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ABSTRACT 24 

Despite the critical roles RNA structures play in regulating gene expression, 25 

sequencing-based methods for experimentally determining RNA base pairs have 26 

remained inaccurate.  Here, we describe a multidimensional chemical mapping method 27 

called M2-seq (mutate-and-map read out through next-generation sequencing) that 28 

takes advantage of sparsely mutated nucleotides to induce structural perturbations at 29 

partner nucleotides and then detects these events through dimethyl sulfate (DMS) 30 

probing and mutational profiling. In special cases, fortuitous errors introduced during 31 

DNA template preparation and RNA transcription are sufficient to give M2-seq helix 32 

signatures; these signals were previously overlooked or mistaken for correlated double 33 

DMS events. When mutations are enhanced through error-prone PCR, in vitro M2-seq 34 

experimentally resolves 33 of 68 helices in diverse structured RNAs including ribozyme 35 

domains, riboswitch aptamers, and viral RNA domains with a single false positive. 36 

These inferences do not require energy minimization algorithms and can be made by 37 

either direct visual inspection or by a new neural-net-inspired algorithm called M2-net. 38 

Measurements on the P4-P6 domain of the Tetrahymena group I ribozyme embedded 39 

in Xenopus egg extract demonstrate the ability of M2-seq to detect RNA helices in a 40 

complex biological environment. 41 

42 
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SIGNIFICANCE STATEMENT 43 

The intricate structures of RNA molecules are crucial to their biological functions but 44 

have been difficult to accurately characterize. Multidimensional chemical mapping 45 

methods improve accuracy but have so far involved painstaking experiments and 46 

reliance on secondary structure prediction software. A methodology called M2-seq now 47 

lifts these limitations. Mechanistic studies clarify the origin of serendipitous M2-seq-like 48 

signals that were recently discovered but not correctly explained and also provide 49 

mutational strategies that enable robust M2-seq for new RNA transcripts. The method 50 

detects dozens of Watson-Crick helices across diverse RNA folds in vitro and within 51 

frog egg extract, with low false positive rate (< 5%). M2-seq opens a route to unbiased 52 

discovery of RNA structures in vitro and beyond. 53 

 54 

55 
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INTRODUCTION 56 

Inference of RNA structures using experimental data is a crucial step in understanding 57 

RNA’s biological functions throughout living organisms. Chemical mapping methods 58 

have the potential to reveal RNA structural features in situ by probing which nucleotides 59 

are protected from attack by chemical modifiers.  The resulting experimental data can 60 

be used as pseudo-energies to guide secondary structure modeling by computational 61 

algorithms, raising the prospect of transcriptome-wide RNA structure determination (1, 62 

2).  63 

Despite these advances, the accuracy of RNA structure inference approach 64 

through chemical mapping and sequencing remains under question (3-8). For example, 65 

models of the 9 kb HIV-1 RNA genome have been repeatedly revised with updates to 66 

the selective 2´-OH acylation by primer extension (SHAPE) protocol, data processing, 67 

and computational assumptions (2, 9-11), and the majority of this RNA’s helices remain 68 

uncertain. Even for small RNA domains, SHAPE and dimethyl sulfate (DMS; 69 

methylation of N1 and N3 atoms at A and C) have produced misleading secondary 70 

structures for ribosomal domains and blind modeling challenges that have been falsified 71 

through crystallography or mutagenesis (3, 7) (12, 13). In alternative approaches based 72 

on photo-activated crosslinkers, many and perhaps the majority of helix detections 73 

appear to be false positives, based on ribosome data in vitro and in vivo (14, 15). 74 

 The confidence and structural accuracy of chemical mapping methods can be 75 

improved by applying perturbations to the RNA sequence prior to chemical modification. 76 

