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ABSTRACT 
 
When weighing evidence for a decision, individuals are continually faced with the choice 
of whether to gather more information or act on what has already been learned. The 
present experiment employed a self-paced category learning task and fMRI to examine 
the neural mechanisms underlying stopping of information search and how they 
contribute to choice accuracy. Participants learned to classify multidimensional stimuli 
into one of two categories using a rule based on one of the stimulus dimensions. After 
each trial, participants were given the option to explicitly solve the rule or continue 
learning. Representational similarity analysis (RSA) was used to examine activation of 
rule-relevant information on trials leading up to a decision to solve the rule. We found 
that activation of rule-relevant information increased leading up to participants’ stopping 
decisions. Stopping was associated with widespread activation that included medial 
prefrontal cortex and visual association areas. Engagement of ventromedial prefrontal 
cortex (vmPFC) was associated with accurate stopping, and activation in this region was 
functionally coupled with signal in dorsolateral prefrontal cortex (dlPFC). Results 
suggest that activating rule information when deciding whether to stop an information 
search increases choice accuracy, and that dlPFC may act as an executive stopping region 
in learning contexts by integrating across accumulated evidence in the brain. 
 
KEYWORDS: Attention, Category learning, Decision making, fMRI, Representational 
similarity analysis 
 
 
 
 
 
 
 
 
 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 28, 2017. ; https://doi.org/10.1101/169110doi: bioRxiv preprint 

https://doi.org/10.1101/169110
http://creativecommons.org/licenses/by-nc-nd/4.0/


THE NEURAL DYNAMICS OF SELF-PACED LEARNING 2 

INTRODUCTION 
 
 Should I keep studying for my math test? Do I know enough about cars to pick 

out a good one? When gathering evidence for a decision, individuals are continually 

faced with the question: Have I learned enough yet? Learners must strike a compromise 

between collecting enough information to make accurate decisions while avoiding 

collecting redundant information and—consequently—wasting time and resources.  

 Currently, little is known about the neurobiological mechanisms that govern 

decisions about when to stop gathering new information. In the domain of value-based 

decision making, behavioral research has often focused on heuristics or stopping rules, 

such as take-the-best, that people employ when presented with cues of varying predictive 

value (Gigerenzer & Goldstein, 1996). The use of such strategies, however, can vary 

across participants, even in decision environments that encourage the use of a particular 

heuristic (Newell & Shanks, 2003; Newell et al., 2004). Thus recent research has begun 

to focus on participants’ use of confidence thresholds for determining when stopping is 

appropriate, as opposed to application of specific rules per se (Svenson, 1992; Karelaia, 

2006; Hausmann & Läge, 2008). In the present study, we test the neural mechanisms that 

contribute to stopping decisions during learning, and how activation of information 

associated with a choice evolves leading up to when a decision threshold is reached.  

Neurobiologically, in a recent study that required participants to take or decline 

sequentially-presented stock options, stopping of information search was found to engage 

anterior cingulate, insula, and ventral striatum (Costa & Averbeck, 2015). Additionally, 

accumulated value and reward associated with stopping decisions in sequential sampling 

paradigms have been associated with activation in lateral orbitofrontal cortex, vmPFC, 
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and the basal ganglia (Gluth, Rieskamp, & Büchel, 2012; Costa & Averbeck, 2015). 

Although these results have shed light on the neural correlates of stopping in value-based 

choice, how they translate to stopping in learning contexts, such as when people make 

decisions about their mastery of new concepts, remains an open question.  

  Rule-based category learning provides an ideal context to examine the neural 

basis of stopping in learning because many real world concepts are associated with rules, 

and because the neural systems that support rule-based categorization are well-

understood (for review, see Seger & Miller, 2010; Ashby & Maddox, 2011). Cognitively, 

rule-based category learning involves using hypothesis testing and selective attention to 

establish and focus on stimulus dimensions that are relevant for predicting category 

membership (Maddox & Ing, 2005; Zeithamova & Maddox, 2006). For example, when 

learning to distinguish between birds and mammals, people may learn to selectively 

attend to whether an organism has wings. Selective attention emerges over the course of 

learning to minimize prediction error, and has the effect of expanding the representation 

of dimensions that lead to successful categorization (Nosofsky, 1986; Kruschke, 1992; 

Folstein, Palmeri, & Gauthier, 2013). Neurobiologically, rule-based category learning is 

thought to depend on executive cortico-striatal loops connecting the prefrontal cortex 

with the head of the caudate (Seger & Miller, 2010). The medial temporal lobes are 

thought to be involved in the long-term maintenance and retrieval of these category rules 

(Poldrack et al., 2001; Davis, Love, & Preston, 2012).  

 Currently, how the neurobiological systems involved in rule-based category 

learning contribute to decisions to stop learning is not clear because the vast majority of 

neuroimaging studies have employed fixed numbers of trials and not given participants 
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leeway in decisions about whether to continue learning. However, it is possible to infer 

what mechanisms may underlie decisions to stop learning by incorporating predictions 

from recent neuroimaging research on stopping decisions in value-based choice and 

research on confidence in choice behavior more generally. In value-based decision 

making, the vmPFC has been shown to track subjective value (Tom et al., 2007; Bartra et 

al., 2013), and is sensitive to cost-benefit discrepancies among response options (Basten 

et al., 2010; Lim, O’Doherty, & Rangel, 2011). These findings are consistent with results 

showing that the vmPFC tracks accumulated value in value-based stopping decisions. 

