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Abstract 
Pre-mRNA splicing can contribute to the switch of cell identity that occurs in carcinogenesis. Here 
we analyze a large collection of RNA-Seq datasets and report that splicing changes in hepatocyte-
specific enzymes, such as AFMID and KHK, are associated with HCC patients’ survival and 
relapse. The switch of AFMID isoforms is an early event in HCC development, and is associated 
with driver mutations in TP53 and ARID1A. Finally, we show that the switch of AFMID isoforms 
is human-specific and not detectable in other species, including primates. The integrative analysis 
uncovers a mechanistic link between splicing switches, de novo NAD+ biosynthesis, driver 
mutations, and HCC recurrence. 
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Introduction 
Liver cancer is the second leading cause of cancer death worldwide, and has very poor prognosis, 
with an incidence rate almost equal to the mortality rate (ratio = 0.95) (Ferlay et al. 2015). The 
global incidence of liver cancer has increased in the past 20 years, resulting in a doubling in 
disease-specific mortality (Llovet et al. 2015). Hepatocellular carcinoma (HCC) is the primary 
malignancy of the liver. The only approved drug for HCC is the protein tyrosine kinase inhibitor 
sorafenib, which can only prolong survival by about 3 months. Surgical resection has the best 
prognosis for long-time survival, but only a minority (~15%) of HCC patients have enough normal 
liver remaining at the time of diagnosis. Even if surgical resection is successful, most HCC patients 
(~90%) die within five years, because of intrahepatic recurrent HCC tumors (HCCs). The five-
year survival rate is ~17% in the United States. Unfortunately, recent clinical trials of experimental 
HCC drugs have all failed (Llovet et al. 2015). Accordingly, there is an urgent unmet clinical need 
in prevention, diagnosis, prognosis, and treatment for this deadly cancer. 
  HCC cells are highly heterogeneous: different areas within the same tumor often have 
different patterns of morphology, immunohistochemical staining, and driver mutations (Friemel et 
al. 2015). The negative results from recent HCC clinical trials also highlight the intrinsic resistance 
of HCC to therapies (Villanueva and Llovet 2014). One important aspect of how cell identity is 
determined is through alternative pre-mRNA splicing patterns, which are regulated in a cell-type-
specific manner. Recent studies identified some recurrent splicing events in HCC, but they did not 
establish associations with clinical information, and were limited to small patient cohorts 
(Sebestyen et al. 2015; Zhang et al. 2015; Sebestyen et al. 2016). Also, the detection methods used 
in the previous studies were limited to analyzing only two isoforms at a time. 

To provide an integrative analysis of splicing patterns during the transition from 
hepatocytes to HCC cells, the present study analyzed ~6,000 samples of RNA-Seq data comprising 
human hepatocytes, Kupffer cells, adult and fetal livers, dysplastic lesions, early HCCs, HCCs, 
and cancer cell lines from various tissue types. We sought to identify robust splicing events 
associated with survival, recurrence, and driver mutations in HCC, by using a modified Percent 
Spliced-In (PSI) index (see Methods). In particular, we describe an AFMID alternative splicing 
event and propose that it plays a critical role in early HCC development and progression. 
 
Results 
 
Concordant splicing events in HCC tumors and liver-cancer cell lines 
Liver-cancer cell lines are malignant clones derived from heterogeneous liver tumors. Concordant 
splicing events that coexist in both HCCs and liver-cancer cell lines could be among the main 
characteristics preserved in liver-cancer evolution. Concordance means that the splicing event 
involves the same exon/exons, and increases or decreases in the same direction. To identify 
splicing events, we used a new PSI index to analyze RNA-Seq datasets (Methods and 
Supplementary Fig. S1). We started with an RNA-Seq dataset of 11 primary HCCs and matched 
adjacent normal liver (ANL) tissues from a recent study (Jhunjhunwala et al. 2014). Also, we 
analyzed 136 non-HCC liver samples from the Genotype-Tissue Expression (GTEx) database, and 
16 liver-cancer cell lines (Consortium 2015; Klijn et al. 2015). We identified 436 and 1,992 robust 
splicing events in HCCs and liver-cancer cell lines, respectively (Supplementary Table S1 and S2). 
To identify highly reproducible splicing events, we required at least 20 supporting reads for the 
event in at least 80% of the samples. 
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Among the splicing events, we identified 136 overlapping events involving 135 alternative 
exons with concordant splicing changes (Fig. 1A). The top 10 genes with the largest PSI changes 
were PEMT, KIAA1551, NUMB, FN1, MYO1B, USO1, RPS24, AFMID, KHK, and ARHGEF10L 
(Fig. 1B). PEMT (phosphatidylethanolamine N-methyltransferase) mainly expresses the PEMTB 
isoform (NM_007169) in ANLs, but we found that it switches to greater expression of the PEMTA1 
isoform (NM_148172) in HCCs (Supplementary Fig. S2) (Shields et al. 2001). NUMB is a cell-
fate determinant in cell development; the NUMBL isoform is known to be up-regulated in HCCs 
(Lu et al. 2015). FN1 (fibronectin 1) had increased inclusion of its EDB exon and the function of 
the FN1EDB isoform was recently reported (Bordeleau et al. 2015). USO1 (vesicle transport factor 
p115) showed a reduction in exon 13 inclusion (Chr4:76716488-76716509) and was recently 
proposed as a potential splicing marker in HCC (Danan-Gotthold et al. 2015).  KHK 
(ketohexokinase) switched from KHKC to KHKA isoforms. A recent study showed that switching 
KHKA to KHKC can induce heart disease (Mirtschink et al. 2015). Conversely, switching KHKC to 
KHKA drives HCC development (Li et al. 2016). AFMID (arylformamidase) showed a decrease in 
the full-length isoform, and a higher proportion of the other two alternative isoforms in liver-cancer 
cells; one isoform skips five exons (exon 5 to exon 9) and the other skips four exons (exons 5, 7, 
8, and 9). Among these top 10 genes, PEMT, KHK and AFMID are liver-specific enzymes. The 
events involving the alternative exons of AFMID had the most significant p-values (Fig. 1C). Exon 
6 of AFMID has both increased and decreased PSI values in liver-cancer cells because it is present 
in the two full-length isoforms (AFMIDFL1 and AFMIDFL2), and in an alternative isoform 
(AFMIDe6), that skips exons 5, 7, 8, and 9 (Fig. 1D). In liver-cancer cells, the exon 6 PSI values 
were increased for the AFMIDe6 isoform, and decreased for the AFMIDFL1 and AFMIDFL2 isoforms. 
 

