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Abstract

The human brain is able to flexibly adapt its information processing capacity to
meet a variety of cognitive challenges. Recent evidence suggests that this
flexibility is reflected in the dynamic reorganization of the functional
connectome. The ascending catecholaminergic arousal systems of the brain are a
plausible candidate mechanism for driving alterations in network architecture,
enabling efficient deployment of cognitive resources when the environment
demands them. We tested this hypothesis by analyzing both task-free and task-
based fMRI data following the administration of atomoxetine, a noradrenaline
reuptake inhibitor, compared to placebo, in two separate human fMRI studies.
Our results demonstrate that the manipulation of central catecholamine levels
leads to a reorganization of the functional connectome in a manner that is
sensitive to ongoing cognitive demands.
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A fundamental question facing modern neuroscience is how local computations
are integrated across the brain to support the vast repertoire of mammalian
behavior and cognition. Convergent results from multi-modal neuroimaging
studies! have demonstrated that brain activity during cognitive tasks reflects a
balance between regional segregation and network-level integration, in which
communication across distributed circuits enables fast and effective cognitive
performance’.

There is growing evidence that ascending catecholaminergic neuromodulatory
projections from the brainstem mediate this integration'®. Projections from
arousal-related nuclei, such as the noradrenergic locus coeruleus®, arborize
widely in target regions and putatively alter network architecture by modulating
the impact of incoming neuronal input in an activity-dependent manner”’.
Previous neuroimaging studies in humans have highlighted a close relationship
between noradrenaline, network topology and cognitive performance'?.
Specifically, increased free noradrenaline has been shown to increase the phasic-
to-tonic ratio of neuronal firing in both the locus coeruleus and the cortex. As
such, neurons that are less tonically active during the un-stimulated state may
also simultaneously demonstrate a heightened responsivity to relevant stimuli®!°.
However, it is not yet known whether manipulating noradrenaline shapes
network topology, or indeed whether the effects of noradrenergic function on
network topology differ across behavioral contexts.

To test the hypothesis that ascending catecholamines modulate global network
topology as a function of behavioral state, we analyzed two separate fMRI
datasets in which individuals were scanned following administration of either
atomoxetine (ATX), a noradrenergic reuptake inhibitor!!, or a pharmacologically-
inactive placebo. In the first study, subjects were scanned in the task-free ‘resting’
state'?; in the second, subjects were scanned while performing a cognitively-
challenging N-back task'®. Based on the opposing effects of ATX on functional
connectivity observed in these two studies'>!3, animal studies that highlight
differential effects of ATX on phasic versus tonic locus coeruleus activity® and the
hypothesized link between noradrenaline and network topology'#, we expected
that ATX administration would manifest distinct topological effects as a function
of behavioral state.

Results

The effect of atomoxetine on the topological signature of the resting state

In the double-blind, placebo-controlled crossover resting-state study'? 24 healthy
subjects (age = 19-26) underwent fMRI scanning prior to (t = -20 minutes) and
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following (t = +90 minutes) the administration of either 40mg of ATX or placebo.
To estimate time-resolved network topology, we submitted pre-processed BOLD
fMRI data from each subject to a pre-registered analysis pipeline that calculates
sliding-window connectivity between regional time-series'* and then estimates
the resulting topological signature of each windowed graph'. Specifically, we
used a weighted- and signed-version of the Louvain algorithm' to identify
tightly connected communities of regions within each temporal window. We
then determined how strongly each region was connected to other regions within
its own module (quantified using the within-module degree Z-score: Wr) as well
as to regions outside of its own module (quantified using the participation
coefficient: Br) over time. The resultant topology can be summarized at the
regional level (e.g. to determine which regions were the most integrated during a
particular behavioral state), or at the global level using a joint histogram of Wr
and Br values (known as a “cartographic profile”). Rightward fluctuations in the
density of the cartographic profile along the horizontal (i.e. Br) axis reflect a more
highly integrated functional connectome, and have been shown to relate
positively to individual differences in effective cognitive performance? .

