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Abstract 

Transcriptional profiling is a prevalent and powerful approach for capturing the response of crop 

plants to environmental stresses, e.g. response of rice to drought. However, functionally 
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interpreting the resulting genome-wide gene expression changes is severely hampered by the large 

gaps in our genomic knowledge about which genes work together in cellular pathways/processes 

in rice. Here, we present a new web resource – RECoN – that relies on a network-based approach 

to go beyond currently limited annotations in delineating functional and regulatory perturbations 

in new rice stress transcriptome datasets generated by a researcher. To build RECoN, we first 

enumerated 1,744 stress-specific gene modules covering 28,421 rice genes (>72% of the genes in 

the genome). Each module contains a group of genes tightly coexpressed across a large number of 

environmental conditions and, thus, is likely to be functionally coherent. When a user provides a 

new differential expression profile, RECoN identifies modules substantially perturbed in their 

experiment and further suggests deregulated functional and regulatory mechanisms based on the 

enrichment of current annotations within the predefined modules. We demonstrate the utility of 

this resource by analyzing new drought transcriptomes of rice in three developmental stages, which 

revealed large-scale insights into the cellular processes and regulatory mechanisms involved in 

common and stage-specific drought responses. RECoN enables biologists to functionally explore 

new data from all abiotic stresses on a genome-scale and to uncover gene candidates, including 

those that are currently functionally uncharacterized, for engineering stress tolerance. 

 

Introduction 

The complex response of plants to abiotic-stress spans several orders of magnitude in time and 

space, causing system-wide adverse reactions and protective responses. Gene expression profiling 

has been used successfully to capture the system-wide molecular programs that underlie the 

cellular response to abiotic stresses (Deyholos, 2010). Analyses of the drought-stress inducible 

transcriptome in Arabidopsis, for example, reveal a plethora of responses including the induction 

of transcription factors, phospholipases C and D, protein kinases (MAPK, CDPK), proteinases, 

water channel proteins, antioxidant enzymes and molecules (GSTs, thioredoxins, peroxiredoxins), 

factors such as chaperones that afford protection for macromolecules (LEA proteins, HSPs) and 

osmoprotectant synthases (for proline, betaine, sugar) (Seki et al., 2002; Shinozaki et al., 2003; 

Harb et al., 2010). Making such analytical inferences from the transcriptome hinges on the 

availability of prior functional and regulatory knowledge about a large number of genes in the 

genome, which can then be used to meaningfully summarize genome-wide gene-expression 

changes. Although far from complete in Arabidopsis, such functional/regulatory information about 
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genes – what they do, how they work together, and how they are regulated – is severely lacking in 

rice both in quality and genomic coverage. This paucity has led to a significant lag in the number 

of characterized drought-responsive genes and cellular processes in rice compared to Arabidopsis. 

Therefore, we need alternative approaches that can go beyond currently available gene annotations 

for fully extracting knowledge from rice transcriptomes and help towards gaining a comprehensive 

understanding of stress-response in this crop plant. 

A promising starting point for such an alternative approach is the large amount of currently 

publicly available gene expression data in plants. A powerful analysis framework that has emerged 

in recent years involves estimating the similarity of expression patterns between all pairs of genes 

across diverse conditions to build gene coexpression networks, representing the genome-wide 

transcriptional organization of the cell (Usadel et al., 2009; Pearce et al., 2015). Particularly, in the 

crop model rice, recent studies have used gene coexpression to gain biological insights into general 

(Wang et al., 2009; Shaik and Ramakrishna, 2013) and case-specific (Fu and Xue, 2010; 

Ambavaram et al., 2014) gene regulation. Coexpression networks have also been used extensively 

in plants to organize genes into transcriptional modules and explore their functions (Mentzen and 

Wurtele, 2008; Mao et al., 2009). These modules represent groups of genes/proteins are likely to 

work together to perform a coherent biological function inside the cell (Hartwell et al., 1999), 

essentially expanding upon the available functional annotations. Hence, coexpressed modules can 

be used as sets of functionally coherent genes to see their enrichment in new expression data, 

especially in genomes where the functional annotations are sparse and incomplete. However, we 

still lack such a resource that allows enrichment analysis of coexpressed clusters/modules in new 

expression data of rice.    

Therefore, it would be valuable to reconstruct a rice coexpression network that integrates 

information across a large number of datasets specifically in the context of stress response. In 

addition, it would be highly beneficial if researchers could bring this coexpression network to bear 

on their new gene-expression profiles (in one or more stress conditions) for functional resolution 

and comparison. Interpreting the long lists of responsive genes, a typical result of a gene-

expression study, will become amply tractable by identifying subsets of responsive genes that are 

likely to be functionally coherent. Likewise, comparison between gene responses in different 

growth stages or conditions is likely to be more meaningful and robust at the level of cellular 

functions/pathways than at the level of individual genes (capturing the perturbation of different 
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subsets of the same cellular apparatus and overcoming the various sources of noise in high-

throughput assays). 

To meet all these critical needs, here we present a genomic resource for comprehensive 

analysis of stress response in rice based on a modular coexpression network specific to response 

to environmental conditions, and apply this resource to perform a detailed analysis of stage-

specific drought response in rice. First, we carried out a genome-scale analysis integrating publicly 

available rice gene expression datasets generated in the context of response to a range of 

environmental conditions. Next, using this integrated data, we constructed, what is termed, the 

Rice Environment Coexpression Network (RECoN), based on gene expression correlation across 

environmental conditions. Finally, we partitioned RECoN into densely connected modules using 

a graph-clustering algorithm. As a pertinent test case for our approach, we performed gene 

expression profiling of rice plants subjected to drought at three developmental stages. We used 

this data to perform both a traditional analysis – functional analysis (using Gene Ontology) – and 

a new analysis using RECoN, teasing out drought-related modules within the drought-response 

genes identified from our experiments. The new RECoN-based analysis of new experimental data 

helped highlight pathways, processes, regulatory genes, and potential transcriptional regulatory 

mechanisms critical for drought response in rice. We have made RECoN available for rice stress 

biologists through an interactive network browser at https://plantstress-pereira.uark.edu/RECoN/. 

