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ABSTRACT

Maize (Zea mays ssp. mays) is one of three crops, along with rice and wheat, responsible for more than 1/2 of all calories
consumed around the world. Increasing the yield and stress tolerance of these crops is essential to meet the growing need for
food. The cost and speed of plant phenotyping is currently the largest constraint on plant breeding efforts. Datasets linking new
types of high throughput phenotyping data collected from plants to the performance of the same genotypes under agronomic
conditions across a wide range of environments are essential for developing new statistical approaches and computer vision
based tools. A set of maize inbreds – primarily recently off patent lines – were phenotyped using a high throughput platform at
University of Nebraska-Lincoln. These lines have been previously subjected to high density genotyping, and scored for a core
set of 13 phenotypes in field trials across 13 North American states in two years by the Genomes to Fields consortium. A
total of 485 GB of image data including RGB, hyperspectral, fluorescence and thermal infrared photos has been released.
Correlations between image-based measurements and manual measurements demonstrated the feasibility of quantifying
variation in plant architecture using image data. However, naive approaches to measuring traits such as biomass can introduce
nonrandom measurement errors confounded with genotype variation. Analysis of hyperspectral image data demonstrated
unique signatures from stem tissue. Integrating heritable phenotypes from high-throughput phenotyping data with field data
from different environments can reveal previously unknown factors influencing yield plasticity.
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Data Description

Background
The green revolution created a significant increase in the yields of several major crops in the 1960s and 1970s, dramatically
reducing the prevalence of hunger and famine around the world, even as population growth continued. One of the major
components of the green revolution was new varieties of major grain crops produced through conventional phenotypic selection
with higher yield potentially. Since the green revolution, the need for food has continued to increase, and a great deal of effort
in the public and private sectors is devoted to developing crop varieties with higher yield potential. However, as the low hanging
fruit for increased yield vanish, each new increase in yield requires more time and resources. Recent studies have demonstrated
that yield increases may have slowed or stopped for some major grain crops in large regions of the world1. New approaches to
plant breeding must be developed if crop production continues to grow to meet the needs of an increasing population around
the world.

The major bottleneck in modern plant breeding is phenotyping. Phenotyping can be used in two ways. Firstly, by
phenotyping a large set of lines, a plant breeder can identify those lines with the highest yield potential and/or greatest stress
tolerance in a given environment. Secondly, sufficiently detailed phenotyping measurements from enough different plants
can be combined with genotypic data to identify regions of the genome of a particular plant species which carry beneficial or
deleterious alleles. The breeder can then develop new crop varieties which incorporate as many beneficial alleles and exclude
as many deleterious alleles as possible. Phenotyping tends to be expensive and low throughput, yet as breeders seek to identify
larger numbers of alleles each with individually smaller effects, the amount of phenotyping required to achieve a given increase
in yield potential is growing. High throughput computer vision based approaches to plant phenotyping have the potential to
ameliorate this bottleneck. These tools can be used to precisely quantify even subtle traits in plants and will tend to decrease in
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unit cost with scale, while conventional phenotyping, which remains a human labor intensive processes, does not.
Several recent pilot studies have applied a range of image-processing techniques to extract phenotypic measurements from

crop plants. RGB (R: Red channel; G: Green channel; B: Blue channel) camera technology, widely used in the consumer sector,
has also been the most widely used tool in these initial efforts at computer vision based plant phenotyping2–5. Other types of
cameras including fluoresence6, 7 and NIR (near-infrared)6, 8, 9 have also been employed in high throughput plant phenotyping
efforts, primarily in studies of the response of plant to different abiotic stresses.

However, the utility of current studies is limited in two ways. Firstly, current analysis tools can extract only a small number
of different phenotypic measurements from images of crop plants. Approximately 150 tools for analyzing plant image data are
listed in a field specific database, however the majority of these are either developed specifically for Arabidopsis thaliana which
is a model plant, or are designed specifically to analyze images of roots10. Secondly, a great deal of image data is generated in
controlled environments, however, there are comparatively few attempts to link phenotypic measurements in the greenhouse to
performance in the field. However, one recent report in maize suggested that more than 50% of the total variation in yield under
field conditions could be predicted using traits measured under controlled environments5.