As predicted (https://osf.io/utqq2), the administration of ATX compared to
placebo at rest led to a significant reconfiguration of network-level topology
(Figure 1a). Specifically, ATX administration caused a global shift towards
segregation that was maximal in lateral frontal, frontopolar and occipital cortices,
along with the bilateral amygdala (Figure 1b). Increases in free synaptic
noradrenaline are known to down-regulate tonic activity within the locus
coeruleus, which has a dense expression of inhibitory a2-autoreceptors®’. As
such, our results might suggest that network topology in the resting state became
segregated due to a reduction in the tonic firing rate of the locus coeruleus’, an
interpretation that is consistent with recent computational models that
demonstrate a strong link between the tonic firing rate of the locus coeruleus and
functional signatures of brain network activity'.
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Figure 1 - a) effect of atomoxetine versus placebo on the cartographic profile, which demonstrates
a shift towards segregation: red/yellow — increased frequency post-atomoxetine and blue —
decreased frequency post-atomoxetine (FDR q <0.05); b) parcels with decreases in their between-
module connectivity (i.e. participation coefficient) following atomoxetine (vs. placebo) — see Table
S1 for parcel MNI co-ordinates (FDR q <0.05); c) effect of atomoxetine versus placebo on the
relationship between the cartographic profile and pupil diameter, which demonstrates a shift
toward integration: red/yellow — increased frequency post-atomoxetine and blue — decreased
frequency post-atomoxetine (FDR q <0.05); d) parcels with increased time-varying connectivity
between between-module connectivity (i.e. participation coefficient) and pupil diameter
following atomoxetine (vs. placebo) — see Table S1 for parcel MNI co-ordinates (FDR q <0.05).
Key: ATX — atomoxetine; Br — between-module connectivity; Wr — within-module connectivity;
see Table S1 for parcel co-ordinates.

Network topology is sensitive to catecholaminergic manipulation
Although the topological signature observed in the resting state is consistent
with a decrease in tonic noradrenaline, in vivo experiments in rodents have
demonstrated that ATX administration also enhances phasic firing patterns in
the locus coeruleus’. This in turn should be expected to potentiate phasic
noradrenergic responses and hence, integrate the brain, however only under
conditions necessary to elicit phasic noradrenergic signaling, such as sensory
salience’® and acute stress!. Thus, in the context of an increase in free
noradrenaline, we might expect that the strength of the relationship between
network topology and phasic noradrenaline should increase following ATX
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administration. That is, the presence of extra noradrenaline should facilitate
additional network reconfiguration as a function of behavioral requirements.

The lack of behavioral constraints during the resting state make it inherently
difficult to directly test whether the predicted alterations in phasic
catecholaminergic activity were indeed related to changes in network topology.
Fortunately, we could interrogate this hypothesis by leveraging the relationship
between the locus coeruleus and the descending sympathetic circuitry that
controls pupil dilation'®, which in turn has been linked to behaviorally relevant
alterations in cortical arousal®*?. In a previous study, we demonstrated a positive
relationship between pupil diameter and fluctuations in network topology',
suggesting that ascending neuromodulatory signals may facilitate inter-regional
coordination, and hence, network-level integration. In the current study, we
hypothesized that the increase in free catecholamines following atomoxetine?
should heighten this relationship, and hence lead to a stronger relationship
between pupil diameter and network- and regional-level integration. Consistent
with this hypothesis, we observed a stronger relationship between pupil
diameter and network topology following ATX administration than following
placebo (Figure 1c/d). Together, these results provide evidence to suggest that
during quiescence, network topology is sensitive to both phasic and tonic
patterns of ongoing noradrenergic activity.

