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Summary:	25	

• Studies	of	gene	expression	and	polyploidy	are	typically	restricted	to	characterizing	26	

differences	in	transcript	concentration.	Integrating	multiple	methods	of	transcript	27	

analysis,	we	document	a	difference	in	transcriptome	size,	and	make	multiple	28	

comparisons	of	transcript	abundance	in	diploid	and	autotetraploid	Tolmiea.			29	

• We	use	RNA	spike-in	standards	to	identify	and	correct	for	differences	in	30	

transcriptome	size,	and	compare	levels	of	gene	expression	across	multiple	scales:		31	

per	transcriptome,	per	cell,	and	per	biomass.	32	

• In	total,	~17%	of	all	loci	were	identified	as	differentially	expressed	(DEGs)	between	33	

the	diploid	and	autopolyploid	species.		A	shift	in	total	transcriptome	size	resulted	in	34	

only	~58%	of	the	total	DEGs	being	identified	as	differentially	expressed	following	a	35	

per	transcriptome	normalization.		When	transcript	abundance	was	normalized	per	36	

cell,	~82%	of	the	total	DEGs	were	recovered.		The	discrepancy	between	per-37	

transcriptome	and	per-cell	recovery	of	DEGs	occurs	because	per-transcriptome	38	

normalizations	are	concentration-based	and	therefore	blind	to	differences	in	39	

transcriptome	size.		40	

• While	each	normalization	enables	valid	comparisons	at	biologically	relevant	scales,	41	

a	holistic	comparison	of	multiple	normalizations	provides	additional	explanatory	42	

power	not	available	from	any	single	approach.	Notably,	autotetraploid	loci	tend	to	43	

conserve	diploid-like	transcript	abundance	per	biomass	through	increased	gene	44	

expression	per	cell,	and	these	loci	are	enriched	for	photosynthesis-related	functions.			45	

	 	46	
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Introduction	47	

Polyploidy	(whole-genome	duplication;	WGD),	a	process	now	recognized	to	be	of	major	48	

importance	across	many	eukaryotic	lineages	(Van	de	Peer	et	al.,	2009;	Jiao	et	al.,	2011;	Van	49	

de	Peer,	2011;	Jiao	and	Paterson,	2014),	was	long	considered	an	evolutionary	dead-end	by	50	

some,	including	several	of	the	most	prominent	evolutionary	biologists	of	the	past	century	51	

(Stebbins,	1950;	Wagner,	1970).	However,	during	the	last	several	decades	there	has	been	a	52	

resurgence	of	interest	in	the	study	of	polyploid	evolution,	particularly	the	genetic	and	53	

genomic	consequences	of	polyploidy	(e.g.,	Ainouche	et	al.,	2012;	Barker	et	al.,	2016;	54	

Canestro,	2012;	Chen	and	Birchler,	2013;	Doyle,	2012;	Gaeta	et	al.,	2007;	Doyle	et	al.,	2008;	55	

Soltis	and	Soltis,	2009,	2012;	Salmon	et	al.,	2010;	Greilhuber	et	al.,	2012;	Shi	et	al.,	2012;	56	

Madlung	and	Wendel,	2013;	Renny-Byfield	and	Wendel,	2014;	Soltis	et	al.,	2014;	Wendel,	57	

2015;	Spoelhof	et	al.,	accepted).		58	

The	role	of	polyploidy	in	facilitating	changes	in	gene	expression,	through	expression	59	

level	divergence,	altered	expression	patterns	(e.g.,	across	tissue-types),	and/or	the	60	

generation	of	unique	splice	variants,	is	arguably	one	of	the	most	important	research	topics	61	

in	the	field	today	(e.g.,	Liu	et	al.,	2001;	Adams	et	al.,	2003;	Adams	and	Wendel,	2012;	62	

Chelaifa	et	al.,	2010;	Dong	and	Adams,	2011;	Ainouche	et	al.,	2012;	Buggs,	2012;	Buggs	et	al.,	63	

2014;	Rambani	et	al.,	2014;	see	Yoo	et	al.,	2014	for	review).	For	example,	autotetraploid	64	

Solanum	phureja	expresses	~10%	of	all	loci	at	a	different	levels	relative	to	diploid	S.	65	

phureaja	(Stupar	et	al.,	2007).		In	Paulownia	fortunei,	the	autotetraploid	differentially	66	

expresses	~6%	of	all	loci	relative	to	the	diploid	progenitor	(Zhang	et	al.,	2014),	and	in	67	

Arabidopsis	thaliana	~4%	of	all	loci	are	differentially	expressed	between	the	diploid	and	68	

autotetraploid	derivative	(Del	Pozo	and	Ramirez-Parra,	2014).		However,	the	rapid	increase	69	

in	studies	of	patterns	of	gene	expression	in	polyploids	appear	to	have	outpaced	our	70	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 28, 2017. ; https://doi.org/10.1101/169367doi: bioRxiv preprint 

https://doi.org/10.1101/169367
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 4	

fundamental	understanding	of	the	transcriptome’s	response	to	polyploidy	per	se	and	how	71	

this	response	might	influence	our	interpretation	of	gene	expression	measures.		72	

One	major	concern	in	comparisons	of	gene	expression	between	diploids	and	polyploids	73	

is	that	any	transcriptome	amplification	or	transcriptome-wide	effects	induced	following	74	

polyploidy	are	rarely,	if	ever,	investigated	(see	Coate	and	Doyle,	2010,	2015).	75	

Transcriptional	amplification	is	a	biological	phenomenon	in	which	the	total	mRNA	76	

produced	per	cell	is	increased	up	to	several	fold	in	one	treatment	group	compared	to	77	

another,	resulting	in	unequal	total	transcriptome	sizes	(Nie	et	al.,	2012).		Transcriptional	78	

amplification	would	be	anticipated	in	a	polyploid	compared	to	a	diploid	progenitor,	as	79	

polyploidy	globally	alters	gene/genome	copy	number	and	often	influences	cell	size,	which,	80	

in	turn,	has	been	shown	to	correlate	with	transcriptome	size	(Fomina-yadlin	et	al.,	2014).	81	

Recent	work	has	shed	light	on	some	of	the	biases	inherent	to	expression	level	82	

comparisons	between	treatment	groups	that	differ	in	transcriptome	size.	Loven	et	al.	83	