Advances in computational tools for extracting phenotypic measurements of plants from image data and statistical models
for predicting yield under different field conditions from such measurements requires suitable training datasets. Here, we
generate and validate such a dataset consisting of high throughput phenotyping data from 32 distinct maize (Zea mays)
accessions drawn primarily from recently off-patent lines developed by major plant breeding companies. These accessions were
selected specifically because paired data from the same lines exists for a wide range of plant phenotypes collected in 54 distinct
field trials at locations spanning 13 North American states or provinces over two years11. This extremely broad set of field sites
captures much of the environmental variation among areas in which maize are cultivated with total rainfall during the growing
season ranging from 133.604 mm to 960.628 mm (excluding sites with supplemental irrigation) and peak temperatures during
the growing season ranging from 23.5◦C to 34.9◦C. In addition, the same lines have been genotyped for approximately 200,000
SNP markers using GBS11. Towards these existing data, we added RGB, thermal infra-red, fluorescent and hyperspectral
images collected once per day per plant, as well as detailed water-use information (single day, single plant resolution). At the
end of the experiment, 12 different types of ground-truth phenotypes were measured for individual plants including destructive
measurements. A second experiment focused on interactions between genotype and environmental stress, collecting the same
types of data described above from two maize genotypes under well watered and water stressed conditions12. We are releasing
this curated dataset of high throughput plant phenotyping images from accessions where data on both genotypic variation and
and agronomic performance under field conditions is already available. All data was generated using a Lemnatec designed
high throughput greenhouse-based phenotyping system constructed at the University of Nebraska-Lincoln. This system is
distinguished from existing public sector phenotyping systems in North America by both the ability to grow plants to a height of
2.5 meters and the incorporation of a hyperspectral camera9. Given the unique properties described above, this comprehensive
data set should lower the barriers to the development of new computer vision approaches or statistical methodologies by
independent researchers who do not have the funding or infrastructure to generate the wide range of different types of data
needed.

Methods
0.0.1 Greenhouse Management
All imaged plants were grown in the greenhouse facility of the University of Nebraska-Lincoln’s Greenhouse Innovation Center
(Latitude: 40.83, Longitude: -96.69) between October 2nd, 2015 to November 10th, 2015. Kernels were sown in 1.5 gallon
pots with Fafard germination mix supplemented with 1 cup (236 mL) of Osmocote plus 15-9-12 and one tablespoon (15 mL) of
Micromax Micronutrients per 2.8 cubic feet (80 L) of soil. The target photoperiod was 14:10 with supplementary light provided
by LED growth lamps from 07:00 to 21:00 each day. The target temperature of the growth facility was between 24−26◦C.
Pots were weighed once per day and watered back to a target weight of 5,400 grams from 10-09-2015 to 11-07-2015 and a
target weight of 5,500 grams from 11-08-2015 to the termination of the experiment.

0.0.2 Experimental Design
A total of 156 plants, representing the 32 genotypes listed in Table 1 were grown and imaged, as well as 4 pots with soil
but no plant which serve as controls for the amount of water lost from soil as a result of non-transpiration mechanisms (e.g.
evaporation). The 156 plants plus control pots were arranged in a ten row by sixteen column grid, with 0.235 meter spacing
between plants in the same row and 1.5 meters spacing between rows (Table 2). Sequential pairs of two rows were consisted of
a complete replicate with either 31 genotypes and one empty control pot, or 32 genotypes. Within each pair of rows, genotypes
were blocked in groups of eight (one half row), with order randomized within blocks between replicates in order to maximize
statistical power to analyze within-greenhouse variation.
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Table 1. 32 genotypes in maize phenotype map

Genotype ID Genotype Source Released Year

ZL1 740 Novartis Seeds 1998
ZL2 2369 Cargill 1989
ZL3 A619 Public Sector 1992
ZL4 A632 Public Sector 1992
ZL5 A634 Public Sector 1992
ZL6 B14 Public Sector 1968
ZL7 B37 Public Sector 1971
ZL8 B73 Public Sector 1972
ZL9 C103 Public Sector 1991
ZL10 CM105 Public Sector 1992
ZL11 LH123HT Holden’s Foundation 1984
ZL12 LH145 Holden’s Foundation 1983
ZL13 LH162 Holden’s Foundation 1990
ZL14 LH195 Holden’s Foundation 1989
ZL15 LH198 Holden’s Foundation 1991
ZL16 LH74 Holden’s Foundation 1983
ZL17 LH82 Holden’s Foundation 1985
ZL18 Mo17 Public Sector 1964
ZL19* DKPB80 DEKALB Genetics ?
ZL20 PH207 Pioneer Hi-Bred 1983
ZL21 PHB47 Pioneer Hi-Bred 1983
ZL22** PHG35 Pioneer Hi-Bred 1983
ZL23 PHG39 Pioneer Hi-Bred 1983
ZL24 PHG47 Pioneer Hi-Bred 1986
ZL25 PHG83 Pioneer Hi-Bred 1985
ZL26 PHJ40 Pioneer Hi-Bred 1986
ZL27 PHN82 Pioneer Hi-Bred 1989
ZL28 PHV63 Pioneer Hi-Bred 1988
ZL29 PHW52 Pioneer Hi-Bred 1988
ZL30 PHZ51 Pioneer Hi-Bred 1986
ZL31 W117HT Public Sector 1982
ZL32 Wf9 Public Sector 1991

