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7

Abstract Changes in the efficacies of synapses are thought to be the neurobiological basis of8

learning and memory. The efficacy of a synapse depends on its current number of9

neurotransmitter receptors. Recent experiments have shown that these receptors are highly10

dynamic, moving back and forth between synapses on time scales of seconds and minutes. This11

suggests spontaneous fluctuations in synaptic efficacies and a competition of nearby synapses for12

available receptors. Here we propose a mathematical model of this competition of synapses for13

neurotransmitter receptors from a local dendritic pool. Using minimal assumptions, the model14

produces a fast multiplicative scaling behavior of synapses. Furthermore, the model explains a15

transient form of heterosynaptic plasticity and predicts that its amount is inversely related to the16

size of the local receptor pool. Overall, our model reveals logistical tradeoffs during the induction of17

synaptic plasticity due to the rapid exchange of neurotransmitter receptors between synapses.18

19

Introduction20

Simple mathematical models of Hebbian learning exhibit an unconstrained growth of synaptic21

efficacies. To avoid runaway dynamics, some mechanism for limiting weight growth needs to be22

present. There is a long tradition of addressing this problem in neural networkmodels using synaptic23

normalization rules (Malsburg, 1973;Oja, 1982;Miller andMacKay, 1994;Wu and Yamaguchi, 2006;24
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Lazar et al., 2009). Obviously, in order to keep up with the pace of synaptic changes due to25

Hebbian plasticity, normalization mechanisms must act sufficiently fast. Slow homeostatic synaptic26

scaling mechanisms (Turrigiano et al., 1998) may therefore be ill-suited for ensuring stability (Wu27

and Yamaguchi, 2006; Zenke et al., 2013; Chistiakova et al., 2015). A particularly interesting fast28

normalization rule scales synapses multiplicatively such that the sum of synaptic weights remains29

constant. Attractive features of such a rule, next to its conceptual simplicity, are that the relative30

strength of synapses are maintained and that in combination with Hebbian mechanisms it naturally31

gives rise to lognormal-like weight distributions as observed experimentally (Song et al., 2005;32

Loewenstein et al., 2011; Zheng et al., 2013; Miner and Triesch, 2016). While such normalization33

mechanisms are not considered biologically implausible, their link to neurobiological experiments34

has been tenuous.35

In a recent review, Chistiakova et al. (2015) argue that so-called heterosynaptic plasticity (Lynch36

et al., 1977; Bailey et al., 2000; Jedlicka et al., 2015; Antunes and Simoes-de Souza, 2018) may be a37

prime candidate for such a fast synaptic normalization scheme. The term “heterosynaptic” plasticity38

is used in contrast to the much more widely studied “homosynaptic” plasticity, where changes39

occur in a stimulated synaptic pathway. In contrast, heterosynaptic plasticity refers to changes in40

synaptic efficacies that occur in an unstimulated pathway after the stimulation of a neighboring41

pathway. The most common form of heterosynaptic plasticity has a homeostatic nature: if synapses42

in stimulated pathways potentiate, then this is accompanied by a depression of unstimulated43

pathways. Conversely, if synapses in stimulated pathways depress, this is accompanied by a44

potentiation of unstimulated pathways. A classic example of this has been observed in intercalated45

neurons of the amygdala (Royer and Paré, 2003).46

Interestingly, such homeostatic regulation is also consistent with findings at the ultra-structural47

level. The physical size of a synapse, in particular the surface area of the postsynaptic density (PSD),48

is commonly used as a proxy for a synapse’s efficacy (Chen et al., 2015; Bartol et al., 2015). Bourne49

and Harris (2011) have observed coordinated changes in PSD surface areas of dendritic spines50

in the hippocampus after LTP induction. They report that increases in the PSD surface areas of51

some synapses or the creation of new synapses are balanced by decreases of PSD surface areas of52

other synapses or their complete elimination such that the total amount of PSD surface area stays53

approximately constant. Recent findings support the idea that such regulation may occur at the54

level of individual dendritic branches (Barnes et al., 2017).55
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A proxy of synaptic efficacy that is more precise than PSD surface area is the number of AMPA56

receptors (AMPARs) inside the PSD. AMPARs are glutamate-gated ion channels responsible for most57

fast excitatory transmission in the vertebrate brain. During various forms of plasticity the number58

of these receptors at synapses is modified, leading to changes in synaptic efficacies, reviewed by59

Chater and Goda (2014). Therefore, a full understanding of synaptic plasticity requires a careful60

description of the mechanisms that regulate AMPAR numbers in synapses.61

Here we show how the behavior of keeping the sum of synaptic efficacies approximately constant62

on short time scales naturally arises from a generic model in which individual synapses compete63

for a limited supply of synaptic building blocks such as AMPARs or other protein complexes that64

are necessary to stabilize AMPARs inside the PSD. We assume that there is a local dendritic store65

of these building blocks and that they enter and leave dendritic spines in a stochastic fashion.66

The model predicts that the redistribution of synaptic efficacies should act multiplicatively, as is67

often assumed in ad hoc normalization models. We also show that this model naturally gives rise68

to a homeostatic form of heterosynaptic plasticity, where synapses grow at the expense of other69

synapses. To this end, we introduce a model of homosynaptic LTP describing the time course70

of the incorporation of new receptors and slots during LTP induction. Finally, we quantify the71

scale of spontaneous synaptic efficacy fluctuations due to the fast stochastic exchange of AMPARs72

between the dendritic pool and postsynaptic receptor slots. We show that small synapses exhibit73

relatively stronger efficacy fluctuations, which are further accentuated if the local receptor pool is74

small. Overall, the model reveals how the dynamic behavior of neurotransmitter receptors plays an75

important role in shaping synaptic plasticity.76

Results77

Formulation of the model78

The architecture of the model is shown in Fig. 1. We consider a piece of dendrite with N ∈ ℕ79

synaptic inputs. Each synapse is characterized by two variables. First, each synapse i ∈ 1,… , N has80

a number of slots si ∈ ℝ≥0 for neurotransmitter receptors. Second, at any time a certain number of81

slots wi ∈ ℝ≥0 actually contain a receptor. wi determines the current weight or efficacy of a synapse.82

We assume that the PSD cannot hold more functional receptors than there are slots, i.e., wi ≤ si. At83

the synapses AMPARs are clustered inside PSDs into nanodomains of about 70 nm that contain on84

average 20 receptors (Nair et al., 2013). Interestingly, those postsynaptic nanodomains are aligned85
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Figure 1. A. Sketch of the architecture of the model. Neurotransmitter receptors, e.g. AMPA receptors, are
trafficked through the dendrite and bind to “slots” inside of dendritic spines. The efficacy of a synapse is

assumed to be proportional to the number of receptors attached to its slots. B. Abstract description of the
stochastic process indicating the rates at which receptors move in and out of slots in the synapses and the

receptor pool in the dendrite. See text for details.

with presynaptic release sites forming so-called nanocolunms. It is noteworthy that AMPARs have86

low affinity for glutamate such that receptors outside of nanodomains are unlikely to participate87

in synaptic transmission (Liu et al., 1999; Biederer et al., 2017). Next to receptors in the synapses,88

the neuron maintains a pool of receptors freely diffusing at the neuron surface and ready to be89

stabilized inside nanodomains. The size of this pool is denoted p ∈ ℝ≥0. Note that for mathematical90

convenience we here consider the si, wi and p to be real numbers that can take non-integer values.91

In the stochastic version of the model introduced below these will be natural numbers.92

Receptors can transition from the pool to empty slots in a synapse or detach from such a slot93

and return into the pool with rates � ∈ ℝ>0 and � ∈ ℝ>0, respectively. Receptors in the pool are94

removed with a rate � ∈ ℝ>0 corresponding to internalization of the receptors from the cell surface95

(endocytosis). To counteract this loss, new receptors are added at a rate  ∈ ℝ>0 and injected into96

the pool corresponding to externalization of the receptors to the cell surface (exocytosis). In the97

limit of large receptor numbers, the dynamics of the system can be described by the following98

system of coupled ordinary nonlinear differential equations:99

ẇi = −�wi + �p(si −wi) , i = 1,… , N (1)

ṗ = −�p +  +
∑

i
�wi −

∑

i
�p(si −wi) . (2)

In the first equation, −�wi describes the return of receptors from synapse i into the pool. The term100