(2012)	showed	that	inferences	drawn	from	a	typical	RNAseq	workflow	can	be	confounded	84	

when	treatment	groups	have	transcriptomes	of	differing	size.	Because	transcriptome	size	85	

variation	has	rarely	been	explored,	RNAseq	studies	involving	transcriptome	amplification	86	

are	likely	to	underestimate	the	proportion	of	the	transcriptome	being	differentially	87	

expressed.		Surprisingly,	only	a	single	investigation	into	gene	expression	change	following	88	

polyploidy	has	accounted	for	variation	in	transcriptome	size	(Coate	and	Doyle,	2010).	Coate	89	

and	Doyle	(2010)	found	that	allotetraploid	G.	dolicocarpa	has	a	total	mRNA	transcriptome	90	

~1.4	times	greater	than	its	diploid	progenitors,	demonstrating	that	polyploidy	can	induce	91	

an	increase	in	transcriptome	size.	However,	similar	data	from	additional	polyploid	systems	92	

are	badly	needed	to	achieve	a	broader	understanding	of	the	role	that	polyploidy	plays	in	93	

transcriptome-wide	changes	in	gene	expression.	Current	methods	for	comparing	94	

differences	in	levels	of	gene	expression	across	the	transcriptome	rely	on	the	detection	of	95	
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statistically	different	RNAseq	read	abundances	at	each	locus	to	generate	a	summary	of	96	

differential	gene	expression.	RNAseq	libraries	are	usually	sequenced	to	different	depths	by	97	

chance,	resulting	in	library	size	(the	total	number	of	reads	per	sample)	varying	across	the	98	

final	dataset.		To	prevent	variation	in	library	size	from	influencing	analyses	of	differential	99	

expression,	library	size	is	typically	normalized	across	all	samples	(e.g.,	Mortazavi	et	al.,	100	

2008).		Commonly	used	library	normalization	methods	quantify	expression	level	on	a	101	

concentration	basis	by	dividing	read	abundance	by	a	factor	of	the	whole	library	(e.g.,	102	

transcripts	per	million	or	reads	per	kilobase	per	million)	(see	Coate	and	Doyle,	2010,	2015;	103	

Lovén	et	al.,	2012).	Concentration-based	normalizations	place	gene	expression	in	the	104	

context	of	expression	level	per	transcriptome.	Using	a	concentration-based	normalization	105	

approach	to	infer	differences	in	expression	level	requires	that	total	transcriptome	size	does	106	

not	vary	between	ploidal	levels.	If	transcriptome	size	varies	by	ploidy,	then	loci	identified	as	107	

differentially	expressed	(differentially	expressed	genes;	DEGs)	are	not	necessarily	108	

expressed	at	different	levels,	but	instead	are	maintained	in	different	concentrations	relative	109	

to	the	transcriptome	(Figure	1A).		110	

To	overcome	these	problems,	the	use	of	synthetic	spike-in	RNA	standards	has	been	111	

proposed	(Lovén	et	al.,	2012).		These	standards,	developed	by	the	External	RNA	Controls	112	

Consortium	(External	RNA	Controls	Consortium,	2005;	Baker	et	al.,	2005;	referred	to	as	113	

Spike-in	RNA	standards,	henceforth	spike-ins),	facilitate	comparison	of	absolute	expression	114	

level	across	treatments	with	different	transcriptome	sizes	(see	Pine	et	al.,	2016).	Spike-ins	115	

allow	for	normalization	of	transcript	abundance	independent	of	transcriptome	size.	To	date,	116	

spike-ins	have	been	largely	restricted	to	use	in	model	systems	(e.g.,	hamster	–	Fomina-117	

yadlin	et	al.,	2014;	human	–	Xu	et	al.,	2014;	zebrafish	–	Schall	et	al.,	2017),	single	cell	118	

sequencing	(e.g.,	Krishnaswami	et	al.,	2016;	Liu	et	al.,	2016),	and	methods	development	and	119	

validation	(e.g.,	Lovén	et	al.,	2012;	Gu	et	al.,	2014;	Germain	et	al.,	2016);	they	remain	a	120	
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promising	but	unutilized	method	for	cross-ploidy	comparisons.	121	

Most	polyploids	exhibit	differences	in	cell	size	relative	to	their	parents,	which	may	122	

result	in	an	alteration	of	cell	density	(Stebbins,	1971;	Masterson,	1994).		Because	123	

normalization	per	transcriptome	is	based	on	concentration	of	transcripts,	these	124	

comparisons	are	therefore	robust	to	variation	in	cell	size	and	density.	Differences	in	cell	125	

number	and	cell	size	might	be	expected	to	influence	levels	of	gene	expression	on	certain	126	

scales,	but	cell	size	and	density	are	rarely	investigated	prior	to	studying	differences	in	gene	127	

expression	levels.	Conversely,	normalizing	by	the	abundance	of	an	internal	standard	within	128	

a	library	(e.g.,	spike-ins)	does	not	account	for	variation	in	the	number	of	contributing	cells	129	

across	treatments,	and	the	inferred	transcript	abundance	may	be	biased	(Fomina-yadlin	et	130	

al.,	2014).		It	is	therefore	critical	to	have	information	on	cell	density	differences	between	131	

treatment	groups	when	normalizing	to	an	internal	standard.	132	

Following	polyploidy,	a	balance	of	cell	size	and	density	effects,	as	well	as	differences	in	133	

gene/allelic	dosage,	could	have	profound	effects	on	all	facets	of	plant	physiology.	Across	a	134	

ploidal	series	in	Atriplex	confertifolia,	cell	density	decreases	with	increasing	ploidy	(Warner	135	

and	Edwards,	1989).	Despite	harboring	fewer	cells	per	unit	area,	higher	ploidal	levels	of	A.	136	

confertifolia	are	capable	of	higher	photosynthesis	per	unit	leaf	area,	due	to	increased	137	

photosynthesis	of	tetraploid	cells	relative	to	diploid	cells.	Conversely,	in	tetraploid	138	

Medicago	sativa,	which	also	exhibits	lower	cell	density	than	does	its	diploid	progenitor,	139	

photosynthesis	per	cell	is	increased	in	the	tetraploid	to	yield	diploid-like	photosynthetic	140	

output	per	unit	leaf	area	(Warner	and	Edwards,	1993).	In	A.	confertifolia	and	M.	sativa,	cell	141	

size	and	density	alone	are	not	sufficient	for	predicting	physiological	change	following	142	

polyploidy.	Instead,	information	on	the	interaction	between	cell	density	and	cell	efficiency	is	143	

needed	to	understand	fully	the	physiological	impact	of	polyploidy.	In	light	of	these	144	

observations,	studies	of	changes	in	gene	expression	levels	following	polyploidy	should	145	
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routinely	investigate	the	interaction	between	gene	expression	across	a	unit	of	biomass	and	146	

per	cell.	147	

When	discussing	transcript	abundance	between	samples	of	differing	transcriptome	148	

sizes	and/or	differing	cell	density,	a	clear	nomenclature	is	critical.		We	illustrate	three	149	

separate	ways	of	defining	transcript	abundance	when	both	transcriptome	size	and	cell	150	

density	vary	between	treatment	groups	(Figure	1).		When	RNAseq	data	are	normalized	151	

without	an	external	standard	(Figure	1A),	differences	in	abundance	observed	between	two	152	

treatments	reflect	a	difference	in	transcript	concentration.		We	follow	Coate	and	Doyle	153	