Biologists can use this resource to explore coexpression clusters within their stress transcriptome 

and systematically guide follow-up experimental studies for constructing the underlying gene 

network. 

 

Materials and Methods 

Coexpression Network Analysis 

A total of 29 publicly available gene expression datasets comprising of 414 samples of the 

Affymetrix rice GeneChip from were collected from NCBI GEO (Barrett et al., 2009) and 

ArrayExpress (Parkinson et al., 2009). From these, 129 samples (45 groups) with a unifying 

biological theme, i.e. response to some environmental condition, were used for coexpression 

analysis (see Supplementary Table S1). 

We previously reported the re-annotation of Rice GeneChip to increase the reliability of 

expression quantification (Ambavaram et al., 2011). Briefly, the chip definition file (CDF 
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GPL11322) was created by mapping probes to target genes that have perfect sequence similarity, 

and regrouping probesets such that each represents a single corresponding gene. We used this 

custom CDF to background correct, normalize and summarize the raw data using justRMA 

(Irizarry et al., 2003), with values in replicate samples averaged. To estimate coexpression, the 

Pearson correlations between every pair of genes were first calculated (Huttenhower et al., 2008) 

and then normalized using Fisher’s Z-transform (David, 1949). Then, the standardization of these 

scores resulted in coexpression score (zcs) indicating the number of standard deviations it lies from 

the mean, and follows a normal distribution to be interpretable by the level of significance, as |zcs| 

values greater than 1.96 allowed a 95% confidence interval to work with.  

A coexpression network was then constructed connecting pairs of genes that have a zcs 

>1.96 (top 2.5% of all pairs of genes ordered in decreasing order of correlation). This cutoff 

corresponded to a Pearson correlation coefficient of 0.632. This network that contains 34,792 

genes connected by ~18.5 million edges was then clustered using SPICi (Jiang and Singh, 2010). 

Since SPICi requires a density parameter Td as input, a range of values of the parameter from 0.1 

to 0.9 was tested. Clusters obtained using each Td value were evaluated using several criteria 

including the number of clusters formed, fraction of genes in clusters of size 3 or more, average 

segregation (modularity), and extent of overlap between clusters and GO BP gene sets (termed 

‘functions’) (Fig. 6). In order to calculate average segregation, as desired property of dense 

interaction networks, the coexpression network is modeled as an undirected graph G=(V, E), 

consisting of a set V of nodes (i.e., genes) and a set E of edges (i.e., coexpressing gene pairs). Let 

wuv denote the weight of the edge (u, v)  E, denoting the Pearson correlation coefficient of gene 

pairs (u, v). The graph Gc=(Vc, Ec) is defined as the graph induced by the genes that are part of 

cluster c, and average segregation is computed as: 

 

 

 

where Ec’ is the set of edges in G that are incident on Vc. For functional enrichment analysis the 

overlap between genes within a cluster and genes annotated to a given GO BP term using the 

cumulative hypergeometric test. Using only GO BP terms that annotate <500 genes (to ensure a 



wuv
u,v Ec

 Ec

wuy
uVc ;yV ; u,y E

 Ec'
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certain level of specificity in definition), for a pair of gene sets (cluster and GO BP term) i and j, 

if N is the total number of genes, ni and nj are the number of genes in gene set i and j, and m is the 

number of genes common to the gene sets, the probability (p-value) of an overlap (enrichment) of 

size equal to or greater than observed is given by the formula below. 

 

 

 

P-values from the test were converted to q-values to correct for multiple hypothesis testing using 

Benjamini-Hochberg method (Benjamini and Hochberg, 1995) and cluster-GO_BP pairs with q-

value <0.1 were considered for analysis. The level of functional enrichment in a cluster is 

quantified using –log10(q-value). 

After clustering the network using SPICi with Td value of 0.65, from all the clusters, those 

relevant to drought were determined by testing which clusters contained a significantly high 

number of drought-regulated genes up- or down-regulated in any one of the stages (again using a 

cumulative hypergeometric test). Then, four sets of genes were extracted from each ‘drought’ 

cluster – all the genes in the cluster, and seedling, vegetative and reproductive drought-regulated 

genes – for discovery of putative cis-regulatory elements and enrichment analysis of GO biological 

processes in the rice genome. 

 

Rice Plant Material and Drought-Stress Treatments 

Rice (Oryza sativa L. ssp Japonica cv. Nipponbare) seeds were germinated in hydroponic half-

strength Hoagland solution and seedlings were grown about a week in an environmentally 

controlled growth chambers maintained at 280C ± 1 temperature, 65% relative humidity with a 

daily photoperiodic cycle of 14h light and 10h dark, and then plants allowed to reach the 

reproductive stages were grown in soil under greenhouse conditions. Samples of well-watered and 

drought stressed were collected at various developmental stages which include seven-day old 

seedlings, vegetative (V4) and reproductive (R4) stages based on discrete morphological criteria 

as described by Counce et al (2000).  
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For drought treatment, plants were gradually subjected to field drought stress in order to 

reach 50% field capacity (FC) by regulating the water supply, whereas control plants were 

maintained at 100% FC. During the stress period the pots were weighed daily and the difference 

in weight on subsequent days was corrected by adding water to maintain the required field 

capacity. The physiological condition of plants at 50% FC was monitored by chlorophyll 

fluorescence, quantum yield (Fv/Fm) and the relative water content (RWC) (Supplemental table 