In the mutate-and-map strategy, mapping not just the target RNA sequence but also a 77 

comprehensive library of point mutants reveals which nucleotides respond to 78 
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perturbations at every other nucleotide, enabling direct inference of pairs of residues 79 

that interact to form structure (16, 17). The resulting models have been consistently 80 

accurate at nucleotide resolution in RNA-puzzles and other blind tests for riboswitches 81 

and ribozymes solved by crystallography, with helix recovery rates of >90% and false 82 

positive rates under 10%, with errors typically involving minor register shifts or edge 83 

base pairs (2, 18). However, the mutate-and-map approach has required synthesis and 84 

parallel mapping of many mutant RNAs and, so far, has only been applied to RNAs 85 

under 200 nucleotides in length probed in vitro. 86 

 Here we introduce mutate-and-map read out by next-generation sequencing (M2-87 

seq), which carries out RNA preparation, mutation, and mapping in a one-pot 88 

experiment. Tests on ribozyme domains, viral domains, and riboswitch aptamers that 89 

form diverse RNA structures evaluate the ability of M2-seq to detect Watson-Crick base 90 

pairs in vitro, with signals that can be confirmed through visual inspection. We introduce 91 

a simple algorithm M2-net that automatically recovers these helices with a low false 92 

positive rate (< 5%) and without register shifts that have been previously problematic for 93 

chemical mapping approaches. As a proof-of-concept for more complex biological 94 

experiments, we demonstrate direct detection of the majority of helices in the P4-P6 95 

domain of the group I Tetrahymena ribozyme embedded in biologically active eukaryotic 96 

cell extract, and describe prospects for further applications in RNA structural biology. 97 

 98 

RESULTS 99 

Workflow of mutate-and-map read out through next-generation sequencing  100 
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The M2-seq workflow tested herein is summarized in Figure 1. First, DNA templates 101 

were prepared from PCR assembly (short constructs) or PCR from plasmids (long 102 

constructs). To ensure mutate-and-map signals, we prepared samples with a low 103 

frequency (~10–3 per nucleotide) of additional mutations as described previously (16) or 104 

using error-prone PCR (19). We also prepared samples without additional mutations to 105 

probe unexplained data correlations observed in recent high-DMS experiments (2, 20). 106 

Then, we transcribed RNAs from these DNA pools, prepared them into the desired state 107 

(e.g. Mg2+-induced folding in vitro) and modified the RNA with DMS. Reverse 108 

transcription was performed under mutational profiling conditions (with SuperScript II 109 

and Mn2+) to install mutations into cDNAs across from DMS modifications (21). The full-110 

length cDNAs were amplified by PCR, and the resulting libraries were sequenced by 111 

paired-end Illumina sequencing. An initial M2-seq map was generated by recording the 112 

positions of all the correlated mutations. The data were displayed in a two-dimensional 113 

heat-map visualization analogous to that used for prior mutate-and-map experiments: a 114 

1D chemical mapping profile was estimated for each single-nucleotide-variant in the 115 

RNA, each profile was normalized by the total number of reads with a mutation at that 116 

position, and the profiles were stacked according to the mutation. As described below 117 

and in SI Results, a more sophisticated analysis is possible that attempts to separate 118 

mutations based on their expected source (e.g., those installed during library 119 

preparation vs. those introduced later by reverse transcription across from chemical 120 

modifications). However, we will mainly describe results with a simple mutation-counting 121 

approach, which provides an initial unbiased visualization.  122 

 123 
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Mutational profiling provides precise M2-seq information in a single-pot 124 

experiment. We first confirmed that applying the mutational profiling readout to single-125 

mutant libraries would give secondary structure signals similar to capillary 126 

electrophoresis-based M2, which relies on reverse transcription termination at modified 127 

residues rather than mutational read-through. For this comparison, we investigated the 128 

P4-P6 domain of the 158-nucleotide Tetrahymena group I ribozyme (Fig. 2A), a widely 129 

used model system for tests of RNA chemical mapping methods (2, 3, 22). In addition, 130 

we prepared DNA templates for the wild-type and 158 point mutants of each nucleotide 131 

to its complement (16) and then pooled these molecules prior to the transcription step, 132 

so that all subsequent steps could be carried out in one tube. The M2-seq data for this 133 

initial pooled-mutation experiment are shown in Fig. 2B, after applying the pipeline 134 

described in Fig. 1 to generate 1D chemical mapping reactivity profiles for each 135 

mutation position.  136 

Analysis of the mutational spectrum in the no-DMS samples confirmed that we 137 

had introduced the desired sequence changes at the level of ~1/158 (gray-lined outset, 138 

Fig. 2A). Furthermore, as expected, the M2-seq data (Fig. 2B) exhibit strong signals for 139 

structural elements, consistent with prior mutate-and-map data based on capillary 140 

electrophoresis (CE, Fig. S1). For example, M2-seq signals marking the pair 141 

C228/G246 and other pairs in the P6b helix create a visible cross-diagonal, as in prior 142 