�p(si − wi) describes the binding of receptors from the pool to empty slots in synapse i, which is101

assumed to be proportional to both the number of receptors in the pool and the number of free102
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slots in the synapse. In the second equation, −�p describes the deletion of receptors from the pool,103

 represents the gain of new receptors,
∑

i �wi describes the return of receptors from the synapses104

into the pool, and finally −
∑

i �p(si −wi) describes the loss of receptors from the pool which bind to105

free slots in the synapses. Together, this is a system ofN +1 coupled ordinary nonlinear differential106

equations. It is nonlinear, because the equations contain product terms of the state variables, in107

particular the pwi terms.108

The model can be interpreted in different ways. Its generic interpretation is that the “receptors”109

of the model are AMPA receptor (AMPAR) complexes composed of AMPARs and transmembrane110

AMPAR regulatory proteins (TARPs) such as stargazin. The “slots” are postsynaptic density structures111

comprising membrane-associated guanylate kinase (MAGUK) proteins such as PSD-95 attached to112

the postsynaptic membrane, which stabilize AMPARs in the postsynaptic density (PSD) (Hafner et al.,113

2015; Schnell et al., 2002; Sumioka et al., 2010). Inside the synapses PSD-95 proteins are highly114

packed (roughly 300 molecules per PSD) (Kim and Sheng, 2004) and largely immobile (Sturgill et al.,115

2009). When a receptor enters a synapse binding to one or more immobile PSD-95 proteins results116

in receptor immobilization. In this generic interpretation of the model, the pool of receptors is the117

set of AMPARs that diffuse in the plasma membrane and that are captured by the slots. Addition of118

receptors to the pool then subsumes (some or all of) the processes that assemble AMPARs and119

prepare them for the insertion into slots: assembly of the receptors from the component subunits,120

trafficking, attachment of TARPs, externalization, and potentially phosphorylation. Removal from the121

pool similarly subsumes the set of reverse processes. Several variations of this generic interpretation122

are possible depending on what exactly we would like to associate with the “receptors” in the model:123

AMPARs, AMPAR+TARP complexes, AMPAR+TARP complexes that have already been exocytosed,124

phosphorylated, etc. Essentially, our model is a two step model (production and insertion), but we125

leave it open for interpretation, what steps in the full chain of events are considered the “production”126

(subsumed in rate ) and which steps are considered the “insertion” (subsumed in rate �).127

Evidently, receptor slots themselves must also be stabilized inside the PSD somehow. A second,128

maybe somewhat counter-intuitive, interpretation of the model is therefore that it describes the129

binding and unbinding of receptor slots to what one might consider a slot for a receptor slot or130

simply slot-for-a-slot. In this interpretation of the model, the “receptors” in the description above131

are actually the PSD-95 slot proteins and the “slots” are slots-for-a-slot to which the PSD-95 proteins132

can attach. The model then describes the trafficking of PSD-95 into and out of the PSD, assuming133
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that available AMPAR complexes are quickly redistributed among PSD-95 slots (compared to the134

time scale of addition and removal of these PSD-95 slots to the PSD). This interpretation may135

be particularly useful if the supply of PSD-95 is the limiting factor in determining the number of136

functional AMPARs bound inside the PSD (Schnell et al., 2002). We leave open the question what137

exactly the slots-for-a-slot might be. It is clear however, that PSD-95 molecules can form stable138

lattices inside the PSD such that PSD-95 proteins could act as slots for other PSD-95 proteins.139

Interestingly, the analysis of the model presented in the following does not depend on which140

interpretation is chosen. The only additional assumption we will make is a separation of time scales141

between the fast trafficking of the “receptors” into and out of the “slots” and the slow addition and142

removal of receptors to the pool. Our main results only depend on this qualitative feature of the143

model. For the first generic interpretation of the model the assumption of a separation of time144

scales appears justified. If we interpret the receptor pool of the model to comprise AMPARs that145

have been exocytosed and diffuse in the cell membrane, then the half-life of an AMPAR in the pool is146

of the order of 10 minutes suggesting �−1 = 10min∕ ln 2 ≈ 14min (Henley and Wilkinson, 2013, 2016).147

In contrast, the time an AMPAR stays inside the PSD, which we interpret as the time the AMPAR is148

bound to a slot, appears to be of the order of maybe 30 seconds (Ehlers et al., 2007), suggesting149

�−1 = 30 s∕ ln 2 ≈ 43 s. We summarize these and other parameters of the model in Table 1. Regarding150

the second, slots-for-a-slot, interpretation of the model, we note that the half-life of PSD-95 residing151

inside the synapse is of the order of 5 hours (Sturgill et al., 2009), implying �−1 ≈ 5 h∕ ln 2 ≈ 7 h.152

In contrast, the global half-life of PSD-95 has been estimated to be 3.67 days (Cohen et al., 2013),153

implying �−1 = 3.67 d∕ ln 2 ≈ 5.30 d. In either case, the assumption of a separation of time scales154

appears justified.155

Competition for Synaptic Building Blocks Induces Multiplicative Scaling156

We begin our analysis by finding the stationary solution of the system of coupled differential157

equations defined by (1) and (2). First, it is convenient to introduce the total number of synaptic158

slots S ≡
∑

i si and the total number of docked receptors or total synaptic weightW ≡
∑

iwi and159

note that its time derivative is Ẇ =
∑

i ẇi. This allows us to rewrite (2) as:160

ṗ = −�p +  + �W − �p(S −W ) . (3)

To find the fixed point solution p∞, w∞
i withW

∞ =
∑

iw∞
i , we set the time derivatives to zero, i.e.,161

we require ẇi = 0 ∀i and ṗ = 0 above. Inserting the first condition into (1) and summing over i yields:162
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Value Description Reference
� (43 s)−1 unbinding rate from slots Henley and Wilkinson (2013, 2016)

� (14min)−1 internalization rate Ehlers et al. (2007)

� 2.67 relative pool size M. Renner, personal communication

F unknown filling fraction set by hand to {0.5, 0.7, 0.9 }

 unknown externalization rate set via (12) to achieve desired �

� unknown binding rate to slots set via (13) to achieve desired F

Table 1. Standard parameters of the model.

163

0 = −�W ∞ + �p∞(S −W ∞) . (4)

Similarly, setting ṗ = 0 in (3) gives:164

0 = −�p∞ +  + �W ∞ − �p∞(S −W ∞) . (5)

Adding (4) to (5) then gives the solution for p∞:165

p∞ =

�
, (6)

The simple and intuitive result is therefore that the total number of receptors in the pool in166

the steady state is given by the ratio of the externalization rate  and the internalization rate �.167

Specifically, the presence of many receptors in the pool requires  ≫ �.168

We now solve for the steady state solutions w∞
i of the wi by again setting ẇi = 0 in (1) and using169

(6) to give:170

w∞
i = 1

1 + ��
�

si ≡ Fsi . (7)

Importantly, we find w∞
i ∝ si, i.e. in the steady state the weights of synapses are proportional to171

the numbers of slots they have. The constant of proportionality is a filling fraction and we denote it172

by F . Interestingly, the filling fraction F is independent of the number of receptor slots. Figure 2A173

plots F as a function of the ratio of the four rate constants (��)∕(�). We refer to this quantity as174

the removal ratio, because it indicates the rates of the processes that remove receptors from the175

slots relative to the rates of the processes that add them to slots. Note that a filling fraction close to176

one requires �� ≪ �.177
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BA

Figure 2. A. Filling fraction F as a function of the removal ratio (��)∕(�). B. Example empirical cumulative
distribution functions (CDFs) of the numbers of receptors bound in individual synapses for fixed numbers of

slots drawn from a lognormal distribution and three different filling fractions F . The simulated piece of dendrite

has 100 synapses and 100 receptor slots per synapse on average.