S1). For dry down drought treatment, rice plants after transplanting were separated, with 5 pots 

maintained at well-watered condition serving as control while another set of 5 pots were used for 

drought experiments. For drought stress treatment water was withheld until the moisture level 

progressively dropped down to 6%. Drought stress symptoms were monitored for leaf rolling and 

measurement of soil moisture content everyday using soil a moisture meter (Rapitest). For all the 

stages (seedlings, vegetative and reproductive), three biological replicates were harvested from 

independent populations of plants, when leaves were completely rolled and RWC was around 65-

70%. RWC was measured in the leaves used from where photosynthesis was measured. Leaf 

fragments of same size were cut and fresh weight was measured and hydrated immediately to full 

turgidity in deionized water for 6 h. After 6 h the leaf fragments were blotted on paper towels and 

the fully turgid weight was taken. Turgid leaf samples were then oven dried at 80°C for 72 h and 

weighed to determine dry weight. RWC percentage was measured as: RWC (%) = (fresh weight − 

dry weight)/ (turgid weight − dry weight) × 100.The drought stress symptoms such as leaf rolling 

and basal leaf senescence were apparent in stress-induced plants, while control plants growing at 

100% FC were observed to grow well showing 95% RWC. 

 

Measurement of Chlorophyll Fluorescence and Quantum Yield  

Chlorophyll fluorescence and the quantum yield was measured by using the Modulated 

Chlorophyll Fluorometer OS1-FL (Opti-Sciences Inc, USA). During and after stress treatments, 

flag leaf from stressed and unstressed wild-type was placed in close contact with the 

Photosynthetically Active Radiation (PAR) clip, which provides basic data to the OS1-FL system 

on ambient conditions. The PAR sensor is designed to measure leaf temperature and the light 

intensity. The ratio of variable fluorescence (Fv/Fm) and the yield of quantum efficiency (Y) are 

indicative of photosystem I and II performance of the plants under stress. 
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RNA Isolation, Probe Labeling, and Hybridization 

Total RNA was isolated from the rice seedlings, vegetative (V4) and reproductive (R4) tissues of 

both control and stress treated plants using the RNeasy plant kit (Qiagen, USA) according to 

manufactures protocol. For each stage/treatment, three independent biological replicates were used 

for RNA isolation. 

RNA quantity, quality, and purity were assessed with the use of the RNA 6000 Nano assay on the 

Agilent 2100 Bioanalyzer (Agilent Technolgies, USA). Total RNA (~4 µg) from each sample was 

used to generate first-strand cDNA with a T7-Oligo(dT) primer. Following second-strand 

synthesis, in vitro transcription was performed using the GeneChip® IVT Labeling Kit according 

to the manufacturer’s instructions. The preparation and processing of labeled and fragmented 

cRNA targets, as well as hybridization to arrays, washing, staining, and scanning were carried out 

according to manufacturer’s instructions (http://www.affymetrix.com). The Affymetrix Rice 

GeneChips (which contain~ 43,000 probe sets or genes), washing and scanning were carried out 

in Gene chip fluidics Station 450 (Affymetrix) and the Gene chip Scanner 3000 by Affymetrix 

(Santa Clara, CA, USA), respectively.  

 

Analysis of Differential Gene Expression 

The custom CDF file was used to background correct, normalize and summarize all the raw 

expression data using RMA in R (Ihaka and Gentleman, 1996; Irizarry et al., 2003; Gentleman et 

al., 2004). Genes that had the interquartile range (IQR) less than the median were detected as lowly 

varying, and were removed from further analysis of differential expression. To estimate 

differential expression among the remaining genes, a linear model was used (Smyth, 2004). The 

resulting p values of the t-tests were corrected for multiple hypothesis testing and reported as q 

values (Storey and Tibshirani, 2003). A threshold of q value < 0.01 was set to select significantly 

differentially expressed genes in response to drought. 

 

Functional and regulatory annotations of clusters 

GO BP process enrichment analysis of clusters was performed using the cumulative 

hypergeometric test (as described above). For the webserver, GO BP genesets were downloaded 

from the PlantGSEA website (Yi et al., 2013). Terms that annotated more than 1500 genes and 

less than 10 genes were removed to gain resolution in the biological processes presented by 
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enrichment analysis. CRE enriched in the clusters were identified using FIRE (Elemento et al., 

2007). FIRE uses mutual information (MI) to find an association between the expression profile 

and the motif profile of genes, and uses randomization tests to score for statistical significance. 

Identified motifs present in more than 50% of all the genes in a given cluster were considered.    

Perl scripts were used to parse all the data. Plots were generated using R (Ihaka and 

Gentleman, 1996) and gene expression matrices were visualized using MeV (Saeed et al., 2006).  

The gene expression data reported here are available from the NCBI GEO database with the 

accession number GSE81253. 

 

Results 

The rice environment coexpression network  

To determine biologically meaningful stress transcriptional modules in rice, we have designed an 

extensive pipeline that uses data from publicly available gene expression profiles in parallel with 

our in-house generated datasets measuring drought response in three developmental stages (Fig. 

1). We obtained 129 publicly available rice Affymetrix microarrays related to response of the rice 

plant to some environmental condition and worked with the raw data (Fig. 1, step 1a). The data 

was normalized and summarized into a gene expression matrix based on a custom probe-gene 

reannotation of the rice GeneChip. The reannotation increases the accuracy of the gene expression 

quantification process by assigning only specific probes to genes, and increases coverage of the 

array. The gene expression data was then converted into a matrix of 34,792 genes and 45 distinct 

conditions/groups and used to construct a coexpression network connecting pairs of genes that 

have a significantly high correlation between their expression profiles across the conditions (top 

2.5% of all pairs of genes ordered in decreasing order of correlation; see Materials and Methods). 

