good collaboration154. It seems not 

a very great leap of faith to consider that, with appropriate 

public discourse on potential benefits, and mitigation of any 

risks, that there could be widespread public enthusiasm for 

an initiative that explicitly links anonymised personal 

genomic data to health records for the purpose of 

accelerating drug development, under a new model, to the 

benefit of society.  

 

Since healthcare providers and users might still rightly 

argue for more immediate and individual benefit from a 

healthcare genomics initiative, the genotyping arrays for this 

project could be designed with a dual purpose. Genotypic 

information of immediate value in healthcare decision-

making could be made available to patients and their 

doctors as part of a healthcare episode: personal healthcare 

genomics for diagnosis, risk assessment and individualised 

treatment.  This could include information on clinically 

actionable genetic variants that influence beneficial and 

adverse drug response, disease risk155, compatibility of 

transfusions and transplants, or risk of recessive genetic 

diseases that might manifest in future generations, to aid 

preconception planning, as such variants become 

sufficiently validated.  Validated genotypic information 

from prior GWAS of general interest to patients could also 

be returned, e.g. on ancestry; on genes influencing sleep 

pattern, facial appearance, hair and eye colour, coffee and 

alcohol metabolism and so on.  In parallel, the remaining 

genomic information from participants, linked anonymously 

to health record phenotypes and disease outcomes, would 

contribute in aggregate (at summary not individual level) to 

large-scale investigations of the causes of human diseases 

and the identification of disease-specific drug targets: public 

health genomics for drug development.   

 

Democratising drug development:  If accepted, an effort 

such as this would be likely to convert drug target 

identification and validation from an almost exclusively 

private sector, commercially sensitive enterprise to an open, 

pre-competitive, societal endeavour, with the joint 

involvement of academia and industry, healthcare providers 

and healthcare users, all with the shared goal of developing 

new medicines more efficiently.  In effect, drug 

development would become democratised; with healthcare 

users also becoming participants in drug target discovery 

and validation. 

 

If new medicines are to arise from this endeavour, there 

would still need to be intellectual property and revenue 

opportunities for commercial partners.  The biotech and e-

tech industries could be engaged to develop and deploy the 

optimal tools for bio-sample collection, genomic analysis, 

data generation, management and interpretation.   The 

pharmaceutical industry would continue to lead on the 

numerous, essential tasks of drug development beyond 

target selection and validation including compound 

synthesis and screening, detailed mechanistic studies to 

elucidate mode of action, toxicology, pharmacokinetics, 

first-in-man studies and clinical trials.  The intellectual 
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property and commercial advantage would accrue from the 

agents developed, and from developing and evaluating the 

best drugs most efficiently against targets that have already 

been reliably deduced and validated.  Since these activities 

would be concentrated on the correct therapeutic targets, 

and less likely misplaced, the risk of development failure 

should be reduced.  This should stimulate a shift in R&D 

from the derivative to innovative, inspiring drug 

development for diseases that have previously been 

considered too risky to tackle.  The benefits to society 

would come from containing drug development costs and 

expanding the therapeutic armamentarium against a broader 

range of diseases.   

 

There would be additional benefits from such an effort. We 

have focused here mainly on genomic studies for matching 

targets with diseases (target identification). However, in 

related work (see Appendix 1) we (and others) have shown 

that the principle can also be used to anticipate the spectrum 

of effects of pharmacological action on biomarkers, 

surrogate and clinically relevant disease end-points. 

Mendelian randomisation for drug target validation has 

been used to accurately predict phase 3 trial outcomes, 

distinguish on- from off- target effects of drugs, correctly 

identify detailed biomarker profiles of therapeutic 

response, and to identify repurposing opportunities for 

licensed therapies.  This underscores the view that such 

studies are not just useful for target identification but can 

also for inform drug development programmes from start to 

finish by indicating biomarkers of therapeutic response to 

measure in phase 1/2 clinical studies, and the relevant 

spectrum of clinical outcomes that should be ascertained in 

clinical trials. The incorporation of outcomes in clinical 

trials that are anticipated to be affected by pharmacological 

action on a particular target (target-specific outcomes of 

both efficacy and safety) would represent a departure from 

the current norm where end-points in a particular 

therapeutic area tend to be uniform regardless of the target 

being evaluated.  Genetic information could also be useful 

for compound optimisation since the profile of biomarker 

effects of a SNP in a gene encoding a drug target should be 

those of a clean drug with no off-target actions 84 104. Where 

compounds are developed that have actions that are distinct 

from those observed in a genetic study, these may be off-

target effects, and suggest that a more specific compound 

may need to be developed before the programme 

progresses.  By the same principle, PheWAS would inform 

which clinical efficacy and safety end-points should be 

specified as outcomes in RCTs of compounds against a 

specified target.  The spectrum of outcomes could differ 

from target to target, even for two targets being evaluated 

for the same primary disease indication. RCTs would need 

to be powered for both safety and efficacy outcomes, so that 

the balance between the benefits and any risk of target 

modification can be quantified before licensing.  This 

should reduce the problem of mechanism-based side effects 

only emerging post marketing.  This would also ensure that 

RCTs do not fail for failure to select the correct end-points, 

or because of the contamination of composite end-points 

(and thereby dilution of any treatment effect) by inclusion 

of outcomes that are unaffected by target modification. 

 

Delivery vehicle and funding:  The appropriate delivery 

vehicle for such an initiative requires careful consideration. 

It could be a form of social enterprise entrusted to create an 

open innovation platform where individual data is secured 

and protected, while aggregated data on genetic associations 

is shared, for the purpose of drug target identification and 

validation. Investment for the platform could come from a 

partnership of academic funders, healthcare and industrial 

sources with the knowledge generated helping all sectors 

and stakeholders.  

 

Patients and healthcare providers would benefit from more 

efficient drug development, cost containment and, as a 

wider range of diseases is tackled, from access to a wider 

range of therapies.  This could encourage government 

investment from healthcare, research, and business and 

innovation funding streams.   

 

The biotech and digital technology sectors would benefit 

from a growing market for their technologies, while the 

pharmaceutical sector would benefit from what we believe 

will be greatly reduced failure rates in drug development.  
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The societal benefits that we believe will accrue may also be 

attractive to entrepreneurs looking to invest in a 

transformative social enterprise.  

 

The leadership and oversight of such an endeavour would 

need to be trustworthy and accountable.  It could come as a 

natural progression for academic medical centres that have 

established strong translational research programmes.  In 

England, for example, these are funded by the National 

Institute of Health Research through Biomedical Research 

Centres (BRCs) formed of University / NHS partnerships, 

with the deep involvement of patients in their research 

activities.  Increasingly, such centres are also establishing 

collaborative research activities and partnerships with 

industry, based on projects that are most likely to have 

patient benefit.  Mature patient and public involvement 

activities, which underpin the work of all BRCs, could help 

identify and address patient and societal concerns, gauge 

enthusiasm for the proposal and, if accepted, help enrol 

patient champions for the project. Law Faculties in the 

academic sector, working with their counterparts in the 

healthcare systems and industry would also be well placed 

to develop solutions for legal, ethical and data protection 

issues that would undoubtedly arise. 

 

Whatever the organisational structure, the outputs of the 

project – information on the correct drug targets for human 

diseases, and the outcomes relevant to perturbation of 

individual targets – would be made available without 

restriction, using an open access model.  This would ensure 

target identification is pre-competitive, with any 

commercial advantage and intellectual property coming 

from other aspects of drug development. 