However, recent findings suggest that vmPFC may also code general decision evidence 

or confidence associated with a choice, perhaps in parallel with value (Barron & Garvert, 

2015; Lebreton et al., 2015). Indeed, a number of basic category learning tasks have 

found that the engagement of vmPFC is correlated with greater decision evidence for 

categorization choices (Grinbald et al., 2006; DeGutis & D’Esposito, 2007; Seger et al., 

2015; Davis, Goldwater, & Giron, 2017). Thus we expect that decision 

evidence/confidence signals from the vmPFC may contribute to subjective thresholds 

participants use when deciding whether they have learned enough information. 

In addition to the vmPFC, we also expect the dorsolateral PFC (dlPFC) to 

contribute to stopping decisions. Recent research has suggested that a region of the 

posterior dlPFC may be involved in comparing accumulated perceptual information to 

decision criteria when making perceptual decisions (Heekeren et al., 2004; White et al., 

2012). In terms of decisions to stop gathering new information, the dlPFC may monitor 

information from a number of regions to determine when stopping criteria have been 

reached, including confidence signals from the vmPFC. Indeed, several studies have 
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observed increased functional connectivity between the dlPFC and vmPFC when 

participants make decisions that require weighing the subjective values of different 

choice options (Baumgartner et al., 2011; Rudorf & Hare, 2014). A similar coupling 

between dlPFC and vmPFC may support computing decision criteria for stopping in 

category learning. 

 As a complement to univariate activation, which measures the extent to which 

brain regions are engaged leading up to decisions to stop, multi-voxel pattern analysis 

(MVPA) may provide an additional window into how participants are processing 

category information leading up to stopping decisions.  Recent studies have found, as a 

result of learning, similarities between activation patterns elicited for members of a 

category come to reflect how participants attend to the stimulus dimensions, such that 

items sharing values along a rule dimension come to elicit more similar activation 

patterns (e.g., Mack, Preston, & Love, 2013; Mack, Love, & Preston, 2016). Such 

changes in neural similarity spaces may track participants’ decisions to stop learning. 

Specifically, we expect that as subjects selectively narrow their attention to a particular 

rule dimension leading up to a decision to stop gathering information, activation patterns 

associated with this dimension will become increasingly prominent in the underlying 

neural similarity space.  

 To test our predictions for engagement of the vmPFC/dlPFC and how rule-

relevant information will be activated leading up to a stopping decision, we trained 

participants to categorize triads of visual stimuli using simple rules based on one of three 

binary stimulus dimensions (Figure 1). Participants learned, using trial and error, which 

stimulus dimension was the rule dimension and was predictive of category membership. 
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Following each trial, participants were given the option to stop learning and solve the 

rule. The use of a Type I category structure (Shepard, Hovland, & Jenkins, 1961) allowed 

participants to solve rules rapidly, allowing us to robustly measure how activation of rule-

relevant information evolved over many different individual decisions to stop learning 

and solve the rule. To further maximize our ability to detect subtle changes in attentional 

weighting that result from learning, face, object, and scene images were used as stimulus 

dimensions. These real-world categories exhibit strong properties for representational 

decoding (Haxby et al., 2001; O’Toole et al., 2005), and were localized within each 

subject using independent scans to create ROIs that were unbiased to any potential 

learning effects (Davis et al., 2014). For the purposes of this study, the representational 

analysis was focused on the activation of patterns associated with the rule dimension that 

participants eventually chose as the solution during the continue or solve portion of the 

trial.  

 To successfully navigate our task, participants must first learn to selectively 

attend to the rule dimension to predict category membership. We hypothesized that the 

increasing selective attention to the rule dimension prior to stopping would result in 

multi-voxel patterns that become increasingly similar to the object class associated with 

the chosen rule dimension as participants’ neared a choice to stop. Once attention is 

allocated to the potential rule dimension, it is necessary for the participant to monitor the 

evidence consistent with this category rule. We predicted that vmPFC would be involved 

in representing the confidence or decision evidence for an attended rule dimension, with 

stopping marked by greater vmPFC activation than decisions to continue learning. 

Finally, participants must make a decision to stop learning once this evidence has reached 
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a criterion. We hypothesized that dlPFC would track confidence/decision evidence 

signals from the vmPFC to determine whether a stopping threshold had been reached.  

 To preview our findings, the representational analysis revealed a dynamic neural 

accumulation process whereby activation of multi-voxel patterns associated with the  

object class eventually chosen as the rule dimension increased over the trials leading up 

to stopping decisions. Compared with the choice to continue learning, participants 

engaged a widespread network of brain regions including medial PFC when choosing to 

stop; within this contrast, activation of vmPFC and object-selective cortex were 

positively correlated with participants’ ability to solve rules accurately throughout the 

task. Moreover, we show that decisions to stop acquiring information and solve a rule are 

associated with enhanced functional connectivity between vmPFC and dlPFC. 