Summing (7) over i reveals thatW ∞ = FS, so we can also write:178

w∞
i =

si
S
W ∞ , (8)

where si∕S is the relative contribution of synapse i to the total number of slots. Note that if the179

filling fraction changes, say, due to an increase in receptor externalization or a change in any of the180

other parameters, the relative strength of two synapses in the steady state is unaffected:181

w∞
i

w∞
j

=
si
sj

= const. (9)

Therefore, all synaptic efficacies will be scaled multiplicatively by the same factor.182

Thus, the analysis so far reveals a first prediction of the model (compare Table 2, Filling Fraction):183

Under basal conditions synapses in the local group have identical filling fractions. A first corollary184

from this prediction is that the ratio of two synapses’ efficacies in the steady state is given by the185

ratio of their numbers of receptor slots. A second corollary from this prediction is that when one186

(or more) of the transition rates changes, all synaptic efficacies are scaled multiplicatively.187

To illustrate the effect of multiplicative scaling of synaptic efficacies, we consider a piece of188

dendrite with N = 100 afferent synapses. The number of receptor slots si in these synapses are189

drawn from a lognormal distribution with mean 1.0 and standard deviation 0.2 and subsequently190

scaled such that there are 100 slots per synapse on average. We consider three different filling191

fractions F ∈ {0.5, 0.7, 0.9}. The empirical cumulative distribution functions (CDFs) of the common192

(decadic) logarithms of the wi are shown in Fig. 2A. The horizontal shifting of the empirical CDFs193
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illustrates the multiplicative scaling of the individual synaptic efficacies.194

The total number of receptors in the system in the steady state R∞ is given by the sum of the195

number of receptors in the pool and the number of receptors attached to slots. Combining the196

above results, we find:197

R∞ = p∞ +W ∞ = p∞ + FS =

�
+ 1

1 + ��
�

S . (10)

In particular, the total number of receptors in the steady state depends on the total number of198

slots.199

In the case of AMPARs, the total number of surface receptors, receptor density, or the number200

of slots per synapse still remain unknown. Moreover, it is likely that those numbers will vary201

depending on neuron type and developmental state. However, single particle tracking experiments202

from the laboratory of Antoine Triller performed on mature hippocampal cultured neurons provide203

valuable insights into the proportion of exocytosed receptors immobilized in dendritic spines in this204

particular system. Specifically, recent data suggest that 28% of surface AMPARs are immobilized at205

synapses while the remaining 72% reside in the pool of extrasynaptic receptors (Marianne Renner,206

personal communication). Since mature hippocampal cultured neurons are known to exhibit207

homeostatic and long-term plasticity, we decided to use those numbers for our simulations. Thus,208

we define the relative pool size � as:209

� =
p∞

W ∞ = 0.72R∞

0.28R∞ ≈ 2.67 . (11)

The relative pool size � together with the filling fraction F determine the unknown externalization210

rate  and the rate of binding to receptor slots �. Specifically, usingW ∞ = FS and p∞ = ∕�, we find:211

212

 = �p∞ = �FS� . (12)

Furthermore, by combining this with the implicit definition of F from (7) we can solve for � to obtain:213

214

� =
��


F
1 − F

=
�

�S(1 − F )
. (13)

We can identify the term S(1 − F ) as the total number of empty receptor slots in the system. The215

intuitive interpretation of the result is therefore that the binding rate � will be big compared to216

the unbinding rate � if the number of empty slots and the relative pool size are small. Using217

the definition of � we can also rewrite the expression for the total number of receptors as R∞ =218

(1 + �)FS.219
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Filling Fraction Synapses in a local group have identical filling fractions in the basal state.

Pool Size Manipulation of local pool size scales synapses multiplicatively.

Sensitivity Filling fraction is most sensitive when pool size matches slot numbers.

Heterosynaptic I High pool size and filling fraction reduce heterosynaptic plasticity.

Heterosynaptic II Heterosynaptic plasticity is only transient.

Homosynaptic Pool size and filling fraction modulate homosynaptic plasticity.

Fluctuations Spontaneous efficacy fluctuations are bigger for small synapses.

Table 2. Summary of model predictions. Further predictions are mentioned in the Discussion.

The above results fully describe the system after it had sufficient time to reach its equilibrium. On220

a shorter time scale, however, the system may transiently assume different quasi-stationary states,221

because receptor addition and removal are slow compared to receptor binding and unbinding to222

and from slots. In the following, we consider the short-term behavior of the model on time scales223

where the total number of receptors is approximately constant. This will allow us to reveal, among224

other things, a transient form of heterosynaptic plasticity.225

Fast redistribution of receptors between synapses is multiplicative226

To study the redistribution of receptors on a fast time scale, we exploit the fact that the processes227

of receptor externalization and internalization are slow compared to the attaching and detaching of228

receptors to and from slots. For instance, the time that an AMPAR remains in the cell membrane229

is of the order of ten minutes while the time it resides inside the PSD is of the order of half a230

minute. A reasonable approximation on short times scales is therefore to neglect the production231

and removal terms in (2). In this case, the total number of receptors R ≡ W + p is constant, as can232

be seen by removing the −�p and + terms from (2), and adding (1), summed over all i, which gives233

ṗ + Ẇ = Ṙ = 0. In the Methods we show that the steady state solution on the fast time scale is then234

given by:235

W ∗ = 1
2
(S + R + �) −

√

1
4
(S + R + �)2 − RS , (14)

where we have introduced � ≡ �∕� as a short hand for the ratio of the rates through which receptors236

leave and enter the synaptic slots. We define the corresponding short-term steady-state filling237

fraction as F ∗ = W ∗∕S. Importantly, the short-term filling fraction F ∗ is identical for all synapses. F ∗
238

can also be expressed as a function of the steady state pool size p∗ = R −W ∗ on the fast time scale,239
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Figure 3. Filling fraction F ∗ in the short-term approximation of constant receptor number as a function of the

ratio of transition rates � = �∕� for different combinations of R and S. A. F ∗ for a fixed number of S = 10 000

slots and three different receptor numbers as a function of � B. For fixed number of R = 10 000 receptors and

three different numbers of slots. Note that F ∗ reacts particularly sensitively to changes in � when � is small and

when R = S (black curves). In this regime, small changes to, say, the rate of detaching from slots � have a great

influence on the filling fraction. In all cases, the shown solution F ∗ is only transient. Eventually the filling

fraction will assume its steady state value F given by (7).

leading to a simple expression for the steady state efficacy w∗
i of synapse i on the fast time scale:240

w∗
i = F ∗si =

p∗

p∗ + �
si (15)

In the full model, this solution is assumed only transiently, because receptors can still enter and241

leave the system. If the number of receptors were held constant ( = 0 and � = 0), then F ∗, p∗, and242

the w∗
i would describe the solution on long time scales.243

The finding that the short-term steady-state filling fraction is identical for all synapses is analo-244

gous to the solution for the long term filling fraction F derived in (7), which is also the same for all245

synapses. This implies a second prediction of the model (compare Table 2, Pool Size): When the size246

of the local receptor pool is manipulated, all synaptic efficacies are scaled multiplicatively.247

In Fig. 3 we show the behavior of F ∗ as a function of � for different combinations of total number248

of slots S and total number of receptors R. For high values of � the filling fraction F ∗ always goes to249

zero. For � approaching zero, F ∗ achieves a maximum value which depends on whether there are250

fewer or more receptors than slots in the system. If there are more receptors than slots then F ∗
251

approaches one. If there are fewer receptors than slots then F ∗ approaches the ratio of receptors252

to slots in the system. In general, we find that the maximum short-term filling fraction for � → 0 is253

given by F ∗
max = min{1, R∕S}. In particular, a high filling fraction can only be achieved if R > S, i.e.,254
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there must be more receptors than slots in the system. On the other hand, F ∗ is most sensitive255

to changes in � when R = S. This can be seen by the steep negative slope of the black curves256

in Fig. 3 for small values of �. In fact, for R = S the derivative diverges, i.e., F ∗ reacts extremely257

sensitively to changes in � (see Methods for details). We therefore note another prediction (compare258

Table 2, Sensitivity): On short time scales the filling fraction reacts most sensitively to changes in259

binding/unbinding rates if the total number of receptors matches the total number of receptor260

slots.261

To illustrate the fast redistribution of receptors, we consider a sudden change in the pool262

size. In our generic interpretation of the model, this corresponds to the sudden externalization or263

internalization of AMPARs. To study the effect of such a manipulation, we discretize the full dynamic264

equations using the Euler method and solve them numerically. For illustration, we consider a piece265

of dendrite with just three synapses with 40, 60, and 80 slots, whose pool size is changed abruptly266

(Fig. 4). Parameters are set to achieve a filling fraction of F = 0.9 and a relative pool size � = 2.67.267

After 2 minutes, the number of receptors in the pool is either doubled (solid lines) or set to zero268

(dotted lines). In response, all synapses are rapidly scaled up or down multiplicatively. The new269

equilibrium is only transient, however. On a slower time scale the system returns to its starting270

point as the slow externalization and internalization processes drive the system back to its steady271

state solution w∞
i , p

∞.272

The fast equilibration process to a transient steady state also naturally gives rise to a homeostatic273

form of heterosynaptic plasticity. When, e.g., the number of receptor slots in some synapses is274

quickly increased, then receptors are redistributed such that the efficacies of synapses with an275

increased number of receptor slots will grow, while the efficacies of other synapses will shrink, as276

we discuss in the following.277

Competition for receptors induces transient heterosynaptic plasticity278

During LTP and LTD, the number of PSD-95 proteins in the synapse, which we assume to form279

the slots for AMPARs, is increased and decreased, respectively (Colledge et al., 2003; Lisman and280