The effect of atomoxetine on the topological signature of cognitive function

A potential benefit of increasing the concentration of free noradrenaline® is that
the liberated catecholamines can be utilized in appropriate contexts to facilitate
activity within task-relevant neural circuits. In other words, ATX may down-
regulate tonic noradrenergic release during rest, but when required, it may
conversely facilitate an increase in phasic noradrenergic release’ and hence,
increase network-level integration. To directly test this hypothesis, we analyzed
data from a separate dataset of 19 subjects (age range 18-30) who underwent a
cognitively-challenging, parametric N-back task after the administration of either
ATX (60mg) or placebo'®. We hypothesized that, due to a heightened phasic
noradrenergic response, the main effect of network-level integration should be
more pronounced during the task following ATX, when compared to the placebo
condition.

Consistent with our hypothesis, we observed a significant increase in network-
level integration during task performance following ATX (Figure 2a).
Specifically, there was an inverted U-shaped relationship between cognitive load
and network integration in both conditions that was significantly elevated in the
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post-ATX session (t =2.47; p = 0.009; Figure 2b). This main effect of ATX was
maximal across frontal, parietal and temporal cortices, along with thalamus,
amygdala and Crus II of the cerebellum (Figure 2c; red). Importantly, there is a
long-standing research literature linking catecholamines with cognitive function
via an inverse-U shaped relationship'?>, however few studies have provided a
potential explanation for the algorithmic benefits that such a mechanism might
confer. Here, we demonstrate that network integration may provide one
potential mechanism underlying the inverted U-shaped relationship between
catecholamine levels and cognitive performance.
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Figure 2 — a) mean cartographic profile across all four blocks of load comparing post-ATX to
post-placebo — similar patterns were observed in each block (FDR q < 0.05); b) mean parcel-wise B
for each N-back load in both the placebo (PLC; blue) and atomoxetine (ATX; red) conditions
(error bars represent standard error across subjects); c) parcels with higher Br post-ATX as a
function of task performance (FDR q < 0.05) — main effect (red) and load effect (yellow); d)
correlation between the regions that showed highest Br during task performance (ATX > Placebo)
and regions that were shifted towards segregation in the rest study (ATX@ost-Pre) > Placebo(post-pre))
—see Table S1 for parcel MNI co-ordinates (FDR q < 0.05). Key: ATX — atomoxetine; Br — between-
module connectivity; Wr — within-module connectivity.

Regional topological signatures change as a function of cognitive load
Although the majority of regions across the brain demonstrated an inverse U-
shaped relationship with load, there was a subset of regions that demonstrated a
linear increase with cognitive load following atomoxetine administration (Figure
2¢; yellow). Specifically, the bilateral anterior insula, left dorsolateral prefrontal
cortex and right frontopolar cortex demonstrated a higher extent of integration
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(Br) with increasing task complexity following ATX, suggesting that the
additional free catecholamines may have facilitated enhanced topological
involvement of these regions as a function of task performance. Together, the
relationship between these regions and ATX suggests that phasic noradrenaline
may selectively enhance performance in task-relevant regions, perhaps through
arousal-mediated alterations in neural gain'®26%.

Regional mediation of noradrenergic effects on network topology

The topological dissociation across the two studies analyzed here begs the
question — is the effect of ATX on network topology mediated by a set of similar
regions across behavioral states? When we directly compared the effect of ATX
in the two datasets, we observed a spatial correspondence between the effects of
ATX on network topology during rest and task. Specifically, the regional
topological signature observed during the N-back task was inversely correlated
with the regional signature observed during rest (r = -0.147; p < 0.002; Figure 2d),
suggesting that ATX impacted similar regions during rest and task, albeit by
shifting them in different topological directions.

Discussion

Our results provide direct evidence that the manipulation of catecholamine
levels in the human brain leads to substantial shifts in network topology.
Further, we were also able to demonstrate that the alterations in network
topology critically depend on behavioral state. In the resting state, an over-
abundance of free catecholamine levels following ATX administration was
associated with a relatively segregated network topology (Figure 1a). The lack of
effortful cognitive engagement during the resting state may have facilitated a
decrease in ascending arousal via ATX-mediated auto-inhibition of the locus
coeruleus®’, allowing the network to settle into a segregated architecture,
potentially as a way to minimize energy expenditure®. In contrast, when
presented with a complex behavioral challenge following ATX?, an increased
phasic-tonic ratio of noradrenergic function’ may have facilitated functional
connectivity between otherwise segregated circuits, integrating the functional
connectome (Figure 2a) and putatively increasing the temporal coordination
between the brain circuitry required to successfully complete the N-back task.
Together, these results thus provide evidence that the ascending arousal system
mediates the balance between network-level integration and segregation as a
function of cognitive demands.