 

METHODS 

Participants 

 Twenty-five healthy, right-handed volunteers (ages 21 – 57, mean ± SEM = 27.32 

± 1.67, 17 women) were recruited through online newsletters and flyers posted at Texas 

Tech University. All subjects were included in the final analysis. All subjects provided 

written informed consent prior to participation, and were compensated $35 for a 1.5 hour 

session. The study protocol was approved by the Texas Tech University Human Research 

Protection Program.  
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Experimental Paradigm 

 The experimental paradigm consisted of a self-paced category learning task 

completed over 5 consecutive fMRI scanning runs. Participants first learned to classify 

image triads as belonging to one of two categories based on feedback delivered following 

each learning trial. The three simultaneously presented features always consisted of one 

face, one object, and one scene. One object class was predictive of category membership 

and was the rule dimension. Subjects were instructed to learn the rule dimension that was 

predictive of category membership. Each dimension (object class) had two values, 

resulting in a category structure comprised of six total cues (Figure 1). The face, object, 

and scene images used were black-and-white squares presented on a white background 

with black text. The screen positions of each cue (left, right, or center) were randomized 

on each learning trial to avoid gaze effects. Within each scanning run, the stimuli used for 

each rule were drawn randomly from a set of 36 images for each respective class, and 

were removed from the set after they were used for a given rule. After each 

learning/feedback trial pairing, participants were given the option to explicitly solve the 

rule (indicating whether faces, objects, or scenes were predictive) or to continue learning. 

These decision trials were of primary interest to the present study, allowing us to isolate 

the neural and behavioral correlates of stopping.  

 Participants received instructions indicating that their goal was to correctly solve 

as many rules as possible over the course of the experiment. Figure 1 displays a 

schematic of the self-paced category learning task. Procedurally, image triads were 

presented on the screen accompanied by the prompt “Category 1 or Category2?” and a 

response prompt, with a maximum response time of 3 s. Next, feedback was presented 
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Figure 1. Abstract category structure and an example trial for the self-paced rule learning 
task. Any given rule follows a Type I category structure (Shepard, Hovland, & Jenkins, 
1961), where only one stimulus dimension is the “rule dimension” and is predictive of the 
correct category during learning (e.g., if the category rule is Face: Face 1 = Category 1, Face 
2 = Category 2). Each point on the cubes corresponds to one of eight possible exemplars 
(feature combinations) displayed on the screen. During the task, participants are prompted 
with the decision to solve the rule or continue learning after each response-feedback pairing. 
If ‘continue’ is chosen, a new feature combination is randomly selected from the same rule 
structure and the process repeats. If ‘solve’ is chosen, participants are taken to a screen where 
they are prompted to select the object class that constituted the rule dimension. Following a 
solve response, learning begins again with a random rule and new set of stimuli. 

  

for 1.75 s, indicating whether the response was correct or incorrect and the correct 

response . Feedback included presentation of the associated stimulus triad to facilitate 

learning. Following feedback, participants were prompted to make a button press 

indicating whether they wished to continue learning or solve the rule. These decision 
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trials had a 2 s response deadline, and did not present the associated image triad. If a 

continue response was given, the task proceeded to the next category learning trial for the 

current rule and stimulus set. If a solve response was given, participants were prompted 

to make a response as to whether the rule (predictive feature) was faces, objects, or 

scenes within 3 s. Regardless of whether a response was given in the allotted time, the 

rule and associated set of images were then randomly reset, and the task proceeded to a 

category learning trial for the new rule. Variable fixation periods drawn from truncated 

exponentials (mean = 2 s) separated stimulus presentation from feedback, feedback from 

decision trials, decision from solve or the next category learning trial, and solve trials 

from the next category learning trial. The number of learning trials completed by each 

participant varied slightly due to the nature of the task and the necessity of a timed cutoff 

for each scanning run. The mean number of learning trials completed in the sample over 

5 functional scans was 150.4 (Range = 140 – 159, SD = 4.28). To provide subjects with a 

performance index of their rule solving accuracy, at the conclusion of each scanning run 

a screen notified them of the number of rules they correctly solved during that scan. 

Participants received instructions and completed practice trials for the task outside of the 

scanner for approximately 10 minutes before engaging in the fMRI experiment.  

 Prior to beginning the rule learning task, participants completed two functional 

localizer scans. Each trial of the localizer task involved presenting a face, object, or scene 

individually on the screen, asking subjects to make a button press corresponding to the 

appropriate item category within 3 s. Variable fixation lengths drawn from a truncated 

exponential (mean = 2 s) separated each trial. Over the duration of the localizer phase, 

subjects categorized 38 examples of each object class. The black-and-white images used 
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during the localizer runs were presented in a random order, and did not include any of the 

stimuli used for the experimental task.  