Raghavachari, 2006; Ehrlich et al., 2007; Meyer et al., 2014). Importantly, these changes in slot281

numbers are mirrored by corresponding adjustments of synaptic AMPAR numbers leading to long282

lasting changes in synaptic efficacies. This suggests such modifications in AMPAR slot numbers as a283

central mechanism for memory storage. Therefore, we now investigate how the addition or removal284
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C D

Figure 4. Effect of sudden change of the pool size p on synaptic efficacies. A. After 2 minutes, the pool size is
either doubled (solid curves) or set to zero (dotted curves). In response, the synaptic efficacies are scaled

multiplicatively as receptors are redistributed through the system. Doubling the receptor pool has a relatively

weak effect in this example, as the system starts with a high filling fraction of 0.9, meaning that 90% of the slots

are already filled at the beginning and there are few empty slots to which the additional receptors can bind. B.
Same as A. but showing relative change in synaptic efficacies, which is identical for all synapses. C. Change in
pool size. After the sudden increase or decrease in pool size at 2 minutes, there is first a rapid relaxation of the

pool size followed by a much slower return towards the original value. D. Same as B. but for a filling fraction of
1∕2. The smaller filling fraction leads to bigger relative changes of the synaptic efficacies. Parameters used were:

� = 1∕43 s−1, � = 1∕14 min−1. The desired relative pool size was set to � = 2.67. The production rate  and

attachment rate � were calculated according to (12) and (13), respectively.

of receptor slots in some synapses alters the efficacies of other synapses in the local group. We find285

that the model gives rise to a form of heterosynaptic plasticity, since all synapses are competing for286

a limited number of receptors inside the extrasynaptic receptor pool.287

For illustration purposes we consider a piece of dendrite with four synaptic inputs (Fig. 5). At the288

beginning of the simulation, the number of slots in the four synapses are 20, 40, 60, and 80. We289

start the system in its steady state with a filling fraction F∞ = 0.5 and a relative pool size of � = 2.67.290

13 of 39

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 21, 2018. ; https://doi.org/10.1101/166819doi: bioRxiv preprint 

https://doi.org/10.1101/166819
http://creativecommons.org/licenses/by-nc/4.0/


Manuscript submitted to eLife

BA

C D

Figure 5. A. Illustration of transient heterosynaptic plasticity. After 2 minutes, the number of slots in synapses 1
and 3 is increased instantaneously. The system quickly reaches a new (transient) equilibrium, where the

non-stimulated synapses 2 and 4 are slightly weakened. At the same time, the number of receptors in the pool

is reduced. Parameters were: � = 1∕43 s−1, � = 1∕14 min−1. The filling fraction was set to F = 0.5 and the relative

pool size was set to � = 2.67. The production rate  and attachment rate � were calculated according to (12) and

(13), respectively. B. Time course of relative changes in synaptic efficacies due to homosynaptic and
heterosynaptic plasticity for the experiment from A. C. Approximate maximum relative change of synaptic
efficacy due to heterosynaptic plasticity as a function of the number of receptor slots after homosynaptic

plasticity induction for different filling fractions. D. Same as C but for a smaller relative pool size of � = 1.0. See

text for details.

After 2 minutes we instantaneously increase the number of slots in the first (blue) and third (red)291

synapse by 100%. Subsequently, the system settles into a new (transient) equilibrium (Fig. 5A).292

While w1 and w3 increase, the number of receptors in synapses 2 and 4 slightly decrease, although293

their numbers of slots have not changed. This behavior corresponds to a form of heterosynaptic294

plasticity where synapses grow at the expense of other synapses and is due to the approximately295

constant number of receptors on a fast time scale. Note that the sum of synaptic efficacies is296

not perfectly constant, however. The increase in synaptic efficacies w1 and w3 is bigger than the297
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decrease of synaptic efficacies w2 and w4. The bigger the size of the pool, the stronger is this effect.298

Close to perfect balancing of synaptic weights would require p ≪ W . Figure 5B shows the relative299

changes of efficacies of the synapses undergoing homosynaptic LTP (blue curve corresponding to300

w1 and w3 in A) vs. heterosynaptic LTD (green curve corresponding to w2 and w4 in A) and the pool301

(black curve).302

What determines the magnitude of the heterosynaptic change? We can calculate this analytically303

by using the above short-term approximation F ∗ for constant receptor number. Before plasticity304

induction, the synaptic efficacy of a synapse in equilibrium is given by wi = Fsi = (si∕S)W . The305

induction of homosynaptic plasticity in other synapses changes the total number of available306

receptor slots and we denote the new number of slots S ′. Shortly after homosynaptic plasticity307

induction the synaptic efficacies of a synapse that did not undergo homosynaptic plasticity will be308

approximately w∗
i = F ∗si = (si∕S ′)W ∗ as receptors are redistributed through the system. Therefore,309

the relative heterosynaptic change of such a synapse is given by (w∗
i −wi)∕wi = (F ∗ − F )∕F as long310

as the total number of receptors has not changed much.311

In Fig. 5C we plot this relative change in synaptic efficacy due to heterosynaptic plasticity as312

a function of the total number of receptor slots following homosynaptic plasticity induction for313

different filling fractions. The relative pool size is assumed to be � = 2.67. First, we can observe314

that reductions in the total number of slots due to homosynaptic LTD cause heterosynaptic LTP.315

Conversely, increases in the total number of slots due to homosynaptic LTP cause heterosynaptic316

LTD. Second, the amount of heterosynaptic plasticity depends on the filling fraction prior to plasticity317

induction. Specifically, a high filling fraction of 0.9 leads to weaker heterosynaptic plasticity.318

Figure 5D shows the analogous solution for the case of a smaller receptor pool. Here we set the319

relative pool size to � = 1.0. Everything else is identical to Fig. 5C. The scarcely filled pool strongly320

amplifies the heterosynaptic plasticity effect. When, e.g., new slots are added in this case, the321

synapses can recruit fewer receptors from the small receptor pool and the heterosynaptic effect on322

other synapses becomes bigger. A large receptor pool essentially functions as a buffer shielding323

synapses from heterosynaptic plasticity. Consistent with C, larger filling fractions again lead to less324

heterosynaptic plasticity.325

Importantly, these effects are inherently transient. Over a sufficiently long time, the system326

will settle into a new (true) equilibrium, where every synapse has the same filling fraction F327

determined by the rate constants �, �, , � as described above. The approach towards this new true328
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equilibrium can be seen most easily in Fig. 5B, where the relative change of synaptic efficacy due329

to heterosynaptic plasticity (green curve) slowly decays towards zero. The new equilibrium will330

be stable unless the numbers of slots in the synapses change again. In the particular example of331

Fig. 5A,B, synapses 2 and 4 slowly return to their original efficacies, while synapses 1 and 3 remain332

permanently strengthened due to their increased number of slots. This effect might explain the333

often transient nature of heterosynaptic plasticity observed in experiments, e.g., Abraham and334

Goddard (1983).335

We therefore note the following additional predictions of the model (compare Table 2, Heterosy-336

naptic Plasticity I, II): First, the amount of heterosynaptic plasticity is inversely related to the size of337

the local receptor pool and the filling fraction. Second, heterosynaptic plasticity is only transient.338

Another mechanism for producing a heterosynaptic effect is changing the transition rates � and339

� in a synapse-specific fashion. For example, increasing � for some synapses will attract additional340

receptors to these synapses and lead to a heterosynaptic removal of receptors from the remaining341

synapses and the receptor pool. A more complete model of homosynaptic LTP that includes a342

transient synapse-specific change in � and induces heterosynaptic LTD is discussed next.343

Time course of homosynaptic LTP and accompanying heterosynaptic LTD344

The assumption of a sudden increase in slot numbers from the last section is helpful for mathe-345

matical analysis but does not reflect biological reality well. Receptor slots need to be trafficked346

and integrated into the PSD, which cannot happen instantaneously. In fact, modifications in347

PSD-95 protein number after plasticity induction are known to take several minutes (Colledge348

et al., 2003; Ehrlich et al., 2007; Meyer et al., 2014). In general, the induction of LTP is a complex349

process unfolding across multiple time scales. Here we propose and analyze a more realistic350

model of homosynaptic LTP and the accompanying heterosynaptic LTD. The model incorporates351

a synapse-specific transient increase in the insertion rate � of a potentiating synapse and a rapid352

and pronounced increase of its number of slots followed by a gradual decay back to a sustained353

elevated level. Thus, both the insertion rates �i and the slot numbers si are now considered a354

function of time. Formally, in order to do so we replace equations (1) and (2) by:355

ẇi(t) = −�wi(t) + �i(t)p(t)
(

si(t) −wi(t)
)

, i = 1,… , N (16)