Conclusions 

 

The fundamental problem in contemporary drug 

development has been the unreliability of target 

identification leading to low development success rates, 

inefficiency and escalating cost to healthcare users.  

Genomics now provides a tool to address the problem 

directly by accurate identification of proteins that both play 

a controlling role in a disease and which are amenable to 

targeting by drugs.  Maximising the opportunities arising 

from this paradigm requires the wider use of genomics in 

the healthcare setting and with this, the active participation 

of healthcare users in drug development.  The 

democratisation of drug development could have the 

consequence of reducing wasted investment, increasing 

value for investors and, eventually, reducing drug price 

inflation for healthcare providers. It might also provide the 

sorely needed stimulus for true drug development 

innovation, to the benefit of patients, health systems, 

business and society.  
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Orthodox drug development Mendelian randomisation trials (MRT) 

Drug target Compound(s) 
evaluated 

Developme
ntal stage 

Therapeutic area Outcomes assessed 
in preclinical studies 
or RCTs of selective 
drug interventions 

Findings from 
preclinical studies or 
RCTs of selective drug 
interventions 

Encoding 
gene 

Outcomes 
evaluated 
in MRTs 

Findings from MRTs Inferences drawn from 
comparison of the 
findings from preclinical 
studies or RCTs and MRT 

Cholesteryl ester 
transfer protein[1] 

Torcetrapib Phase III Cardiovascular 
disease 

Blood lipids (total-, 
LDL-, and HDL 
cholesterol, 
triglycerides); 
blood pressure; 

CVD events 

HDL-elevation, 
triglyceride and LDL- 
reduction. 

Unintended BP 
elevation. 

Unintended increase in 
CVD events 

CETP[2] Blood lipids (total-, 
LDL-, and HDL 
cholesterol, 
triglycerides); 
blood pressure 

Associations with blood 
lipids consistent with 
effects in RCTs. No 
genetic association with 
BP. 

Blood pressure elevating effect 
of torcetrapib is offtarget 

Hydroxy 
methyl (HMG)-coA 
reductase[3] 

Statins Phase IV 

(post- 
marketing) 

Cardiovascular 
disease 

Blood lipid fractions, 
weight, type 2 
diabetes risk 

Statin treatment in 
RCTs linked to 

increased weight and 
risk of type 2 diabetes. 

HMGCR[3] Blood lipid fractions, 
anthropometric 
measures, glucose 
and insulin, type 2 
diabetes risk 

HMGCR SNPs associated 
with lower LDL-C, 
higher weight, fasting 
glucose and insulin, and 
type 2 diabetes risk 

Increased risk of type 2 diabetes is 
an unintended on-target effect of 
statins mediated in part through 
weight gain 

Niemann-Pick C1-like 1 
[4] 

Ezetimibe Phase III Cardiovascular 
disease 

LDL-cholesterol, 
cardiovascular death, 
non-fata myocardial 
infarction, unstable 
angina requiring 
hospitalisation and 
revascularisation 

Ezetimibe added to 
statins produces 
modest additional 
benefit in 
cardiovascular 
outcomes in patients 
following an acute 
coronary syndrome 

NPC1L1 
[5] 

Plasma lipid levels 
and risk of coronary 
heart disease. 

Inactivating mutations in 
NPC1L1 are associated 
with lower LDL-cholesterol 
and protection from 
myocardial infarction risk. 

Niemann-Pick C1-like 1 is a 
validated target for LDL-
cholesterol lowering and 
coronary heart disease 
prevention. 

Proprotein convertase 
subtilisin/kexin type 9 
serine protease [6] 

Alirocumab, 
evolocumab 

Phase II Lipid lowering 
and 
cardiovascular 
disease 

LDL-cholesterol Alirocumab and  
evolocumab reduce 
LDL-cholesterol among 
patients with 
heterozygous familial 
or polygenic 
hypercholesterolaemia
and reduce 
cardiovascular events 
in patients with or at 
high risk of 
cardiovascular disease 

PCSK9 
[7] 

LDL-cholesterol and 
rosk of coronary heart 
disease 

Inactivating 
mutations in PCSK9 
associated with 
reduced LDL-
cholesterol and CHD 
risk 

Proprotein convertase 
subtilisin/kexin type 9 serine 
protease is a validated target 
for LDL-cholesterol lowering 
and reduction in 
cardiovascular risk 

Glucagon-like 
peptide-1 receptor [8] 

Liraglutide Phase III Diabetes and 
cardiovascular 
disease 

Death from 
cardiovascular 
causes, non-fata 
myocardial 
infarction, or 
non-fata stroke. 

Liraglutide reduced risk 
of  death from 
cardiovascular causes, 
nonfatal myocardial 
infarction, or nonfatal 
stroke among patients 
with type 2 diabetes 
mellitus 

GLP1R 
[9] 

Body weight, 
glycaemic traits, lipids, 
blood pressure, risk of 
type 2 diabetes and 
coronary heart disease 

A low frequency, 
coding region 
missense variant in 
GLP1R is associated 
with lower fasting 
glucose, diabetes 
risk and risk of 
coronary heart 
disease. 

GLP1R is a validated target for 
treatment of diabetes and 
reducing coronary heart 
disease risk 
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Drug target Compound(s) 
evaluated 

Development
al stage 

Therapeutic 
area 

Outcomes assessed 
in preclinical studies 
or RCTs of selective 
drug interventions 

Findings from 
preclinical studies or 
RCTs of selective drug 
interventions 

Encoding 
gene 

Outcomes evaluated 
in MRTs 

Findings from MRTs Inferences drawn from 
comparison of the 
findings from preclinical 
studies or RCTs and MRT 

Lipoprotein- 
associated 
phospholipase A2 
(Lp- 
PLA2) [10,11] 

Darapladib Phase III Cardiovascular 
disease 

Major cardiovascular 
events or major 
coronary events 

No reduction in CVD 
events in patients 
with stable coronary 
disease or recent ACS; 
despite reductions in 
Lp-PLA2 mass and 
activity. 

PLA2G7[12, 
13] 

Lp-PLA2 
concentration, blood 
lipids, inflammation 
markers, and CHD 
events 

PLA2G7 variants were 
not associated with 
alterations in 
cardiovascular risk 
markers or CHD events 

Lp-PLA2 is not involved in the 
development of 
cardiovascular disease; low 
priority as therapeutic target for 
this indication 

Interleukin-6 
receptor[14] 

Tocilizumab Phase III Autoimmune 
disease 

Blood lipid fractions 
and inflammation 
markers including IL- 
6, CRP and 
fibrinogen 

In patients with 
rheumatoid arthritis, 
tocilizumab induced 
alterations in 

circulating 

inflammation markers 
characteristic of IL-6 
blockade 

IL6R[14] Blood lipid fractions 
and inflammation 
markers including iL-6, 
CRP and fibrinogen. 
Cardiovascular events 
including CHD events 
and abdominal aortic 
aneurysm 

Variants in the IL6R 

gene that recapitulate 
the biomarker profile of 
IL6-R blockade were 
associated with a 
reduction in CHD events 

IL-6 receptor signalling is 
involved in the 

development of CHD. The IL-6 
receptor blocker tocilizumab 
could be repurposed for the 
treatment of CVD 

C-reactive 
protein[15] 

No CRP 
inhibitors yet 
available for 
clinical use. 

Preclinical Cardiovascular 
disease 

Effects of CRP on 
processes believed 
to contribute to 
atherosclerosis 

studied in vitro or in 
animals. 