 

Image Acquisition  

 Imaging data were acquired on a 3.0 T Siemens Skyra MRI scanner at the Texas 

Tech Neuroimaging Institute. MPRAGE anatomical scans provided high-resolution 

structural images of the whole brain in the sagittal plane for each participant (TR = 1.9 s; 

TE = 2.49 ms; θ = 9°; FoV = 240 x 240 mm; matrix = 256 x 256 mm; slice thickness = 

0.9 mm, slices = 192). Functional images were acquired using a single-shot T2*-

weighted gradient echo EPI sequence (TR = 2.09 s; TE = 25 ms; θ = 70°; FoV= 192 x 

192 mm; matrix = 64 x 64; number of axial slices = 41, slice thickness = 2.5 mm; 0.5 mm 

gap), and slices were tilted to reduce orbitofrontal dropout (Deichmann et al., 2003).  

 

Image Analysis and Preprocessing 

 Functional data were preprocessed and analyzed using FSL 

(www.fmrib.ox.ac.uk/fsl) and anatomical preprocessing was conducted with Freesurfer 

(autorecon1). Time series were skull stripped, motion corrected, prewhitened, and high-

pass filtered (cutoff: 60 s). For univariate analysis, data were spatially smoothed using a 6 

mm FWHM Gaussian kernel. No spatial smoothing was used for representational 

similarity analysis. First-level statistical maps were registered to the Montreal 

Neurological Institute (MNI)-152 template using boundary-based registration (BBR) to 

align the functional image to the structural image, and 12 df to align the structural image 

to the MNI-152 template. 
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 Three-level statistical analysis of the functional data was carried out using FEAT 

and FSL’s Randomise. At level-one, within-run associations between task regressors and 

functional time series were examined. Eight task regressors and their temporal derivatives 

were included in the level-one analysis, including the onsets of correct/incorrect learning 

trials, correct/incorrect feedback, decision trials receiving a continue response, decision 

trials receiving a solve response, and correct/incorrect rule-solving trials. Nuisance 

regressors included temporal derivatives for the task variables, trials in which subjects 

failed to make a response, realignment parameters from motion correction, their temporal 

derivatives, and volume-wise indicator variables for scrubbing volumes that exceeded a 

framewise displacement of 0.9 mm (Siegel et al., 2014). Task-based regressors were 

convolved with a double gamma hemodynamic response function, while motion 

parameters were left unconvolved. Prewhitening was performed at level-one to control 

for temporal autocorrelation in the hemodynamic response. At level-two, within-run 

parameter estimates for task variables were averaged across runs for each subject using a 

fixed effects model. At level-three, we averaged parameter estimates across subjects 

using a random effects model for population inference. Z-scored mean rule solving 

accuracy was included in the level-three model as a moderator to test the hypothesis of 

performance-based differences in neural engagement. Final statistical maps were 

corrected for multiple comparisons at p < .05 using a permutation-based cluster mass 

thresholding, implemented in FSL’s Randomise. This analysis included a primary 

(cluster-forming) threshold of t = 2.49 (critical value of t for df = 24 and alpha = 0.01), 

and 6 mm variance smoothing. Permutation-based tests are immune to recent concerns 
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about potential inflation of family-wise error rates in parametric GRF-based cluster 

thresholding (Eklund, Nichols, & Knutsson, 2016). 

 

Multivariate fMRI Analysis 

 To obtain trial-by-trial estimates of the hemodynamic response, we computed a β-

map (Rissman, Gazzaley, & D’Esposito, 2004) for each stimulus onset using an LS-A 

procedure (Mumford et al., 2012). The estimated neural activation patterns for each onset 

were then registered to standard space. The aim of the multi-voxel pattern analysis was to 

examine neural signatures indicating the processing of predictive versus non-predictive 

item classes over time leading up to a solve decision. To obtain featural selective 

attention predictions, we computed similarities between the patterns for each trial in the 

experimental procedure and the patterns computed for face-, object-, and scene-only trials 

from the independent localizer. The β-series used to compute the multi-voxel patterns 

was spatially localized to a functional ROI spanning category-selective brain regions in 

ventral temporal/occipital cortex that included lateral occipital complex, fusiform gyrus, 

and parahippocampal cortex. This mask was created by binarizing and combining the 

statistical maps for Object > Scene and Scene > Object from the independent localizer 

task. A Pearson correlation was used to compute correlation distances (1 – r) between 

trials in the category learning task with face, object, and scene patterns from the 

independent localizer task within each subject. Each subject-level correlation map was 

transformed using Fisher’s Z and aggregated over trial type for statistical comparison.  

 The primary goal of the multivariate analysis was to examine how temporal 

changes in the representation of rule information during learning support stopping 
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decisions. Therefore, we sorted learning trials according to the rules participants selected 

during the solve stage, regardless of whether these solve responses were correct. We then 

counted back five trials from the solution trial to determine how the activation of 

information associated with the selected class changed as participants approached a 

solution. Five trials were analyzed in order to capture the average number of learning 

trials encountered by participants prior to solving (see Behavioral Results). To test 

whether there were significant time-based changes in neural similarity to the chosen item 

class during learning, we computed two multi-level models with similarity to 

chosen/unchosen as the outcome variables and 5-trial n-back to solve as a fixed predictor 

variable, allowing the intercept for each subject to vary randomly. Similarity output for 

the chosen/unchosen object class over 3070 total observations served as the level-1 units 

for each model, nested within 25 participants. A random slope parameter for n-back was 

then added to each null model to examine whether the relationship between neural 

similarities and time differed between subjects. We determined whether to proceed with 

the inclusion of each random effect parameter (i.e., random time slopes and intercepts for 

each subject) by comparing AIC between model fits. 