ṗ(t) = −�p(t) +  +
∑

i
�wi(t) −

∑

i
�i(t)p(t)

(

si(t) −wi(t)
)

, (17)
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where we have introduced synapse specific insertion rates �i and made the time dependence of356

the various quantities explicit.357

We model the transient increase in � as a linear increase to four times the original value within358

17 seconds followed by a linear decrease back to the original value over two minutes. This time359

course roughly corresponds to the one reported for calcium calmodulin kinase II (CaMKII) activation360

by Lee and colleagues Lee et al. (2009), essential for LTP induction and maintenanceMalenka et al.361

(1989). CaMKII activation leads to the phosphorylation of many synaptic target proteins including362

the AMPAR auxiliary protein Stargazin which in turn increases the number of stabilized receptors in363

the synapse Opazo et al. (2010). Thus, we assume here that increased CaMKII activation observed364

experimentally drives up the insertion rate �. For the time course of the insertion of receptor slots,365

no direct measurements exist to our knowledge. Therefore, we make the simplifying assumption366

that the number of slots is related to the change in size of the dendritic spine, which was also367

measured by Lee and colleagues Lee et al. (2009). We model their data as a sigmoidal increase to368

five times the original spine volume over the course of two minutes followed by an exponential369

decay to two times the original spine volume over the course of around twenty minutes (time370

constant of 5 minutes). We model the change in the number of receptor slots to scale with the371

2∕3 power of the change in spine volume, assuming scaling with the surface area rather than the372

volume of the spine. The filling fraction was set to F = 0.9 and the relative pool size to � = 2.67. The373

results are shown in Fig. 6.374

Figure 6 A shows the time course of the relative change of the insertion rate � and the number of375

receptor slots of the potentiated synapses. Figure 6 B shows the time course of synaptic efficacies.376

At around 4 minutes the number of slots of the stimulated synapses peaks. Thereafter, the number377

of slots and the synaptic efficacies of the stimulated synapses decay to their new equilibrium values378

and the size of the receptor pool slowly recovers. In this example with a high filling fraction of379

F = 0.9 and a relative pool size of � = 2.67 the heterosynaptic effect is very small. This can also be380

seen in Fig. 6 C, which shows the relative changes in the synaptic efficacies and the pool size as a381

function of time. As in the previous section, the amount of heterosynaptic plasticity depends on the382

filling fraction and the relative size of the receptor pool, however. This is illustrated in Fig. 6D, where383

we consider a smaller filling fraction of F = 0.5 and a smaller relative pool size of � = 1.0. This leads384

to a strong depletion of the receptor pool and a large heterosynaptic depression effect.385

To quantify this effect, we systematically vary the relative pool size � and filling fraction F and386
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observe the peak relative changes in synaptic efficacies during homosynaptic LTP and heterosy-387

naptic LTD (Fig. 6 E,F). We find that a small pool size strongly reduces the peak homosynaptic388

LTP and greatly increases the peak heterosynaptic LTD. Furthermore, both homosynaptic LTP and389

heterosynaptic LTD tend to be reduced by a high filling fraction. These results are consistent with390

those from Fig. 5.391

In addition to these already noted effects on heterosynaptic plasticity, this implies another392

prediction of the model regarding homosynaptic plasticity (compare Table 2, Homosynaptic): The393

amount of short-term homosynaptic plasticity expression is modulated by the pool size and the394

filling fraction.395

The changes in efficacies of synapses whose number of receptor slots are unaltered in Figs. 4, 5396

and 6 are only transient. In the following, we will study the long-term behavior of the model on the397

time scale associated with receptor externalization and internalization to determine how long it398

takes for the system to reach its (new) stable fixed point given by w∞
i and p

∞.399

Approach to the steady state is governed by externalization and internalization400

rates401

To study the system’s approach to its long-term steady state we again make use of the separation402

of time scales argument. Specifically, we assume that the fast dynamics of receptor exchanges403

between the pool and the synapses quickly reaches its equilibrium before the total number of404

receptors can change much due to receptor externalization and internalization. For this analysis we405

return to the original formulation of model. Specifically, the change in the total receptor number406

from (1) and (2) is approximated by:407

Ṙ = ṗ + Ẇ = −�p +  ≈ −�p∗ +  , (18)

where we have replaced the current pool size p with its steady state value p∗(R) = R −W ∗(R) for a408

constant number of receptors in the system. Using F ∗(R) ≡ W ∗(R)∕S we arrive at:409

Ṙ =  + �F ∗(R)S − �R . (19)

For small numbers of receptors in the system, i.e. R close to zero, the steady state filling fraction410

F ∗(R) will be close to zero so that Ṙ ≈ . In contrast, for high numbers of receptors and the filling411

fraction close to its long-term steady-state value F we find:412

1
�
Ṙ ≈


�
+ FS − R , (20)
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F �
[

min−1
]


[

min−1
]

scale factor a exponent b

0.5 0.0056 12.1 71.4 -0.52

0.7 0.0093 9.4 55.6 -0.51

0.9 0.0278 6.7 31.8 -0.50

Table 3. Fitting results from the stochastic version of the model, cf. Fig. 8 C. The externalization rate  and the
attachment rate of receptors to slots � are set to obtain different filling fractions while maintaining a relative

pool size of � = 2.67. Parameters � and � are as in Tab. 1. a and b give the parameters of the power law fits.

indicating thatRwill exponentially approach its steady state value of ∕�+FS with the time constant413

1∕�. This behavior is illustrated in Fig. 7. The simulated piece of dendrite has a total of 10000414

receptor slots and is initialized with different receptor numbers. We plot the numerical solution of415

(19) for different initial numbers of receptors in the system. For low receptor numbers, the growth416

rate of R is approximately  (compare dotted line). For a filling fraction close to its final steady-state417

value, R exponentially converges to its steady state of ∕� + FS with time constant �−1.418

Smaller spontaneous synaptic efficacy fluctuations in larger synapses419

Our analysis of the differential equationmodel above is suitable for studying the average behavior of420

the system for large numbers of receptors. However, small synapses may only have a few receptors421

inside them and the effects of stochastic fluctuations may become substantial. To quantify the422

size of such fluctuations of bound receptor numbers we have developed a stochastic version423

of the model that explicitly simulates the stochastic binding and unbinding, internalization and424

externalization of individual receptors (see Methods). We use the model to study the fluctuations of425

synaptic efficacies under basal steady state conditions. This allows us to quantify the size of synaptic426

efficacy fluctuations due to the fast exchange of AMPARs between synapses and the receptor pool.427

For illustration, we consider a local group of 7 synapses with 1, 2, 5, 10, 20, 50, and 100 slots,428

respectively. We quantify the size of fluctuations of synaptic efficacies using the coefficient of429

variation (CV), which is defined as the standard deviation of the fluctuating number of receptors430

bound inside a synapse divided by the time average of the number of receptors bound inside this431

synapse. A high CV indicates strong relative fluctuations of the synapse’s efficacy.432

Figure 8 A shows the numbers of receptors bound in each synapse as a function of time in one433

example simulation of 10 minutes. Parameters are as given in Table 1 with the filling fraction set to434
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relative pool size � 
[

min−1
]

F scale factor a exponent b

1.0 2.67 0.20 92.6 -0.54

2.67 25.1 0.7 55.4 -0.51

5.0 56.4 0.84 39.1 -0.50

Table 4. Fitting results from the stochastic version of the model, cf. Fig. 8 D. The attachment rate of receptors to
slots is chosen as � = 0.0093min−1 to obtain a filling fraction of 0.7 for a relative pool size of � = 2.67. Parameters

� and � are as in Tab. 1.  is varied to obtain different relative pool sizes � and filling fractions F .