Associations of CRP 
with CVD in human 
observational 
studies. 

Observational 
associations of CRP 
with CVD events in 
humans, but studies 
prone to confounding. 
Pro-atherogenic 
effect of CRP in vitro 

and in animals later 
proved to be 
artefactual. 

CRP[16] Inflammation and 
coagulation markers, 
blood lipid fractions, 
and coronary heart 
disease events 

SNPs in the CRP gene 
exclusively associated 
with CRP exhibited no 
association with CHD. 
No causal association of 
CRP with CHD based on 
instrumental variables 
analysis. 

CRP is not  
Causal in CHD pathogenesis; 
priority as a therapeutic target for 
CHD prevention diminished 

Secretory 
phospholipase A2 
(sPLA2)[17] 

Varespladib Phase III Cardiovascular 
disease 

sPLA2 concentration, 
blood lipids, 
inflammation 
markers, and CVD 
events 

No beneficial effect of 
varespladib on CVD 
events in patients 
with recent acute 
coronary syndrome 
(ACS), despite a drug- 
induced reduction in 
sPLA2 concentration 
and activity 

PLA2G2A[18] sPLA2 mass and 
activity and major 
vascular events (MVE) 
in general populations 
and patients with ACS 

SNPs in the PLA2G2A 
gene were associated 
with substantial 
alterations in sPLA2 
mass and activity but not 
with MVE 

sPLA2 is not involved in the 
development of cardiovascular 
disease; dismissed as a 
therapeutic target in CVD 

Potassium/sodium 
hyperpolarization-
activated cyclic 
nucleotide-gated 
channel 4 [19] 

Ivabradine Phase IV 

(post- 
marketing) 

Cardiovascular 
disease  

Risk of atrial 
fibrillation 

Developed for angina 
and heart failure, 
post-hoc  meta-
analysis of RCTs 
(motivated by genetic 
findings [14, 15], 
indicated ivabridine 
treatment is 
associated with a 
higher risk of atrial 
fibrillation.  

HCN4 
[20,21] 

Atrial fibrillation 
(genome wide 
association analysis) 

Variants in the gene HCN4 
encoding the target of 
ivabridine associate with a 
higher risk of atrial 
fibrillation.   

Atrial fibrillation is a 
mechanism-based adverse 
effect of ivabridine treatment.  
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Appendix 1.  

Comparison of the findings from orthodox randomised controlled trials or meta-analyses, and Mendelian randomisation trials of the corresponding therapeutic target.

Drug target Compound(s) 
evaluated 

Development
al stage 

Therapeutic 
area 

Outcomes assessed 
in preclinical studies 
or RCTs of selective 
drug interventions 

Findings from 
preclinical studies or 
RCTs of selective drug 
interventions 

Encoding 
gene 

Outcomes evaluated 
in MRTs 

Findings from MRTs Inferences drawn from 
comparison of the 
findings from preclinical 
studies or RCTs and MRT 

TNF receptor 1 and 
TNF [22 23] 

Monoclonal 
antibodies 
against tumour 
necrosis factor-
alpha (TNF) 
 

Phase II I and 
Phase IV 

Neurological 
disease 

Multiple sclerosis 
exacerbations 

Multiple sclerosis 
exacerbations. 

TNFRSF1A 
[24] 

Multiple sclerosis  A variant in the TNFRSF1A 
that encodes the TNF 
receptor 1 gene indices 
expression of a soluble 
form of TNFR1 that blocks 
the effect of TNF, and 
associates with a higher 
risk of MS. The mechanism 
mimics that of monoclonal 
antibodies against TNF.  

Exacerbation of MS induced by 
anti-TNF monoclonal antibodies 
is mechanism based. 
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Appendix 2. 

 

Calculation of the probability of success for a company 

that initiates 𝑵 parallel pre-clinical trials but will only 

pursue one of the signals to a further clinical trial. 

 

Suppose industry selects 𝑁 targets at random from a pool of 

𝑡 targets where only 𝑐 targets are causal to the disease of 

interest. The 𝑁 pre-clinical programmes will generate a 

number of positive signals of which the company will select 

only to progress to clinical phase following which there will 

be a licensing success (if the signal comes from a true 

target) or failure if the preclinical signal is a false positive.  

To calculate the probability of eventual licensing success we 

consider a situation where many companies repeat an 

experiment involving 𝑁 preclinical programmes only 

pursuing only one of the positive signals to a phase 3 

clinical trial, and then calculating what proportion of such 

trials will result in a licensing success.   

 

1) We first calculate the probability of having 𝐴 causal 

targets among the 𝑁 targets selected at random from the 

pool of 𝑡 possible targets.  Each company will select a 

different number by chance (𝐴 =  0, 1, 2, 3 …) with the 

probabilities of each following the hypergeometric 

distribution: 

 

𝑃(𝐴) =
(

𝑐
𝐴

) (
𝑡 − 𝑐

𝑁 − 𝐴
)

(
𝑡
𝑁

)
 

 

So, if 𝑡 = 4000 with 𝑐 = 20, and we run 𝑁 = 20 pre-

clinical trials then: 

 

𝑃 (𝐴 = 0)  =  0.90 

𝑃 (𝐴 = 1)  =  0.09 

 

2) We next calculate the probability of generating true 

signals (𝑆𝑡) and false signals (Sf):  The 𝐴 causal targets 

in the 𝑁 programmes can generate from 0 to 𝐴 signals 

(𝑆𝑡 =  0, 1 …  𝐴), while the non-causal target can 

generate from 0 to 𝑁 − 𝐴 signals (𝑆𝑓 =  0, 1, 2 …  𝑁 −

𝐴). Each of these probabilities follow a binomial 

distribution independent from each other: 

 

𝑃 (𝑆𝑡) = (
𝐴
𝑆𝑡

) 𝛽𝐴−𝑆𝑡(1 − 𝛽)𝑆𝑡   

𝑃 (𝑆𝑓) = (
𝑁 − 𝐴

𝑆𝑓
) 𝛼𝑆𝑓(1 − 𝛼)𝑁−𝐴−𝑆𝑡  

 

Where (1 − 𝛽) and  are the probabilities that a causal 

and non-causal target will produce a signal 

respectively.   The two probabilities being independent, 

the probability of a particular combination of signals 

from causal and non-causal targets is the product of the 

separate probabilities: 𝑃(𝑆𝑡, 𝑆𝑓)  =  𝑃(𝑆𝑡) 𝑥 𝑃(𝑆𝑓). 

For example, the probability that, in a given repetition 

the causal targets produce 2 signals and the non-causal targets 

produce three signals is 𝑃(𝑆𝑡 = 2 , 𝑆𝑓 = 3)   =  𝑃(𝑆𝑡 = 2)  ×

 𝑃(𝑆𝑓 =  3) 

 

3) The probability of selecting a real target among a combination 

of true and false signals (𝑆𝑡, 𝑆𝑓) is given by the proportion of 

true signals: 𝑆𝑡 / (𝑆𝑡 +  𝑆𝑓) 

 

Thus, for a given 𝑁, 𝑐 and 𝑡, the final probability of licensing 

success across all possible values of 𝐴, 𝑆𝑡 and 𝑆𝑓 is: 

 

𝑃(𝑆𝑢𝑐𝑐𝑒𝑠𝑠) = ∑ 𝑃(𝐴) [ ∑ ∑ 𝑃(𝑆𝑡)𝑃(𝑆𝑓) (
𝑆𝑡

𝑆𝑡 + 𝑆𝑓
)

𝑁−𝐴

𝑆𝑓=0

𝐴

𝑆𝑡=0

]

𝑁

𝐴=0
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Tables 

Table 1a. The difference between the type 1 error (false-positive) rate (𝛼) and the false-discovery rate (𝐹𝐷𝑅). 1000 different hypotheses in a field are tested by 

experiments designed with a detection rate (power; 1 − 𝛽) = 0.8, with 𝛼 = 0.05. With 100 real effects to discover (𝛾 = 0.1), the false discovery rate is 45/125 =
 36%.  