The biological mechanism underlying these effects is currently a topic of active
investigation, but there is emerging evidence that the network-level impact of
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catecholamines may relate to their ability to modulate the excitability and gain of
neurons across the brain’?. For instance, it has previously been shown that
stimulation of the locus coeruleus, both using electrical®® and optogenetic
approaches®, leads to the widespread activation of the cortex, producing a high-
frequency, low-amplitude signature that is a known correlate of the awake
brain®. Similar patterns have also been observed during spontaneous activity in
awake mice, confirming that firing in the locus coeruleus directly facilitates high
frequency cortical activity during natural behavior'”. Recent computational
modeling work has suggested that the presence of these activated states is
crucially dependent on the activation of fast-spiking interneurons in the cortex®.
Importantly, these interneurons rely on input from ascending neuromodulatory
systems, such as the locus coeruleus®, to facilitate the synchronous oscillations
between activated regions in the gamma frequency®, which in turn shape the
temporal flow of information processing in the cortex®. Together with our
findings, these studies further confirm the role of catecholaminergic tone in
simultaneously balancing the key topological properties of integration and
segregation in a state-dependent manner. They also provide a mechanistic
explanation for the brain’s response to periods of acute stress, which are also
mediated by ascending noradrenergic systems’. Future studies will play an
important role in solidifying this mechanistic explanation and determining the
contexts in which the balance between these factors is most crucial for
understanding complex behavior.

Although our experimental results suggest a crucial role for noradrenaline in the
topological reconfiguration of brain network architecture, it bears mention that
biological systems rarely demonstrate sharp boundaries between function
systems. For instance, in addition to modulating noradrenaline, ATX
administration has also been shown to modulate the central concentrations of
other arousal-related neurotransmitters, including serotonin®, histamine® and
dopamine!!, suggesting that the effects observed in our study may relate to the
reconfiguration of the ascending arousal system as a whole. This systemic
interdependence is perhaps best exemplified when comparing the relationship
between noradrenaline and dopamine, the two major catecholaminergic
neurotransmitters in the central nervous system. While the majority of
dopaminergic synapses utilize their own specific transporter®, a sub-group of
dopaminergic terminals in the cortex can also exploit noradrenergic transporters
to re-enter pre-synaptic axons®. In addition, it has been shown that locus
coeruleus neurons can co-release noradrenaline and dopamine*!. As such, our
results may reflect the combined improvements in cortical signal-to-noise that
relate to some combination of dopaminergic and noradrenergic effects on
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neuronal projection targets'. The different concentrations of ATX used in the
two studies may also have impacted upon these non-selective aspects of ATX.
Fortunately, future studies that contrast the roles of the related neurotransmitter
systems at different concentrations across a range of behavioral states will help to
clarify this issue.

Together, our results demonstrate a relationship between network topology and
catecholaminergic function that is sensitive to behavioral state. Future
experiments should now be designed to decipher the relative impact of other
neurotransmitter systems, both in health and disease.
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Online Methods

General

All data were taken from two previously-published studies!'>’3. The analysis and
hypotheses for the resting state study were pre-registered (https://osf.io/utqq2/),
and the code used to analyze the data is freely available at
http://github.com/macshine/.

Resting State Study

Participants

24 right-handed individuals (age 19 —26 years; 5 male) were included in this
study. All participants were screened by a physician for physical health and drug
contraindications. Exclusion criteria included: standard contraindications for
MRI; current use of psychoactive or cardiovascular medication; a history of
psychiatric illness or head trauma; cardiovascular disease; renal failure; hepatic
insufficiency; glaucoma; hypertension; drug or alcohol abuse; learning
disabilities; poor eyesight; smoking >5 cigarettes a day; and current pregnancy.
All participants gave written informed consent before the experiment.