F = 0.5 and the relative pool size set to � = 2.67. Figure 8 B shows an example for a much higher435

filling fraction of F = 0.9. Fluctuations are greatly attenuated.436

Figure 8 C plots the logarithm of the CV of the number of receptors as a function of the logarithm437

of the average number of receptors per synapse, which is given by the product of the theoretical438

filling fraction F and the number of receptor slots si of the synapse i. Data are shown for three439

different filling fractions obtained by increasing �, the rate of receptors binding to receptor slots,440

while setting  to maintain a constant relative pool size of � = 2.67. The linear relationships evident441

in the log-log plot indicate a power law scaling. We fit power law functions of the form CV = a(Fs)b442

to the data (solid lines). Parameters of the fits are given in Table 4 and indicate slopes of around443

−1∕2, i.e. the CV declines approximately with one over the square root of the average number of444

bound receptors. Specifically, small synapses exhibit substantial fluctuations of their efficacies with445

CVs of up to 100%, while fluctuations are greatly attenuated in strong synapses. For different filling446

fractions, the curves are shifted vertically, such that fluctuations are particularly strong for a filling447

fraction of 0.5 and are reduced for higher filling fractions.448

Figure 8 D considers the case where the rates �, �, � are held constant and the externalization449

rate  is varied to achieve different relative pool sizes � ∈ {1.0, 2.67, 5.0}. Specifically, to achieve a450

specific relative pool size � we set:451

 = �
(

S� −
�
�

)

. (21)

The change in  also leads to different filling fractions in the three cases, see (7). The results in Fig. 8452

D show that an increased pool size will dampen spontaneous fluctuations of synaptic efficacies,453

while a reduced pool size promotes stronger fluctuations. We again fit power law functions to454

the data. Parameters of the fits are given in Table 4. Taken together, these results imply another455
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prediction of the model (compare Table 2, Fluctuations): Small synapses undergo relatively larger456

spontaneous efficacy fluctuations, which are attenuated by a large pool size.457

In conclusion, the spontaneous exchange of synaptic building blocks between synapses and458

dendritic pool leads to substantial fluctuations in synaptic efficacies. This finding is reminiscent of459

the surprisingly large spontaneous fluctuations in spine sizes in the absence of activity-dependent460

synaptic plasticity observed recently (Dvorkin and Ziv, 2016; Shomar et al., 2017; Ziv and Brenner,461

2017).462

Discussion463

The detailed molecular mechanisms underlying different forms of synaptic plasticity are complex.464

Recent years have seen enormous progress in identifying many of the relevant molecules and465

signaling pathways. This rapid development is in stark contrast to the simplistic and often purely466

phenomenological descriptions of synaptic plasticity used in most neural network models. While467

highly simplified mathematical models have been essential for relating synaptic plasticity “rules”468

to learning processes at the network level, a full understanding of synaptic plasticity requires the469

development of more elaborate models that do justice to the complexities of synaptic plasticity at470

the molecular scale (Bhalla, 2011, 2014; Tsodyks et al., 1998; Urakubo et al., 2008). Here we have471

taken a step in this direction.472

Hebbian learning tends to lead to runaway growth of synaptic efficacies if not counteracted473

by competitive or homeostatic mechanisms. To be effective, these compensatory mechanisms474

must act fast enough so they can catch up with changes induced by Hebbian learning (Zenke et al.,475

2013; Chistiakova et al., 2015). Prominent candidate mechanisms are synaptic normalization and476

heterosynaptic plasticity (Lynch et al., 1977). The idea has a long history. Synapses on the dendritic477

tree compete for a limited supply of synaptic building blocks such that when some synapses grow,478

they have to do so at the expense of other synapses (Malsburg, 1973; Lynch et al., 1977; Antunes479

and Simoes-de Souza, 2018). However, until recently, the lack of knowledge on the nature and the480

timescales of the molecular processes taking place at synapses did not allow for realistic modeling481

of such a competition for synaptic resources. Here we have presented a concrete model with a482

fast normalization of the efficacies of a neuron’s afferent synapses based on this competition for483

synaptic resources such as AMPA-type glutamate receptors.484

Our model makes several contributions. First, it formalizes the idea of a fast synaptic normal-485
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ization based on a competition for dendritic resources in an abstract and analytically tractable486

model. Second, analysis of the model reveals that under the given assumptions, normalization487

should act multiplicatively, such that relative strengths of synapses are maintained. Multiplicative488

normalization rules have been used in neural network models for a long time but usually in an489

ad hoc fashion. Our model supports the idea that a fast multiplicative normalization may in fact490

be biologically plausible. Third, the model naturally gives rise to a transient form of homeostatic491

heterosynaptic plasticity where synapses grow in efficacy at the expense of other synapses. Fourth,492

the model quantifies how the amount of heterosynaptic plasticity depends on the size of the local493

receptor pool and the filling fraction of receptor slots. It thereby reveals a fundamental trade-off:494

the smaller the pool of available receptors, the more pronounced the heterosynaptic plasticity.495

In other words, neurons can limit heterosynaptic plasticity effects, but this comes at the price of496

having to maintain a big receptor pool. Similarly, the model predicts that a larger receptor pool497

attenuates spontaneous fluctuations in synaptic efficacies, which are particularly strong for small498

synapses. In the following we discuss how this prediction and others summarized in Table 2 could499

be tested.500

How to test the model’s predictions.501

The first prediction of the model is that synapses in a local group have identical filling fractions,502

see (7). I.e., under basal conditions the same percentage of receptor slots should be filled in these503

synapses on average. Testing this prediction requires measuring both the number of receptor504

slots and the number of filled receptor slots for a local group of individual synapses. This could be505

achieved using a quantitative superresolution approach such as dual-color direct stochastic optical506

reconstruction microscopy (dSTORM). For a given dendrite, one would have to quantify the number507

of AMPARs and PSD-95 proteins in a local group of synapses under basal conditions. Our prediction508

is that the ratio of AMPARs to PSD-95 proteins should be similar in all the synapses. As a corollary,509

we predict that the relative efficacies of two synapses from a local group should be identical to their510

relative slot numbers. Testing this hypothesis requires measuring the slot numbers and synaptic511

efficacies of two synapses from a local group. Specifically, the efficacies of a group of synapses512

could initially be measured using local glutamate uncaging. Subsequently the number of PSD-95513

could be assessed using dSTORM. This second approach seems rather challenging, however, as one514

would have to find in the fixed sample the exact dendrite and specific spines that were stimulated515
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during live-imaging. A second corollary of the model’s first prediction is that if any of the transition516

rates changes, e.g., the rate at which receptors unbind from receptor slots, the filling fractions517

and synaptic efficacies are scaled by the same factor. Testing this prediction can be achieved by518

interventions that alter the transition rates. Activation of CaMKII leads to the phosphorylation of the519

AMPAR auxiliary subunit Stargazin increasing its affinity to PSD-95 (Hafner et al., 2015). Thus one520

could induce a global activation of CaMKII in the neurons (chemical-LTP), fix the cells immediately521

after, and perform dual-color dSTORM for PSD-95 proteins and AMPARs. When comparing basal522

state to chemical-LTP, the ratio of PSD-95 proteins to AMPARs should decrease by the same factor523

for all synapses.524

The model’s second prediction can be tested in a similar way. We predict that manipulating the525

size of the local receptor pool leads to a multiplicative rescaling of the efficacies of the local group526

of synapses. To test this prediction, the size of the local receptor pool has to be altered, e.g., by527

triggering externalization of additional receptors. This could be achieved by treating neurons with528

TNF-� for instance (Zhao et al., 2010). Subsequently the efficacies of the local group of synapses529

have to be monitored. These efficacies should scale by the same factor.530

Another prediction of the model is that the amount of heterosynaptic plasticity is inversely531

related to the size of the local receptor pool. The most direct way of testing this prediction is to532

manipulate the local receptor pool as suggested above while inducing homosynaptic plasticity in a533

subset of synapses and measuring the amount of heterosynaptic plasticity in other synapses of534

the local group. In fact, this set of experiments could resemble the ones performed by Oh and535

colleagues but adding a TNF-� condition (Oh et al., 2015).536

The transient nature of heterosynaptic plasticity predicted by the model can be tested more537

easily. It merely requires the induction of homosynaptic plasticity in a subset of synapses in the538

local group while monitoring the time course of heterosynaptic plasticity in the remaining synapses.539

Specifically, the time course of recovery from heterosynaptic plasticity should be close to the540

internalization rate � of AMPARs.541

The model’s prediction of an influence of the size of the receptor pool on the expression of542

homosynaptic plasticity requires manipulating the size of the local receptor pool and subsequently543

inducing homosynaptic plasticity. For example, the peak change in synaptic efficacy during LTP544

induction should be bigger when the receptor pool has been increased than when it has been545

depleted prior to LTP induction.546
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Finally, the model predicts that synapses exhibit spontaneous fluctuations in synaptic efficacies547

due to the dynamic exchange of receptors with the local receptor pool. It predicts that these548

fluctuations, as measured by the coefficient of variation (CV), scale approximately as one over the549

square root of the synapses’ average efficacies. Testing this prediction can be achieved by repeated550

measurements of the synaptic efficacy of single synapses in the absence of any plasticity induction551

using glutamate uncaging.552

Dendritic morphology and local production.553

We have assumed that the basal transition rates for receptors attaching and detaching to and from554

slots are identical for all synapses and that the receptors are distributed homogeneously inside the555

pool. These assumptions are essential for the multiplicative behavior of the model. If, in contrast,556

the distribution of receptors across the dendritic tree were very inhomogeneous, this would, all557

else being equal, correspond to different pool sizes in different parts of the dendritic tree, leading558

to different filling fractions across the dendritic tree.559

Properly distributing synaptic building blocks across the dendritic tree is a formidable task560