* Not currently available for order. ** Genotype repre-

sented by only a single plant in the dataset.

Plant imaging
The plants were imaged daily using four different cameras in separate imaging chambers. The four types of cameras were
thermal infrared, fluorescence, conventional RGB, and hyperspectral12. Images were collected in the order that the camera
types are listed in the previous sentence. On each day, plants were imaged sequentially by row, starting with row 1 column 1
and concluding with row 10, column 16 (Table 2).

Plants were imaged from the side at two angles offset 90 degrees from each other as well as a top down view. On the first
day of imaging or when plants reached the two leaf stage of development, the pot was rotated so that the major axis of leaf
phylotaxy was parallel to the camera in the PA0 orientation and perpendicular to the camera in the PA90 orientation. This
orientation is consistent for all cameras and was not adjusted again for the remainder of the experiment. The fluorescence
camera captured images with a resolution of 1038 × 1390 pixels and measures emission intensity at wavelengths between
500-750 nm based on excitation with light at 400-500 nm. Plants were imaged using the same three perspectives employed for
the thermal infrared camera. The RGB camera captured images with a resolution of 2454 × 2056 pixels. Initially the zoom
of the RGB camera in side views was set such that each pixel corresponds to 0.746 mm at the distance of the pot from the
camera. Between 2015-11-05 and 2015-11-10, the zoom level of the RGB camera was reduced to keep the entire plant in the
frame of the image. As a result of a system error, this same decreased zoom level was also applied to all RGB images taken on
2015-10-20. At this reduced zoom level, each pixel corresponds to 1.507 mm at the distance of the pot from the camera, an
approximate 2x change. Plants were also imaged using the same three perspectives employed for the thermal infrared camera.
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Table 2. Experimental layout (ID: ZL1-ZL32). At the time this experiment was conducted, the total size of the UNL
greenhouse system was ten rows by twenty columns. Positions marked with UP indicate pots filled with plants from an
unrelated experiment, while positions marked with NA indicate pots which had no plants. The first complete replicate is shown
in color, and the four incomplete blocks within the first replicate are marked in different colors. * marks empty pots within the
experimental design.

9 7 3 10 23 25 26 19 13 5 29 21 2 4 18 20 UP UP UP UP
11 16 1 32 17 27 6 22 24 31 14 30 15 28 8 12 UP UP UP UP
29 31 15 13 1 17 25 9 21 30 3 5 * 19 14 6 UP UP UP UP
12 23 32 16 7 28 2 18 10 11 8 26 27 4 20 24 UP UP UP UP
25 9 21 27 28 12 5 11 15 6 * 7 4 23 31 20 UP UP UP UP
19 32 29 24 16 13 3 8 17 14 18 30 10 26 1 2 UP UP UP UP
8 1 17 23 21 5 7 24 27 18 3 11 31 15 19 2 NA NA NA NA
25 30 4 9 16 32 14 20 * 10 6 29 28 12 26 13 NA NA NA NA
15 10 5 32 31 21 16 26 2 18 9 25 6 8 24 * NA NA NA NA
29 13 23 14 27 7 11 30 12 1 28 4 3 20 17 19 NA NA NA NA

The hyperspectral camera captured images with a resolution of 320 horizontal pixels. As a result of the scanning technology
employed, vertical resolution ranged from 494 to 499 pixels. Hyperspectral imaging was conducted using illumination from
halogen bulbs (Manufacturer Sylvania, model # ES50 HM UK 240V 35W 25 * GU10). A total of 243 separate intensity values
were captured for each pixel spanning a range of light wavelengths between 546nm-1700nm. Data from each wavelength was
stored as a separate grayscale image.