This network, termed Rice Environment Coexpression Network or RECoN, contains 34,792 genes 

connected by ~18.5 million edges. 

There are several clustering algorithms that work with weighted networks and find groups 

of densely connected nodes (Enright et al., 2002; Bader and Hogue, 2003). SPICi, a clustering tool 

was selected due to its ability to cluster large networks extremely fast (Jiang and Singh, 2010), and 

used to cluster our extremely large network. However, like every clustering algorithm, amongst a 

few, there is a single user defined parameter Td that determines the density of the resultant clusters 

and heavily influences the clustering process. To avoid an ad hoc or even a wrong choice of this 
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parameter, we performed exhaustive data-driven tests on the network clustered using a range of Td 

values to identify the best parameter for the network at hand (Fig. 2). 

First, for different values of Td, we tracked the number of clusters obtained and the fraction 

of genes in the original network that were in clusters of 3 or more genes (Fig. 2A). At small values 

of Td, there are very few clusters and only a few broken links. As Td increases, the number of 

clusters increases, but, however, very high Td will break the network so much that the clusters with 

3 or more genes will again become rare. Similarly, as Td increases, the number of genes that are 

part of clusters will steadily decrease until a critical value beyond which a large portion of genes 

will get disconnected and fall out of good-sized clusters. By testing for the value of Td after which 

there is the first significant drop in the number of clusters and fraction of genes in clusters, we 

found that this is at Td=0.65. Second, we calculated a measure of modularity called average 

segregation that quantified how well genes within a cluster are connected to each other compared 

to their connection to all the genes in the network (Fig. 2B) (Yook et al., 2004). Since we are 

interested in finding coherent biological modules, finding a Td that preserves segregation is sought 

after. It was surprising that the network showed the highest values of segregation for the smallest 

values of Td, indicating that even the original network with ~18.5 million edges is highly modular. 

Therefore, in the context of this network, at least, it was only important to look out for partitioning 

the network as much as possible without a significant drop in the inherent modularity. The first 

significant drop in average segregation (measured more qualitatively than quantitatively using the 

notches in the box plots; see Fig. 2 legend) occurs when the Td value is increased from 0.65 to 

0.70, suggesting that setting Td=0.65 ensures the maximum modularity-preserving partitioning of 

the network. 

Third, as we are interested in the functional consistency of genes within a cluster in addition 

to topological cohesiveness, we characterized the functional enrichment of all the clusters for a 

given Td value using GO BP enrichment analysis (Fig. 2C). Since this approach will suffer from 

the very sparse functional annotation of rice genes, we used this analysis only as a rough guide. 

Following the number of clusters that were significantly enriched with at least one specific GO BP 

(‘function’), we observed that the maximum enrichment again occurs at Td=0.65 (slightly better 

than Td=0.70). However, contrary to what is expected, the number of distinct enriched functions 

dropped steadily with increasing Td. Finally, using data from the enrichment analysis, we plotted 

the distribution of enrichment scores of all the clusters for different Td values and found that Td 
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values in the range of 0.65 to 0.80 were giving overall more significant overlap between clusters 

and functions (Fig. 2D). Therefore, based on all the four analyses, we decided on a Td=0.65 to be 

the best choice for clustering RECoN. 

We subsequently clustered RECoN using SPICi with Td=0.65 to uncover 1744 dense 

clusters with 3 or more genes. 28,421 genes (~81.7% of all the genes in the original network) fell 

within one of the clusters. Clustering the conditions based on their expression profiles also yields 

an expected grouping, especially with the drought-, salt- and cold stress samples clustering 

together (Supplemental Fig. S1). We linked these clusters to BP categories from the GO ontology 

and to CREs identified using a de novo motif discovery pipeline (Harb et al., 2010) (see 

“Methods”). The clusters thus identified can be used in a geneset enrichment analysis framework 

of new stress transcriptomes of rice. To demonstrate this analytical pipeline, we generated rice 

drought transcriptomes at three developmental stages, and used RECoN to identify clusters that 

are significantly perturbed in at least one stage.  

 

Gene expression profiling of drought in rice 

We profiled RNA samples from rice plants treated to drought at the seedling, vegetative and 

reproductive stages using the rice Affymetrix GeneChips (Fig. 1, step 1b). In addition, we 

measured phenotypic and physiological responses of the plants to drought stress (see Supplemental 

Note and Supplemental Table S2). Statistical analysis of differential expression showed that a large 

number of genes are perturbed, given a stringent q-value cut-off of <0.01 (Supplemental Table 

S3). The largest shift in expression compared to well-watered controls happened at the seedling 

stage with ~12,300 genes showing differential expression, compared to only ~2,500 genes in the 

reproductive stage and ~9000 genes at the vegetative stage. A comparison of the differentially 

expressed genes at the three developmental stages showed that ~33% of the genes were shared 

with the genes in the other stages in the case of both up- and down-regulated genes (Fig. 3A and 

3B).  

 To see the level of functional enrichment using genesets from the Gene Ontology (GO), we 

took a union of all the drought-regulated genes and split them into sets of genes that show identical 

pattern of regulation across the stages. We then determined the processes defined by GO biological 

process (BP) annotations that were enriched in each of these gene sets (Fig. 3C and 3D). As 

expected, the most significant GO term among the set of genes up-regulated in all stages was 
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‘response to water’. Similarly, different combinations of genes involved in protein 

dephosphorylation and small GTPase-mediated signaling are up-regulated in all stages. Among 

the genes down-regulated in all stages, photosynthesis and related processes are clearly enriched. 