(Williams et al., 2016). Specifically, if receptors were only produced at a single site corresponding561

to the cell nucleus and spreading from this point source according to slow transport processes then562

one would expect a high concentration of receptors close to the nucleus and a low concentration563

far away from it. This would, all else being equal, lead to large receptor pools close to the cell564

nucleus and small receptor pools far away from it. Earnshaw and Bressloff (2008) have presented565

such a model. They consider a long dendrite and diffusion of receptors from the soma along this566

dendrite leading to a high concentration of receptors close to the soma and a small concentration567

far away from it. In contrast, our model considers a local piece of dendrite, where the concentration568

of receptors can be assumed to be approximately constant. Therefore, our model does not attempt569

to make predictions regarding scaling of synaptic efficacies at the global level of a neuron’s entire570

dendritic tree. Earnshaw and Bressloff conclude from their model that “it does not appear possible571

to obtain a global multiplicative scaling” of synaptic efficacies just by changing reaction rates. This572

conclusion rests on the fact that the distribution of receptors along their simulated dendrite is573

inhomogeneous. Specifically, Earnshaw and Bressloff assume that protein synthesis occurs mostly574

at the soma, which leads to an approximately exponential decay of the concentration of receptors575

towards the distal end of the dendrite. This assumption failed to be confirmed experimentally576
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and has in fact been contradicted by Tao–Cheng and colleagues who found a homogeneous577

distribution of AMPARs at the neuron surface along the dendritic arbor of hippocampal cultured578

neurons Tao-Cheng et al. (2011). Earnshaw and Bressloff also cite a study by Adesnik et al. (2005)579

to support the idea of an inhomogeneous distribution of AMPARs. They used ANQX (a modified580

version of DNQX) known at that time as an AMPAR antagonist (Chambers et al., 2004) to monitor581

synaptic AMPAR exchange after specific inactivation of the surface population. They measured a582

significantly slower recovery of AMPAR current in dendrites compared to the somatic region. Thus,583

they concluded that AMPARs are mainly exocytosed at the somatic extracellular membrane and584

trafficked distally through lateral diffusion. However, since then DNQX has also been shown to585

act on kainate and NMDA receptors. Additionally, DNQX effects on AMPARs appear to depend on586

the composition of AMPAR complexes and in particular the type of auxiliary subunits associated587

with those receptors (MacLean and Bowie, 2011; Greger et al., 2017). Since the concentration of588

receptors between somatic and dendritic membranes appears to be fairly homogeneous, it might589

be that the actual composition of the receptors varies between those two compartments. In this590

case, global multiplicative scaling is to be expected in the model of Earnshaw and Bressloff as591

well. Hence, we believe that our model using minimal assumptions and being restricted to a single592

dendritic segment with multiple dendritic spines is in good accordance with the recent literature on593

AMPAR trafficking.594

A uniform distribution of synaptic building blocks across the entire dendritic tree could be595

facilitated by local production of these building blocks across the dendritic tree. Local protein596

synthesis may therefore be essential for global multiplicative scaling behavior observed in biological597

experiments (Turrigiano et al., 1998). More specifically, AMPAR subunits are transmembrane598

proteins and therefore are synthesized within the endoplasmic reticulum (ER). Translation of599

proteins seems to occur in a burst fashion in local “hot spots” (Katz et al., 2016). Importantly,600

however, newly synthesized receptors are not necessarily immediately trafficked to the cell surface601

and in fact a large fraction are distributed across and maintained inside the ER compartment602

constituting an intracellular pool of receptors waiting to be exocytosedGreger et al. (2002). Thus, the603

distribution of receptors in the ER may already be more homogeneous than hot spot synthesization604

would suggest. Furthermore, once released from the ER into the cytoplasm, fast distribution of605

receptors along microtubules could lead to a rather homogeneous distribution inside the cytoplasm,606

from where the receptors would be trafficked to the surface. Thus, bursty translation at hotspots607
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inside the ER may still allow for a homogeneous distribution of receptors at the cell surface.608

We therefore predict that local production of synaptic building blocks across the dendritic tree609

contributes to their uniform distribution, which in turn might allow global multiplicative scaling610

behavior and the maintenance of relative strengths of synapses. This could be tested, for example,611

by specifically blocking local production of synaptic building blocks, which should make their612

distribution across the dendritic tree less homogeneous and lead to systematic inhomogeneities in613

synaptic efficacies across the dendritic tree.614

In this context it is also interesting to note that at least one form of heterosynaptic plasticity615

tends to be induced locally (De Roo et al., 2008; Losonczy et al., 2008; Li et al., 2016b), i.e., at616

neighboring synapses. Such local action is readily expected in our model if competition for synaptic617

building blocks is restricted to a local pool such as a section of a dendritic branch, with comparatively618

slow trafficking of building blocks between adjacent pools.619

Detailed descriptions of AMPAR trafficking and diffusion.620

The stochastic version of our model describes individual binding and unbinding events of AMPARs621

to receptor slots, but it does not describe in detail the paths taken by individual AMPARs during622

their diffusion in the cell membrane. This is a gross simplification, but it facilitates mathematical623

analysis. More elaborate models were conceived to describe the movement of individual receptors624

inside the dendritic branch and the PSD (Earnshaw and Bressloff, 2006; Czöndör et al., 2012; Li625

et al., 2016a). Such models can incorporate, e.g., the detailed spine geometry or effects of protein626

crowding.627

Control of transition rates.628

Apart from our experiments on modeling LTP, where we introduced a transient and synapse-629

specific increase of the rate at which receptors bind to slots, we have kept all transition rates630

constant throughout this paper. In reality, we expect the various transition rates to be flexibly631

controlled to allow for robust and efficient functioning of the neuron, allowing it to cope with various632

perturbations. Indeed, constructing a model to describe these various regulatory processes will be633

an important challenge for the future. Furthermore, AMPARs can be in different states expected to634

have different transition rates. Specifically, AMPAR complexes containing various sets of auxiliary635

subunits are very likely to co-exist at the neuron surface (Schwenk et al., 2012). Since only a couple636

of auxiliary subunits have binding domains for PSD-95, multiple types of AMPARs with different �637
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and � parameters could be considered. These topics are left for future work.638

Slot production and removal.639

In future work, it will also be interesting to consider changes to slot numbers in more detail.640

We simulated increases in slot numbers of individual synapses in the context of LTP. Obviously,641

however, the building blocks of these “slots” also have to be produced, transported, and inserted642

into synapses, which could be based on similar mechanisms as we have postulated for receptors.643

Furthermore, slots are also degraded and have to be replaced. In fact, the alternative interpretation644

of our model discussed in the beginning of the Results section already describes how PSD-95 slots645

are produced (or degraded) and bind to (or detach from) slots for these receptor slots (“slots-for-a-646

slot” interpretation). Future work should aim for a model that more fully describes the interactions647

of AMPARs (and other types of receptors), various TARPs such as stargazin, MAGUK proteins such as648

PSD-95, and neuroligins as well as their production and trafficking. Along these lines, it will also be649

interesting to consider the mechanisms underlying different stages of LTP and LTD in more detail.650

Modeling slow homeostatic synaptic scaling.651

The model could also be extended to capture slow homeostatic synaptic scaling processes (Turri-652

giano et al., 1998; Ibata et al., 2008). In the simplest case, a sensor for the average neural activity653

of the neuron would drive the production of receptors and/or slots in a homeostatic fashion, such654

that if, e.g., the average neural activity falls below a target level or range, then receptor and/or slot655

production are increased to drive up excitatory synaptic efficacies. Such a model would naturally ex-656

plain the multiplicative behavior of homeostatic synaptic scaling (Turrigiano et al., 1998). Obviously,657

the activity sensor could also sense the average activity in a local neighborhood through a diffusive658

mechanism (Sweeney et al., 2015). Furthermore, instead of homeostatically regulating firing rates,659

the amount of afferent drive to the neuron or to the local population could be controlled (Savin660

et al., 2009), or even other measures of neural and synaptic activity could be used. Finally, all661

these ideas are not mutually exclusive. It seems likely that neurons control both their firing rate662

distributions and their amounts of excitatory and inhibitory afferent drive through a combination663

of different intrinsic and synaptic plasticity mechanisms on different time scales.664
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Receptor subunit composition.665

Finally, not all AMPARs are created equal. Depending on the composition of subunits, AMPARs have666

distinct properties in terms of, e.g., calcium permeability and trafficking (see Henley and Wilkinson667