Study Design

We used a double-blind placebo-controlled crossover design'? In each of two
sessions, scheduled 1 week apart at the same time of day, participants received
either a single oral dose of atomoxetine (40 mg) or placebo (125 mg of lactose
monohydrate with 1% magnesium stearate, visually identical to the drug). In
both sessions, participants were scanned once before pill ingestion (t =-20 min)
and once following ingestion (t = 90 min), when approximate peak-plasma levels
are reached. Each scan comprised 8 min of eyes-open resting-state fMRI. During
scanning, the room was dark, and participants fixated on a black fixation cross
presented on a gray background. Drug uptake was confirmed using cortisol and
a-amylase levels in the saliva'>*.

MRI Data

All MRI data were collected with a Philips 3T MRI scanner. In each of the
scanning sessions, we collected T2*-weighted EPI resting-state images (echo time
30 ms, repetition time 2.2 s, flip angle 80°, FOV 80 x 80 x 38 voxels of size 2.75
mm isotropic, and 216 volumes). To allow magnetic equilibrium to be reached,
the first 5 volumes were automatically discarded. In addition, each time the
participant entered the scanner, we collected a B0 field inhomogeneity scan (echo
time 3.2 ms, repetition time 200 ms, flip angle 30°, and FOV 256 x 256 x 80 voxels
with a reconstructed size of 0.86 x 0.86 mm with 3-mm-thick slices). Finally, at
the start of the first session, we collected a high-resolution anatomical T1 image
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(echo time 4.6 ms, repetition time 9.77 ms, flip angle 8°, and FOV 256 x 256 x 140
voxels with size 0.88 x 0.88 mm with 1.2-mm-thick slices) for image
normalization and registration.

Data Preprocessing

After realignment (using FSL’s MCFLIRT) and skull stripping (using BET), BO
unwarping was used to control for potential differences in head position across
sessions. The B0 scans were first reconstructed into an unwrapped phase angle
and magnitude image. The phase image was then converted to units of radians
per second and median filtered, and the magnitude image was skull-stripped.
We then used FEAT to unwarp the EPI images in the y-direction with a 10%
signal loss threshold and an effective echo spacing of 0.333. The un-warped EPI
images were then pre-whitened, smoothed at 5 mm FWHM, and co-registered
with the anatomical T1 to 2 mm isotropic MNI space (degrees of freedom: EPI to
T1, 3; T1/EPI to MNI, 12). FMRIB’s ICA-based X-noiseifier* was used with pre-
trained weights to denoise the imaging data.

Temporal artifacts were identified in each dataset by calculating framewise
displacement (FD) from the derivatives of the six rigid-body realignment
parameters estimated during standard volume realignment*, as well as the root
mean square change in BOLD signal from volume to volume (DVARS). Frames
associated with FD > 0.25mm or DVARS > 2.5% were identified, however as no
participants were identified with greater than 10% of the resting time points
exceeding these values, no trials were excluded from further analysis. There were
no differences in head motion parameters between the four sessions (p > 0.500).
Following artifact detection, nuisance covariates associated with the 12 linear
head movement parameters (and their temporal derivatives), DVARS,
physiological regressors (created using the RETROICOR method) and
anatomical masks from the CSF and deep cerebral WM were regressed from the
data using the CompCor strategy*. Finally, in keeping with previous time-
resolved connectivity experiments?, a temporal band pass filter (0.071 < f <0.125
Hz) was applied to the data.

Brain Parcellation

Following pre-processing, the mean time series was extracted from 375 pre-
defined regions-of-interest (ROI). To ensure whole-brain coverage, we extracted:
333 cortical parcels (161 and 162 regions from the left and right hemispheres,
respectively) using the Gordon atlas*, 14 subcortical regions from Harvard-
Oxford subcortical atlas (bilateral thalamus, caudate, putamen, ventral striatum,
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globus pallidus, amygdala and hippocampus; http://fsl.fmrib.ox.ac.uk/), and 28
cerebellar regions from the SUIT atlas* for each participant in the study.