Genes involved in translation are induced and repressed in the seedling and reproductive stages, 

respectively. Cell wall modification genes that are usually repressed by drought (Moore et al., 

2008) are also repressed at the seedling stage but specifically up-regulated in the reproductive 

stage. Comparisons of the GO BP category revealed the most obvious differences between up- and 

down-regulated genes (Supplemental Table S4). In this category, response to water (GO:0009415), 

lipid transport (GO:0006869), cellular response to stress (GO:0033554), transcription 

(GO:0006350), response to oxidative stress and carbohydrate biosynthetic process (GO:0016051) 

were found at higher proportions in up- than in down-regulated genes. In contrast, the processes 

photosynthesis (GO: 0015979), chlorophyll biosynthesis (GO:0015995) and glycolysis 

(GO:0006096) were specifically represented in the down-regulated set of genes.  

   Although this analysis gave us a few insights into drought-regulated gene expression, apart 

from the bona fide stress response themes, it is hard to pinpoint biological functions that are 

specifically affected in the different stages. The most important reason for this shortfall is the fact 

that rice genes are extremely poorly characterized and very few genes have been annotated well. 

This scenario becomes evident when we look at the small number of genes common between any 

GO term and the set of drought genes. Therefore, we need to pursue other approaches that will 

give us a better picture of the underlying changes during drought. 

 

Identification of drought-related clusters from RECoN 

The next operation was to interface the information gained from drought expression profiling to 

identify drought related modules from the coexpression data (Fig. 1, step 2). Each of the 1744 

clusters from RECoN were tested for enrichment of drought-responsive (up- or down-regulated) 

genes from any one of the stages (seedling, vegetative or reproductive) (Fig. 4). Drought clusters 

provide a handle on putative functional interactions between genes transcriptionally regulated by 

drought that were otherwise unassociated parts lists. This makes gene-by-gene interpretation a 

much easier and constructive process. Moreover, we reasoned that since a cluster is a coherent 

group of genes, all the genes in a ‘drought’ cluster might have a role in mediating drought-

response, not necessarily by responding to drought through gene expression changes. This is 
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possible by either being ubiquitously present as support machinery (between well-watered and 

drought conditions) or being conditionally active under drought due to non-transcriptional modes 

of regulation including post-translational modification. These clusters, hence, provide a means for 

functionally associating post-transcriptionally modified regulatory/signaling genes to 

transcriptionally regulated genes. 

 

Examples of drought transcriptional modules 

We present here some drought transcriptional modules as examples to showcase the usefulness of 

this approach in understanding developmental stage-specific drought response. All the genes in 

drought clusters, their relative expression across the stages and their ‘drought’ cluster membership 

are provided in Supplemental Table S5. 

Cluster0013 contains 294 genes enriched with genes up-regulated in the seedling stage and 

down-regulated in the reproductive stage. Genes in this cluster are involved in ribosome biogenesis 

and mitochondrial protein localization (which concerns transporting of mitochondrial oxidative 

phosphorylation proteins to the mitochondrion), and contain the GCC-core, Telo-box and the Site 

II motifs in their upstream sequences. This combination of biological processes and CREs 

represents a well-known regulatory program: the site II motifs are recognized by TFs of the TCP 

family and have been confirmed to be important in the regulation of ribosome protein (RP) genes 

in combination with the telo-box motif (Tremousaygue et al., 2003). These motifs are co-located 

in the promoters of about 70% of 216 ribosomal protein genes in Arabidopsis. In addition, there is 

evidence that the site II motifs also possibly coordinate the expression of nuclear genes encoding 

components of the mitochondrial oxidative phosphorylation machinery in both Arabidopsis and 

rice (Welchen and Gonzalez, 2006). Therefore, this program involving site II and telo-box motifs 

could mediate the down-regulation of major processes that affect protein production under drought 

stress in the reproductive tissue. The GCC-core motif is known to be bound by AP2-ERF TFs 

(Ohme-Takagi and Shinshi, 1995), which are involved in gene regulation under a variety of abiotic 

stresses conserved between Arabidopsis and rice (Nakashima et al., 2009). 

Cluster0010 contains 635 genes including genes involved in lignin biosynthetic process, 

amino acid transport, systemic acquired resistance, glycolysis, pentose-phosphate shunt and two-

component signal transduction system (phosphorelay). Genes in this cluster are down-regulated in 

the seedling and vegetative stages, but up-regulated in reproductive stage. Of particular interest in 
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this cluster is the OsVIN1 gene (LOC_Os04g45290) coding for a vacuolar invertase gene. OsVIN1 

has high fructan exohydrolase activity and is known to play an important role in carbon allocation 

to developing organs like the reproductive tissue. The expression of OsVIN1 is not induced by our 

drought treatment, and this is in agreement with previous observation that OsVIN1 is expressed in 

flag leaves, panicles (the reproductive tissue) and anthers in an essentially drought-insensitive 

manner (Ji et al., 2005; Parent et al., 2009). It is therefore a case where a gene involved in mediating 

a process (resource allocation) relevant to drought is not transcriptionally affected, but is 

associated with other drought-regulated genes in clusters defined by us. Another important gene 

observed in this cluster is SNAC3 (LOC_Os01g09550) that has been previously shown to confer 

tolerance to multiple stresses like salinity, drought and oxidative stresses (Fang et al., 2015). 

OsCPK9 (LOC_Os03g48270), a calcium dependent protein kinase is another key member in this 

cluster that has previously been shown to impart drought tolerance in transgenic rice plants by 

enhancing stomatal closure and stomatal adjustment. (Wei et al., 2014). Taken together these 

results suggest that the genes in this cluster contribute to drought tolerance by regulating osmotic 

adjustment and ROS scavenging processes and can also be putative candidates for increasing yield 

under drought. 