Ground Truth Measurement
Ground truth measurements were collected at the termination of data collection on November 11-12, 2015. Manually collected
phenotypes included plant height, total number of visible leaves, number of total fully extended leaves, stem diameter at the
base of the plant, stem diameter at the collar of the top fully extended leaf, length and width of top fully extended leaf, and
presence/absence visible anthocyanin production in the stem. After these measurements, total above-ground fresh weight
biomass was measured for four out of five replicates, resulting in the destruction of the plants. Ground truth data for the drought
stressed subset of this dataset was collected following the procedure previously described in12.

RGB image processing
Pixels covering portions of the plant were segmented out of RGB images using a green index ((2×G)/(R+B)). Pixels with an
index value greater than 1.1512 were considered to be plant pixels. This method produced some false positive plant pixels
within the reflective metal columns at the edge of the image. To reduce the impact of false positives, these areas were excluded
from the analysis. Therefore, when plant leaves cross the reflective metal frame, some true plant pixels were excluded. If no
plant pixels were identified in the image – often the case in the first several days when the plant had either not germinated or
had not risen above the edge of the pot – the value was recorded as ”NA” in the output file.

Heritability analysis
A linear regression model was used to analyze the genotype effect (excluding genotype ZL22 which lacked replication) and
greenhouse position effect on plant traits. The responses were modeled independently for each day as

yh,i j,t = µh,t +αh,i,t + γh,ν(i, j),t + εh,i j,t , (1)

where the subscript h = 1, . . . ,6 denotes the three responses extracted from the images: plant height, width and size for the two
views 0 and 90 degree. The subscripts i, j and t denote the jth plant in the ith row and day t, respectively, and ν(i, j) stands for
the genotype at this pot. The parameters α and γ denote row effect and genotype effect, respectively. The error term is εh,i j,t .
Let SSα,t , SSγ,t and SSε,t be the sum of squares of the regression model (1) for the row effect, genotype effect and the error at
time t, respectively. Let SSt = SSα,t +SSγ,t +SSε,t be the total sum of squares at time t. The heritability HRt (2) of a given
trait within this population was defined as the ratio of the genotype sum of squares over the sum of genotype and error sum of
squares. For the estimate of the heritability of measurement error, the row effect term was replaced by a replicate effect (each
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replicate consisted of two sequential rows) with exclusion of ZL22 as only one plant of this genotype was grown.

HRt =
SSγ,t

SSε,t +SSγ,t
. (2)

As the heritability index may change over the growth of the plant, an nonparametric smoothing method was provided for
analyzing the time varying heritability of plants. The definition in (3) excludes the variation brought by the greenhouse row
effect, which can be considered as the percentage of the variation in plant response that can be explained by the genotype effect
after adjusting the environmental effect. To compare with this definition of heritability (2), the response in the model without
considering the row effect was constructed as

yh,i j,t = µh,t + γh,ν(i, j),t + εh,i j,t , (3)

where similarly as (1), ν(i, j) is the genotype of the jth plant in the ith row. Let S̃Sγ,t and S̃St be the genotype sum of squares
and total sum of squares under (4). The classical heritability is defined as

H̃Rt =
S̃Sγ,t

S̃St
. (4)

Hyperspectral image processing
Two methods and thresholds were used to extract plant regions of interest from hyperspectral images. First, the com-
monly used NDVI (normalized difference vegetation index) formula was applied to all pixels using the formula (R750nm-
R705nm)/(R750nm+R705nm), and pixels with a value greater than 0.25 were classified as originating from the plant13. Second,
based on the difference in reflectance between stem and leaves at wavelengths of 1056nm and 1151nm, the stem was segmented
from other part of plants by selecting pixels where (R1056nm/R1151nm) produced a value greater than 1.2. Leaf pixels were
defined as pixels identified as plant pixels based on NDVI but not classified as stem pixels. In addition to the biological variation
between individual plants, overall intensity variation existed both between different plants imaged on the same day and the
same plant on different days as a result of changes in the performance of the lighting used in the hyperspectral imaging chamber.
To calibrate each individual image and make the results comparable, a python script (hosted on Github; see code availability
section) was used to normalize the intensity values of each plant pixel using data from the non-plant pixels in the same image.