(2016) for a recent review). A more complete model should incorporate the diversity of AMPARs (or668

even other receptor types) and their properties.669

Conclusion.670

In conclusion, our model offers a parsimonious explanation for a transient form of homeostatic671

heterosynaptic plasticity and fast local synaptic normalization, which it predicts to be multiplicative.672

It therefore supports the use of such rules in neural network models. The model also reveals a673

fundamental trade-off between the size of the local receptor pool and the amount of heterosynaptic674

plasticity. This trade-off is akin to a common logistics problem: how much to produce and store of675

a particular resource in order to a) minimize production costs and storage space while b) limiting676

the risk of running out of this resource? Arguably, efficient neural functioning requires solving a677

plethora of related logistics problems with respect to production, transport, and storage of various678

“goods” and supply of the necessary energy for all these processes. We feel that the time is ripe679

for a concerted effort to study individual neurons and the entire nervous system from such a680

neurologistics perspective.681

Methods and Materials682

Simulation software683

The simulation software was written in Python and is available at:684

https://github.com/triesch/synaptic-competition (Triesch and Vo, 2018).685

Differential equations were discretized with the Euler method.686

The stochastic version of the model was simulated using the Gillespie algorithm (Gillespie, 1976).687

Stochastic reactions were defined for receptors entering or leaving each of the seven synapses688

and for being added or removed from the receptor pool. This gave rise to a total of 16 possible689

“reactions” occurring with different probabilities per unit time depending on the current state of the690

system, i.e., how many receptors are bound in each synapses and reside in the pool. Stochastic691

simulations were validated against the differential equation model to verify that their average692

behavior matched that of the differential equation model in different situations.693
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Calculation of the short-term filling fraction694

We exploit the separation of time scales between fast receptor binding and unbinding from slots695

and slow externalization and internalization of receptors. On the fast time scale, the processes696

of internalization and externalization can be ignored. Removing the corresponding terms in (2),697

we again look for the steady state solution by setting the time derivatives of wi and p to zero and698

summing over i. This leads to the following quadratic equation forW ∗, the steady state number of699

bound receptors in the short-term approximation (which must not be confused with the long-term700

steady state solutionW ∞ of the full system):701

W ∗2 −W ∗
(

S + R +
�
�

)

+ RS = 0 . (22)

We introduce � ≡ �∕� as the ratio of the rates through which receptors leave and enter the synaptic702

slots. Using this, the two solutions of (22) are given by:703

W ∗
1,2 =

1
2
(S + R + �) ±

√

1
4
(S + R + �)2 − RS . (23)

The “+” solution is not biologically meaningful, since it leads toW ∗ ≥ S orW ∗ ≥ R (see Appendix),704

so that the desired steady state solution of the short-term approximation is given by:705

W ∗ ≡ W ∗
2 = 1

2
(S + R + �) −

√

1
4
(S + R + �)2 − RS (24)

and the corresponding short-term steady-state filling fraction is F ∗ = W ∗∕S. In the full system, this706

solution is assumed only transiently, because receptors can still enter and leave the system. If the707

number of receptors were held constant, then F ∗ andW ∗ would describe the stable solution on708

long time scales.709

Sensitive reaction of the short-term filling fraction to changes in reaction rates710

when number of receptors matches number of slots711

We are interested in how the short-term filling fraction F ∗ changes, when the reaction rates � and �712

or their ratio � ≡ �∕� change. Formally, we consider the partial derivative of the short-term filling713

fraction F ∗ = W ∗∕S with respect to �. Using (24) we find:714

)F ∗

)�
= 1
S
)W ∗

)�
= 1
S

⎡

⎢

⎢

⎢

⎣

1
2
−

R + S + �

4
√

1
4
(R + S + �)2 − RS

⎤

⎥

⎥

⎥

⎦

. (25)

29 of 39

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 21, 2018. ; https://doi.org/10.1101/166819doi: bioRxiv preprint 

https://doi.org/10.1101/166819
http://creativecommons.org/licenses/by-nc/4.0/


Manuscript submitted to eLife

As can be seen in Fig. 3C,D, the most extreme slope is obtained at � = 0. There the derivative715

simplifies to:716

)F ∗

)�
|

|

|

|�=0
= 1

2S

(

1 − R + S
R − S

)

. (26)

For R = S the slope diverges, i.e., the short term filling fraction reacts extremely sensitively to small717

changes in � when � is close to zero.718
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Figure 6. Model of homosynaptic LTP accompanied by heterosynaptic LTD. After 2 minutes, LTP is induced in
synapses 2 and 3. This entails a transient synapse-specific change in the insertion rate � of these synapses and

a gradual change in their slot numbers. A. Time course of relative change of receptor insertion rate � and slot
numbers of stimulated synapses undergoing homosynaptic LTP. B. Time course of synaptic efficacies for a filling
fraction of F = 0.9 and a relative pool size of � = 2.67. Only a very small amount of heterosynaptic LTD can be

observed in unstimulated synapses 1 and 4. C. Relative change of synaptic efficacies and pool size due to
homosynaptic LTP and heterosynaptic LTD in B as a function of time. D. Same as C but for a smaller filling
fraction of F = 0.5 and a smaller relative pool size of � = 1.0. Note the smaller transient increase in efficacy of

potentiated synapses (compare peaks of green curves in C and D) and the increased amount of heterosynaptic
LTD (compare troughs of blue curves). E, F.Maximum amount of homosynaptic LTP (E) and heterosynaptic LTD
(F) as a function of relative pool size � for three different filling fractions.
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Figure 7. Illustration of long-term behavior under the separation of time scales assumption. Parameters were:
� = 1∕43 s−1, � = 1∕14 min−1. The desired relative pool size was set to � = 2.67 and the desired filling fraction to

F = 0.9. The production rate  and attachment rate � were calculated according to (12) and (13), respectively.

The steady-state total number of receptors in this example is given by R∞ = (1 + �)FS = 33 030.
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Figure 8. Quantification of spontaneous synaptic efficacy fluctuations due to the fast exchange of receptors
between synapses and the receptor pool. A. Example simulation of a piece of dendrite with 7 synapses during
10 minutes of simulated time. The number of receptor slots in each synapse is given in the legend. The relative

pool size was set to � = 2.67 and the filling fraction was set to F = 0.5 by choosing the binding rate to receptor

slots � via eq. 13. B. Same as A. but for a higher filling fraction of F = 0.9. C. Size of synaptic efficacy fluctuations
as measured by the coefficient of variation (CV) as a function of the steady state number of receptors in each

synapse, which is given by the product of the filling fraction F and the number of slots si in synapse i. The

relative pool size was set to � = 2.67. Data points represent averages over 10 simulations of 30 minutes

simulated time each. Lines represent linear fits through the data points in double log space. D. CV as a function
of steady state number of receptors for different relative pool sizes � achieved by holding the binding rate to

receptor slots � fixed and varying the externalization rate  .
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Appendix 1874

The “+” solution from (23) is not biologically meaningful.875

We show that the “+” solution from (23) is not biologically meaningful. To see this, first note

thatW1 ≤ W2. Furthermore, any meaningful solutionW must fulfillW ≤ R andW ≤ S, i.e.,

the number of receptors bound to slots cannot be bigger than the total number of receptors

or the total number of slots. If the smaller solution W1 does not meet both criteria, then

the largerW2 cannot meet them either. So we assume in the following thatW1 meets both

these criteria so thatW1 ≤ min{R,S}. Our argument uses Vieta’s formulas for the quadratic

equation (22):

W1 +W2 = R + S + � and W1W2 = RS .

Using the second formula we can write:

RS = W1W2 ≤ min{R,S}W2 ,

from which follows that:

W2 ≥
RS

min{R,S}
.

In the case that R > S, this leads toW2 ≥ R. The only biologically meaningful solution to this

is the equalityW2 = R. This is the extreme case where all receptors are bound in slots and

no receptors remain in the pool. With Vieta’s second formula we see that in this caseW1 = S.

Plugging both results into Vieta’s first formula, we see that this solution requires � = 0, which

in turn requires � = 0. In this case, no receptors would ever leave synapses.
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The case R < S leads toW2 ≥ S. The only biologically meaningful solution to this is the

equality W2 = S. This is the extreme case where all slots are filled with receptors. Using

Vieta’s formulas again leads to the uninteresting requirement � = 0 for this solution.
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Finally, the case R = S leads to R = S = W1 = W2 and also requires � = 0. In summary,

the “+” solution in (23) only admits the extreme solutionsW = S orW = R requiring � = 0

(and therefore � = 0), which are not biologically meaningful.
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