The 193 genes in Cluster0041 are enriched primarily in almost all processes involved in 

cell cycle, a process integral to panicle development and elongation, and these genes are 

specifically down-regulated by drought at the reproductive stage (the most drought sensitive stage 

of rice). Upstream regions of these genes contain the SEF3 binding site/ACII element, MYB 

recognition site found in rd22 and other genes, and E2F consensus, potential binding sites of TFs 

that have been implicated to be important in regulating cell cycle in the reproductive tissue of 

Arabidopsis (Hennig et al., 2004). 

The other aspect of using this approach is in discovery of drought tolerance genes. A variety 

of gene families with regulatory function have been shown to have a role in drought tolerance by 

overexpression/knockout experiments, and that regulate a battery of downstream genes (Umezawa 

et al., 2006). Therefore, to evaluate this aspect, we first catalogued a number of genes that confer 

drought tolerance in rice on overexpression or knockout, and then mapped them to RECoN clusters 

(Fig. 5). The primary observation is that almost all the drought tolerance genes were part of drought 

clusters. However, this observation could be trivial if all those genes are indeed regulated by 

drought in the first place. Out of the 54 genes presented here, 45 are indeed regulated by drought 
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in stage specific or independent manner while 9 of these are not drought-regulated, but are 

associated with a drought module. Therefore, we reaffirm that the approach lends itself to 

identification of genes that are not necessarily transcriptionally perturbed by drought, if at all 

regulated by it. Some examples for the drought-tolerance clusters follow. 

Cluster0079 contains 71 genes. The genes in this cluster include a receptor-like 

cytoplasmic kinase OsRLCK253 (LOC_Os08g28710) and a phosphatase OsPP108 

(LOC_Os09g15670), both of which have been shown to improve drought tolerance in transgenic 

Arabidopsis plants (Giri et al., 2011; Singh et al., 2015). Along with the aforementioned genes, 

this cluster also comprises of other known drought tolerance genes comprising of dehydrins like 

OsLea3-1 (LOC_Os05g46480) (Brohee and van Helden, 2006), enzymes like OsUGE-1 

(LOC_Os05g51670) (Nardini et al., 2011) and TFs like OsDREB2A (LOC_Os01g07120) (Skirycz 

and Inze, 2010), SNAC2/OsNAC6 (LOC_Os01g66120) (Bergmann et al., 2004), 

CMYB1(LOC_Os02g46030) (Kitano, 2002) and ZFP182 (LOC_Os03g60560) (Fig. 6A). Most 

genes in the cluster are up-regulated by drought in all three developmental stages, which appears 

to indicate the diverse roles that these proteins play including detoxification, osmotic adjustment, 

and signaling pathways.  Since our data revealed many putative stress inducible genes, a few of 

these genes are likely to have a dual role as developmentally regulated and stress responsive. 

Nevertheless, the functional role of these genes needs to be characterized to further enhance our 

understanding of the mechanisms that impart drought/abiotic stress tolerance to rice. 

Cluster0424 contains 20 genes enriched specifically with reproductive drought and these 

genes too contain an ABRE-like motif – HACGYGTNS – in their upstream sequence. The drought 

tolerance genes part of this cluster are OsDREB1F (LOC_Os01g73770) (Barrero et al., 2007; Choi 

et al., 2007), OsNPKL2 (LOC_Os01g50400) and OsNPKL3 (LOC_Os01g50410) (Fig. 6B). The 

tandem duplicate genes NPKL2 and NPKL3 are previously known to be strongly induced by 

drought at the reproductive stage (Ning et al., 2008). Highly induced expression of these genes 

under drought stress indicates that these two genes can be candidates for drought tolerance and 

increased yield under drought, for their potential role as a kinase as they are found to be located in 

the genomic region with three QTLs: RSN (relative number of spikelets per panicle under drought 

stress) and LDS (leaf drying score), which are mainly related to drought tolerance, and DIDRV 

(deep root rate in volume induced by drought conditions) (data not shown). Although expression 

of OsDERF1 is induced by drought and phyothormone treatments, its overexpression in rice 
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negatively regulates drought tolerance by repressing ethylene biosynthesis by binding to ERF 

repressors OsERF3 and OsAP2-39 (Wan et al., 2011). OsDREB1F was induced by abiotic stresses 

including osmotic stress (using PEG) as well as ABA treatment and overexpression in rice and 

Arabidopsis gave drought tolerance that can be mediated by ABA dependent pathway (Choi et al., 

2007). However, our progressive drought treatment does not perturb this gene (at least not at the 

stringent level of significance chosen). Developmental stage-specific drought-regulation of 

OsDREB1F is not clear except that the gene by itself is expressed differently in different stages 

and tissues. We therefore implicate OsDREB1F as being important in progressive drought 

response at the reproductive stage. 

Cluster0177 contains 33 genes involved in the regulation of innate immune/defense/stress 

response as well as response to jasmonic acid and salicylic acid. Drought regulated genes in this 

cluster are up-regulated specifically in the seedling and vegetative stages. This cluster again 

contains the drought-tolerance genes OsMAPK5 (LOC_Os03g17700) and OsNPKL4 

(LOC_Os01g50420). OsMAPK5 is known to be induced by drought, other abiotic stresses and 

ABA, as well as pathogen infection and that the overexpressiwon gives abiotic stress tolerance but 

disease susceptibility (Xiong and Yang, 2003). It is hence considered to be a key link in the cross 

talk between disease resistance and abiotic stress tolerance. We propose that other genes in this 

cluster are putative links of crosstalk between the stresses. Previous research has shown that 

OsNPKL4 is very strongly induced at the seedling stage, but has a moderate to low level of 

induction at the anthesis stage (Ning et al., 2008), consistent with the drought-pattern of this 

cluster. 