 

 

 

 

 

 

 

 

 

 

 

 

Table 1b.  The relationship between 𝛼, 𝛽, and 𝛾, the true discovery rate (𝑇𝐷𝑅) and the false discovery rate (𝐹𝐷𝑅). 

 

 

 

 

 

 

 

 

 

 
True 

relationship 
No 

relationship 
Hypotheses 

tested 
𝑻𝑫𝑹 𝑭𝑫𝑹 

Observed 
relationship 

80 45 125 0.64 0.36 

No 
observed 
relationship 

20 855 875 
  

Total 100 900 1000 
  

Outcome Causal pairings Non-causal pairings Hypotheses tested 𝑻𝑫𝑹 𝑭𝑫𝑹 

Declared positive 𝛾(1 − 𝛽) 𝛼(1 − 𝛾) [𝛾(1 − 𝛽)] + [𝛼(1 − 𝛾)] 

𝛾(1 − 𝛽)

𝛾(1 − 𝛽)  +  𝛼 (1 − 𝛾)
 

 𝛼(1 − 𝛾) 

(1 − 𝛽) 𝛾 +  𝛼 (1 − 𝛾)
 

Declared negative 𝛾𝛽 (1 − 𝛼)(1 − 𝛾) [𝛾𝛽] + [(1 − 𝛼)(1 − 𝛾)] 
 

 

  𝛾 1 − 𝛾 1   
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Table 2: A priori estimates of preclinical (pc), clinical (c) and overall (o) drug development success contrasting orthodox (non-genomic) with genomic approaches. 𝑇𝐷𝑅, 𝐹𝐷𝑅,   

𝑆𝑝𝑐 , 𝑆𝑐  and 𝑆𝑜 are presented at different values of 𝛼  (Type 1 error rate) 𝛽  (Type 2 error rate) and 𝛾 (proportion causal and druggable targets).  

𝛾𝑝𝑐 = (𝐶̅
𝑁𝐺

⁄ ) (
𝑁𝑇

𝑁𝐺
⁄  ) when the sample space is defined by a) 𝑁𝐺 ×  𝑁𝐷, and b) when the sample space is restricted to the druggable genome (𝑁𝐺 ×  𝑁𝑇). See text for details. 

 

 

a             

𝐶̅ 𝛾𝑝𝑐  𝛼𝑝𝑐  𝛽𝑝𝑐   𝐹𝐷𝑅𝑝𝑐  𝑆𝑝𝑐  𝑇𝐷𝑅𝑝𝑐 =  𝛾𝑐  𝛼𝑐  𝛽𝑐  𝐹𝐷𝑅𝑐  𝑇𝐷𝑅𝑐 𝑆𝑐  𝑆𝑜 

10 0.0001 0.05 0.2 0.9984024 0.05008 0.0015976 0.05 0.2 0.97503657 0.02496343 0.051198203 0.00256 

100 0.001 0.05 0.2 0.98423645 0.05075 0.01576355 0.05 0.2 0.79601594 0.20398406 0.06182266 0.00314 

1000 0.01 0.05 0.2 0.86086957 0.0575 0.13913043 0.05 0.2 0.27887324 0.72112676 0.154347826 0.00888 

10 0.0001 0.00000005 0.2 0.00062455 0.00008 0.99937545 0.05 0.2 0.000039057 0.99996094 0.79953159 0.000064 

100 0.001 0.00000005 0.2 0.000062434 0.0008 0.99993757 0.05 0.2 3.9023E-06 0.9999961 0.799953175 0.00064 

1000 0.01 0.00000005 0.2 6.1875E-06 0.008 0.99999381 0.05 0.2 3.8672E-07 0.99999961 0.799995359 0.0064 

             

b             

𝐶̅ 𝛾𝑝𝑐  𝛼𝑝𝑐  𝛽𝑝𝑐   𝐹𝐷𝑅𝑝𝑐  𝑆𝑝𝑐  𝑇𝐷𝑅𝑝𝑐 =  𝛾𝑐  𝛼𝑐  𝛽𝑐  𝐹𝐷𝑅𝑐  𝑇𝐷𝑅𝑐 𝑆𝑐  𝑆𝑜 

10 0.0005 0.05 0.2 0.99205955 0.050375 0.00794045 0.05 0.2 0.8864745 0.1135255 0.055955335 0.00282 

100 0.005 0.05 0.2 0.9255814 0.05375 0.074418605 0.05 0.2 0.43736264 0.56263736 0.105813953 0.00569 

1000 0.05 0.05 0.2 0.54285714 0.0875 0.45714286 0.05 0.2 0.06909091 0.93090909 0.392857143 0.03438 

10 0.0005 0.00000005 0.2 0.00012492 0.00040005 0.99987508 0.05 0.2 7.8085E-06 0.99999219 0.799906309 0.00032 

100 0.005 0.00000005 0.2 0.000012437 0.00400005 0.99998756 0.05 0.2 7.7734E-07 0.99999922 0.799990672 0.0032 

1000 0.05 0.00000005 0.2 0.000001875 0.04000008 0.99999881 0.05 0.2 7.4219E-08 0.99999993 0.799999109 0.032 
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Table 3: The number of terms within widely used disease classification systems and ontologies as of 24 February 2016.   

 

Coding 
Scheme 

Type Number  
of 
terms 

Data source 

ICD-10 Disease 
classification 

12,445 http://apps.who.int/classifications/apps/icd/ClassificationDownload/DLArea/Download.aspx 

Human 
Disease 
Ontology 

Ontology 9,196 https://github.com/DiseaseOntology/HumanDiseaseOntology/tree/master/src/ontology 

Human 
Phenotype 
Ontology 

Ontology 11,683 http://human-phenotype-ontology.github.io/downloads.html 

Experimental 
Factor 
Ontology 

Ontology 17,263 https://sourceforge.net/p/efo/code/HEAD/tree/trunk/src/efoinobo/efo.obo 

Expanded 
Diagnostic 
Cluster 

Disease 
groups 

282 The Johns Hopkins ACG® System Version 11.0 Technical Reference Guide 

Clinical 
Classification 
Software 

Disease 
groups 

259 http://www.ahrq.gov/research/data/hcup/icd10usrgd.html 

PheWAS 
Catalog 

Disease 
groups 

1,645 https://phewas.mc.vanderbilt.edu/ 

SNOMED CT Clinical 
Terminology 

422,382 https://www.nlm.nih.gov/research/umls/licensedcontent/snomedctfiles.html 

READ CTV3 Clinical 
Terminology 

329,147 https://isd.hscic.gov.uk/trud3/user/guest/group/0/pack/9 
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Table 4 (following pages). Illustrative examples of mapping SNPs curated in the GWAS catalogue to genomic linkage dis-equilibrium (LD) intervals containing targets of 
licensed and clinically used drugs (adapted with modification from Finan et al. http://biorxiv.org/content/early/2016/07/26/066027). The gene encoding the drug target is listed 
using Human Genome Nomenclature Catalogue designation. Drug names and indications are from First Data bank. GWAS SNPs are listed according to Refseq number and 
physical distances are in base pairs (bp). Curation code refers to the correspondence between the treatment indication and GW AS disease or trait association (see Text). 
Examples are shown of treatment indication rediscoveries which refer to a drug target indication-genetic association match (Curation code 1= precise match, code 2=disease 
area match). For many of these the drug target gene is the sole occupant of the LD interval defined by the GWAS SNP. Examples come from a variety of disease areas and, 
for some diseases (e.g. type 2 diabetes and rheumatoid arthritis), multiple target rediscoveries are noted.  Examples of rediscoveries of mechanism of action (curation code 3) 
and mechanism-based side effects are also seen (curation code 4) 
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Gene Drug Molecule 
type 