CE data (black-lined outset, Fig. 2B). Base pairs for P4 and P5 (orange in Fig. 2B), P5a 143 

(blue), P5b (red), and P6a-b (green) are clearly visible and agree with crystallographic 144 

analysis of the RNA (Fig. 2A). Similarly, punctate signals reflecting the 145 

tetraloop/tetraloop receptor (TL/TLR) tertiary contact, such as between A153 and C223, 146 
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also appear in both datasets. Short helices that were not observed in CE-based mutate-147 

and-map measurements, such as the P5c helix (SI Fig. S1), also did not give extended 148 

cross-diagonal stripes in the M2-seq data. As expected, the no-DMS control samples 149 

did not show M2-seq signal, and consisted primarily of a uniform 1D background (Fig. 150 

S2A).  151 

We further tested that separate preparation of mutants was not necessary to give 152 

clear M2-seq signals of base pairs. We used error-prone PCR to generate the DNA 153 

templates for RNA transcription, giving mutations at a mean frequency of ~0.5% and 154 

mostly involving U-to-C, C-to-U, A-to-G, and G-to-A transitions (gray-lined outset, Fig. 155 

2C), as expected (19). Despite having a different mutational spectrum and giving 156 

signals at different specific base pairs, we observed M2-seq signals for the same helical 157 

elements as in the pooled single mutant library experiment as well as for the TL/TLR 158 

tertiary contact (Fig. 2C; fine differences are better visible in black-lined magnification 159 

outsets of P6a-P6b region). The use of error-prone PCR simplified the protocol: every 160 

step of the M2-seq experiment, from DNA synthesis to final reverse transcription and 161 

sequencing, could be carried out in a single tube. 162 

We also observed M2-seq signal in samples without mutations intentionally 163 

installed during error-prone PCR (Fig. 2D). We had previously noted this pattern in 164 

published sequencing data for high-DMS-modified P4-P6 RNA (SI Fig. S3) (2) and 165 

speculated that DMS methylation of the N1 and N3 atoms of G and U residues, 166 

respectively, could disrupt Watson-Crick base-pairing, expose C and A partners, 167 

respectively, and produce a two-dimensional signal (2, 20). Paradoxically, however, the 168 

modification reaction pH of 7.0 is too low to cause significant deprotonation at these 169 
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atoms to allow DMS methylation to occur (<10–4 modification rate expected under our 170 

conditions). Furthermore, when we applied the no-mutation method to another large, 171 

highly structured RNA, the D. iridis GIR1 lariat-capping ribozyme, we observed no clear 172 

cross-diagonal stripes corresponding to long-range RNA base pairs (Figure 3A). 173 

 174 

Mechanism of ‘background’ RNA base pair signals 175 

To understand if M2-seq signals could be enhanced for the GIR1 ribozyme and other 176 

RNAs, we carried out extensive experiments to understand the mechanism for the 177 

signal in the P4-P6 RNA, varying transcription templates, purification, and modification 178 

conditions. A complete description of this work is given in SI Results and SI Figures S4-179 

S7; a short summary follows.  Briefly, we were able to discriminate between two models 180 

for how M2-seq signals might arise without intentionally pre-installed mutations. In a 181 

‘double DMS hit' model noted above, these Watson-Crick base pair signals are due to 182 

rare DMS modifications (~10–3 per nucleotide) that occur at transiently deprotonated 183 

U/G nucleotides, resulting in – or caused by – DMS modification at partner A/C 184 

nucleotides (2, 20). In an alternative ‘accidental mutation’ model, the signals are due to 185 

background mutations (also up to ~10–3 per nucleotide) introduced as errors during 186 

DNA and RNA synthesis. In the folded RNA, these mutations would expose their 187 

structural partners to DMS, as with standard mutate-and-map methods.  188 

Favoring the accidental mutation model, differences in the M2-seq signal with 189 

different DNA preparations (PCR assembly of oligonucleotides, PCR from a plasmid 190 

stock, and synthesis in other labs; Fig. 2 and SI Fig. S3) implicated background 191 

mutations introduced in the different DNA synthesis methods, which were then 192 
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confirmed by sequencing the DNA templates used for those M2-seq experiments (Figs. 193 