Cluster 0108 contains 37 genes with three drought tolerance genes. OsMYB4 

(LOC_Os04g43680), characterized as a universal stress response gene induced under a variety of 

biotic and abiotic stresses gives abiotic stress tolerance when overexpressed in apples (Yu et al., 

2006; Narsai et al., 2013) by modulating osmolytic balance, OsbHLH148 (LOC_Os03g53020) and 

its interacting partner OsJAZ1 (LOC_Os03g08310) mediates drought response via the jasmonic 

acid pathway (Seo et al., 2011). Genes in this cluster also could potentially be involved in jasmonic 

acid mediated hormonal signal transduction. 

 

A web interface for further exploration of rice abiotic stress response 
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We have made RECoN available online at https://plantstress-pereira.uark.edu/RECoN/ (Fig. 7).  

The interface provides an enrichment tool (Kim and Volsky, 2005) that allows users to upload 

their own rice genome-wide transcriptional response and explore stress clusters significantly 

perturbed in their experiment (using the strategy outlined in Figure 1 and used in this study). Users 

can explore the pathways/processes and regulatory sequences linked to each cluster as well as the 

genes within that cluster reported along with their perturbation in the user data and our drought 

experiments, homologs in Arabidopsis, and available gene annotations from both the MSU release 

7 (Kawahara et al., 2013) and RAP (Sakai et al., 2013) databases (Supplemental Fig. S2, S3 and 

S4). The webserver is Cytoscape-web (Lopes et al., 2010) enabled and allows graphical display of 

clusters with node attributes set to highlight changes in the user provided transcriptome and genes 

with regulatory roles (e.g. TFs and kinases). The platform also allows users to query a single gene 

as guide and retrieve a coexpression neighborhood to explore their functional context. Together, 

these functionalities in RECoN will enable biologists gain a network-based understanding of the 

stress response in rice and prioritize candidates for studying experimental phenotypes.   

 

Discussion 

Plant responses to environmental stress span across several layers of organization including 

signaling, transcription, and metabolism, making it vital to understand stress response at the 

systems-level. For less studied models like rice, the current scope for systems analysis is mostly 

restricted to transcriptional profiling under various conditions. Therefore, to make the best use of 

currently available data in rice, we have created a resource for exploration of transcriptional, 

developmental, functional, and regulatory aspects of abiotic-stress response in rice. 

 We sought to organize genes into coherent groups and work further from there. To this 

end, we designed and implemented a pipeline for automatic mining of condition-specific gene 

expression datasets intended for analysis of coexpression. At a practical level, accurate 

quantification of gene expression using technologies like Affymetrix GeneChips has been hard 

due to the problem of cross-hybridization. This has been noted to affect calculation of coexpression 

(Casneuf et al., 2007) and the proposed solution is a remapping of microarray probes to genes to 

ensure unique hybridization (Dai et al., 2005). We hence used a custom probe-gene mapping and 

used this reannotation to make reliable estimation of gene expression across 45 conditions. Then, 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 21, 2017. ; https://doi.org/10.1101/166694doi: bioRxiv preprint 

https://plantstress-pereira.uark.edu/RECoN/
https://doi.org/10.1101/166694
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 

a coexpression network was built (RECoN) and clustered to obtain tightly coexpressed groups of 

genes that revealed the modular organization of genes.  

We demonstrated the use of RECoN by analyzing new stage-specific drought 

transcriptomes. In order to both understand drought response and discover novel drought tolerance 

genes, we combined drought-responsive genes from our experiments with the transcriptional 

modules to uncover drought clusters, where each cluster, by design, contains several genes in 

addition to genes transcriptionally regulated by drought. Drought modules thus present an 

opportunity to discover regulatory genes that do not change in gene expression but can affect the 

response mediated by that module. In this process, we are basically imputing uncharacterized 

genes within a cluster with the function/role of characterized genes (even at the level of 

transcriptional response). In species with very little annotation, such as rice, cluster-level function 

prediction has been shown to be useful (Song and Singh, 2009). We have validated this approach 

by inspecting the cluster membership of known drought tolerance genes that are not drought 

responsive but are associated with a cluster that is enriched in genes following a drought expression 

pattern expected from what is known about the tolerance gene. 

With the enormous amount of data generated in this work that can be used for inference of 

gene function and pathway analysis, all these results are summarized and presented in a flexible 

visual interface for dynamic exploration. This online platform is – to the best of our knowledge – 

the first of a kind that allows users to upload their own transcriptomic data (e.g. output of an RNA-

seq assay) and find clusters that are significantly enriched. The clusters are linked to GO BPs and 

CRE, eliminating the need for a traditional GO BP enrichment analysis. The approach presented 

here is widely applicable: genome-wide transcriptional modules recovered here on the basis of 

gene expression under different environmental conditions can be similarly extended to study other 

abiotic stresses including salt and cold to find common stress-specific modules. This approach 

lends itself to identification of stress-related genes that are usually hidden in a typical 

transcriptome assay.   
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Figures 

 

 

Figure 1: Workflow for mining and characterization of drought transcriptional modules. 

(1a) Reconstruction and clustering of the rice environmental coexpression network from publicly 

available gene expression datasets. (1b) Identification of drought-responsive genes in the three 

developmental stages. (2) Determination of ‘drought’ clusters based on the combination of results 

from the steps 1a and 1b, and extraction of whole cluster and specific drought gene sets (3) 

Functional enrichment analysis and cis-regulatory motif discovery. (4) Presentation of these data 

to the user where (s)he explores the results to identify candidates genes for functional validation. 

(5) Availability of mutants in genes of interest that can be used to study gene function 
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Figure 2: Evaluation of coexpression network clustering. The rice ‘environment’ coexpression 

network was clustered using SPICi, for a range of values – 0.1-0.9 – of the density parameter Td 

that determines how dense the final clusters are. The clusters obtained using each Td value were 

evaluated using several criteria: (A) Number of clusters that were formed (left y-axis) and the 

fraction of 34,792 genes in the original network present in one of the clusters (right y-axis) are 

plotted. These numbers were calculating by considering only clusters containing 3 or more genes. 