Time-Resolved Functional Connectivity

To estimate functional connectivity between the 375 ROIs, we used the
Multiplication of Temporal Derivatives approach (MTD;
http://github.com/macshine/coupling/*). The MTD is computed by calculating
the point-wise product of temporal derivative of pairwise time series (equation
1). In order to reduce the contamination of high-frequency noise in the time-
resolved connectivity data, the MTD is averaged by calculating the mean value
over a temporal window, w. Time-resolved functional connectivity was
calculated between all 375 brain regions using the MTD within a sliding
temporal window of 15 time points (~33 seconds), which allowed for estimates of
signals amplified at approximately 0.1 Hz. Individual functional connectivity
matrices were then calculated within each temporal window, thus generating an
un-thresholded (that is, signed and weighted) 3-dimensional adjacency matrix
(region x region x time) for each participant.

1 @t+%/, (dtipxdt;e)

MTD;j; = ;Zt—w/z (Udtix"dtj) .

Equation 1 — Multiplication of Temporal Derivatives, where for each time point, f, the MTD for
the pairwise interaction between region i and j is defined according to equation 1, where dt is the
first temporal derivative of the ith or jth time series at time ¢, o is the standard deviation of the
temporal derivative time series for region 7 or j and w is the window length of the simple moving
average. This equation can then be calculated over the course of a time series to obtain an
estimate of time-resolved connectivity between pairs of regions.

Time-Resolved Community Structure

The Louvain modularity algorithm from the Brain Connectivity Toolbox (BCT
was used in combination with the MTD to estimate both time-averaged and
time-resolved community structure. The Louvain algorithm iteratively
maximizes the modularity statistic, Q, for different community assignments until
the maximum possible score of Q has been obtained (equation 2). The modularity
estimate for a given network is therefore a quantification of the extent to which
the network may be subdivided into communities with stronger within-module
than between-module connections.

1 ! T e
Qr = FZU(WJ - e;})gMiMj B mzii(wii - eif)aMiMJ’ (2]
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Equation 2 — Louvain modularity algorithm, where v is the total weight of the network (sum of
all negative and positive connections), wi is the weighted and signed connection between regions
i and j, ejj is the strength of a connection divided by the total weight of the network, and omim;j is
set to 1 when regions are in the same community and 0 otherwise. “+" and ‘~" superscripts denote
all positive and negative connections, respectively.

For each temporal window, the community assignment for each region was
assessed 500 times and a consensus partition was identified using a fine-tuning
algorithm from the Brain Connectivity Toolbox (http://www.brain-connectivity-
toolbox.net/). This then afforded an estimate of both the time resolved
modularity (Qr) and cluster assignment (Cir) within each temporal window for
each participant in the study. To define an appropriate value for the y parameter,
we iterated the Louvain algorithm across a range of values (0.5 — 2.5 in steps of
0.1) for 100 iterations of a single subjects’ time-averaged connectivity matrix and
then estimated the similarity of the resultant partitions using mutual
information. A y parameter of 1.1 provided the most robust estimates of
topology across these iterations.

Cartographic Profiling

Based on time-resolved community assignments, we estimated within-module
connectivity by calculating the time-resolved module-degree Z-score (Wr; within
module strength) for each region in our analysis (equation 3%).

Kj —I'CSL.
Wip = T Tsie [3]

Tksir

Equation 3 - Module degree Z-score, Wir, where «ir is the strength of the connections of region i
to other regions in its module si at time T, K, is the average of x over all the regions in si at time
T, and s,y is the standard deviation of k in si at time T.

U

To estimate between-module connectivity (Br), we used the participation
coefficient, Br, which quantifies the extent to which a region connects across all
modules (i.e. between-module strength; equation 4).