S4 and S5). Additional M2-seq base pair signals were traced to transitions introduced 194 

during RNA synthesis by T7 RNA polymerase and confirmed by direct sequencing of 195 

the RNA before DMS modification (gray-framed outsets, Figs. 2, S4, and S5). 196 

Disfavoring the double DMS model, increasing the pH, which should enhance transient 197 

deprotonation of U/G and subsequent DMS modification, did not increase the M2-seq 198 

base pairing signal except at high pH. At pH 10.0, a different, less precise signal was 199 

observed (Fig. S6). Finally, DMS dose-response measurements revealed linear 200 

dependence of the Watson-Crick base pair signals with DMS dose, as predicted by the 201 

‘accidental mutation’ model but not the ‘double DMS hit’ model, which predicts a 202 

quadratic dependence on DMS dose (Fig. S7).   203 

 204 

Taken together, these studies traced the mechanism of direct base pair detection in 205 

DMS experiments to the occurrence of accidental mutations during DNA and RNA 206 

synthesis and not to double DMS hits. Because these mutations occur in a 207 

heterogeneous and non-controlled manner throughout the RNA molecule, they only 208 

allow detection of Watson-Crick pairs in special molecules with particular preparations. 209 

We therefore favored using error-prone PCR to seed in mutations more uniformly 210 

across transcripts. For example, in the case of the GIR1 lariat-capping ribozyme, M2-211 

seq signals highlighting most of the RNA’s helices became visible when templates were 212 

prepared with error-prone PCR (Figure 3B). Even for the P4-P6 RNA, use of error-prone 213 

PCR allowed M2-seq detection of the P4-P6 helices with nearly an order of magnitude 214 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 28, 2017. ; https://doi.org/10.1101/169953doi: bioRxiv preprint 

https://doi.org/10.1101/169953
http://creativecommons.org/licenses/by-nc-nd/4.0/


 11

fewer sequencing reads than a protocol relying only on accidental mutations (SI Fig. 215 

S8). 216 

 217 

Automated detection of helices across diverse RNA structures 218 

After testing the mechanism of the M2-seq signal, we evaluated the general applicability 219 

of the method across diverse structured RNA molecules. We chose several RNAs that 220 

have challenged prior structure modeling efforts: the P4-P6 RNA, the catalytic domain 221 

of RNase P, and the thiamine pyrophosphate riboswitch aptamer, which were the three 222 

test cases for an earlier RING-MaP study (20, 21); and the GIR1 ribozyme, riboswitch 223 

aptamers for adenosylcobalamin (AdoCBL) and cyclic-diAMP, and an Xrn1-224 

exonuclease-resistant domain from the Zika virus, four targets of the RNA-puzzle 225 

community wide trials whose secondary structures were particularly challenging for 226 

most groups to model (12, 13, 23). M2-seq gave visually apparent signals for helices in 227 

all of these cases (Fig. 4 and SI Fig. S9). These helices included long-range interactions 228 

connecting the most sequence-distal ends of RNA (P1 in the GIR1 and RNAse P 229 

molecules), pseudoknots (P7 in GIR1; P2 in RNase P), long helices involved in tertiary 230 

contacts (9-bp P5b in P4-P6; 10-bp P8 in the AdoCBL riboswitch) and short helices (P3 231 

in the TPP riboswitch). These signals were particularly apparent when we displayed 232 

maps of Z-scores, which measure how much the DMS signal at each nucleotide is 233 

enhanced over the mean at that position across all mutant variants, normalized to the 234 

standard deviation at that position. The quality of these data led us to revisit automated 235 

Z-score-based helix detection methods developed in early work on the mutate-and-map 236 

method (24, 25). Indeed, we discovered that our visual analysis could be automatically 237 
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reproduced by a simple pipeline of Z-score estimation, a convolutional filter highlighting 238 

‘cross-diagonal’ stripes, data symmetrization, and a filter for each nucleotide having at 239 

most one partner (SI Methods; colored annotations in Fig. 4). We called this analysis 240 

M2-net, due to its similarity to multi-layer convolutional neural nets that are now in wide 241 

use for image classification (26).   242 

 243 

M2-net detected 34 of 60 helices with length greater than 2 in these RNAs (Table 1). 33 244 

of these 34 helices matched the crystallographic or conventional structure available in 245 

the literature, and none of these cases involved register shifts that have been problems 246 

in prior methods (2, 7). Despite the observation of other weak signals in these data that 247 

do not correspond to helices (Fig. 4), M2-net detects only a single false-positive, a new 248 

alt-P19 helix predicted for the catalytic domain of RNase P that disagrees with the tip of 249 

the P19 domain presumed in the conventional secondary structure of this molecule (27). 250 