Curation 
code 

GWAS EFO term Drug Indication (FDB) Associated 
Variant 

Reference 
(pmid) 

Minimun 
distance from 
druggable gene 
(bp) 

Distance rank of 
druggable gene 

Number of 
Genes In 
LD interval 

Number of 
Druggable  
genes in LD 
interval 

ALDH2 DISULFIRAM Small molecule 1 alcohol drinking | 
drinking behavior 

Alcoholism (adjunctive treatment) rs11066280| 
rs12229654| 
rs2074356 | 
rs671 

21270382| 
21372407| 
23364009| 
24277619 

6016 - 790230 1 -18 22 - 33 2 - 4 

PDE4D AMINOPHYLLINE Small molecule 1 asthma Acute asthma | Acute exacerbation of chronic 
obstructive airways disease | Bronchial 
asthma | Chronic obstructive pulmonary 
disease | Left ventricular failure - cardiac 
failure - cardiac asthma | Reversible airways 
obstruction | Routine maintenance therapy in 
chronic bronchitis and asthma  

rs1588265 19426955 448153 1 2 1 

IGF1R MECASERMIN Protein 1 body height Growth failure due to primary IGF-1 deficiency rs2871865 20881960| 
25429064 

2696 1 2 1 

TNFSF11 DENOSUMAB Antibody 1 bone density Prevention of skeletal related events in 
advanced malignancy involving bone | 
Treatment of bone loss associated with 
hormone ablation in prostate cancer | 
Treatment of osteoporosis in postmenopausal 
women to prevent fractures 

rs17536328| 
rs9525638 

24945404 6157 - 8295 1 1 1 

ESR1 TAMOXIFEN CITRATE Small molecule 1 breast carcinoma Carcinoma of breast | Infertility - female - 
anovulatory  

rs140068132| 
rs3757318 | 
rs9383938 

22976474| 
23535729| 
25327703 

9531 - 63713 1 - 2 2 1 

PLG ALTEPLASE Enzyme 1 coronary heart 
disease | large 
artery stroke | 
stroke 

Acute ischaemic stroke: fibrinolytic 
treatment| Thrombolysis in acute myocardial 
infarction| Thrombolysis of occluded central 
venous access devices | Thrombolytic 
treatment in acute massive pulmonary 
embolism 

rs10455872 24262325 113152 3 3 2 

TNF ADALIMUMAB Antibody 1 Crohn's disease Active polyarticular juvenile chronic arthritis-
inadequate response to MTX | Active 
progressive rheumatoid arthritis | Moderate 
to severe plaque psoriasis: when other 
treatment is inappropriate | Moderate/severe 
ulcerative colitis: when other treatment is 
inappropriate | Rheumatoid arthritis when 
inadequate response to DMARDs incl. 
methotrexate | Severe active rheumatoid 
arthritis | Severe ankylosing spondylitis in 
adults if conventional therapy inadequate | 
Treatment of active & progressive psoriatic 
arthritis when DMARD inadequate | 
Treatment of active Crohn's disease 

rs1799964 21102463 1036 2 13 4 

CACNA1D AMLODIPINE Small molecule 1 diastolic blood 
pressure 

Essential hypertension when stabilised on 
same ingreds.in same proportions | 
Hypertension-not adequately controlled by 
individual components | Prinzmetal's angina | 
Prophylaxis of chronic stable angina pectoris | 
Treatment of essential hypertension |  

rs9810888 25249183 106912 1 1 1 
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Gene Drug Molecule 
type 

Curation 
code 

GWAS EFO term Drug Indication (FDB) Associated 
Variant 

Reference 
(pmid) 

Minimun 
distance from 
druggable gene 
(bp) 

Distance rank of 
druggable gene 

Number of 
Genes In 
LD interval 

Number of 
Druggable  
genes in LD 
interval 

NPC1L1 EZETIMIBE Small molecule 1 LDL cholesterol | low 
density lipoprotein 
cholesterol 
measurement | total 
cholesterol 
measurement 

Combined hyperlipidaemia: lipid lowering 
therapy adjunct to diet | Homozygous familial 
hypercholesterolaemia (adjunct to statin 
therapy) | Homozygous familial 
hypercholesterolaemia: Adjunct to diet | 
Homozygous sitosterolaemia 
(phytosterolaemia) | Primary 
hypercholesterolaemia (hyperlipidaemia type 
IIa): Adjunct to diet | Primary 
hypercholesterolaemia: lipid lowering therapy 
adjunct to diet 

rs2072183 20686565| 
24097068 

1734 1 1 1 

PPARA GEMFIBROZIL Small molecule 1 LDL cholesterol | low 
density lipoprotein 
cholesterol 
measurement | total 
cholesterol 
measurement 

Mixed hyperlipidaemia when statin is 
contraindicated or not tolerated | Primary 
hypercholesterolaemia: lipid lowering therapy 
adjunct to diet | Reduction of cardiac events 
in hypercholesterolaemia | Severe 
hypertriglyceridaemia with or without low 
HDL cholesterol 

rs4253772 24097068 12050 1 7 2 

CASR CINACALCET 
HYDROCHLORIDE 

Small molecule 1 calcuim measurment Homoeopathic | Hypercalcaemia due to 
malignant disease | Hypercalcaemia in 
primary HPT when parathyroidectomy 
contraindicated | Secondary 
hyperparathyroidism in end stage renal 
disease: treatment 

rs17251221| 
rs1801725 

20661308| 
20705733| 
24068962 

1585 - 12095 1 5 1 

IL6R TOCILIZUMAB Antibody 1 rheumatoid arthritis Active juvenile idiopathic arthritis (unresp to 
NSAIDs) in comb with MTX | Active juvenile 
idiopathic arthritis when inadequate response 
to NSAIDs | Rheumatoid arthritis (unresp to 
DMARD/TNF inhib.) in comb with 
methotrexate | Rheumatoid arthritis when 
inadequate response to DMARDs incl. 
methotrexate 

rs2228145 24390342 14956 1 1 1 

TNF ADALIMUMAB Antibody 1 rheumatoid arthritis Active polyarticular juvenile chronic arthritis-
inadequate response to MTX | Active 
progressive rheumatoid arthritis | Moderate 
to severe plaque psoriasis: when other 
treatment is inappropriate | Moderate/severe 
ulcerative colitis: when other treatment is 
inappropriate | Rheumatoid arthritis when 
inadequate response to DMARDs incl. 
methotrexate | Severe active rheumatoid 
arthritis | Severe ankylosing spondylitis in 
adults if conventional therapy inadequate | 
Treatment of active & progressive psoriatic 
arthritis when DMARD inadequate | 
Treatment of active Crohn's disease 

rs2596565 24532677 190015 24 145 27 
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Gene 