 

PPI Analysis 

 A psychophysiological interaction analysis was conducted to examine whether 

any regions of the brain were functionally coupled with vmPFC during stopping 

decisions. The specific location of the vmPFC ROI (Figure 5A) was obtained by 

binarizing and anatomically masking the statistical map for Solve > Continue using 

bilateral frontal medial cortex from the Harvard-Oxford Atlas. FEAT 3-level analysis was 
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then conducted, starting with the same eight level-1 explanatory variables used in the 

primary univariate model (see image analysis for further detail). Further, the model 

included z-scored time series for the vmPFC seed region, an interaction between 

Continue (centered) and the vmPFC time series (mean), and an interaction between Solve 

(centered) and the vmPFC time series (mean). The model included the same nuisance 

variables as listed above. The contrast of interest for the PPI was the difference between 

interactions: solve*vmPFC time series > continue*vmPFC time series. Final statistical 

maps were obtained using FSL’s Randomise and the same thresholding settings described 

in the image analysis section. 

 

RESULTS 

Behavioral Results 

 The average number of learning trials encountered prior to a solve response and 

subsequent rule switch was 4.48, with mean learning trial accuracy at 57.2% (SD = 

7.94%, range = 45.9% – 74.5%). Performance curves for category learning trials 

preceding both correct and incorrect rule solves are displayed in Figure 2. The mean 

number of solve responses (and thus, rules encountered) by subjects over the 5 task runs 

was highly variable (M = 33.6, SD = 10.5, range = 11 – 61), which was expected due to 

the free-responding nature of the task. Group performance for rule solving was well 

above chance (M = 66.1%, SD = 24.5%, range = 19.4% - 94.4%), although 7 participants 

failed to exceed chance performance. 
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Figure 2. Learning performance curves preceding correct and incorrect solves. On the x-
axis, 4:0 represent category learning trials preceding a solve decision, with zero being the 
final learning trial before participants opted to stop and solve the rule. Mean percent 
correct is depicted on the y-axis. The horizontal line at 50% correct represents chance 
performance. 
 

Time-course of Representational Similarity During Learning 

 To solve for a rule, participants need to identify which of the three object classes 

was predictive of category membership for that rule (i.e., participants needed to solve for 

the rule dimension). Theories of learned selective attention posit that individuals will 

shift their attention away from feature dimensions which result in response errors, and 

through experience learn to focus on only information which is predictive of the outcome 
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(e.g., Kruschke, 1992). Employing an independent localizer and task stimuli that are 

characterized by readily distinguishable distributed activation patterns in object-selective 

cortex (Haxby et al., 2001; O’Toole et al., 2005) enabled us to examine the operation of 

feature-based selective attention using representational similarity analysis (Kriegeskorte, 

Mur, & Bandettini, 2008). It was predicted that neural similarity to the subsequently 

chosen object class would increase over trials leading up to a decision, reflecting an 

attentional narrowing to dimensions that participants believed to be predictive (regardless 

of whether or not their belief was correct). Alternatively, we predicted that mean neural 

similarity to the non-rule/non-predictive dimensions would decrease as a function of time 

leading up to a decision. 

 The time course of neural similarities to both the object class participants 

subsequently chose as the rule dimension (similarity to chosen class) and the classes 

constituting the unchosen dimensions (similarity to unchosen class) is displayed in Figure 

3. As hypothesized, there was a strong increasing relationship between learning duration 

over the five trials preceding a solve decision and neural similarity to the subsequently 

chosen item class (Figure 3, blue line), with mean similarity to chosen class increasing as 

subjects approached a decision (γ = .019, t = 3.34, p < .001). For similarity to the 

unchosen class (Figure 3, green line), the n-back to decision variable was also predictive 

of similarity output (γ = -.006, t = -2.00, p = .045), with similarity to unchosen items 

decreasing over the trials preceding decisions to stop learning. In both cases, the addition 

of a random slope parameter for n-back to decision did not improve model fit according 

to AIC comparison, suggesting no significant subject-level differences in the relationship 

between neural similarity to the object classes and trial number. However, adding random 
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slopes did not affect the main statistical outcome of either model. Considering the two 

time-courses of neural similarity, it is important to note that the initial advantage of 

similarity output for the unchosen object classes (Figure 4) is attributable to the fact that 

early in learning, participants are more likely to be attending to a subsequently unchosen 

class due to their 2:1 frequency on each trial (see Figure 1).  

 We next sought to test whether trial-by-trial fluctuations in similarity to chosen 

class was predictive of stopping, using the binary decision to solve or continue 

immediately following each learning trial as the dependent variable. Indeed, a multi-level 

logistic regression revealed a significant positive relationship between similarity to 

chosen class on learning trials and the choice to solve the rule (γ = -.319, z = -2.99, p = 

.003), allowing each subject to have a random intercept. Including a random slope 

parameter for similarity to chosen class did not improve model fit based on AIC 

comparison, and the addition of the random parameter did not affect the statistical 

significance of this test. Additionally, we found a significant relationship between 

similarities to unchosen object classes and stopping decisions, with greater neural 

similarity to these stimulus dimensions predictive of decisions to continue learning (γ = 

.585, z = 2.84, p = .004). Again, adding a random slope parameter did not improve the 

model fit based on AIC, but its inclusion did not affect the statistical outcome of the test. 