By = 1 - 5, (%)’ 4]

Kit
Equation 4 - Participation coefficient Bir, where wist is the strength of the positive connections of
region i to regions in module s at time T, and «ir is the sum of strengths of all positive connections
of region i at time T. The participation coefficient of a region is therefore close to 1 if its
connections are uniformly distributed among all the modules and 0 if all of its links are within its
own module.


https://doi.org/10.1101/169102
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/169102; this version posted July 27, 2017. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

To track fluctuations in cartography over time, for each temporal window, we
computed a joint histogram of within- and between-module connectivity
measures, which we refer to here as a ‘cartographic profile” (Figure 1a). Code for
this analysis is freely available at https://github.com/macshine/integration/.

Pupilometry

Pupil size was measured from the right eye at 500 Hz with an MRI-compatible
Eyelink 1000 eye tracker. Blinks and other artifacts were interpolated offline
using shape-preserving piecewise cubic interpolation. Pupil data were low-pass
filtered at 5 Hz to remove high-frequency noise and Z-scored across conditions.
Five participants were excluded from pupil-related analyses due to poor signal
quality (=50% of continuous time series interpolated) or missing data. Of the
remaining participants, on average 20% + 9% of the data were interpolated. We
replicated our previous observation! of a positive relationship between pupil
diameter and integrated network topology (Figure Sla).

Null Model Creation

To determine whether the integrative signature of the brain was more dynamic
than predicted by a stationary null model (Figure S1b*, surrogate data was
created using a stationary Vector Auto Regressive model (order was set at 6 to
match the expected temporal signature of the BOLD response in 2.2s TR data).
The mean covariance matrix across the entire experiment was used to generate
2,500 independent null data sets, which allows for the appropriate estimation of
the tails of non-parametric distributions®. These time series were then
preprocessed using the same approach outlined for the BOLD data. For each
analysis, we estimated the kurtosis of the mean Br time series for each of the
2,500 simulations. We then calculated the 95 percentile of this distribution and
used this value to determine whether the resting state data fluctuated more
frequently than the null model. We found that the dynamic network structure
within the fMRI data had a higher kurtosis than the 95" percentile of the
stationary null model (Figure S1b), confirming the presence of non-stationarity.

Statistical Analyses
The following hypotheses were pre-registered with the Open Science Framework

(https://ost.io/utqq2/):

Hypothesis 1: To explicitly test whether the resting brain fluctuates more
frequently than a stationary null model, we will calculate the kurtosis of the
window-to-window difference in the mean BT score for each iteration of a vector
autoregression (VAR) null model (model order = 6). The mean covariance matrix
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across all 24 subjects from the pre-placebo session will be used to generate 2,500
independent null datasets, which allows for the appropriate estimation of the
tails of non-parametric distributions®. These time series will then be filtered in a
similar fashion to the BOLD data. For each analysis, we will create a statistic for
each independent simulation that summarized the extent of fluctuations in the
null dataset. We will then calculate the 95th percentile of this distribution and
used this value to determine whether the resting state data fluctuated more
frequently than the null model (i.e. whether there deviations as extreme as the
95th percentile of the null dataset occur more than 5% of the time).

Hypothesis 2: We will estimate the Spearman's rho correlation between the
convolved pupil diameter and the time series of each bin of the cartographic
profile. We will then fit a linear mixed-effects model with random intercept to
determine whether the correlation between each bin of the cartographic profile is
more extreme than chance levels (FDR q < 0.05).

Hypothesis 3: Group level differences will be investigated by comparing each bin
of the cartographic profile for all subjects prior to and post-atomoxetine
administration, as well as prior to and post-placebo using a 2x2 ANOVA design.
Specifically, the percentage of time that each bin of the cartographic profile is
occupied during the resting state for each of the four sessions will be entered into
a 2x2 ANOVA. Our hypothesis predicts a significant interaction effect between
pre- and post-placebo and pre- and post-atomoxetine administration. We will
correct for multiple comparisons using a false discovery rate of q < 0.05. Similar
interaction effects will be assessed at the regional level (i.e. regional topological
measures, such as participation coefficient) using a series of 2x2 ANOVA
designs.