 
Drug 

 
Molecule 
type 

 
Curation 

code 

 
GWAS EFO term 

 
Drug Indication (FDB) 

 
Associated 
Variant 

 
Reference 
(pmid) 

 
Minimun 
distance from 
druggable gene 
(bp) 

 
Distance rank of 
druggable gene 

 
Number of 
Genes In 
LD interval 

 
Number of 
Druggable  
genes in LD 
interval 

ABCC8 GLIPIZIDE Small molecule 1 type II diabetes 
mellitus 

Non insulin dependent diabetes mellitus 
when diet has failed 

rs5219 19056611 4860 - 5802 3 5 3 

ABCC8 GLYBURIDE Small molecule 1 type II diabetes 
mellitus 

Type 2 diabetes (NIDDM) not controlled by 
diet,weight loss & exercise alone  

rs5215 | 
rs5219 

17463248| 
17463249| 
19056611| 
24509480 

4860 - 5802 3 5 3 

ABCC8 NATEGLINIDE Small molecule 1 type II diabetes 
mellitus 

Control of type-2 diabetes (NIDDM) with 
metformin if metformin inadequate 

rs5219 19056611 4860 - 5802 3 5 3 

ABCC8 REPAGLINIDE Small molecule 1 type II diabetes 
mellitus 

Control of type-2 diabetes (NIDDM) with 
metformin if metformin inadequate | Type 2 
diabetes (NIDDM) not controlled by 
diet,weight loss & exercise alone 

rs5219 19056611 4860 - 5802 3 5 3 

KCNJ11 GLIMEPIRIDE Small molecule 1 type II diabetes 
mellitus 

Type 2 diabetes (NIDDM) not controlled by 
diet,weight loss & exercise alone 

rs5219 19056611 1224 - 1306 1 5 3 

KCNJ11 GLIPIZIDE Small molecule 1 type II diabetes 
mellitus 

Non insulin dependent diabetes mellitus 
when diet has failed 

rs5219 19056611 1224 - 1306 1 5 3 

KCNJ11 GLYBURIDE Small molecule 1 type II diabetes 
mellitus 

Type 2 diabetes (NIDDM) not controlled by 
diet,weight loss & exercise alone  

rs5215 | 
rs5219 

17463248| 
17463249| 
19056611| 
24509480 

1224 - 1306 1 5 3 

KCNJ11 NATEGLINIDE Small molecule 1 type II diabetes 
mellitus 

Control of type-2 diabetes (NIDDM) with 
metformin if metformin inadequate 

rs5219 19056611 1224 - 1306 1 5 3 

KCNJ11 REPAGLINIDE Small molecule 1 type II diabetes 
mellitus 

Control of type-2 diabetes (NIDDM) with 
metformin if metformin inadequate | Type 2 
diabetes (NIDDM) not controlled by 
diet,weight loss & exercise alone 

rs5219 19056611 1224 - 1306 1 5 3 

PPARG PIOGLITAZONE 
HYDROCHLORIDE 

Small molecule 1 type II diabetes 
mellitus 

Combination treatment of Type 2 diabetes 
with insulin | Control of type-2 diabetes if 
metformin+sulphonylurea therapy is 
inadequate | Monotherapy for type2 diabetes 
if overweight and metformin inappropriate | 
Oral combination treatment of type 2 
diabetes  

rs1801282 24509480 64258 1 1 1 

SCN1A OXCARBAZEPINE Small molecule 1 Mesial temporal 
lobe epilepsy with 
hippocampal 
sclerosis | febrile 
seizures 

Epilepsy - combination of both partial and 
tonic-clonic seizures | Epilepsy - partial 
seizures  

rs7587026 24014518 5773 - 52194 1 3 1 

GRIN3B MEMANTINE 
HYDROCHLORIDE 

Small molecule 1 Alzheimers disease Moderate to severe Alzheimer's disease | No 
information available 

rs115550680 23571587 40689 8 8 2 

SLC22A12 SULFINPYRAZONE Small molecule 1 urate measurement Gout   (prophylaxis) | Gouty arthritis | 
Hyperuricaemia 

rs2078267 | 
rs478607 

20884846| 
23263486 

23999 - 108243 2 -3 2 -3 2 

SLC22A11 PROBENECID Small molecule 1 urate measurement 
| uric acid 
measurement 

 
rs17300741 | 
rs2078267 

19503597| 
20884846| 
23263486 

6233 - 8364 1 1 - 2 1 - 2 
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Gene 

 
Drug 

 
Molecule 
type 

 
Curation 

code 

 
GWAS EFO term 

 
Drug Indication (FDB) 

 
Associated 
Variant 

 
Reference 

(pmid) 

 
Minimun 

distance from 
druggable gene 

(bp) 

 
Distance rank of 
druggable gene 

 
Number of 

Genes In 
LD interval 

 
Number of 
Druggable  

genes in LD 
interval 

SCN2A CARBAMAZEPINE Small molecule 2 febrile seizures Epilepsy - grand mal | Epilepsy - partial 
seizures | Epilepsy - tonic-clonic seizures | 
Prophylaxis of manic-depressive illness 
unresponsive to lithium | Trigeminal neuralgia 

rs3769955 25344690 14186 1 1 1 

DIO1 PROPYLTHIOURACIL Small molecule 3 thyroxine | 
thyroxine 
measurement 

Hyperthyroidism | Thyrotoxic crisis | 
Unlicensed product 

rs2235544 23408906 1189 1 4 1 

PDE4D DIPYRIDAMOLE Small molecule 4 asthma Alternative to exercise stress in thallium-201 
myocardial imaging | Ischemic stroke: 
Secondary prevention (with/without aspirin) | 
Secondary prevention of ischaemic stroke | 
Secondary prevention of transient ischaemic 
attacks | Thromboembolism+prosthetic heart 
valve: prophylaxis (+oral anticoagulant) | 
Transient ischemic attacks: Secondary 
prevention (with/without aspirin)  

rs1588265 19426955 448153 1 2 1 

ACHE RIVASTIGMINE Small molecule 4 resting heart rate Mild - moderate dementia in Alzheimer's 
disease | Mild - moderate dementia in 
idiopathic Parkinson's disease 

rs12666989 | 
rs314370 

20639392 861 - 34407 3 - 7 9 4 

ACHE NEOSTIGMINE 
METHYLSULFATE 

Small molecule 4 heart rate Myasthenia gravis | Paralytic ileus | 
Paroxysmal supra-ventricular 
tachyarrhythmias | Post operative distention| 
Post operative urinary retention | Reversal of 
residual competitive neuromuscular block | 
Unlicensed product 

rs13245899 23583979 861 - 34407 1 - 7l 9 4 

CHRM2 TOLTERODINE 
TARTRATE 

Small molecule 4 heart rate Symptomatic treatment of urinary urgency, 
frequency or urge incontinence 

rs2350782 23583979 62368 1 3 1 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 30, 2017. ; https://doi.org/10.1101/170142doi: bioRxiv preprint 

https://doi.org/10.1101/170142
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

 

Table 5. Examples of drug repurposing 
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Table 6. Selected examples of Academia, Pharma, and Pharma-Academia initiatives concerning genomics and drug development 