In sum, our RSA findings for the learning phase are consistent with the hypothesis that 

learned selective attention to a perceived rule dimension will be reflected by changes in 

the underlying neural similarity space, and that these attentionally-driven neural 

dynamics are predictive of stopping decisions in self-paced categorization.  
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Figure 3. Mean time course of neural similarities preceding solve decisions. On the x-
axis, 4:0 represent category learning trials preceding a solve decision, with zero being the 
final learning trial before participants opted to stop and solve the rule. The y-axis displays 
z-scored mean multi-voxel pattern dissimilarity in ventral visual cortex. The y-axis is 
flipped for ease of interpretation, as decreasing values signify increasing neural 
similarity. “Sim to chosen” (blue) reflects the neural similarity to the feature class that 
was eventually chosen as the category rule. “Sim to unchosen” (green) reflects the 
average neural similarity to the two feature classes that were not chosen as the category 
rule. 
 
 
 
Neural Correlates of Stopping vs. Continuing on Decision Trials 

 It was hypothesized that decisions to stop learning and solve the rules would be 

more cognitively demanding than choices to continue learning, and would engage a 

network including prefrontal cortex, basal ganglia, and visual association corticies. 
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Specifically, we expected that ventral occipitotemporal cortex would be activated 

because this region is associated with direct sensory or memory-based evidence for an 

object class (O’Craven & Kanwisher, 2000; Haxby et al., 2001), and that vmPFC would 

be engaged because of its association with high relative confidence and overall evidence 

for a decision (Barron & Garvert, 2015; Lebreton et al., 2015; Davis, Goldwater, & 

Giron, 2017). We contrasted Solve > Continue on decision trials, finding a single, 

widespread cluster of activation (Figure 4A; Table 1). Within the cluster, the peak BOLD 

activity was located in medial PFC, spanning bilateral paracingulate gyrus, vmPFC, 

rostral anterior cingulate, frontal pole, and anterior cingulate cortex. Additional regions 

exhibiting significant activation for Solve > Continue included (but were not limited to) 

bilateral ventral occipitotemporal cortex, posterior cingulate, and ventral striatum. No 

regions were significantly activated for the contrast Continue > Solve. Our findings 

support the prediction that stopping an information search, compared with decisions to 

continue learning, engages a broad network including regions that represent visual 

category information and accumulated decision evidence.   

 

Moderation of Stopping vs. Continuing Activation by Solving Accuracy 

 As stopping, in the current task, is an inherently self-governed decision, it was 

predicted that regional engagement on decision trials would differ between subjects as a 

function of performance. Specifically, we examined mean rule solving accuracy as a 

subject-level moderator for the contrast Solve > Continue. It was predicted that 

individuals who were more accurate in rule solving would exhibit more sensitivity in the 

vmPFC and regions that discriminate between faces, objects, and scenes. Two clusters 
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were positively correlated with accuracy on stopping trials (Figure 4B; Table 1). The first 

cluster was located in right ventral visual cortex, with maxima in lateral occipital 

complex and occipital fusiform gyrus. The second included bilateral frontal pole, rostral 

anterior cingulate, and vmPFC. The engagement of our a priori ROIs in the moderation 

suggests that they are involved in successful stopping, as their activity during stop 

decisions is correlated with the likelihood of subjects knowing the correct rule. 

Consistent with the prediction that successful stopping decisions would require learned 

selective attention to predictive object classes, the activation of category selective regions 

suggests that rule solving accuracy is supported by greater relative consideration of the 

features associated with a rule when deciding whether to stop. In addition to our 

attentional predictions, we hypothesized that vmPFC would be associated with task 

accuracy, as high-performing participants are likely to accumulate more evidence for 

their decisions and, consequently, be more confident at the time of inference. The 

observed relationship between vmPFC engagement and task performance confirmed this 

prediction, and is consistent with recent findings implicating vmPFC in representing high 

relative decision evidence (Davis, Goldwater, & Giron, 2017) and the confidence 

associated with value judgments (Barron & Garvert, 2015; Lebreton et al., 2015) in 

decision making. 
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Figure 4. Univariate fMRI results. A) Brain regions activated for Solve > 
Continue on decision trials. B) Regions where activation was positively 
correlated with mean solve accuracy within the Solve > Continue contrast. 
 

PPI Results 

 A crucial question concerning the neurobiological basis of stopping an 

information search is whether there is a specific region responsible for integrating 

evidence from accumulator regions to precipitate a decision. To address this question, we 

conducted a PPI analysis to determine where the BOLD signal covaried with activation in 

vmPFC (Figure 5A) on stopping trials. Based on previous research illustrating its role as 

an integrator region that responds to inputs from vmPFC (Baumgartner et al., 2011; 
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Rudorf & Hare, 2014), we predicted that dlPFC would play a critical role in the execution 

of stopping once a threshold is reached. Consistent with this hypothesis, the PPI analysis 

revealed activation in bilateral dlPFC that was functionally coupled with the vmPFC seed 

for Solve > Continue on decision trials (Figure 5B). In addition to dlPFC, signal in 

dorsomedial PFC and pre-SMA was correlated with activity in the seed region. We 

believe these results suggest a role of the dlPFC in determining a decision threshold 

based on accumulated evidence and initiating the transition from learning to choice.  