Task-based Study

Based on our interim results, we hypothesized that, if phasic and tonic
noradrenaline release differentially alter the balance between integration and
segregation, then integration should be stronger following ATX during cognitive
task performance. This hypothesis was not identified as part of our pre-
registration, but arose as a post hoc interrogation of the data. To test this
hypothesis, we analyzed data from a different dataset, in which 19 participants
(age: 18-30; all right-handed males) underwent a cognitively-challenging N-back
task following either ATX (60mg; a higher dose than utilized in the first study) or
placebo in a double-blind, randomized placebo-controlled crossover design
(PLC-ATX n=8; ATX-PLC n=11%). The study was carried out in accordance with
the Declaration of Helsinki and was approved by the local medical ethics
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committee of Maastricht University Medical Centre (NL53913.068.15). All
participants gave written informed consent prior to each session and were
reimbursed for participation.

Behavioral Task

Participants performed a parametrically modulated N-back task, in which they
were required to identify target letters that were presented for 1000ms on an
LCD screen during MRI scanning. Targets consisted of letters that were the same
as the letter presented one, two or three trials previously (i.e. 1-back, 2-back, or 3-
back, respectively). A further control condition was also involved, in which
participants were asked to detect the letter ‘X’ (i.e. 0-back). Every task condition
was presented three times in pseudo-random order (3-4 targets per block).
Participants responded to targets and distractors with right index and middle
finger button presses, respectively. Task effects were modeled for fMRI analysis
using a block design.

MRI data and preprocessing

All MRI data were collected with a Siemens 3T MRI scanner. In each of the
scanning sessions, we collected T2*-weighted EPI images (echo time 30 ms,
repetition time 2.0 s, flip angle 77°, and 286 volumes). To allow magnetic
equilibrium to be reached, the first 5 volumes were automatically discarded. In
addition, each time the participant entered the scanner, we collected a B0 field
inhomogeneity scan (echo time 3.2 ms, repetition time 200 ms, flip angle 30°, and
FOV 256 x 256 x 80 voxels with a reconstructed size of 0.86 x 0.86 mm with 3-
mm-thick slices). Finally, at the start of the first session, we collected a high-
resolution anatomical T1 image (echo time 4.6 ms, repetition time 9.77 ms, flip
angle 8°, and FOV 256 x 256 x 140 voxels with size 0.88 x 0.8 mm with 1.2-mm-
thick slices) for image normalization and registration. Data were preprocessed in
a similar fashion to the resting-state analysis, albeit with a more liberal upper
bound on the band pass filter (0.01 < f< 0.2 Hz), in order to account for potential
task-related alterations in functional connectivity, and without correction for
physiological parameters, which were not collected in the study.

fMRI analysis

Preprocessed BOLD data were subjected to the same time-resolved network
analysis pipeline as to the one utilized for the resting state analysis. Following
this step, both regional (Wr and Br) and global (cartographic profile) time series
were modeled against the blocks of the 0-, 1-, 2- and 3-back conditions in both the
post-ATX and post-placebo sessions. Instruction screens, rest blocks and head
motion parameters were also modeled. We then statistically compared the
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resultant 3 weights for each of the blocks separately using a series of F-tests (FDR
q < 0.05) with the following two contrasts: i) main effects, which were modeled as
the mean activity in the 1-, 2- and 3-back blocks versus the 0-back block; and ii)
load effects, which were modeled as a parametric increase in activity as a
function of cognitive load across the four blocks. None of the effects were
significantly correlated with head motion, either within- or between-subjects
(p>0.500).

Finally, we correlated the 3 weights for the main effect of ATX > PLC during the
task for each parcel with the interaction effect of ATXpost-pre] > PLCipost-pre] ON
resting-state topology using a Pearson’s correlation (the task data did not contain
a “pre-drug” condition). The significance of this correlation was determined by
randomly permuting the task-based effects 5,000 times and then re-estimating
the Pearson’s correlation between the shuffled effects and the original regional
effects in the resting state. The inverse correlation between the two parcel values
was more extreme than the 0.02"¢ percentile of the null distribution.
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