(2010)	in	referring	to	this	type	of	comparison	as	‘per	transcriptome’.			154	

Differences	in	expression	level	between	treatments	normalized	to	the	abundance	of	155	

spike-ins	reflect	differences	in	transcript	abundance	relative	to	the	abundance	of	spike-ins.		156	

When	spike-ins	are	added	in	equal	amounts	to	samples	derived	from	equivalent	volumes	of	157	

tissue,	then	differences	observed	following	a	spike-in-based	normalization	indicate	that	158	

transcripts	differ	in	abundance	within	a	given	volume	of	tissue	(Figure	1B).		We	refer	to	this	159	

comparison	as	‘per	biomass’.		Finally,	if	the	spike-in	abundance	is	scaled	by	a	factor	equal	to	160	

differences	in	cell	density,	differences	in	expression	level	will	reflect	changes	in	transcript	161	

abundance	relative	to	the	cell	(Figure	1C),	and	we	refer	to	this	case	as	‘per	cell’	(Figure	1).	162	

Tolmiea	(Saxifragaceae)	is	an	excellent	evolutionary	model	for	investigating	the	163	

transcriptional	impact	of	polyploidy	because:	1)	it	is	a	clear	diploid	(T.	diplomenziesii)	and	164	

autotetraploid	(T.	menziesii)	system;	and	2)	there	is	strong	support	for	a	single	origin	of	the	165	

autotetraploid	(Soltis	and	Soltis,	1988;	Soltis	et	al.,	1989;	Visger	et	al.,	2016).	In	addition,	166	

examination	of	changes	in	expression	level	following	autopolyploidy	is	less	problematic	167	

than	similar	investigations	within	allopolyploid	systems	for	several	reasons.	First,	168	

autopolyploidy	results	in	a	duplication	of	a	single	genome,	rather	than	the	merger	and	169	

duplication	of	two	divergent	genomes	(as	in	allopolyploidy).	Hence,	a	single	diploid-based	170	
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mapping	reference	can	be	used	for	both	the	diploid	and	the	autotetraploid.	Additionally,	by	171	

definition,	there	are	no	homeologues	in	an	autopolyploid,	substantially	reducing	the	172	

potential	for	biased	mismapping	of	paralogous	reads.	A	single	origin	of	the	polyploid	is	also	173	

an	advantage	for	exploring	issues	pertaining	to	transcriptional	amplification	and	reduces	174	

analytical	complexity.		For	example,	multiple,	independent	origins	of	a	polyploid	may	have	175	

differing	effects	on	transcriptome	size.		Thus,	an	investigation	accounting	for	biases	in	176	

transcriptome	size	should	start	with	an	autopolyploid	arising	from	a	single	origin.	177	

Here	we	leverage	spike-in	RNA	standards	and	multiple	normalization	methods	to	178	

collectively	characterize	for	the	first-time	gene	expression	across	three	biological	scales	in	a	179	

natural	system.	Through	this	multi-scale	comparison,	we	investigate	how	polyploidy	has	180	

influenced	transcriptional	change	in	gene	pathway	stoichiometry,	cellular	expression	levels,	181	

and	transcript	abundance	across	leaf	organ	tissue.	Finally,	we	synthesize	the	differences	182	

represented	across	all	three	scales	and	place	our	findings	within	the	context	of	183	

ecophysiological	data	for	Tolmiea.		184	

	185	

Materials	and	Methods	186	

Sampling—	Plants	were	collected	from	three	geographically	separate	natural	187	

populations	of	both	T.	diplomenziesii	and	T.	menziesii	(Figure	2).	Taking	advantage	of	the	188	

ability	of	Tolmiea	to	reproduce	asexually	via	plantlet	formation,	each	individual	collected	in	189	

the	field	was	subsequently	propagated	in	quadruplicate	in	a	greenhouse	at	the	University	of	190	

Florida.	The	resulting	plantlets	were	then	grown	to	maturity	under	standardized	conditions	191	

within	a	common	garden	greenhouse	at	the	University	of	Florida.	One	of	four	replicate	192	

plants	from	two	T.	menziesii	populations	died	prior	to	sampling.	193	

Each	of	the	22	mature	plants	was	sampled	for	equivalent	volumes	of	leaf	tissue	using	an	194	

8-mm-diameter	cork	borer.	The	tissue	was	then	flash	frozen	in	liquid	N2	and	stored	at	-80C	195	
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until	RNA	extraction.	Total	RNA	was	extracted	from	this	tissue	using	the	CTAB	and	Trizol	196	

method	of	Jordon-Thaden	et	al.	(2015;	protocol	number	2)	with	the	addition	of	20%	197	

sarkosyl.	DNA	was	removed	using	a	Turbo	DNA-free	kit	(Invitrogen,	USA).		Following	the	198	

manufacturer's	recommendations,	the	total	RNA	was	spiked	with	4	ul	of	1:100	diluted	ERCC	199	

RNA	Spike-in	mix	(Ambion,	USA).	RNAseq	libraries	were	then	built	using	the	TruSeq	kit	200	

(Illumina,	USA);	100-bp	paired-end	sequencing	was	performed	using	an	Illumina	HiSeq	at	201	

the	Beijing	Genomics	Institute.	202	

Quantifying	cell	density--To	quantify	differences	in	levels	of	gene	expression	per	cell,	it	203	

was	necessary	to	account	for	differences	in	both	transcriptome	size	and	cell	density	204	

between	diploid	and	autotetraploid	Tolmiea.	A	potential	source	of	uncertainty	is	our	205	

estimation	of	differences	in	cell	density	that	were	used	to	normalize	our	reads	on	a	relative	206	

per-cell	basis.		To	decrease	the	likelihood	of	misrepresenting	differences	in	cell	density,	we	207	

characterized	cell	density	using	both	DNA/RNA	co-extraction	and	cell	counting	as	described	208	

below.		209	

Duplicate	leaf	punches	from	each	sample	were	used	for	co-extraction	of	DNA	and	RNA.		210	