The region including these helices has not been directly visualized by crystallographic 251 

analysis (27), and we speculate that this RNA domain may interconvert between P19 252 

and alt-P19 in solution.  253 

 254 

In prior work, we and others have used the RNAstructure free energy minimization 255 

software, guided by mutate-and-map or conventional one-dimensional chemical 256 

mapping data, to ‘fill in’ helices not directly detected by experiments (12, 20, 25). In our 257 

M2-seq benchmark, the ShapeKnots algorithm of RNAstructure guided by the M2-seq 258 

and one-dimensional DMS data indeed increases the number of recovered 259 

crystallographic helices from 34 to 56 (out of 60 helices; 93% sensitivity). However, the 260 
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higher recovery is at the expense of more false positives: 4 out of a total of 60 predicted 261 

helices are incorrect (Table 1; SI Table S1 also includes modeling without pseudoknots 262 

and without DMS data). The resulting false discovery rate (7%) is similar to the rate 263 

seen in prior mutate-and-map benchmarks (16). For new RNAs where false positives 264 

would require expensive subsequent experiments to falsify, M2-net (with a false positive 265 

rate < 5%) may be preferred over RNAstructure analysis.  266 

 267 

RNA base pair detection in Xenopus egg extract 268 

The simplicity of the ‘one-pot’ M2-seq protocol and the positive predictive value of the 269 

M2-net analysis motivated us to test the method in a more complex biological 270 

environment than the in vitro folding conditions typically used in benchmarking new 271 

chemical mapping methods. We mixed the P4-P6 RNA into undiluted extract from 272 

metaphase-arrested Xenopus eggs, a widely used medium for reconstituting eukaryotic 273 

biological processes (28). The impact of this complex medium, compared to in vitro 274 

conditions, was apparent in a new modification signature that arose in extracto but not 275 

in vitro, even in the absence of DMS treatment: A’s across the transcript were mutated 276 

to G. These modifications likely reflect the activity of the ADAR enzyme, which targets 277 

adenosine near double-stranded RNA helices for deamination to inosine, which is, in 278 

turn, read out as guanosine by reverse transcriptase (29, 30).  Even with the 279 

complexities of Xenopus egg extract environment, the two-dimensional M2-seq data 280 

gave unambiguous signals for the P4-P6 RNA secondary structure. While these signals 281 

were less visually clear than in our in vitro experiments (Fig. 5B), they became more 282 

apparent when the data were viewed as Z-score maps (Fig. 5C). Despite an increase in 283 
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background, partially due to A-to-I mutations, M2-net detected 5 of the 8 helices of P4-284 

P6 and no false positives (colored labels in Fig. 5C).  285 

 286 

DISCUSSION 287 

Rapid detection of base pairing partners in new non-coding RNAs has been difficult, 288 

requiring structural and biochemical techniques with low throughput, limited applicability, 289 

and/or poor predictive value. To address this challenge, we have introduced and tested 290 

a method called M2-seq (mutate-and-map read out through next-generation 291 

sequencing). Mutations introduced at a low level (≲10–3) during DNA or RNA synthesis 292 

disrupt local structure in the folded RNA and expose interacting nucleotides to reaction 293 

with DMS. This mutation and a partner that becomes exposed to DMS methylation 294 

leave correlated imprints on single molecules, enabling readout through reverse 295 

trancription and next-generation sequencing. M2-seq permits precise detection of the 296 

major structural elements of classic model systems such as the 158-nucleotide P4-P6 297 

domain of the Tetrahymena group I ribozyme and the 265-nucleotide B. 298 

stearothermophilus RNase P catalytic domain. M2-seq also reveals helices that have 299 

been difficult to detect or entirely missed in recent RNA-puzzles modeling for the GIR1 300 

lariat-capping ribozyme, the adenosylcobalamin riboswitch, the ydaO cyclic diAMP 301 

riboswitch, and the Zika virus Xrn1-resistant genomic domain.  Overall, the M2-seq data 302 

recover half of the helices in the tested RNAs with a low false positive rate (< 5%). 303 