 
Figure 1. Concordant splicing events in 
HCC patient samples and liver-cancer 
cell lines. (A) The Venn diagram shows the 
number of overlapping splicing events 
between two independent comparisons: 11 
adjacent normal livers (ANLs) versus 11 
matched HCCs (green circle); and 136 non-
HCC liver samples versus 16 liver-cancer 
cell lines (blue circle). (B) Each dot in the 
dot plot represents an alternative exon. The 
x-axis shows the average PSI change of an 
alternative exon between ANL and HCCs. 
The y-axis is the statistical significance, 
denoted as –log10(p), of the splicing event in 
11 ANLs versus 11 HCCs. (C) The vioplot 
shows the PSI distributions of exon 5 of 
AFMID in 11 ANLs and 11 matched HCCs. 
(D) Exon/intron structure of AFMID 
isoforms. Each dark block is a coding exon; 
the gray boxes represent the UTR exons or 
portions of exons; the green boxes denote 
domain regions. Three purple dots represent 
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the active-site residues (Ser164, Asp247, and His279). The blue dot on exon 4 represents the 
HGGXW motif (the oxyanion hole). (E, F, G, and H) The stacked bar charts in (E) and (G) 
represent the estimated proportion of AFMID isoforms in the 11 pairs of ANLs and matched HCCs, 
based on RNA-Seq junction reads. (F) shows the 136 non-HCC liver samples, and (H) shows the 
16 liver-cancer cell lines. (I) The stacked bar chart shows the PSIs of AFMID isoforms in human 
hepatocytes, Kupffer cells, hiHep cells (ESHep and hiHep), HepG2, and skin fibroblasts. (J and 
K) The two box plots show the overall gene-expression level of AFMID in 11 matched HCC 
patient samples and 371 unmatched HCC patient samples from TCGA. Expression levels are 
shown as transcripts per million (TPM). 
 
 
The switch of AFMID isoforms corresponds to loss of normal hepatocyte identity 

AFMID is located on Chromosome 17q25.3 and encodes arylformamidase, a controlling 
enzyme in tryptophan metabolism. AFMID expression level is evolutionarily constrained across 
multiple species (Pervouchine et al. 2015). AFMID generally expresses four isoforms, including 
AFMIDFL1, AFMIDFL2, AFMIDe6, and AFMIDSKIP (Fig. 1D). AFMIDFL1 is the major isoform and 
has a shorter exon 9 than AFMIDFL2. In the present study, we used the PSI of exon 5 to represent 
the PSI of AFMIDFL, as both AFMIDFL1 and AFMIDFL2 share the same exon 5. AFMIDFL has a 
HGGXW motif (in exon 4), an alpha/beta hydrolase-fold domain (in exons 4 to 10), and an active 
site triad (in exons 7, 9, and 10, respectively) (Fig. 1D) (Pabarcus and Casida 2002; Pabarcus and 
Casida 2005). In normal or non-HCC livers, AFMID primarily expresses AFMIDFL (Fig. 1E and 
1F). In HCCs or liver-cancer cell lines, AFMID expresses mostly AFMIDSKIP and AFMIDe6 (Fig. 
1G and 1H). AFMIDSKIP splices out exons 5 to 9, where the core-domain region resides. We also 
found that human hepatocytes had the highest PSI values of AFMIDFL, and hiHep cells had higher 
PSI values of AFMIDFL than HepG2 and fibroblasts (Huang et al. 2014). The AFMIDSKIP and 
AFMIDe6 isoforms are the dominant isoforms in human Kupffer cells (Fig. 1I) (Costa-Silva et al. 
2015). Both sets of data showed that the high-AFMIDFL pattern is characteristic of human 
hepatocytes. Interestingly, although the PSI values of AFMIDFL were significantly decreased in 
HCCs, the overall gene-expression level of AFMID was maintained at similar levels between 
ANLs and HCCs (Fig. 1J and 1K). Real-time RT-PCR experiments with RNA from 20 ANLs and 
19 HCCs showed that the overall AFMID level did not significantly change (p=0.2963), but the 
AFMIDFL isoform level was significantly down-regulated in HCCs by about 2-fold (p=0.0042) 
(Fig. S5). 