In order to visualize variation across 243 separate wavelength measurements across multiple plant images, we used a PCA
(Principal Component Analysis) based approach. After the normalization described above, PCA analysis of intensity values
for individual pixels was conducted. PCA values of each individual plant pixel per analyzed plant were translated to intensity
values using the formula [x-min(x)]/[max(x)-min(x)]. False color RGB images were constructed with the values for the first
principal component stored in the red channel, the second principal component in the green channel and the third principal
component stored in the blue channel.

Fluorescence image processing
A consistent area of interest was defined for each zoom level to exclude the pot and non-uniform areas of the imaging chamber
backdrop. Within that area, pixels with an intensity value greater than 70 in the red channel were considered to be plant pixels.
The aggregate fluorescence intensity was defined as the sum of the red channel intensity values for all pixels classified as plant
pixels within the region of interest, and the mean fluorescence intensity as the aggregate fluorescence intensity value divided by
the number of plant pixels within the region of interest.

Plant biomass prediction
Two methods were used to predict plant biomass. The first was a single variable model based on the number of zoom level
adjusted plant pixels identified in the two RGB side view images on a given day. The second was a multivariate model based
upon the sum of plant pixels identified in the two RGB side views, sum of plant pixels identified in the two RGB side views
plus the RGB top view, aggregate fluorescence intensity in the two side views, aggregate fluorescence intensity in the two side
views plus the top view, number of plant stem pixels identified in the hyperspectral image and number of plant leaf pixels
identified in the hyperspectral image. Traits were selected to overlap with those employed by (Chen et al14) where possible.
This multivariate dataset was used to predict plant biomass using linear modeling as well as MARS, Random Forest and SVM14.
MARS analysis was performed using the R package earth15, Random Forest with the R package randomForest16 and SVM
with the R package e107117.
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Data Validation and quality control
Validation against ground truth measurements
A total of approximately 500 GB of image data was initially generated by the system during the course of this experiment consist-
ing of RGB images (51.1%), fluorescence images (4.3%), and hyperspectral images (44.6%). A subset of the RGB images within
this dataset were previously analyzed in18, and were made available for download from http://plantvision.unl.edu/dataset under
the terms of the Toronto Agreement. To validate the dataset and ensure plants had been properly tracked through both the auto-
mated imaging system and ground truth measurements, a simple script was written to segment images into plant and not-plant pix-
els (Figure 1). Source codes for all validation analysis are posted online (https://github.com/shanwai1234/Maize Phenotype Map).

Figure 1. Segmentation of images into plant and not plant pixels for one representative plant (Path to this image in the released
dataset: Genotype ZL019 −> Plant 008-19 −> Image Type −> Day 32). The area enclosed by green border is composed
of pixels scored as ”plant”, the area outside the green border s composed of pixels scored as ”not-plant”. Minimum bounding
rectangle of plant pixels is shown in red. (A) Side view, angle 1; (B) Side view, 90 degree rotation relative to A; (C) Top View.

Based on the segmentation of the image into plant and non-plant pixels, plant height was scored as the y axis dimension of
the minimum bounding box. Plant area was scored as the total number of plant pixels observed in both side view images after
correcting for the area of each pixel at each zoom employed (See Methods). Similar approaches to estimate plant biomass
have been widely employed across a range of grain crop species including rice19, wheat20, barley20, 21, maize12, sorghum22

and seteria9. Calculated values were compared to manual measurements of plant height and plant fresh biomass which were
quantified using destructive methods on the last day of the experiment. In both cases manual measurements and image
derived estimates were highly correlated, although the correlation between manual and estimated height was greater than
the correlation between manually measured and estimated biomass (Figure 2A,B). Using the PlantCV software package23,
equivalent correlations between estimated and ground truth biomass were obtained (r=0.91). Estimates of biomass using
both software packages were more correlated with each other (r=0.96) than either was with ground truth measurements. This
suggests that a significant fraction of the remaining error is the result of the expected imperfect correlation between plant
size and plant mass, rather than inaccuracies in easimating plant size using individual software packages. Recent reports
have suggested that estimates of biomass incorporating multiple traits extracted from image data can increase accuracy14.
We tested the accuracy of biomass prediction of four multivariate estimation techniques on this dataset (see Methods). The
correlation coefficient (r value) of the estimated biomass measures with ground truth data was 0.949, 0.958, 0.925 and 0.951 for
multivariate linear model, MARS, Random Forest and SVM respectively.