Finally, the method enables pair-wise structure inference for the majority of helices of 304 

the P4-P6 RNA in Xenopus egg extract. To our knowledge, this is the first report of a 305 

biochemical technique enabling direct two-dimensional visualization of RNA base pair 306 
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partners – as opposed to one-dimensional protections of uncertain origin – in a complex 307 

biological environment.  308 

To supplement and automate simple visual inspection of M2-seq data, we have 309 

introduced the M2-net algorithm to infer helices from cross-diagonal signatures within 310 

the data, without bias from secondary structure modeling methods that attempt to 311 

minimize a computed free energy. The M2-net algorithm is expected to be particularly 312 

important for scenarios that are not appropriately modeled with energy minimization 313 

methods, such as cases involving non-trivial tertiary structure or multiple secondary 314 

structures, molecules with long lengths, or systems reconstituted in complex 315 

environments with protein binding partners or molecular machines that prevent the RNA 316 

from reaching equilibrium. Prior studies involving visual inspection of mutate-and-map 317 

data have correctly predicted tertiary contacts as well (12), and it will be important to 318 

test if M2-net can be expanded to inferring such 3D information.  319 

 The presented M2-seq protocol is immediately applicable to 250-nucleotide 320 

windows of lightly mutated RNAs introduced into complex biological environments. 321 

Synthetic long read sequencing or third-generation sequencing technologies may allow 322 

future studies to detect base pairings involving sequence separations longer than 250 323 

nucleotides (31-33). In terms of seeding mutations, applications to viruses and other 324 

systems that involve high-error-rate RNA polymerases may obviate this step, but 325 

generally M2-seq in extracts, cells, and tissues will require transfecting DNA or RNA 326 

libraries that are prepared through error-prone PCR or other emerging techniques (32, 327 

33). A faster and less biologically perturbing protocol would be enabled by a cell-328 

permeable mutagen that could directly attack nucleotides initially sequestered inside 329 
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RNA helices. While none of the routinely used chemical probes (e.g., DMS, SHAPE) 330 

appears appropriate, a large arsenal of mutagens remains to be tested for RNA 331 

structure mapping in vivo (34). 332 

 333 

METHODS 334 

DMS mapping experiments on RNA were performed by modifying the RNA with DMS 335 

(170 mM final) in 10 mM MgCl2 and 300 mM Na-cacodylate (pH 7.0) for 6 min at 37 °C, 336 

followed by quenching with β-mercaptoethanol and purification with ethanol 337 

precipitation. Experiments with Xenopus egg extract replaced ethanol precipitation with 338 

purification by Trizol extraction and RNA Clean-and-Concentrator-5 columns (Zymo 339 

research). Reverse transcription was performed in conditions that lead to mutational 340 

readthrough at methylated nucleotides (SuperScript II and Mn2+), and sequencing 341 

libraries were prepared by PCR and sequenced on Illumina MiSeq instruments. 342 

ShapeMapper (35) was used to align sequencing reads to reference sequences and 343 

record mutations, and the results were converted to M2-seq data and mutation spectra 344 

using scripts available at https://github.com/DasLab/M2seq. Detailed descriptions of 345 

RNA preparation, modification experiments, map visualization, secondary structure 346 

modeling by M2-net and RNAstructure executables, and DMS dose-dependent mutation 347 

rate analysis are provided in the SI Methods. 348 

 349 

NOTE ADDED IN PROOF 350 

Compensatory mutagenesis experiments carried out after paper review confirm the 351 

altP19c helix for RNase P shown in Fig. 4C; see SI Figure S10. 352 
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TABLE 1. Recovery of helices across seven complex RNA folds from M2-seq data.  479 
 480 

RNA  
Number 

of 
Helicesa 

ShapeKnots 
+ DMS + M2b M2-net 

TP FP TP FP 

P4-P6 domain 8 8 1 7 0 
GIR1 

ribozyme 11 11 0 5 0 

RNase P  
C domain 13 11 1 10 1 

AdoCbl 
riboswitch 10 10 0 4 0 

ydaO 
riboswitch 7 6 1 2 0 

Zika 
xrRNA 5 4 1 2 0 

TPP 
riboswitch 6 6 0 3 0 

Total 60 56 4 33 1 
False negative rate (%) 6.7 45.0 
False positive rate (%) 6.7 2.9 