To determine the complete structure of AFMIDSKIP, we analyzed PacBio long reads derived 
from several cancer cell lines (Tilgner et al. 2014). We found that most of the isoforms that lack 
exons 5 to 9 have exons 1 through 4 in GM12878, GM12891, GM12892, and K562 cell lines 
(Supplementary Fig. S3). 79 of the 135 alternative exons identified above were present again in 
the set of 250 splicing events. AFMIDFL also had decreased PSI values in HCCs from the LIHC 
dataset (Fig. 2A). Survival analysis showed that 32 of the 135 alternative exons had significant 
log-rank p-values in both overall and recurrence-free datasets (Fig. 2B and Supplementary Table 
S4). The top 5 genes were AFMID, C16ORF13, SLAIN2, STRA13, and KHK. AFMID exons had 
outstanding power at predicting patient survival. The PSI values of exons 5 and 6 had the strongest 
prognostic values in the RNA-Seq data of TCGA (Fig. 2B). The overall survival was positively 
correlated with the PSI values of AFMIDFL in HCC (p=0.0011) (Fig. 2E). Patients with lower PSI 
values of AFMIDFL died sooner (hazard ratio = 1.7087, p=0.0035), and tended to have a recurrence 
earlier (hazard ratio = 1.8822, p=3.60e-05) (Fig. 2C and 2D). For predicting HCC recurrence, 
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AFMID is similar to MKI67 (encoding the proliferation marker Ki-67) which had a log-rank p-
value of 3.80e-05. 63 of the 64 low-AFMIDFL patients died within 5 years. The median survival 
for low-AFMIDFL patients was ~11.77 months (30 days per month), whereas for high-AFMIDFL 
patients it was ~19.95 months. 

 
Figure 2. The switch of AFMID isoforms 
is associated with patient outcome and is 
already evident in early-stage HCC. (A) 
The vioplot shows the PSI distribution of 
AFMIDFL isoform in adjacent normal livers 
(ANLs) and HCCs in the LIHC dataset of 
TCGA. (B) The dot plot summarizes the log-
rank p values from overall (x-axis) and 
recurrence-free (y-axis) survival analysis, 
based on the LIHC dataset of TCGA. (C and 
D) The plots show the survival curves of 
AFMID-high and AFMID-low patients, 
based on the PSIs of the AFMIDFL isoform in 
overall and recurrence-free survival analysis, 
respectively. The PSI of the AFMIDFL 
isoform was determined by using the PSI of 
exon 5. (E) The dot plot shows the 

correlation between the PSI of the AFMIDFL isoform and overall survival days. (F) The plot shows 
the enrichment (y-axis) of mutated genes in high-AFMIDFL or low-AFMIDFL HCCs, based on the 
LIHC dataset of TCGA. The x-axis shows the number of HCCs carrying the mutated gene. Each 
dot represents one gene mutated in at least one of the HCC samples. The bar labeled TP53 
demonstrates that there are more TP53-mutated HCCs (light-gray bar) in low-AFMIDFL HCCs (red 
bar). (G) The box plots show the PSIs of the AFMIDFL isoform in ANLs from patients with no 
fibrosis, fibrosis, or cirrhosis, in the LIHC dataset. N/A means that the annotation of the liver 
sample was not available. (H) The box plot shows the PSI distribution of the AFMIDFL isoform in 
ANLs, low-/high-grade dysplastic lesions (LG/HG), early HCCs (eHCC), and HCCs.  (I) The plot 
shows the PSI patterns of AFMIDFL (black), AFMIDSKIP (red), and AFMIDe6 (orange) isoforms in 
different groups of liver samples. 
 