 

 

Figure 5. Results of the PPI analysis. A) The vmPFC seed region used in the PPI.          
B) Regions where neural activation covaried with the BOLD time series in vmPFC on 
decision trials receiving a solve response versus a continue response. 
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Table 1. Activated clusters and peaks (MNI coordinates) for the fMRI results in Figure 4. 

Contrast Cluster Size Region X Y Z Max t-stat 

Solve > Continue Cluster 1 
Voxels: 65440 

Medial PFC / 
Paracinglulate 
Gyrus 

0 54 12 10.20 

  
Left Frontal Orbital 
Cortex -26 32 -26 10.10 

  
vmPFC / 
Paracingulate 
Gyrus 

0 54 2 9.87 

  

Anterior Cingulate 0 36 22 9.45 

Solve > Continue:  
Positively 
correlated with 
accuracy 

Cluster 1 
Voxels: 1219 

Right Lateral 
Occipital Complex 50 -62 -18 5.86 

 

 Right Occipital 
Fusiform Gyrus 34 -68 -16 4.41 

 

 Right Lateral 
Occipital Complex 32 -88 -16 4.13 

      
 Cluster 2 

Voxels: 1248 Left Frontal Pole -20 62 22 4.88 

  
Rostral Anterior 
Cingulate / vmPFC -2 36 -2 4.25 
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Table 2. Activated clusters and peaks (MNI coordinates) for the fMRI results in Figure 5. 

 

 

DISCUSSION 

 In real-world decision environments, learners are responsible for regulating the 

amount of time they spend gathering information about a concept before making a 

choice. This regulation process is instantiated by people’s decisions to stop learning. To 

understand the neural mechanisms responsible for stopping of information search in 

humans, we used fMRI and a self-paced category learning task where participants learned 

unidimensional rules where a single visual feature was predictive of category 

membership. Our fMRI results show that compared with continuing to learn, decisions to 

stop engage a broad network of brain regions including PFC, basal ganglia, and visual 

Contrast Cluster Size Region X Y Z Max t-stat 

PPI: 
Solve*vmPFC 
time series > 
Continue*vmPFC 
time series 

Cluster 1 
Voxels: 4151 

Dorsomedial PFC / 
Superior Frontal 
Gyrus 

2 34 58 4.75 

  
Left dlPFC / 
Middle Frontal 
Gyrus 

-28 24 56 4.57 

  
Pre-Supplementary 
Motor Area 0 8 70 4.54 

  
Left dlPFC / 
Frontal Pole -18 42 48 4.52 
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association corticies. Behaviorally, the sample varied in desired learning length (time-to-

stop) and rule-solving accuracy. Higher task accuracy was predictive of greater activation 

in vmPFC, frontal pole, and right occipitotemporal cortex on stopping trials. Using 

MVPA, we tracked neural similarity to the features (face, object, or scene) during 

learning that were eventually chosen to be the predictive class. This analysis revealed a 

significant linear increase of similarity to chosen classes over the five learning trials prior 

to a solve response, and further, that pattern similarities were predictive of choice on a 

trial-by-trial basis. Finally, a psychophysiological interaction analysis revealed that the 

dlPFC was more functionally coupled with the vmPFC when subjects chose to stop 

versus continue, consistent with its hypothesized role in monitoring accumulated 

evidence to determine whether a decision threshold has been reached. 

 In the context of our rule-based, multi-feature category learning task, individuals 

must learn to distinguish relevant from irrelevant information to accurately classify 

exemplars. Rather than measuring fluctuations in mean activation within our ventral 

visual ROI in response to varying task conditions, the use of MVPA allowed us to 

estimate the extent to which participants were focusing on each object class over the 

course of the task. Our analysis revealed that selective attention to object classes that 

subjects eventually chose as the rule dimension when solving a displayed an 

approximately linear ramping effect over the trials preceding solve decisions. Further, 

trial-by-trial estimates of representational similarity to chosen classes during learning 

were predictive of decisions to stop learning and solve the rule immediately following the 

trial. These findings extend previous research suggesting that neural representations of 

stimuli are modified over the course of category learning to facilitate optimal 
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performance within a variety of task structures (Mack, Love, & Preston, 2013; Folstein, 

Palmeri, & Gauthier, 2013; Davis & Poldrack, 2014) by showing how learning-

dependent changes in the neural similarity space relate to subjective decision criteria. To 

our knowledge, this study is the first to examine the time course of dimensional selective 

attention in self-paced learning.  