The residual value – difference between the destructively measured biomass value and the predicted biomass value based
on image data and the linear regression line equation – was calculated for each individual plant (Figure 2C). Using data from
the multiple replicates of each individual accession, the proportion of error which is controlled by genetic factors rather than
random error can be ascertained. We determined that 58% of the total error in biomass estimate was controlled by genetic
variation between different maize lines. As such, this error is systematic rather than random and thus more likely to produce
misleading downstream results when used in quantitative genetic analysis. As mentioned above, biomass and plant size are
imperfectly correlated, as different plants can exhibit different densities, for example as a result of different leaf to stem
ratios. Recent reports have suggested that estimates of biomass incorporating multiple traits extracted from image data can
increase accuracy14. We tested the accuracy of biomass prediction of four multivariate estimation techniques on this dataset
(see Methods). The correlation of the estimated biomass measures with ground truth data was 0.949, 0.958, 0.925 and 0.951 for
multivariate linear model, MARS, Random Forest and SVM respectively. However, even when employing the most accurate of
these four methods (MARS), 63% of the error in biomass estimation could be explained by genetic factors. This source of
error, with the biomass of some lines systematically underestimated and the biomass of other lines systematically overestimated
presents a significant challenge to downstream quantitative genetic analysis. Given the prevalence of plant pixel counts as a
proxy for biomass9, 12, 19–22.

Patterns of change over time
One of the desirable aspects of image based plant phenotyping is that, unlike destructively measured phenotypes, the same
plant can be imaged repeatedly. Instead of providing a snapshot in time this allows researchers to quantify rates of change in
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Figure 2. Correlation between image-based and manual measurements of individual plants.(A) Plant height; (B) Plant fresh
biomass; (C) Variation in the residual between estimated biomass and ground truth measurement of biomass across inbreds.

phenotypic values over time, providing an additional set of derived trait values. Given the issues with biomass quantification
presented above, measurements of plant height were selected to validate patterns of change in phenotypic values over time. As
expected, height increases over time, and the patterns of increase tended to cluster together by genotype (Figure 3A). Increases
in height followed by declines, as observed for ZL26, were determined to be caused by a change in the angle of the main
stalk. While the accuracy of height estimates was assessed by comparison to physical ground truth measurements only on the
last day, the height of three randomly selected plants (Plant 007-26, Plant 002-7 and Plant 041-29) were manually measured
from image data and compared to software based height estimates, and no significant differences were observed between the
manual and automated measurements (Figure 3B; Supplementary Table 1). To perform a similar test of the accuracy of biomass
estimation at different stages in the maize life cycle, a set of existing ground truth measurements for two genotypes under two
stress treatments12 were combined with additional later grow stage data (Supplemental Table 2). The correlation between total
plant pixels observed in the two side views and plant biomass was actually substantially higher in this dataset (r=0.97) than the
primary dataset, likely as a result of the smaller amount of genetic variability among these plants (Supplementary Figure 1).

Heritability of phenotypes
The proportion of total phenotypic variation for a trait controlled by genetic variation is referred to as the heritability of that
trait and is a good indicator of how easy or difficult it will be to either identify the genes which control variation in a given trait,
or to breed new crop varieties in which a given trait is significantly altered. Broad-sense heritability can be estimated without
the need to first link specific genes to variation in specific traits24. Variation in a trait which is not controlled by genotype
can result from environmental effects, interactions between genotype and environment, random variance, and measurement
error. Controlling for estimated row effects on different phenotypic measurements significantly increased overall broad sense
heritability (Figure 4A,B). This result suggests that even within controlled environments such as greenhouses, significant
micro-environmental variation exists and that proper statistically based experimental design remains critical importance in even
controlled environment phenotyping efforts.

If the absolute size of measurement error was constant in this experiment, as the measured values for a given trait became
larger, the total proportion of variation explained by the error term should decrease and, as a result, heritability should increase
as observed (Figure 4A). This trend was indeed observed across six different phenotypic measurements (three traits calculated
from each of two viewing angles (Figure 4B). Plant height also exhibited significantly greater heritability than plant area or
plant width and greater heritability when calculated solely from the 90 degree side angle photo than when calculated solely
from to 0 degree angle photo.
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Figure 3. (A) Plant growth curves of each of five replicates of eight selected genotypes; (B) Comparison of manual
measurements of plant height from image data with automated measurements for three randomly selected plants on each day of
the experiment.