The decrease of AFMIDFL isoform is associated with driver mutations 
The major source of nicotinamide adenine dinucleotide (NAD+) production in the hepatocyte is 
through tryptophan metabolism. A recent study showed that inhibition of the de novo NAD+ 
biosynthesis pathway leads to NAD+ depletion, DNA-damage responses, and HCC development 
in mice (Tummala et al. 2014). Feeding the mutant mice with nicotinamide riboside (NR), the 
precursor of the salvage pathway for generating NAD+, compensates for the loss of de novo NAD+ 
biosynthesis and prevents HCC development (Tummala et al. 2014). The study also showed that 
AFMID protein is down-regulated or not detected in human HCCs by western blotting, and 
depletion of Afmid in non-tumorigenic mouse liver cells (AML-12) resulted in aggressive tumors 
(Tummala et al. 2014). If the switch of AFMID isoforms increases DNA-damage responses in 
normal hepatocytes, low-AFMIDFL HCCs would have a higher chance of accumulating driver 
mutations, such as in TP53 and ARID1A (Villanueva and Llovet 2014). To test this hypothesis, we 
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used the non-silent mutations. Among 369 HCC samples from TCGA, we found that 37 out the 
54 TP53-mutated HCC samples were enriched in low-AFMIDFL HCC samples (hypergeometric 
p=0.0016, Fig. 2F, Supplementary Table S5). In other words, low-AFMIDFL HCC samples appear 
to have a 2-fold higher chance of gaining TP53 mutations. Among 9,762 genes mutated in at least 
one of the 369 HCC samples, only TP53 had a p-value lower than 0.01. TTN and CTNNB1 were 
mutated in a similar number of HCC samples, but the p-values were not significant. Incorporating 
silent mutations yielded the same enrichment for TP53. 40 of 61 HCC samples with TP53 
mutations were enriched in the low-AFMIDFL group (p=0.0016, Supplementary Table S6). In 
addition, we tested whether the 1st quartile (Q1) and the 4th quartile (Q4) of HCCs are associated 
with non-silent mutations in terms of PSI values of AFMIDFL. Ranked by the PSI values of 
AFMIDFL, 93 HCCs were in Q1 (PSI > 41%, high AFMIDFL) and the other 93 HCCs were in Q4 
(PSI < 17%, low AFMIDFL). 26 of the 186 HCCs had TP53 mutations, and 20 of them were 
enriched in Q4 (p=0.0020). Among the 6,370 mutated genes in the 186 HCCs, ARID1A also 
showed significant enrichment in Q4 (p=0.0289, Supplementary Table S7). Seven out of 8 HCCs 
with ARID1A non-silent mutations were enriched in Q4. Overall, there is a consistent enrichment 
of TP53 mutations in low-AFMIDFL HCCs. 

 
The switch of AFMID isoforms occurs in early-stage HCC 
To establish when the switch of AFMID isoforms is likely to occur, we investigated the PSI 
distributions of AFMIDFL in two datasets: (1) the LIHC datasets from TCGA; and (2) an RNA-
Seq dataset that covers several stages in HCC development. First, among the 50 ANL samples 
from TCGA, 22 of the HCC patients showed no fibrosis, 7 showed fibrosis, and 6 showed cirrhosis. 
The PSI distributions of AFMIDFL were not statistically different (Fig. 2G), indicating that the 
switch of AFMID isoforms is not associated with fibrosis or cirrhosis. Next, we investigated the 
other RNA-Seq dataset from a recent study (Marquardt et al. 2014). This dataset is composed of 7 
ANL samples, 4 low-grade dysplastic lesions, 9 high-grade dysplastic lesions, 5 early HCCs, and 
3 late HCCs. The sequencing depth for the samples in the RNA-Seq dataset ranges from 7 million 
to 339 million reads. This RNA-Seq dataset has particularly strong enrichment for reads in the 3’ 
end of AFMID. For example, in the 419 TCGA patient samples (50 ANLs and 369 HCCs), the PSI 
values of exon 5 and exon 9 had high correlation (correlation = 0.85) (Supplementary Fig. S6A). 
However, in the 28 patient samples, the PSI values of the two exons were weakly correlated 
(correlation = -0.16) (Supplementary Fig. S6B). The PSI values of exon 5 are generally much 
lower than the PSI values of exon 9. The imbalance in PSI values leads to inaccurate estimations 
of the AFMID isoform proportions if we use the PSI values of exon 5 alone to represent AFMIDFL. 
Accordingly, we normalized the PSI of AFMIDFL by using the average PSI of exon 5 and exon 9 
in the second dataset. After normalization, the PSI distributions of AFMIDFL were not statistically 
different in ANL, low-grade and high-grade dysplastic lesions. In contrast, the PSI values of 
AFMIDFL were significantly lower in early HCCs (p=	0.0318) and HCCs (p=0.0356) than in ANLs 
(Fig. 2H). Combining the three isoforms in one figure, we could show that the PSI values of 
AFMIDFL and AFMIDSKIP start to intersect at the early stage of HCC (Fig. 2I). 
 
The decrease of AFMIDFL isoform in other cancers 
AFMID has highest expression in the liver, because of this organ’s high demand for NAD+ (400-
800 µmol/kg protein) (Houtkooper et al. 2010). To investigate if cancers from other organs have 
the same switch, we analyzed RNA-Seq data from 5,213 samples from the GTEx portal, and from 
675 cancer cell lines originated from 31 tissue types (Consortium 2015; Klijn et al. 2015). We 
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found that all of the cancer cell lines expressed higher proportions of AFMIDSKIP and AFMIDe6 
isoforms (Fig. 3A). The 5,213 non-cancer samples generally had higher PSI values for the 
AFMIDFL isoform, compared to their cancer cell line counterpart (Fig. 3B). Among the 15 matched 
tissue types, liver and kidney had the largest decrease in PSI values, on average, and lung had the 
most significant p-value (Fig. 3C). On the other hand, brain had very little change in PSI values. 
We note that the non-HCC livers with a lower RNA integrity (RIN) score in the GTEx dataset tend 
to have lower PSI values of AFMIDFL (p=9.0e-06). 
 To experimentally validate the event in multiple cancer types, we performed radioactive 
RT-PCR of RNA from normal liver, kidney, lung, colon, stomach, and brain tissue samples, versus 
their cancer cell line counterparts (Fig. 3E to 3J). We confirmed that AFMIDFL is the dominant 
isoform in normal liver and kidney. We also confirmed that AFMIDFL decreases and AFMIDSKIP 
increases in most of the cancer cell lines tested, except for the brain cell lines (Fig. 3E to 3J). Real-
time RT-PCR gave similar results. The overall AFMID expression levels were not significantly 
different between normal liver tissues and HepG2 and Hep3B cells, whereas Huh-7 and 
PLC/PRF/5 cell lines had significantly lower overall AFMID levels (Supplementary Fig. S7A). 
AFMIDFL was generally lower in the four liver-cancer cell lines, whereas AFMIDe6 and AFMIDSKIP 
were mostly unchanged (Supplementary Fig. S7A). Further RT-PCR analysis showed that human 
fetal liver also switched to the AFMIDSKIP isoform (Supplementary Fig. S7B). The pattern is 
consistent with  recent RNA-Seq data from human fetal liver (Gerrard et al. 2016). 
 