We	first	followed	the	Jordon-Thaden	et	al.	(2015)	method	#2	with	20%	sakrosyl.		Following	211	

the	CTAB	incubation,	the	supernatant	was	split	into	two	equal	aliquots,	one	of	which	was	212	

used	for	RNA	extraction	(following	Jordon-Thaden	et	al.,	2015)	and	the	other	for	DNA	213	

extraction	(following	Doyle	and	Doyle,	1987).		DNA	concentrations	were	quantified	with	214	

dsDNA	broad-range	chemicals	using	a	Qubit	(Life	Technologies).	DNA	concentration	was	215	

placed	into	a	1C	context	by	dividing	by	ploidal	level.		The	1C	DNA	concentration	was	used	to	216	

infer	the	relative	difference	in	cell	density	of	the	leaf	tissue	contributing	to	RNA	extraction	217	

between	T.	menziesii	and	T.	diplomenziesii.	To	validate	this	approach,	we	also	directly	218	

estimated	cell	density	per	unit	area.		Leaf	punches	two	cm	in	diameter	collected	from	10	219	

diploids	and	11	tetraploids	were	digested	in	500	ul	of	10%	chromic	acid	until	cells	were	220	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 28, 2017. ; https://doi.org/10.1101/169367doi: bioRxiv preprint 

https://doi.org/10.1101/169367
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 10	

fully	dissociated	(Brown	and	Rickless,	1949;	Ilut	et	al.,	2012).	Each	individual	was	assayed	221	

twice,	and	the	number	of	cells	in	the	suspension	was	counted	twice	for	each	assay	using	10-222	

ul	aliquots	in	a	hemocytometer.	Statistical	analyses	of	1C	DNA	concentration	and	cell	223	

density	were	performed	using	a	linear	mixed-effects	model	implemented	in	JMP	(version	224	

12;	SAS	Institute,	Cary,	NC,	USA)	with	individual	as	a	random	effect.		All	datasets	were	tested	225	

for	normality	using	a	goodness	of	fit	test,	and	if	normality	was	rejected,	the	data	were	log	226	

transformed.	227	

Differential	expression	analysis—	Raw	reads	were	cleaned	using	CutAdapt	(Martin,	228	

2011)	and	Sickle	(Joshi	and	Fass,	2011).		A	Tolmiea	reference	transcriptome	was	generated	229	

from	concatenated	reads	taken	from	all	samples	(with	the	spike-in	reads	removed),	and	in	230	

silico	read	normalization	was	employed	using	Trinity)	(Grabherr	et	al.,	2011).	Extremely	231	

low-expressed	isoforms	were	removed	(<	1	transcript	per	million),	and	the	remaining	232	

transcriptome	was	annotated	using	the	Trinotate	pipeline	233	

(http://trinotate.sourceforge.net/).		Trimmed	reads	for	each	sample	were	mapped	to	a	234	

concatenation	of	the	Tolmiea	transcriptome	with	isoforms	clustered	together	(using	the	235	

Trinity	‘gene’	option)	and	the	publically	available	ERCC	spike-in	reference	using	Bowtie2	236	

(Langmead	and	Salzberg,	2012),	and	read	counts	were	extracted	using	eXpress	(Roberts,	237	

2013).	238	

We	provide	an	iPython	notebook	including	the	entire	code	for	the	normalization,	239	

differential	expression,	and	figure	generation	described	below	(Appendix	1).	In	short,	read	240	

count	normalization	and	differential	expression	analyses	were	conducted	using	Limma-241	

Voom	(Ritchie	et	al.,	2015).	A	per-transcriptome	normalization	was	implemented	using	the	242	

total	library	following	the	removal	of	spike-in	count	data	to	compute	normalization	factors.		243	

A	per-biomass	normalization	used	only	spike-in	count	data	to	compute	normalization	244	

factors.	A	per-cell	normalization	used	the	spike-in	count	data	following	in	silico	adjustment	245	
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of	tetraploid	spike-in	abundance	using	the	difference	of	diploid	versus	tetraploid	cell	246	

density	(65%;	see	methods	on	quantifying	cell	size	and	density	and	Results).		Following	247	

each	normalization,	using	the	plotMDS	function,	a	multidimensional	scaling	plot	was	248	

generated	from	500	loci	exhibiting	the	highest	variation	in	expression	level	among	samples.	249	

Differences	in	transcriptome	size	were	approximated	using	the	sum	of	normalized	read	250	

counts	per	cell;	however,	Limma-Voom	normalizations	use	log-counts,	which	are	not	251	

applicable	to	straight	summation,	so	we	used	the	DEseq	package	(Anders	and	Huber,	2010)	252	

to	compute	per-cell	normalized	counts	for	this	purpose	only.		Next,	a	differential	expression	253	

analysis	was	run	using	the	normalization	approaches	above	described,	with	loci	identified	254	

as	differentially	expressed	(DE)	using	a	0.05	p-value,	0.05	false	discovery	rate,	and	cutoff	of	255	

1	log-fold	change	(logFC).	Differentially	expressed	loci	were	binned	both	broadly	across	the	256	

three	normalization	methods	and	more	finely	to	characterize	interplay	between	the	three	257	

normalization	results	using	gplots	(Warnes	et	al.,	2009).	Gene	ontology	(GO)	terms	were	258	

extracted	from	the	Trinotate	annotations	of	the	mapping	reference.			Each	of	the	fine-scale	259	

bins	of	DEGs	was	tested	for	functional	enrichment	using	GOSeq	(Young	et	al.,	2010).	260	

	261	

Results	262	

Quantifying	cell	size	and	density	--	The	mean	diploid	and	tetraploid	1C	DNA	263	

concentrations	per	leaf	punch	extraction	were	1.32591	+/-	0.09439	ug/ml	and	0.76432	+/-	264	

0.0619	ug/ml,	respectively;	these	differed	significantly	(p	<	0.0001)	(Figure	3A).		The	mean	265	

tetraploid	1C	DNA	per	punch	was	57.6%	of	the	diploid	value.		Following	tissue	digestion,	the	266	

estimated	values	of	mean	number	of	cells	per	leaf	punch	in	diploids	and	tetraploids	were	267	

412,146	+/-	38,002	and	268,958	+/-	20,522,	respectively.	These	values	differed	significantly	268	