Sensitivity (%) 93.3 55.0 
PPV (%) 93.3 97.1 

a Helices with length greater than 2 Watson-Crick (or G•U wobble) base pairs. 481 
b Use of one-dimensional DMS data to guide folding through energy bonuses (Cordero et al., 482 
Biochemistry. 2012;51(36):7037-9) and Z-scores derived from two-dimensional M2-seq experiments, 483 
applied as in (Kladwang et al., Nature Chemistry. 2011;3:954-62). 484 

485 
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FIGURE LEGENDS 486 
Figure 1. Workflow for M2-seq, mutate-and-map read out by next-generation 487 

sequencing. DNA template is generated by PCR assembly of oligonucleotides, PCR 488 

from a plasmid, or error-prone PCR potentially introducing deletions (white) or mutations 489 

(gold). Then, RNA is transcribed (potentially introducing further mutations, cyan), folded, 490 

and DMS-modified. Reverse transcription is performed under conditions that favor 491 

mutational read-through of DMS-modified nucleotides, recording those positions as 492 

mutations (magenta), and cDNAs are PCR-amplified to generate double-stranded DNA 493 

library. Libraries are subjected to next-generation sequencing, and resulting reads are 494 

analyzed by demultiplexing, alignment to reference sequences, and correlated mutation 495 

counting to generate a mutate-and-map-seq (M2-seq) dataset (simulated here). Double-496 

stranded RNA helices give rise to cross-diagonal features in these maps that can be 497 

automatically recognized by M2-net and confirmed visually. 498 

 499 

Figure 2. M2-seq on the P4-P6 domain of Tetrahymena group I ribozyme. (A) 500 

Secondary structure diagram of P4-P6. (B-D) Two-dimensional datasets from M2-seq 501 

on pooled mutate-and-map library (B), on RNA with mutations installed during error-502 

prone PCR of DNA template (C), and with no intentionally installed mutations (D), all 503 

probed with dimethyl sulfate mapping. Each row gives frequencies of observing 504 

mutations at every position given a mutation at the row position, as indicated by the 505 

strong diagonal, top left to bottom right.  In (B-D), black-lined outsets highlight M2-seq 506 

signals in the P6a-P6b region; gray-lined outsets show average and maximum observed 507 

frequencies of each type of mutation in control RNA samples without DMS treatment. In 508 

(A-B), colored lines and labels mark correspondence of structure and map signals for 509 

Watson-Crick helices, the tetraloop/tetraloop receptor contact (solid purple), and 510 

exposure of tetraloop from mutations outside its receptor (dashed purple).  511 

 512 

Figure 3. M2-seq on the GIR1 lariat-capping ribozyme requires seeded mutations. 513 

M2-seq maps for GIR1 ribozyme prepared (A) without any intentionally installed 514 

mutations and (B) from templates seeded with mutations through error-prone PCR. 515 
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Colored text labels indicate helices for which cross-diagonal helix signatures become 516 

visible and detectable by M2-net. 517 

 518 

Figure 4. M2-seq recovers helices across diverse RNA folds. Each panel shows 519 

crystallographic secondary structures and Z-score-transformed maps (square graphs) 520 

with colored labels (on both display items) marking helices and multi-helix domains 521 

automatically identified by M2-net analysis. Differences in edge base pairs are not 522 

shown. Data sets are: (A) P4-P6 domain of Tetrahymena ribozyme (background 523 

mutations), (B) GIR1 lariat-capping ribozyme (RNA-puzzle 5; error-prone PCR), (C) 524 

Ribonuclease P catalytic domain (background mutations), (D) adenosylcobalamin 525 

riboswitch aptamer (RNA-puzzle 5; error-prone PCR). Data for three additional RNAs of 526 

smaller length are given in SI Fig. S9. SI Table S3 compiles modeled structures. 527 

 528 

Figure 5. M2-seq detects P4-P6 RNA base pairs in Xenopus egg extract. (A) 529 

Mutations across the P4-P6 transcript consistent with adenosine-to-inosine edits after 530 

exposure to undiluted Xenopus egg extract for 30 minutes (no DMS treatment); 531 

difference data with RNA incubated in vitro are shown. M2-seq data for P4-P6 RNA 532 

from templates prepared by error-prone PCR shown as (B) M2-seq map and then (C) 533 

transformed into Z-scores. Helix signatures automatically detected by M2-net are 534 

marked with colored labels. 535 

 536 
 537 

 538 

 539 
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