Figure 3. The switch of AFMID isoforms 
in cancers. (A) The stacked bar chart shows 
the proportions of AFMID isoforms 
(AFMIDFL: black, AFMIDSKIP: red, and 
AFMIDe6: orange) in 675 cancer cell lines, 
based on RNA-Seq analysis. (B) The 
stacked bar chart shows the proportion of 
AFMID isoforms in non-cancer samples of 
15 matched tissue types. (C) The dot plot 
shows the average ΔPSI between non-
cancer samples and cancer cell lines from 
the same tissue type. The x-axis is the 
average ΔPSI, and the y-axis shows the 
statistical significance (-log10(p-value)) of 
the ΔPSI. (D) The color key of tissue types 
of (A) and (B). (E to J) The six panels show 
radioactive RT-PCR results of AFMID 
isoforms in normal tissues and cancer cell 
lines from liver, kidney, lung, colon, 
stomach, and brain, respectively (24 

amplification cycles). The three arrowheads on the left indicate the expected sizes of AFMIDFL, 
AFMIDe6, and AFMIDSKIP isoforms, respectively. The stacked bar chart below each RT-PCR plot 
shows the average PSI values and standard deviations from triplicate experiments. The PSI bars 
of AFMIDFL, AFMIDe6, AFMIDSKIP, and unknown bands are colored in black, orange, red, and 
gray, respectively. 
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The switch of AFMID isoforms is human-specific 
AFMID and TK1 are one of the rarest anti-regulated head-to-head pairs conserved in many species 
(Li et al. 2006). TK1 is thymidine kinase 1, whose expression levels fluctuate depending on the 
cell-cycle stage. Using an ultra-deep RNA-Seq dataset, we found zero supporting junction reads 
for AFMIDSKIP and AFMIDe6 isoforms in fetal (E18), post-natal day 14 or day 28 (PN14 and PN28) 
and 3-month-old adult (A3M) mouse liver samples (Bhate et al. 2015). Likewise, we did not find 
supporting junction reads for AFMIDSKIP and AFMIDe6 isoforms in RNA-Seq data from the Mst1-

/-; Mst2Flox/Flox mouse HCC model (Fitamant et al. 2015). Using RNA-Seq data from chimpanzee 
(Pan troglodytes and Pan paniscus), Pongo pygmaeus, Macaca mulatta, gorilla, mouse, and 
chicken, we again found that neither AFMIDSKIP nor AFMIDe6 isoforms are expressed in liver, 
kidney, heart, muscle, and brain (Brawand et al. 2011; Barbosa-Morais et al. 2012). We conclude 
that AFMID splicing regulation is human-specific (Fig. 4A). Further radioactive RT-PCR showed 
no bands for the alternative isoforms in mouse liver and tumor samples (Fig. 4B). This analysis 
again confirmed that the alternative splicing regulation of AFMID isoforms is specific to human 
cells. From the mouse E18 versus PN28 comparison, we identified 2,149 splicing events involving 
1,958 alternative exons. The ΔPSIs of 130 alternative exons from our RNA-Seq analysis were 
highly correlated with the ΔPSIs estimated by RT-PCR in the original paper (correlation = 0.8741) 
(Supplementary Fig. S8) (Bhate et al. 2015).  