(p	=	0.0129).	The	tetraploids	on	average	had	65.3%	as	many	cells	per	leaf	punch	as	found	in	269	

the	diploids	(Figure	3B).		270	
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	Our	two	methods	for	characterizing	differences	in	cell	density	both	revealed	similar	271	

reductions	in	tetraploid	cell	density;	tetraploids	possessed	~58%	and	65%	of	the	diploid	272	

density,	based	on	the	DNA/RNA	co-extraction	and	cell-count	results,	respectively.	We	273	

elected	to	normalize	our	per-cell	analysis	by	applying	a	0.65	factor	to	the	per-cell	274	

normalization	factor	of	the	tetraploid	samples	to	reflect	the	more	conservative	estimate	of	275	

differences	in	cell	density;	however,	both	estimates	of	cell	density	reveal	the	same	the	major	276	

conclusions	of	this	study	(the	alternative	cell	density	difference	can	be	run	using	the	277	

supplemental	ipython	notebook	–	Appendix	1).		278	

Differential	expression	analysis—We	obtained	an	average	of	25	million	reads	per	sample	279	

after	cleaning	low-quality	reads	(see	appendix	2	for	total	reads	per	sample).	The	Tolmiea	280	

reference	transcriptome	assembly	resulted	in	58,046	isoforms	binned	within	28,467	281	

clusters	(henceforth	genes)	with	an	N50	of	1,821	bp.	After	read	mapping,	26,816	genes	had	282	

at	least	5	non-zero	counts	and	were	used	for	downstream	differential	expression	analyses.	283	

In	all,	15,205	genes	were	annotated	according	to	GO	using	Trinotate.	284	

A	multidimensional	scaling	plot	of	the	500	loci	with	the	highest	variation	in	expression	285	

level	revealed	that	all	three	normalization	methods	(per	transcriptome,	per	cell,	and	per	286	

biomass)	performed	well	at	clustering	members	from	the	same	population	with	one	287	

another	(Figure	4A-C).	After	summing	the	read	counts	normalized	per	cell	for	each	sample,	288	

we	found	that	the	mean	transcription	per	cell	(henceforth	transcriptome	size)	for	the	289	

tetraploid	was	2.1	times	higher	than	the	mean	for	the	diploid	(Figure	5).		Additionally,	the	290	

total	transcriptome	size	per	cell	was	highly	variable,	more	so	in	the	tetraploids	than	the	291	

diploids	(20,815,579	and	11,799,791	normalized	counts,	respectively	--	see	appendix	1	for	292	

standard	deviation	within	each	population).	Across	the	three	normalization	methods,	the	293	

differential	expression	analysis	found	the	tetraploid	relative	to	the	diploid	had	1,559	up-	294	

and	1,071	down-regulated	genes	per	transcriptome,	1,440	up-	and	1,550	down-regulated	295	
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genes	per	biomass,	and	3,005	up-	and	751	down-regulated	genes	per	cell	(Figure	4D-F).		296	

Across	the	three	different	normalization	methods,	we	found	4,555	unique	loci	were	DE	297	

under	one	or	more	methods	(Figure	6).		Finer	binning	of	the	interactions	between	298	

normalization	methods	revealed	the	majority	of	DEGs	to	be	either	up-regulated	in	the	299	

tetraploid	across	all	normalizations	(1,392	–	Figure	7A)	or	only	up-regulated	per	cell	(1,398	300	

Figure	7D).		301	

	302	

Discussion	303	

Differences	in	gene	expression	following	autopolyploidy:	This	is	the	first	study	to	304	

leverage	synthetic	RNA	standards	to	characterize	differences	in	gene	expression	level	per	305	

transcriptome,	per	biomass,	and	on	a	relative	per-cell	basis	between	ploidal	levels.		Through	306	

the	use	of	this	‘three	normalization	approach’	and	characterization	of	gene	expression	levels	307	

in	diploid	and	autotetraploid	Tolmiea,	we	found	4,555	out	of	26,816	loci	were	DE	(~17%	of	308	

the	transcriptome)	and	identified	four	notable	trends.	First,	the	per-transcriptome	309	

normalization,	the	method	researchers	typically	use,	captured	the	fewest	DEGs	and	failed	to	310	

detect	any	DEGs	not	found	by	the	other	two	methods.	Second,	most	differential	expression	311	

occurs	on	a	per-cell	basis,	and	there	is	a	clear	unbalanced	distribution	of	up-	versus	down-312	

regulation	in	the	autotetraploid	relative	to	the	diploid,	with	3,005	up-	versus	751	down-313	

regulated	DEGs	per	cell.		Third,	in	the	tetraploid,	transcripts	up-regulated	per	cell	appear	to	314	

compensate	for	a	decreased	cell	density,	resulting	in	a	conservation	of	expression	level	per	315	

biomass	relative	to	the	diploid	(see	Figure	8).	Loci	exhibiting	conservation	per	biomass	316	

were	significantly	enriched	for	functions	related	to	photosynthesis	and	the	chloroplast.	317	

Fourth,	transcriptome	size	varied	substantially	across	our	dataset,	with	a	significant	318	

increase	in	the	inferred	transcriptome	size	of	the	tetraploid	relative	to	the	diploid	(Figure	319	

5).	Below	we	discuss	each	of	these	four	trends	in	greater	detail.	320	
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Autopolyploids	have	rarely	been	compared	to	their	diploid	progenitors	with	respect	to	321	

divergence	in	expression	level	(e.g.,	Stupar	et	al.,	2007;	Del	Pozo	and	Ramirez-Parra,	2014;	322	

Zhang	et	al.,	2014).	These	previous	diploid-autopolyploid	comparisons	found	that	323	

autopolyploids	tend	to	deviate	from	diploid-like	gene	expression	levels	across	1-10%	of	the	324	

transcriptome	(~6%	in	Paulownia	fortunei	–	Zhang	et	al.,	2014;	~10%	in	Solanum	phureja	–	325	

Stupar	et	al.,	2007;	~1-4%	in	Arabidopsis	–	Del	Pozo	and	Ramirez-Parra,	2014).	However,	326	

none	of	these	comparisons	was	normalized	using	spike-in	standards;	instead	they	used	327	

what	is	referred	to	here	as	a	per-transcriptome	comparison.	Unlike	the	spike-in-derived	328	

per-biomass	and	per-cell	normalized	transcript	counts,	the	results	of	per-transcriptome	329	

normalizations	reflect	concentration	differences	and	are	not	a	proxy	for	absolute	330	

expression.	Therefore,	the	results	of	previous	autopolyploid	expression	studies	must	be	331	

interpreted	as	differences	in	transcript	concentration	rather	than	absolute	abundance.		332	

Spike-in	standards	have	rarely	been	used	in	any	evolutionary	comparisons	and	have	333	

primarily	been	adopted	for	use	in	studies	of	model	fish	(zebrafish),	mammals	(human,	334	

mouse,	and	hamster),	and	plants	(Arabidopsis)	(e.g.,	Brennecke	et	al.,	2013;	Fomina-yadlin	335	

et	al.,	2014;	Xu	et	al.,	2014;	Schall	et	al.,	2017).	Despite	the	use	of	spike-ins	in	these	336	

investigations	of	model	systems,	in	methods	development,	and	in	single-cell	sequencing,	337	

spike-in	approaches	have	not	yet	been	applied	to	evolutionarily	motivated	studies	of	338	

natural	populations.		The	lack	of	spike-in	usage	in	non-model	studies	is	surprising,	because	339	

a	reference	genome	is	not	a	requirement	for	a	spike-in-based	normalization.		In	fact,	spike-340	

ins	may	be	more	important	in	non-model	versus	model	systems	because	comparisons	341	

within	non-model	systems	are	often	broad	(e.g.,	interspecific	comparisons)	and	may	be	342	

more	likely	to	result	in	unequal	transcriptome	size	between	treatment	groups.		343	