In previous studies, fluorescence intensity has been treated as an indicator for plant abiotic stress status7, 25–27 or chlorophyll
content level28, 29. Using the fluorescence images collected as part of this experiment, the mean fluorescence intensity value for
each plant image was calculated (see Methods). We found that this trait exibited moderate heritability, with the proportion of
variation controlled by genetic factors increasing over time and reaching approximately 60% by the last day of the experiment
(Figure 4B).

Hyperspectral image validation
Hyperspectral imaging of crop plants has been employed previously in field settings using airborne cameras30–32. As a result of
the architecture of grain crops such as maize, aerial imagery will largely capture leaf tissue during vegetative growth, and either
tassels (maize) or seed heads (sorghum, millet, rice, oats, etc) during reproductive growth. The dataset described here includes
hyperspectral imagery taken from the side of individual plants, enabling quantification of the reflectance properties of plant
stems in addition to leaf tissue.

Many uses of hyperspectral data reduce the data from a whole plant or whole plot of genetically identical plants to a
single aggregate measurement. While these approaches can increase the precision of intensity measurements for individual
wavelengths, these approaches also sacrifice spatial resolution and can in some cases produce apparent changes in reflectivity
between plants that result from variation in the ratios of the sizes of different organs with different reflective properties. To
assess the extent of variation in the reflectance properties of individual plants, a principal component analysis of variation
in intensity values for individual pixels was conducted. After non-plant pixels were removed from the hyperspectral data
cube (Figure 5A) (See Methods), false color images were generated encoding the intensity values of the first three principal
components of variation as the intensity of the red, green, and blue channels respectively (Figure 5B, C and D). The second
principal component (green channel) marked boundary pixels where intensity values likely represent a mixture of reflectance
data from the plant and from the background. The first principal component (red channel) appeared to indicate distinctions
between pixels within the stem of the plant and pixels within the leaves.

Based on this observation, an index was defined which accurately separated plant pixels into leaf and stem (see Methods).
Stem pixels were segmented from the rest of the plant using an index value derived from the difference in intensity values
observed in the 1056nm and 1151nm hyperspectral bands. This methodology was previously described12. The reflectance
pattern of individual plant stems is quite dissimilar from the data observed from leaves and exhibits significantly different
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Figure 4. (A) The time course broad sense heritability of PH90. The heritability in the G model was calculated using a linear
model that only considers the effect of genotype with residual values in the error term while heritability in the G + E model was
calculated using a linear model that considers the effect of both genotype and environment (row effect) with residual values in
the error term.; (B) The time course broad sense heritability of PA90 before and after controlling for the row effect; (B)
Variation in broad-sense heritability (H2) after controlling row effects for 6 trait measurements every second day across the
phenotyping cycle. PA0: Plant Area in 0 degree (The major axis of leaf phylotaxy was parallel to the camera at 0 degree);
PA90: Plant Area in 90 degree (The major axis of leaf phylotaxy was perpendicular to the camera at 90 degree); PH0: Plant
Height in 0 degree; PH90: Plant Height in 90 degree; PW0: Plant Width in 0 degree; PW90: Plant Width in 90 degree; PF0:
Average of plant fluorescence intensity in 0 degree; PF90: Average of plant fluorescence intensity in 90 degree.

Figure 5. Segmentation and visualization of variation in hyperspectral signatures of representative maize plant images. (A)
RGB photo of Plant 013-2 (ZL02) collected on DAP 37; (B) False color image constructed of the same corn plant from a
hyperspectral photo taken on the same day. For each plant pixel the values for each of the first three principal components of
variation across 243 specific wavelength intensity values are encoded as one of the three color channels in the false image; (C)
Equivalent visualization for Plant 048-9 (ZL09); (D) Equivalent visualization for Plant 008-19 (ZL19).
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reflective properties in some areas of the near infrared (Figure 6). Characteristics of the stem are important breeding targets
for both agronomic traits (lodging resistance, yield for biomass crops) and value added traits (biofuel conversion potential
for bioenergy crops, yield for sugarcane and sweet sorghum). Hyperspectral imaging of the stem has the potential to provide
nondestructive measurements of these traits. The calculated pattern of leaf reflectance for the data presented here are comparable
with those observed in field-based hyperspectral studies33–35, providing both external validation and suggesting that the data
presented here may be of use in developing new indices for use under field conditions.

Figure 6. Reflectance values for three plants - Plant 090-6 (ZL06), Plant 002-7 (ZL07), and Plant 145-16 (ZL16) on three
days across development. (A) Reflectance values for non-stem plant pixels (i.e. leaves) (B) Reflectance values for pixels within
the plant stem.