In contrast to human, other species regulate AFMID transcriptionally, such that AFMID is 
down-regulated in proliferative states. We found that AFMID is down-regulated in both fetal liver 
and liver tumors in mice (Fig. 4B) (Hsu et al. 2012; Tsai et al. 2012; Bhate et al. 2015). The 5’ and 
3’ splice sites of exons 4, 5, and 10 had similar calculated strengths between human and mouse 
(data not shown). We investigated the potential binding sites of 94 RNA-binding proteins, which 
might function as splicing activators or repressors, in the region from exon 4 to exon 10 of AFMID 
(human) and Afmid (mouse) (Paz et al. 2014). We found that SRSF3, PTBP1, MBNL1, SRSF2, 
and SRSF5 had the most binding sites, on average, in human and mouse (Fig. 4C). The number of 
binding sites of the top 5 RNA-binding proteins was similar between human and mouse 
(Supplementary Fig. S9). On the other hand, among the 39 RNA-binding proteins with more than 
20 binding sites, two groups of proteins had at least a 2-fold decrease or increase in the number of 
binding sites between human and mouse (Fig. 4D). The first group had more predicted binding 
sites in human, and includes CPEB2 (chuuuuu), CPEB4 (uuuuuu), HNRNPC (huuuuuk), 
HNRNPCL1 (huuuuuk), RALY (uuuuuub), TIA1 (uuuuubk), U2AF2 (uuuuuyc), and ZC3H14 
(uuuduuu). The proteins in the first group shared similar motifs, with a string of Us. HNRNPCL1 
is not expressed in the liver, based on GTEx data. The first group of proteins have predicted 
binding sites in intron 4 and intron 9 of human AFMID, but this pattern is largely lost in mouse 
Afmid (Fig. 4E and Supplementary Fig. S10A). Conversely, the first group of proteins gained an 
additional two clusters of predicted sites in intron 4 near the 3’ splice site of mouse Afmid (Fig. 4E 
and Supplementary Fig. S10A). The second group of proteins includes BRUNOL5 (ugugukk), 
HNRNPL (acacrav and amayama), IGF2BP3 (amahwca), KHDRBS1 (auaaaav), KHDRBS3 
(auaaav), PABPC1 (araaaam), PABPC4 (aaaaaar), PABPN1 (araaga), and SART3 (araaaam). 
BRUNOL5, IGF2BP3, and PABPN1 are not expressed in the liver, based on GTEx data. Unlike 
the proteins in the first group, the proteins in the second group share A-rich motifs. They gained 
new binding sites in mouse in intron 4 and intron 9 (Fig. 4E and Supplementary Fig. S10B). 
Enhanced cross-linking immunoprecipitation data from ENCODE also showed that HNRNPC 
binds to most of the predicted regions in human cells (blue dots in Fig. 4E). This is consistent with 
our predictions. 
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Figure 4. Phylogenetic 
comparisons of AFMID splicing 
patterns. (A) The bidirectional 
gene pair, TK1 and AFMID, is a 
conserved structure in Fugu, mouse, 
monkey, gorilla, and human (from 
top to bottom). The black arrows 
indicate the direction of 
transcription for each gene. The 
promoter region is indicated by 
green and red bars for TK1 and 
AFMID, respectively. The distance 
between the two transcription start 
sites is less than 1Kb. In the human 
diagram, the red arc indicates the 

AFMIDSKIP isoform, and the orange arcs represent the AFMIDe6 isoform. (B) Radioactive RT-PCR 
analysis of Afmid isoforms in mouse liver and tumor samples. Expected sizes of isoforms are 
labeled on the left. Size markers are shown on the right. (C) The vioplot shows the expression 
patterns of Afmid in Mir122a knockout (KO) mice. WT: wild-type mice; 2M: 2-month-old 
Mir122a-KO mice that lack tumors; ANL: adjacent normal liver samples from older Mir122a-KO 
mice that have developed liver tumors; T: tumor part of the liver tumors from older Mir122a-KO 
mice. Two sample t-tests were used to determine the p-values. (C) The dot plot shows the number 
of presumptive binding sites of RNA-binding proteins in mouse (x-axis) and human (y-axis). Each 
dot corresponds to an RNA-binding protein. (D) Only RNA-binding proteins with ≥2-fold change 
in the number of binding sites are shown; Proteins with more predicted binding sites in human are 
shown in red, and those with more binding sites in mouse are shown in green. The motifs of RNA-
binding proteins are colored in the same manner. The motifs shown in gray are from RNA-binding 
proteins with undetectable liver expression, based on GTEx data. (E) The diagram shows where 
the red and green motifs are located within the region from exon 4 to exon 10 of AFMID. Each 
triangle points to the location of a cluster of motifs in the intron. The locations of green and red 
motifs in the human gene are shown on the left, and those of the mouse gene are shown on the 
right. Blue dots represent the binding sites of HNRNPC in human cells, based on enhanced cross-
linking immunoprecipitation data from ENCODE. 
 
Discussion 

HCC’s heterogeneity is a challenge for developing advances in prognosis and treatment 
(Friemel et al. 2015; Llovet et al. 2015). We tried to overcome this challenge by characterizing the 
splicing events in liver-cancer cells. We report that hepatocyte-specific splicing patterns have 
outstanding power in predicting HCC recurrence. Especially, the AFMID splicing event is 
associated with the presence of early driver mutations, such as mutated TP53 and ARID1A. The 
switch of AFMID isoforms represents a new regulatory step in tryptophan/kynurenine metabolism, 
and revealed the disruption of de novo NAD+ biosynthesis in hepatocytes in the early stages of 
HCC development. Low-AFMIDFL HCCs tend to have a higher chance of carrying TP53 mutations, 
but not CTNNB1 mutations. This is consistent with the current understanding that mutated 
CTNNB1 is a later event (Friemel et al. 2015). Only the link between mutated TP53 and the switch 
of AFMID isoforms was preserved during HCC evolution. Indeed, 7 of 16 liver-cancer cell lines 
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we analyzed lacked TP53 mutations (Klijn et al. 2015). Therefore, the switch of AFMID isoforms 
can occur without TP53 mutations. Together with the evidence from fetal liver and Mir122a-/- 
mouse liver, it is readily apparent that the switch of AFMID isoforms is an early event in HCC 
development. The switch may play an important role in early HCC evolution, because it increases 
the chance of accumulating driver mutations in HCC-initiating cells (Fig. 5A). 