 The vmPFC is a region that we hypothesized would be more activated for 

stopping versus the choice to continue learning. Past research has thoroughly established 

a role of the vmPFC in reward prediction and subjective value assessment (Tom et al., 

2007; Bartra et al., 2013). Due to the absence of extrinsic rewards for correct responses or 

differing outcomes that were mapped on to each feature, in this study it was expected that 

the vmPFC would serve a more general function of tracking evidence for category rules 

(Davis, Goldwater, & Giron, 2017). Indeed, we found vmPFC to be one of the regions 

involved in stopping, and that activation in vmPFC covaried with task accuracy at the 

time subjects chose to stop. These results lend support to an emerging area of research 

that has implicated vmPFC in representing subjective confidence in parallel with value 

(Barron & Garvert, 2015; Lebreton et al., 2015). The most apparent psychological 

variable separating an individual’s choice to solve a rule versus spending more time 

collecting information is their desired level of confidence (Karelaia et al., 2006; 

Hausmann & Läge, 2008). When opting to solve, participants are demonstrating that they 

have reached a sufficient threshold of knowledge about which features are diagnostic – in 

other words, they know that they know the rule. Decision confidence may provide an 

inherent value that is inseparable from the well-established findings on reward and the 

vmPFC. The present results suggest that in learning paradigms that demand varying 
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attention to different visual features, accumulation processes in vmPFC are closely linked 

to absolute differences in the strength of competing feature representations. The idea that 

vmPFC tracks the strength of signal in relevant perceptual regions accords with our 

finding that greater task accuracy was associated with higher relative activation in both 

vmPFC and ventral occipitotemporal cortex. From a learned selective attention 

standpoint, individuals who represent predictive features the most strongly should both be 

more confident in their decisions and more accurate in their inferences.  

 Our results extend recent research examining the neural correlates of decision 

evidence in categorization. Using a temporally extended classification task wherein 

probabilistic cues were presented to participants incrementally within a trial, Braunlich 

and Seger (2016) employed a model-based fMRI approach to isolate brain regions 

associated with parametric modulations in decision evidence that were independent of 

response- and urgency-related signals over time. Their results revealed that the absolute 

value of decision evidence accumulated over a trial correlated with activation in rostral 

and dorsolateral PFC, but surprisingly, was not associated with increased signal in 

vmPFC. One possibility for the divergence in results between this study and the current 

experiment regarding vmPFC is that this region is specifically engaged in relation to 

subjective appraisals of decision evidence, as opposed to reflecting the objective amount 

of evidence a person is exposed to. The regions engaged for stopping decisions in our 

study are not inherently tied to the objective evidence for a rule, as reflected in the high 

degree of variability in the average number of trials participants chose to view before 

opting to solve the rules. Rather, by their very nature, these stopping decisions are a 

reflection of participants’ subjective estimates of making a correct response. This idea 
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accords with findings in the memory literature that implicate vmPFC in tracking 

metacognitive “feeling-of-knowing” judgments associated with retrieval attempts, but not 

retrieval accuracy itself (Schnyer, Nichols, & Verfaellie, 2005). Taken together, we 

suggest that while rostral and dorsal subregions of the PFC appear to be critical for 

performing computations related to finite differences in decision evidence (e.g., Heekeren 

et al., 2004; Braunlich & Seger, 2016; Davis, Goldwater & Giron, 2017), vmPFC may 

uniquely represent more subjective decision variables such as confidence and the 

perceived costs and benefits associated with a decision (e.g., Basten et al., 2010).  

 Through a psychophysiological interaction analysis, we found that activation in 

vmPFC during stopping decisions is coupled with modulation of dlPFC. These findings 

are generally consistent with previous research showing that dlPFC interacts dynamically 

with vmPFC by comparing value signals represented in the latter region, and that dlPFC 

may precipitate responses based on this comparison process (Pochon et al., 2002; 

Baumgartner et al., 2011; Kahnt et al., 2011; Rudorf & Hare, 2014). In light of this 

evidence, we believe that dlPFC plays an executive role in the regulation of self-paced 

learning. When subjects chose to stop learning and respond to the rule, activity in vmPFC 

covaried with dlPFC to a greater extent than when they were not yet ready to solve. 

Accordingly, dlPFC may compute whether a decision threshold has been reached based 

on the relative evidence that has accumulated for a given category rule and participants’ 

meta-knowledge of the task structure. Our results regarding vmPFC-dlPFC interactions in 

self-paced category learning serve as a bridge between research focused on simple 

perceptual decisions and studies that primarily focus on the expected reward or monetary 

gains/losses incurred from a decision, and suggest that a common neural mechanism may 
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support stopping in both category learning and value-based decision making.  

 In conclusion, to balance accuracy and efficiency in decision making, learners 

must determine when their current knowledge state matches the knowledge that is 

required to achieve a particular goal. Using representational similarity analysis, we 

illustrate that such stopping decisions are preceded by greater activation of predictive 

stimulus dimensions, consistent with theories of learned selective attention. Although 

stopping engaged a widely distributed network in the brain, our findings suggest that 

vmPFC and object-selective cortical regions are differentially engaged according to 

participants’ tendencies to accurately solve rules, and thus these regions may play unique 

roles in supporting accurate and timely stopping decisions in self-paced category 

learning. Finally, our results suggest that dlPFC plays a crucial executive role in stopping 

by computing a threshold based on decision evidence that is represented in vmPFC.  
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