In conclusion, while the results presented above highlight some of the simplest traits which can be extracted from plant
image data, these represent a small fraction of the total set of phenotypes for which image analysis algorithms currently exist,
and those in turn represent a small fraction of the total set of phenotypes which can potentially be scored from image data.
Software packages already exist to measure a range of plant architectural traits such as leaf length, angle, and curvature from
RGB images6, 36. Tools are also being developed to extract phenotypic information on abiotic stress response patterns from
fluorescence imaging6, 7. The analysis of plant traits from hyperspectral image data, while common place in the remote sensing
realm where an entire field may represent a single data point, is just beginning for single plant imaging. Recent work as
highlighted the potential of hyperspectral imaging to quantify changes in plant composition and nutrient content throughout
development12, 37. While these techniques have great potential to accelerate efforts to link genotype to phenotype through
ameliorating the current bottleneck of plant phenotypic data collection, it will be important to balance the development of new
image analysis tools with the awareness of the potential for systematic error resulting from genetic variation between different
lines of the same crop species.

1 Availability of source code and requirements
• Project name: Maize Phenotype Map

10/13

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 21, 2017. ; https://doi.org/10.1101/169045doi: bioRxiv preprint 

https://doi.org/10.1101/169045


• Project home page: https://github.com/shanwai1234/Maize_Phenotype_Map

• Operating system(s): Linux

• Programming language: Python 2.7

• Other requirements: OpenCV module 2.4.8, Numpy >1.5, CMake > 2.6, GCC > 4.4.x, Scipy 0.13

• License: BSD 3-Clause License

2 Availability of supporting data and materials
The image data sets, pot weight records per day and ground truth measurements with corresponding documentations from 4
types of cameras of 32 maize inbreds and same types of image data for the two maize genotypes under two stress treatments
were deposited in the CyVerse data commons under a CC0 license with doi: 10.7946/P22K7V. (The data for the peer review
process can be downloaded from https://doi.org/10.7946/P22K7V). All image data were stored in the following data structure:
Genotype − > Plant − > Camera type − > Day. For the hyperspectral camera each photo is stored as 243 sub images,
each image representing intensity values for a given wavelength, so these require one additional level of nesting in the data
structure Day −> wavelength. The grayscale images from the IR camera and the hyperspectral imaging system are stored as
three-channel images with all three channels in a given pixel set to identical values. The fluorescence images contain almost all
information in the red channel with the blue and green channel having intensities equal to or very close to zero, but data all
three channels exist. Genotype data of 32 inbreds were generated as part of a separate project and can be retrieved from either
https://doi.org/10.7946/P2V888 or http://cbsusrv04.tc.cornell.edu/users/panzea/download.aspx?filegroupid=4. Measurements for thirteen core
phenotypes at each field trial as well as local weather data can be retrieved from publicly released Genomes 2 Fields datasets
released on CyVerse. Data from the 2014 G2F field trials is posted (https://doi.org/10.7946/P2V888) and data from the 2015
G2F field trials is posted (https://doi.org/10.7946/P24S31). Genetically identical seeds from the majority of the accessions used
in creating both this dataset and the genomes to fields field trial data can be ordered from public domain sources (e.g. USDA
GRIN) and are listed in Table 1.

3 Declarations

3.1 List of abbreviations
DAP: Days after planting
GBS: Genotyping by Sequencing
LED: Light-emitting diode
MARS: Multivariate Adaptive Regression Splines
NDVI: Normalized difference vegetation index
NIR: Near-infrared
RGB: An image with separate intensity values for the red, blue and green channels
SNP: Single Nucleotide Polymorphism
SVM: Support Vector Machines
UNL: University of Nebraska-Lincoln
PA0: Plant Area calculated from a 0 degree image. Plants were initially orientated then leaves would be arranged parallel to the
camera at 0 degrees.
PA90: Plant Area calculated from a 90 degree image. Plants were initially orientated then leaves would be arranged perpendicular
to the camera at 90 degrees.
PCA: Principal Component Analysis
PH0: Plant Height calculated from a 0 degree image
PH90: Plant Height calculated from a 90 degree image
PW0: Plant Width calculated from a 0 degree image
PW90: Plant Width calculated from a 90 degree image
PF0: Average of plant fluorescence intensity in 0 degree
PF90: Average of plant fluorescence intensity in 90 degree.

3.2 Consent for publication
Not applicable.
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