NAD+ is a vital coenzyme in energy metabolism in eukaryotic cells (Houtkooper et al. 
2010; Canto et al. 2015). NAD+ repletion increases life span in mice (Zhang et al. 2016). However, 
the NAD+/NADH ratio is very low in cancer cells; they maintain sufficient NAD+ for a high rate 
of glycolysis by converting pyruvate to lactate, while turning off other sources of NAD+ production 
(Liberti and Locasale 2016; Vander Heiden and DeBerardinis 2017). For example, the switch of 
AFMID isoforms impairs the major source of NAD+ production in hepatocytes. The switch may 
facilitate proliferation, but it also increases DNA-damage responses. For example, poly-(ADP-
ribose) polymerase (PARP) and Sirtuin are both NAD+-dependent enzymes. PARP enzymes 
consume NAD+ to generate PAR polymers for repairing DNA. Sirtuin enzymes are associated with 
longevity, aging, and cancer (Herranz et al. 2010; Canto et al. 2015). Accordingly, the 
dysregulation of the de novo NAD+ pathway is a key event in HCC development. The switch of 
AFMID isoforms contributes to the accumulation of driver mutations and increases cancer 
susceptibility (Fig. 5B). Our discovery of the two human-specific isoforms (AFMIDSKIP and 
AFMIDe6) may lead to uncovering new mechanisms in tryptophan metabolism, as these are the 
predominant isoforms in cancer cells. Their roles in kynurenine secretion need to be further 
investigated. Switching the AFMIDSKIP and AFMIDe6 isoforms back to AFMIDFL may impact the 
secretion of kynurenine by redirecting the flux of tryptophan back to de novo NAD+ biosynthesis. 
This in turn may enhance NAD+ production, and reduce immune escape of cancer cells (Fig. 5B). 
Also, modulating the splicing switch has potential implications for neurodegenerative diseases 
(Vecsei et al. 2013). 

In summary, the present study provides the first integrative analysis of splicing events in 
liver cancer. We identified new splicing-based biomarkers in hepatocyte-specific enzymes, such 
as PEMT, KHK, and AFMID. We found that AFMID alternative splicing constitutes a key event 
in liver carcinogenesis, and a new switch in tryptophan/kynurenine metabolism. 
 

Figure 5. Model of the AFMID isoform switch in HCC. (A) The flow chart represents HCC 
progression (left to right). At the start, six representative hepatocytes are shown (nuclei in red). 
Later, because of environmental or hereditary factors (E/H factors), a subset of hepatocytes 
switches AFMID isoforms. The environmental factors include WNT signals in pericentral 
hepatocytes in daily liver regeneration, cytokines released during inflammation, chemical damage, 
and virus infection. The hereditary factors include driver mutations, such as in TP53 and ARID1A. 
The E/H factors temporarily disrupt the identity of hepatocytes and reduce the NAD+ level in the 
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hepatocytes. The reduced NAD+ level gives rise to increased DNA damage in the nucleus. After 
recursively accumulating driver mutations, the DNA-damaged hepatocytes become HCC initiating 
cells. The switch of AFMID isoforms can then be observed by bulk RNA-Seq. (B) The diagram 
shows two states of hepatocyte cells. On the right, a normal hepatocyte expresses high levels of 
AFMIDFL isoform, and tryptophan can be converted to NAD+ for PARPs to fix DNA damage. On 
the left, the HCC cell expresses low levels of AFMIDFL and has low NAD+, so DNA damage is 
increased and kynurenine is secreted to inhibit immune rejection. 
 
Methods 
 
A new PSI index 
Traditionally, the PSI index is denoted as (a+b)/(a+b+2c), where a and b stand for the number of 
splice-junction reads connecting the alternative exon to the upstream and downstream constitutive 
exons, respectively (Barbosa-Morais et al. 2012). c stands for the number of junction reads 
connecting the two constitutive exons. The traditional equation is designed for simple splicing 
events with only one alternative exon, but it is ambiguous in the case of mutually exclusive exons, 
multi-exon skipping, and more complex events. Therefore, we modified the PSI index as follows: 

, 
where C1 and C2 stand for the upstream and downstream constitutive exons, respectively. C1Si 
stands for the total number of junction reads whose 5’ splice site is connected to the upstream 
constitutive exon in a given splicing event. Similarly, C2Sj stands for the junction reads whose 3’ 
splice site is connected to the downstream constitutive exon. Because the denominator is the sum 
of junction reads connecting to the flanking constitutive exons, the equation does not have the 
ambiguity for mutually exclusive exon events in which c might not exist. Also, in the new PSI 
equation, a and b stand for the number of junction reads connecting the alternative exon to its 
upstream and downstream exons, respectively; a and b do not necessarily reflect connections to 
C1 and C2 exons. For alternative splice site events, only C1 or C2 is used in the denominator, 
because the event only involves one constitutive exon. 
 The new PSI index is more flexible and can accurately compute PSI values of individual 
exons in more complex splicing events. For example, the splicing events involving mutually 
exclusive exons of KHK were not reported in previous HCC studies (Danan-Gotthold et al. 2015; 
Sebestyen et al. 2016). Also, single-exon PSI approaches can simply ignore multi-exon splicing 
events. For example, MISO cannot detect the multi-exon splicing events of AFMID and 
MYO1B(Katz et al. 2010). Moreover, previous methods failed to report the PSI values of AFMIDe6 
(illustrated in Supplementary Fig. 1). Exon 6 of AFMID is used by both AFMIDFL and AFMIDe6 
isoforms, which can be detected by the new PSI index. Finally, the new PSI index can more 
accurately detect changes involving alternative 5’ splice sites or 3’ splice sites. For example, 
PEMT uses two alternative 5’ splice sites in PEMTA1 and PEMTA2. Because the new PSI index 
takes into account all the junction reads involving the 3’ splice site of exon 4, the switch from 
PEMTB to PEMTA1 can be accurately detected (Supplementart Fig. 2). 