Considering	only	the	results	of	our	per-transcriptome	normalization,	approximately	9%	344	

of	the	Tolmiea	transcriptome	was	differentially	expressed	on	a	concentration	basis	between	345	
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the	diploid	and	autotetraploid	species,	in	line	with	the	results	for	other	diploid--346	

autopolyploid	pairs	cited	above.		This	finding	suggests	that,	in	general,	only	a	small	fraction	347	

of	the	transcriptome,	less	than	10%,	responds	to	autopolyploidization	through	novel	348	

alterations	to	transcript	concentration.		Despite	differences	in	transcript	abundance	per	349	

transcriptome	representing	less	than	10%	of	all	loci,	concentration-based	differences	could	350	

have	important	consequences	for	the	stoichiometry	of	gene	expression	pathways.		351	

Unfortunately,	although	Tolmiea	is	a	good	evolutionary	model,	it	is	not	a	genetic	model,	and	352	

the	ability	to	investigate	specific	pathways	and	make	inferences	regarding	physiological	353	

impact	is	severely	hampered.		However,	it	would	be	important	for	future	studies	to	test	354	

whether	members	of	a	given	pathway	respond	similarly	with	respect	to	the	maintenance	of	355	

transcript	abundances	relative	to	the	transcriptome,	cell,	or	biomass.		356	

	It	is	also	notable	that	although	~9%	of	the	loci	examined	in	Tolmiea	were	differentially	357	

expressed	per	transcriptome,	none	of	these	DEGs	were	uniquely	recovered	only	from	the	358	

per-transcriptome	analysis.	The	majority	of	per-transcriptome	DEGs	(2,106	of	the	2,630)	359	

were	differentially	expressed	at	a	sufficiently	high	magnitude	to	be	detected	by	all	three	360	

normalization	methods.		These	results	suggest	that	the	loci	typically	identified	as	DE	in	361	

previous	studies	of	polyploid	gene	expression	represent	only	differences	in	expression	level	362	

extreme	enough	to	be	detected	through	a	significantly	altered	concentration.		Therefore,	363	

examination	of	more	subtle	differences	in	expression	level	requires	the	use	of	normalization	364	

approaches	that	allow	for	quantitative	comparisons	of	transcript	abundance.	365	

When	we	compared	expression	level	per	cell,	we	found	that	~14%	(3,756	loci)	of	the	366	

transcriptome	was	maintained	in	different	abundances	per	cell	between	diploid	and	367	

tetraploid	Tolmiea.	Importantly,	the	direction	of	differences	in	expression	level	in	T.	368	

menziesii	relative	to	the	diploid	was	extremely	unbalanced.	Nearly	all	per-cell	DEGs	were	369	

up-regulated	in	T.	menziesii	(3,005	loci),	with	only	751	down-regulated.		In	addition,	1,398	370	
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of	the	3,005	per-cell	DEGs	up-regulated	in	the	tetraploid	were	unique	to	the	per-cell	371	

normalization	and	not	recovered	under	either	per-transcriptome	or	per-biomass	372	

normalizations	(Figure	7D).		Taken	together,	it	appears	that	most	differential	expression	in	373	

Tolmiea	represents	a	pattern	consistent	with	dosage	sensitivity,	with	increased	levels	of	374	

gene	expression	in	the	tetraploid	correlating	with	an	increase	in	allele	copy	number.		This	375	

result	would	not	have	been	detected	under	a	typical	library-size	normalization	method,	as	376	

the	expression	of	these	loci	is	not	significantly	altered	in	concentration	relative	to	the	377	

whole.			378	

The	over-abundance	of	up-regulation	per	cell	in	the	tetraploid	may	serve	as	a	379	

mechanism	to	compensate	for	reduced	cell	density.		In	other	words,	there	is	tendency	in	T.	380	

menziesii	for	conserved	gene	expression	levels	per	biomass	through	novelty	at	the	cellular	381	

level	(henceforth	per-biomass	conservation)	(Figure	8).		Approximately	1,398	loci,	or	5.2%	382	

of	all	loci,	in	T.	menziesii	exhibit	per-biomass	conservation	(Figure	7D).		This	buffering	effect	383	

is	achieved	by	per-cell	up-regulation	in	T.	menziesii	mirroring	the	decrease	in	cell	density	384	

relative	to	T.	diplomenziesii.	Fifteen	functional	categories	were	significantly	over-385	

represented	among	the	loci	exhibiting	per-biomass	conservation.		Of	these,	seven	were	386	

related	to	either	the	chloroplast	or	photosynthesis.	Whether	there	is	selective	pressure	to	387	

conserve	expression	per	biomass	is	unclear,	but	alteration	of	photosynthesis	either	per	cell	388	

or	per	biomass	appears	to	be	a	recurring	theme	across	diploid/polyploid	comparisons	(e.g.,	389	

Warner	and	Edwards,	1993;	Vyas	et	al.,	2007;	Coate	et	al.,	2013).	For	example,	Warner	and	390	

Edwards	(1993)	revealed	photosynthetic	conservation	per	biomass	in	M.	sativa,	but	an	391	

overall	increase	in	photosynthesis	per	biomass	following	polyploidy	in	A.	confertifolia.		A	392	

clear	trend	in	the	effects	of	polyploidization	on	photosynthesis	per	biomass	has	yet	to	393	

emerge,	and	like	many	aspects	of	polyploidy,	it	may	be	lineage-specific	and/or	require	394	

additional	study	systems	(Soltis	et	al.,	2016).		395	
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Diploid	and	tetraploid	Tolmiea	occur	under	similar	light	regimes	in	nature	(Visger	et	al.,	396	

2016),	and	previously	collected	physiological	data	revealed	no	significant	difference	in	397	

photosynthetic	rate	per	leaf	area	(Visger	et	al.,	2016)	(Figure	9).	In	Tolmiea,	conservation	of	398	

expression	level	per	biomass	may	be	a	mechanism	for	the	maintenance	of	optimal	399	

photosynthesis	per	biomass,	facilitating	the	ecological	conservation	of	light	preference	in	400	