 

 
 a http://online.liebertpub.com/doi/10.1089/adt.2016.772 
bhttp://www.decode.com/ 
c https://www.opentargets.org/ 
dhttps://www.astrazeneca.com/media-centre/press-releases/2016/AstraZeneca-launches-integrated-genomics-approach-to-transform-drug-discovery-and-

development-22042016.html 
e http://us.eisai.com/research/andover-innovative-medicines-institute 
f https://www.regeneron.com/genetics-center 
ghttp://www.ukbiobank.ac.uk/2017/03/gsk-regeneron-initiative-to-develop-better-treatments-more-quickly

Initiative Partners Drug development model Aims 

Accelerating Drug Development and Repurposing 
Incubator at Vanderbilt Universitya 

Multiple departments at Vanderbilt University 
Medical Centre 

Academic incubator De-identified genotype data linked to  de-
identified demographic and health record 
data to aid precision drug development 
and drug repurposing 

DECODE Geneticsb Decode is a subsidiary of Amgen, a 
biopharmaceutical company 

Within-company Discover genetic variation underlying 
human disease in the Icelandic population 
with the aim of diagnosing, treating and 
preventing disease 

Open Targetsc GSK, Biogen, European Bioinformatics Institute, 
Wellcome Trust Sanger Institute 

Pre-competitive, open access Public-private initiative based on the use of 
genomics for drug target validation  

Astra Zeneca 
Centre for Genomics Research 

Human Longevity, Inc 
Wellcome Trust Sanger Institute 
Institute for Molecular Medicine, Finland 

Within-company ‘Integrated genomics initiative to 
transform drug discovery and development 
across (AZ’s) entire therapeutic pipeline’ 

Eisai  
Andover Innovative Medicines Institutee 

Seeking collaborations with external scientific 
partners 

Pre-competitive research 
consortia 

‘Executing novel therapeutic targets 
validated by human genetics’ 

Regeneron Genetics Centref Geisinger Health System, 
and other health service and academic partners 

Within-company ‘Comparing genetic information against 
medical histories .to develop new means 
of diagnosing, preventing and/or treating 
medical conditions’ 
 

GSK-Regeneron UK Biobank Partnerhshipg GSK, Regeneron and UK Biobank Industry academia partnership, 
with 9 month exclusivity period 
for Pharma partners 

Exome sequencing of stored DNA from UK 
Biobank participants: 50,000 samples in 
year 1, 500,000 by year 3. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 30, 2017. ; https://doi.org/10.1101/170142doi: bioRxiv preprint 

http://www.decode.com/
https://www.opentargets.org/
https://www.astrazeneca.com/media-centre/press-releases/2016/AstraZeneca-launches-integrated-genomics-approach-to-transform-drug-discovery-and-development-22042016.html
https://www.astrazeneca.com/media-centre/press-releases/2016/AstraZeneca-launches-integrated-genomics-approach-to-transform-drug-discovery-and-development-22042016.html
http://us.eisai.com/research/andover-innovative-medicines-institute
https://www.regeneron.com/genetics-center
https://doi.org/10.1101/170142
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Figure 1. Sample space defined by 10,000 human diseases (columns) and 20,000 protein-

coding genes (rows).  Expanded region comprising 1/10,000𝑡ℎ of the whole sample space is 

enlarged: a (based on 10 causative genes per disease); b (based on 100 causative genes per 
disease); and c (based on 1000 causative genes per disease). Each cell represents a unique 
gene-disease pairing.  Dark blue cells indicate causal gene-disease pairings, light blue cells 
druggable gene-disease pairings, with red cells indicating causal and druggable gene disease 
pairings.  
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Figure 1 contd. 

b.  
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Figure 2a. Venn diagram illustrating the probabilities of selecting a causal, druggable gene-

disease pair (𝐶𝐷 ∩  𝑇𝐷), a druggable gene disease pair (𝑇𝐷) and a causal, gene disease pair 

(𝐶𝐷) from a sample space of 200 𝑥 106 gene disease pairings, 100 causal genes per disease 
and 4000 druggable genes from the 20,000 in the genome. The dashed red circle encloses a 
probability space restricted to druggable genes. (Not to scale). 
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Figure 2b. Venn diagram illustrating the number of causal, druggable gene-disease 

pairs (𝐶𝐷 ∩  𝑇𝐷), druggable gene disease pairs (𝑇𝐷) and causal, gene disease pairs (CD) from 

a sample space of 200 𝑥 106 gene disease pairings, 100 causal genes per disease and 4000 
druggable genes from the 20,000 in the genome. The dashed red circle encloses a probability 
space restricted to druggable genes. (Not to scale). 
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Figure 3. Re-assorted ‘therapeutic genome’ of a hypothetical disease (𝑑1).  The 20,000 protein 

coding genes are organised into 100 causal and 19,900 non-causal genes. Causal genes are 
further subdivided into 20  that are also druggable and 80  that are not.  Of the 20 causal, 

druggable genes, 3 are the targets of licensed drugs for the treatment of 𝑑1. Of the non-causal 

genes, 3980 are druggable but not causal for 𝑑1.  The right hand panel indicates the expected 
number of true and false positive genes (including druggable genes) expected in a GWAS of 
𝑑1 undertaken with a sample size that provides power, 1 − 𝛽 =  0.8 and type 1 error rate of 𝛼 =
 5 ×  10−8 at all loci.  
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Figure 4. Distribution of number of licensed drug compounds per target 

 
 

Source: ChEMBL https://www.ebi.ac.uk/chembl/ 
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Figure 5. Back calculation of proportion of true target-disease relationships (𝛾𝑝𝑐) studied in 

preclinical development, inferred from observed rates of clinical success (𝑆𝐶 = 0.1) and 

preclinical success (𝑆𝑝𝑐 = 0.4).  Estimates of 𝛾𝑝𝑐 assume power in clinical phase development 

 (1 − 𝛽𝑐 ) = 0.8 and false positive rate in clinical development, 𝛼𝑐 = 0.05, so that the 

proportion of true target-disease relationships in clinical development, 𝛾𝑐 = 0.0667. The graph 

shows estimates of 𝛾𝑝𝑐 (red line) for a range of values for power (1 − 𝛽𝑝𝑐 ) in preclinical 

development and corresponding estimates of the preclinical false positive rate, 𝛼𝑝𝑐 (blue line). 

(See text for details). 
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Figure 6. Probability of orthodox drug development success according to the number of 
candidate targets in the initial sampling frame (upper panel) and the number of parallel 
preclinical development programmes pursued (lower panel).  The calculations assume there 
are 4000 druggable genes and 20 causal, druggable targets per disease.  
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Figure 7. Study designs relevant to drug target identification and validation based on human 
genomics: (a) conventional genome-wide association analysis in which variation in 20,000 
genes is tested against a single disease; (b) phenome wide association analysis of a gene 
encoding a drug target in which variation in a single druggable gene is evaluated against 
many (all) diseases; (c) druggable genome and phenome wide association analysis; and (d) 
whole genome and phenome wide association analysis 
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Supplementary tables 
 
Table S1.  Expected number of licensed drug targets rediscovered (𝑬𝑻) by 200 hypothetical 
GWAS of diseases with at least one licensed drug based on a range of plausible values of the 
power (1 − 𝛽) to detect each genetic locus encoding a licensed drug target, and a range of 
plausible values for the average number of licensed drug targets per disease.  (See text for 
further details)  

 

 

 

 

Table S2. Effect of varying estimates of the number of causative genes per disease (𝐶), and 

the number of diseases (𝑵𝑫) on the probability of selecting a causal gene-disease pair (𝜸𝑪); 

the probability of selecting a causal, druggable, gene-disease pair (𝜸𝑪𝑻); and the number 

diseases influenced by any one gene (or encoded protein) (𝑬𝑫.). Estimates assume 20,000 

protein-coding genes. 