In the present study, the alternative exons were identified based on the Ensembl 75 gene 
annotation. For a given alternative exon, each sample was required to have more than 20 
supporting junction reads in the denominator of the PSI index. If fewer than 80% of the samples 
met the criteria, the splicing events were not considered as candidates for highly reproducible 
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splicing events. In addition, splicing events with lower than 10% PSI change or whose p-value 
was larger than 0.05 were also excluded. 
 
RNA-Seq data process 
RNA-Seq datasets were downloaded from several sources, such as Sequence Read Archive (SRA), 
European Genome-phenome Archive (EGA), TCGA, and GTEx. The RNA-Seq dataset of the 11 
primary HCCs and matched normal livers were downloaded from SRA and aligned by STAR 
(2.4.1c)(Dobin et al. 2013). The RNA-Seq datasets of 136 non-HCC liver samples and 675 cancer 
cell lines were downloaded from EGA and aligned by STAR. For TCGA’s LIHC dataset, we 
downloaded the alignment files from The Cancer Genomics Hub (http://cghub.ucsc.edu) and 
extracted the counts of junction reads from the alignment files. Recurrent HCCs (02A or 02B) in 
the LIHC dataset were excluded. The PSI values of AFMID isoforms in the LIHC datasets were 
based on TCGA’s alignment results, which were processed using MapSplice(Wang et al. 2010). 
The PSI values of AFMIDFL from TCGA’s alignment files in 8 randomly selected HCCs were 
almost identical to the PSI values based on the alignment files by STAR (correlation = 0.9983). In 
addition, the counts of junction reads of the 5,213 non-cancer samples in Fig. 4B were downloaded 
from the GTEx portal (http://www.gtexportal.org/). In summary, the present study used three 
different approaches to obtain splicing changes (Supplementary Fig. 1). GRCh37 (hg19) and 
Ensembl 75 were the reference genome and gene annotation for human datasets, respectively. 
Mm10 was the reference genome for mouse datasets. PPYG2 was the reference genome for Pongo 
pygmaeus. CHIMP2.1.4 was the reference genome for Pan troglodytes and Pan paniscus. 
MMUL1.0 was the reference genome for Macaca mulatta. GorGor3.1 was the reference genome 
for Gorilla gorilla. Galgal4 was the reference genome for Gallus gallus. The genome indeces of 
STAR were built using the default options, and sjdbOverhang was set to 100. 
 
Statistical analysis 
The two sample t-test was used to elaborate the significance of PSI differences between non-cancer 
and cancer cells. The log-rank test was used for survival analysis. The hypergeometric test was 
used for enrichment analysis of somatic mutations. Correlation testing was based on Pearson's 
product moment correlation coefficient. The adjustment method for p-values used the Bonferroni 
correction. 
 
RT-PCR 
Total RNA was extracted from cell lines using Trizol (Invitrogen). Genomic DNA was removed 
by treatment with DNase I (Promega). Reverse transcription of 0.5 – 1 µg of total RNA was carried 
out using ImPromp-II reverse transcriptase (Promega). Semi-quantitative PCR in the presence of 
[α-32P]-dCTP was performed with Amplitaq polymerase (Applied Biosystems). The human-
specific primer set (Forward: 5’-GGCCACCAGGAAGAGCCTGC-3’, Reverse: 5’-
CCTTCTGGGTCAGATTCTCAAC-3’) was used to amplify endogenous AFMID transcripts; 
these primers anneal to exons 3 and 10. After 24 amplification cycles, the products were resolved 
using a 5% native polyacrylamide gel, and the resolved bands were visualized on a Typhoon 9410 
phosphorimager (GE Healthcare). The signal intensities were quantified using ImageJ 
software(Schneider et al. 2012). Primer sequences are listed in Supplementary Table 8. 
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Real-time PCR 
0.5 µg of total RNA was extracted and reverse-transcribed as for RT-PCR. Complementary DNA 
(cDNA) was analyzed on a 7900HT Fast Real-Time PCR system (ThermoFisher Scientific). Fold 
changes were calculated using the ΔΔCq method and are reported as three biological replicates 
with three technical repeats each with ± S.E.M. Real-time PCR results for HCC patient samples 
were obtained using a Bio-Rad system. For empirical validations, 20 ANLs and 19 HCCs from the 
Taiwan Liver Cancer Network were selected based on gender and cirrhosis status. These samples 
were used in accordance with the IRB procedures of Taipei Medical University. Primer sequences 
are listed in Supplementary Table 8. 
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