Tolmiea.	To	determine	if	photosynthesis-related	functional	enrichment	of	conservation	per	401	

biomass	is	indeed	a	key	underlying	molecular	mechanism	for	buffering	cell	density	as	it	402	

pertains	to	photosynthesis,	additional	autopolyploid	systems	should	be	similarly	studied.		403	

Revisiting	the	work	of	Warner	and	Edwards	(1993)	using	our	spike-in	standard-based	gene	404	

expression	approach	should	also	show	a	similar	conservation	of	gene	expression	per	405	

biomass	in	polyploid	M.	sativa.		Conversely,	in	A.	confertifolia	where	polyploidy	increases	406	

photosynthesis	per	leaf	area,	we	might	expect	photosynthesis-related	gene	expression	per	407	

cell	to	be	increased	by	a	factor	greater	than	the	difference	in	cell	density	between	diploid	408	

and	polyploid	plants	(Warner	and	Edwards,	1993).	409	

An	initial	motivation	for	utilizing	a	spike-in	approach	to	read-count	normalization	was	410	

to	tease	apart	variation	in	library	size	from	differences	in	transcriptome	size	between	411	

diploid	and	tetraploid	Tolmiea.	We	found	that	when	normalizing	read	counts	per	cell,	the	412	

mean	transcriptome	size	of	the	tetraploid	is	over	twice	that	of	the	diploid	(Figure	5).		This	413	

difference	in	transcriptome	size	should	be	qualified,	as	the	variation	within	and	between	414	

populations	is	quite	large,	though	the	mean	transcriptome	size	still	significantly	differed	415	

with	ploidal	level.		Notably,	we	also	observed	that	the	variability	of	transcriptome	size	was	416	

greater	in	the	tetraploids.		The	diploid	populations	all	exhibited	a	similar	degree	of	variation	417	

in	transcriptome	size,	while	tetraploid	populations	represented	both	the	least	and	greatest	418	

variation	in	transcriptome	size	(Figure	5;	see	Appendix	1	for	standard	deviation	by	419	

population).	Excluding	all	other	results	presented	in	this	study,	the	variability	of	420	
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transcriptome	size	alone	should	be	motivation	enough	for	researchers	of	polyploidy	to	421	

adopt	a	spike-in-based	approach.	422	

	 	423	

The	benefits	of	spike-in	RNA	standards:		This	study	is	not	the	first	to	apply	synthetic	424	

RNA	spike-in	standards	in	dealing	with	a	transcriptome-wide	effect	(e.g.,	see	Lovén	et	al.,	425	

2012;	Fomina-yadlin	et	al.,	2014).	However,	this	is	the	first	study	to:	1)	leverage	spike-in	426	

standards	in	a	cross-ploidy	comparison,	and	2)	quantify	expression	level	on	three	different,	427	

biologically	relevant	scales.	By	using	multiple	read-count	normalizations,	with	and	without	428	

spike-in	standards,	we	investigated	the	interaction	of	expression	level	per	cell	and	per	429	

biomass	between	diploid	and	autotetraploid	Tolmiea.	Had	this	study	been	performed	430	

without	the	use	of	spike-in	standards,	the	results	would	have	been	limited	to	those	of	the	431	

per-transcriptome	normalization.			432	

Spike-in	normalization	is	most	valuable	when	evaluating	differences	in	gene	expression	433	

levels	between	two	groups	that	have	differing	cell	density	and/or	transcriptome	size.		By	434	

normalizing	RNAseq	count	data	by	the	abundance	of	spike-in	standards,	sequencing	depth	435	

and	transcriptome	size	are	effectively	disentangled.		Methods	employed	by	previous	436	

comparative	studies	of	diploid/polyploid	pairs	were	limited	to	quantifying	transcriptional	437	

differences	on	a	concentration-basis	only.		Concentration-based	comparisons,	while	useful	438	

for	inferring	alterations	of	pathway	stoichiometry,	are	effectively	blind	to	large	proportions	439	

of	the	transcriptome	exhibiting	additive	expression	levels	associated	with	polyploidy.		That	440	

is,	if	the	expression	of	many	genes	is	increased	in	a	single	direction	and	is	commensurate	441	

with	the	increase	in	ploidal	level,	then	the	impact	on	any	single	gene’s	concentration	will	be	442	

minimal.		An	additional	advantage	of	employing	a	spike-in	normalization	is	that	transcript	443	

abundance	can	be	independently	quantified	relative	to	biomass	and	relative	to	cell.		Spike-in	444	
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reads	can	also	be	removed	for	some	downstream	analyses,	allowing	for	a	typical	library-size	445	

normalization	so	that	concentration-based	differences	may	be	characterized	as	well.			446	

The	three	normalization	approaches	presented	here	are	all	individually	informative,	447	

and	the	decision	to	include	any	or	all	of	them	should	be	guided	by	the	research	question.		448	

For	example,	if	the	research	question	revolves	around	the	bulk	production	of	a	compound,	449	

evaluating	differences	in	expression	level	per	biomass	may	be	the	best	approach.		Research	450	

questions	focusing	on	complex	gene	pathways	may	be	better	served	by	an	analysis	of	451	

expression	level	per	cell.		Information	on	potential	differences	in	expression	level	452	

stoichiometry	can	be	gained	using	traditional	comparisons	per	transcriptome.		Additionally,	453	

as	demonstrated	by	our	study	of	Tolmiea,	the	interaction	among	multiple	normalization	454	

approaches	can	be	even	more	informative	than	any	single	approach.	455	

While	the	use	of	non-concentration-based	normalizations	can	enable	researchers	to	456	

address	new	questions,	there	is	an	important	caveat	that	could	lead	to	potential	biases	or	457	

increased	uncertainty.		Differences	in	RNA	extraction	efficiency	between	treatment	groups	458	

are	difficult	to	tease	apart	from	variation	in	total	transcriptome	size.		In	much	the	same	way	459	

that	variation	in	transcriptome	size	influences	estimates	of	expression	level,	differences	in	460	

extraction	efficiency	could	bias	calculations	of	expression	level	for	per-cell	and	per-biomass	461	

analyses.	For	example,	if	RNA	extraction	were	half	as	efficient	in	one	treatment	group	462	

versus	another,	then	differential	expression	analyses	per	cell	would	only	consider	half	of	the	463	

actual	transcript	abundance	of	one	group	relative	to	the	other.	Future	approaches	should	464	

consider	partially	accounting	for	this	issue	through	the	addition	of	a	second	unique	set	of	465	

spike-ins	prior	to	RNA	extraction.	Comparing	the	ratio	of	pre-	versus	post-extraction	spike-466	

in	abundance	should	highlight	differences	in	extraction	efficiency.	However,	even	the	use	of	467	

a	second	spike-in	set	will	not	account	for	different	extraction	efficiencies	if	those	differences	468	

arise	from	variation	in	cell	lysis.		469	
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In	summary,	this	study	has	demonstrated	that	the	use	of	synthetic	RNA	spike-in	470	

standards	can	be	used	to	explore	previously	uninvestigated	aspects	of	divergence	in	gene	471	

expression	levels	in	a	comparison	of	a	diploid	and	its	autotetraploid	derivative.	To	our	472	

knowledge,	this	multiple	normalization	approach	has	recovered	the	largest	fraction	of	a	473	

transcriptome	as	DE	in	a	diploid/autopolyploid	species	pair	ever	reported	(~17%	in	474	