As Td increases, more and more genes are left out of clusters. (B) Average segregation of a cluster 

is a measure of how well genes in that cluster interact with other genes belonging to the same 

cluster compared to interactions with genes belonging to other clusters. Hence, average 

segregation measures cluster modularity. The overall modularity at a given Td value is plotted a 

box plot, leaving out outlier values above the whiskers for clarity. The center of the box 

corresponds to the median (2nd quartile; Q2) of the distribution of average segregation values of all 

the clusters, and the extremes of the box correspond to the 1st (Q1) and 3rd (Q3) quartiles. The 

whiskers denote Q2  1.5*IQR, where IQR is the interquartile range (Q3-Q1). The notches in each 

box extend to +/-1.58 IQR/n (n being the sample size) (McGill et al, 1978). They are based on 
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asymptotic normality of the median and roughly equal sample sizes for the medians being 

compared, and are said to be rather insensitive to the underlying distributions of the samples. The 

notches give roughly a 95% confidence interval for the difference in two medians. (C) The extent 

of overlap between clusters (defined based on a particular Td value) and GO BP gene sets (termed 

‘functions’) is measured using the hypergeometric test. The number of clusters with significant 

overlap (FDR q-value <0.1) (left y-axis) and number of distinct functions significantly overlapping 

with the clusters (right y-axis) are plotted. (D) Functional enrichment of the clusters is quantified 

using –log10(q-value) and plotted using a box plot representing the distribution of the enrichment 

scores for all the clusters at a given Td value. Here again, outliers beyond the whiskers have been 

left out for clarity 
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Figure 3: Gene expression profiles under drought. Venn diagrams comparing up-regulated (A) 

and down-regulated (B) genes in response to drought in three growth stages: seedling, vegetative 

and reproductive. Total numbers of genes for all gene sets are indicated in brackets. Functions, 

processes and pathways common and specific to various drought stress treatments and time-points. 

These are defined broadly based on Gene Ontology (GO) biological process (BP) annotations of 

rice genes. First, the total of all drought-regulated genes from all stages were pooled together and 

were then partitioned based on the combination of their regulation in the three stages (e.g. up-up-

up, or down-up-down). Then, GO BP terms of interest (rows) were identified by analysis of 

enrichment of the set of genes annotated with a given GO BP term in each regulation-combination 

defined by the yellow-blue color-coding along the rows where blue means up-regulation and 

yellow means down-regulation. Statistical significance of enrichment was calculated using the 

hypergeometric test and terms with q-value <0.1 in at least one of the treatments were retained. 

(C) GO BP terms enriched in gene sets up-regulated in at least one stage. (D) GO BP terms 

enriched in gene sets only down-regulated in one or more stage. 
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Figure 4: Heat map showing the different clusters enriched in drought responsive genes in three 

developmental stages of rice. The fold change values obtained from the differential expression 

tests was used as a parameter for the parametric analysis of geneset enrichment algorithm. The 

heat map shows Z scores obtained from the enrichment analysis, color coded with a red and blue 
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gradient for positive and negative enrichment, respectively. The green grids along the rows 

indicate the ‘drought tolerance clusters’, identified by mapping known drought tolerance genes to 

clusters. A q value cut-off of 0.001 was set as a threshold to select the clusters.    
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Figure 5: Drought clusters containing known drought tolerance genes. Genes in black are 

regulated by drought at one or more of the growth stages while genes in red are not drought-

regulated. The values in the color-coded columns correspond to the level of significance (measured 

as score equal to the –log10[q-value]) of drought-regulated genes. For convenience the scores 

themselves are signed and colored based on the direction of their regulation (+/blue - up-

regulation; –/yellow - down). Since only enrichments with q-value<0.1 were considered, all the 

other values were set to 1 (because of which, their negative logarithms are 0s). 

 

 

 

Figure 6: Graphical visualization of A) 71 genes in Cluster0079 that contains six drought tolerance 

genes (with thick grey borders) and B) 20 genes in Cluster0424 that contains four drought tolerance 

genes. All the coexpression edges are colored green. Node shapes correspond to type of gene: 

triangles are TFs, diamonds are protein kinases, rounded squares are protein phosphatases and 

circles are other genes. Node color corresponds to the level of differential expression under drought 

in the vegetative stage for Cluster0079 and reproductive stage for Cluster0424 (where the clusters 

have maximum enrichment): blue for up-regulation and yellow for down-regulation. 

Uncharacterized gene are labeled ‘exp. pro.’ (for ‘expressed protein’). 
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Figure 7: A screenshot of the RECoN webserver available at the link provided in the main text. 

The online platform allows two types of analyses. The user can upload a genome-wide differential 

expression profile using the ‘choose file’ option, which will be used by the cluster enrichment tool 

to identify clusters that are significantly perturbed in the uploaded transcriptome, within the 

selected q value threshold. The uploaded file should contain two columns (with headers) with 

MSU formatted rice gene locus IDs in the first column and their respective fold change values 

determined from the differential expression tests in the second column. The results will be 

displayed in a new page with enriched clusters listed and links to display each cluster using 

Cytoscape-web, as well as biological processes and cis regulatory elements enriched in the clusters 

(see supplemental figures S2, S3 and S4). In cases where a single gene is of interest (rather than a 

genome-wide analysis), its locus ID can be entered in the input box under the ‘Find First 

Neighbors’ section. This analysis will report the genes within one path length of the query gene 

and a default coexpression score of 0.80 (which can be changed from the results page, see 

supplemental figure S5).        
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