 

 

 
 

 

 

 

 

 

 

 

Number of licensed 

drug targets per disease 

Power 

(1 − 𝛽) 𝐸𝑇 (𝑆𝐷) 

1 0.6 120 (7) 

1 0.8 160 (6) 

1 0.9 180 (4) 

3 0.6 360 (12) 

3 0.8 480 (10) 

3 0.9 540 (7) 

5 0.6 600 (15) 

5 0.8 800 (13) 

5 0.9 900 (9) 

10 0.6 1200 (22) 

10 0.8 1600 (18) 

10 0.9 1800 (13) 

𝐶 𝑁𝐷  𝛾𝐶  𝛾𝐶𝑇 𝐸𝐷 

10 2500 0.0005 0.0001 1.25 

10 5000 0.0005 0.0001 2.5 

10 10000 0.0005 0.0001 5 

100 2500 0.005 0.001 12.5 

100 5000 0.005 0.001 25 

100 10000 0.005 0.001 50 

1000 2500 0.05 0.01 125 

1000 5000 0.05 0.01 250 

1000 10000 0.05 0.01 500 
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Table S3: Expected yield of causal druggable targets from orthodox (non-genomic) preclinical programmes according to the number of causal targets for each disease and 

whether the sampling frame is the whole genome or the druggable genome.    

 

 

Number of programmes 

Number of 
causal,  

druggable 
targets 

 per disease 
Number of targets in 

sampling frame 

Expected number (𝑆𝐷) 
of  

causal, druggable 
targets  

among all programmes 

Number causal 
druggable targets 

detected (1 − 𝛽 = 0.8) 

Number of non-
relevant targets 

declared positive (𝛼 =
0.05) 

10 20 20,000 0.01 (0.07) 0.008 0.49 

20 20 20,000 0.02 (0.1) 0.016 1.0 

50 20 20,000 0.05 (0.2) 0.04 2.5 

100 20 20,000 0.1 (0.2) 0.08 5.0 

200 20 20,000 0.2 (0.3) 0.16 10.0 

10 20 4,000 0.05 (0.2) 0.04 5.0 

20 20 4,000 0.1 (0.2) 0.08 1.0 

50 20 4,000 0.25 (0.4) 0.2 2.5 

100 20 4,000 0.5 (0.5) 0.4 5.0 

200 20 4,000 1 (0.7) 0.8 10.0 

10 200 20,000 0.1 (0.2) 0.08 0.5 

20 200 20,000 0.2 (0.3) 0.16 1.0 

50 200 20,000 0.5 (0.5) 0.4 2.5 

100 200 20,000 1 (0.7) 0.8 5.0 

200 200 20,000 2 (1) 1.6 10.0 

10 200 4,000 0.5 (0.5) 0.4 0.5 

20 200 4,000 1 (1) 0.8 1.0 

50 200 4,000 2.5 (1) 2 2.4 

100 200 4,000 5 (1) 4 4.8 

200 200 4,000 10 (2) 8 9.5 
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Table S4. Number of drug development programmes (𝑁) that to be pursued in parallel to have 

a probability (𝑃) of at least one development success.  Analyses are based on either 90% or 
50% (evens) probability of at least one developmental success, and a range of development 

success rates (𝑝) starting with the currently observed industry wide average success rate of 

0.01  (See text for details) 

 

𝑃 (≥1 success) in N programmes 
Within-programme  
developmental success rate (𝑃𝑆) Number of parallel programmes (𝑁) 

0.9 0.01 229 

0.9 0.02 114 

0.9 0.1 22 

0.9 0.2 10 

0.9 0.5 3 

0.5 0.01 69 

0.5 0.02 34 

0.5 0.1 7 

0.5 0.2 3 

0.5 0.5 1 
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Table S5. Expected number of true and false positives in parallel drug development programmes based on a sample of targets drawn from all or part of the 

druggable genome based on orthodox preclinical experiments designed with ( 1 − 𝛽) = 0.8 and 𝛼 = 0.05  (left hand panel).  Probability of eventual drug 

development success taking forward one positive preclinical programme to clinical phase (right hand panel). (See text for further details) 

 

Targets in 
sampling 

frame 

True 
causal 
genes 

Number of parallel 
development 
programmes 

pursued 

Expected 
true 

positives 

in sample 

Expected  
false   

positives 

 in sample 

Positive 
programmes are 
exclusively true 

positives 

Positive 
programmes are 
a mixture of true 

and false 
positives 

No positive 
programmes 

Positive 
programmes are 
exclusively false 

positives 

Overall probability 
of  a development 

success 

4000 20 20 0.08 1.00 2.9% 4.8% 33.1% 59.2% 5.0% 

2000 20 20 0.16 0.99 5.7% 9.2% 30.6% 54.5% 9.7% 

1000 20 20 0.32 0.98 10.6% 17.2% 26.0% 46.2% 18.3% 

200 20 20 1.60 0.90 33.3% 49.0% 6.5% 11.1% 60.4% 

4000 20 50 0.20 2.49 1.5% 16.8% 6.3% 75.5% 7.0% 

2000 20 50 0.40 2.48 2.7% 30.6% 5.2% 61.5% 13.3% 

1000 20 50 0.80 2.45 4.7% 51.4% 3.4% 40.5% 24.0% 

200 20 50 4.00 2.25 9.9% 89.1% 0.1% 0.9% 64.6% 

4000 20 200 0.80 9.95 0.0% 55.9% 0.0% 44.1% 7.5% 

2000 20 200 1.60 9.90 0.0% 81.2% 0.0% 18.7% 14.0% 

1000 20 200 3.20 9.80 0.0% 97.0% 0.0% 3.0% 24.8% 

200 20 200 16.00 9.00 0.0% 100.0% 0.0% 0.0% 64.7% 
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Supplementary figures 

 

Figure S1a. Venn diagram illustrating the probabilities of selecting a causal, druggable gene-

disease pair (𝐶𝐷 ∩  𝑇𝐷) , a druggable gene disease pair (𝑇𝐷) and a causal, gene disease pair 

(𝐶𝐷) from a sample space of 200 𝑥 106 gene disease pairings, 1000 causal genes per disease 

and 4000 druggable genes from the 20,000 in the genome. The dashed red circle encloses a 

probability space restricted to druggable genes. (Not to scale). 
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Figure S1b. Venn diagram illustrating the number of causal, druggable gene-disease 

pairs (𝐶𝐷 ∩  𝑇𝐷), druggable gene disease pairs (𝑇𝐷) and causal gene disease pairs (𝐶𝐷) from 

a sample space of 200 𝑥 106 gene disease pairings, 1000 causal genes per disease and 4000 
druggable genes from the 20,000 in the genome. The dashed red circle encloses a probability 
space restricted to druggable genes. (Not to scale). 
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Figure S2a. Venn diagram illustrating the probabilities of selecting a causal, druggable gene-

disease pair (𝐶𝐷 ∩  𝑇𝐷), a druggable gene disease pair (𝑇𝐷) and a causal, gene disease pair 

(𝐶𝐷) from a sample space of 200 𝑥 106 gene disease pairings, 10 causal genes per disease 
and 4000 druggable genes from the 20,000 in the genome. The dashed red circle encloses a 
probability space restricted to druggable genes. (Not to scale). 
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