Tolmiea	vs.	up	to	~10%	in	several	other	plant	systems;	Stupar	et	al.,	2007;	Del	Pozo	and	475	

Ramirez-Parra,	2014;	Zhang	et	al.,	2014).		Further,	our	methodology	allowed	for	a	fine-scale	476	

examination	of	how	divergence	in	gene	expression	level	interacts	with	cell	density,	477	

revealing	a	mosaic	of	difference	in	transcript	concentration,	abundance	per	cell,	and	478	

abundance	across	tissue.	479	

While	we	compared	a	diploid-autopolyploid	pair,	in	which	a	difference	in	transcriptome	480	

size	might	be	predicted,	variation	in	transcriptome	size	is	rarely	investigated	and	could	be	481	

widespread	in	biological	systems	at	diverse	scales	due	to	factors	other	than	shifts	in	ploidy.	482	

To	date,	nearly	all	studies	of	global	gene	expression	have	used	normalization	methods	that	483	

implicitly	assume	transcriptome	size	is	invariable,	yet	this	assumption	is	not	empirically	484	

supported.	Examples	of	studies	where	variation	in	transcriptome	size	might	be	likely	485	

include	(but	are	by	no	means	limited	to)	comparisons	between	related	species,	between	486	

different	developmental	stages,	and	across	stress	treatments.	Yet	even	in	these	cases,	the	487	

potential	for	variation	in	transcriptome	size	remains	ignored	and	uninvestigated.	If	488	

transcriptome	size	is	in	fact	invariable	between	two	experimental	treatment	groups,	then	489	

following	our	proposed	methodology,	the	results	of	the	per-transcriptome	and	per-cell	490	

comparisons	should	be	identical.	It	is	of	critical	importance	that	researchers	making	491	

comparisons	using	RNAseq	data,	particularly	in	the	broad	suite	of	examples	noted	above,	492	

avoid	making	the	assumption	that	transcriptome	size	is	invariable	by	contrasting	multiple	493	

normalization	approaches.		494	
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Figures:	713	

714	
Figure	1:	A	simplified	example	of	how	spike-in	standards	can	be	used	during	read	715	

normalization	to	enable	comparisons	of	expression	level	at	different	biological	scales	716	

between	a	hypothetical	diploid-polyploid	pair	with	differing	cell	density.	The	large	circles	717	

represent	a	unit	of	biomass	and	contain	a	number	of	cells	(green	squares).		Beneath	each	718	

circle	is	a	depiction	of	how	the	read	normalizations	are	calculated.		Under	a	per	719	

transcriptome	normalization,	the	ratio	of	target	transcripts	to	the	total	transcriptome	is	720	

compared.		While	the	per	biomass	normalization	uses	the	ratio	of	the	transcript	of	interest	721	

to	the	spike-in	transcripts.	The	per	cell	normalization	also	uses	the	ratio	of	the	transcript	of	722	

interest	to	spike-in	transcripts,	but	scales	the	spike-in	transcript	abundance	by	cell	density,	723	

represented	here	by	multiplying	the	spike-in	abundance	by	the	number	of	contributing	724	
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cells.	Whether	the	transcript	of	interest	would	be	found	as	not	differentially	expressed	or	725	

higher/lower	expressed	in	the	polyploid	under	each	normalization	is	indicted	using	‘=’,	‘<’,	726	

or	‘>’	respectively.	727	
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	745	

Figure	2:	Generalized	distributions	of	Tolmiea	menziesii	and	T.	diplomenziesii.	The	746	

population	sources	for	plants	used	in	this	study	are	represented	as	red	triangles	(T.	747	

diplomenziesii)	and	blue	squares	(T.	menziesii).	748	

	749	
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750	
Figure	3:	Results	of	ploidy	variation	in	leaf	cell	density	using,	A:	1C	DNA	concentration	751	

following	a	DNA/RNA	co-extraction,	and	B:	estimated	cell	counts	per	2cm	diameter	leaf	752	

punch.		753	
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768	
Figure	4:	Results	from	multiple	differential	expression	analysis.			MDS	plots	A-C	cluster	769	

individual	based	on	the	500	most	variable	loci,	with	color	indicating	ploidal	level	and	shape	770	

reflecting	population	of	origin.		MA	plots	D-F	show	every	locus	in	the	Tolmiea	transcriptome	771	

(represented	as	dots),	with	log	fold	expression	level	differences	in	the	polyploid	relative	to	772	

the	diploid	on	the	y-axis	and	average	expression	level	on	the	x-axis--	red	indicates	statistical	773	

significance.			774	
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785	
Figure	5:	Sum	of	read	counts	normalized	per	cell,	and	clustered	by	population	of	origin.	786	

Diploid	and	tetraploid	mean	significantly	differed	(p	<	0.008).	787	
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798	
Figure	6:	Venn	diagram	contrasting	the	three	normalization	methods.		Numbers	within	the	799	

different	sections	indicate	loci	that	were	identified	as	being	differentially	expressed	800	

between	Tolmiea	menziesii	and	T.	diplomenziesii.		 	801	
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	813	

Figure	7:	Loci	binned	by	their	DE	categorization	across	the	three	normalization	814	

approaches.		The	number	of	loci	belonging	to	each	bin	and	the	results	of	GO	enrichment	815	

analyses	are	reported	below	the	corresponding	bin.		Bins	containing	no	loci	are	not	shown.	816	
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824	
Figure	8:	A	simplified	example	of	an	interaction	between	expression	level	and	cell	density.	825	

=Conservation	of	gene	expression	per	biomass	occurs	when	expression	level	per	cell	in	826	

samples	with	lower	cell	density	is	up-regulated	enough	to	yield	equivalent	levels	of	827	

transcript	per	unit	biomass.		828	
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837	
Figure	9:	Adapted	from	data	collected	from	Visger	et	al.	2016.		Tolmiea	diplomenziesii	and	838	

T.	menziesii	did	not	significantly	differ	in	photosynthetic	output	under	common	garden	839	

conditions	in	the	green	houses	of	University	of	Florida.	840	
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