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SUMMARY 
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Embryogenesis requires epigenetic information that allows each cell to respond appropriately to 

developmental cues. Histone modifications are core components of a cell’s epigenome, giving rise to 

chromatin states that modulate genome function. Here, we systematically profile histone modifications 

in a diverse panel of mouse tissues at 8 developmental stages from 10.5 days post conception until 

birth, performing a total of 1,128 ChIP-seq assays across 72 distinct tissue-stages. We combine these 

histone modification profiles into a unified set of chromatin state annotations, and track their activity 

across developmental time and space. Through integrative analysis we identify dynamic enhancers, 

reveal key transcriptional regulators, and characterize the role of chromatin-based repression in 

developmental gene regulation. We also leverage these data to link enhancers to putative target genes, 

revealing connections between coding and non-coding sequence variation in disease etiology. Our 

study provides a compendium of resources for biomedical researchers, and achieves the most 

comprehensive view of embryonic chromatin states to date. 

 

MAIN TEXT 

 

 Embryonic development relies on a complex interplay between genetic and epigenetic factors. 

While genetic information encoded in DNA sequence provides the instructions for an embryo to 

develop, epigenetic information is required for each cell type in an embryo to obtain its specialized 

function from a single set of instructions. More specifically, the functional output of a given DNA 

sequence depends on its chromatin state, which is defined in large part by posttranslational 

modifications of histone proteins1,2. These histone modifications take many forms, and they can 

influence gene expression by directly modulating DNA-histone interactions, or serving as binding sites 

for cognate reader proteins that function downstream to enhance or repress transcription3. Importantly, 

histone modifications allow for the transmission of gene activity states through cell division4, which is 

crucial for the maintenance of cellular identity. Given the importance of histone modifications in gene 

regulation, it is not surprising that mutations in genes that encode histones or histone modifying 

enzymes can lead to a wide variety of diseases including cancer, neurodevelopmental disorders, and 

congenital malformations5-7. 

 Histone modifications have also proven to be valuable markers for genome annotation8,9. 

Different types of functional sequences have distinct patterns of histone modifications, which can be 

profiled using Chromatin Immunoprecipitation sequencing (ChIP-seq). For example, chromatin around 

active promoters is characterized by H3K4me3 and H3K27ac, while chromatin around active enhancers 

is often marked by H3K4me1 and H3K27ac10-12. While the profiles of individual histone modifications 

can be informative, the most comprehensive functional annotations are achieved when multiple histone 

modifications are integrated into a unified set of chromatin states based on combinatorial patterns13-15. 

Each region in the genome can then be classified according to its chromatin state, providing insight into 
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its potential function.  

 

Profiling of histone modifications across developmental time and tissues 

 

 Despite the importance of chromatin states in determining the functional output of the genome, 

a comprehensive survey of chromatin states during mammalian embryonic development has been 

lacking. The mouse is an ideal system to study the developmental epigenome because it is the most 

widely used animal model in biomedical research, and offers experimental access to early stages of 

embryonic development. We harvested mouse tissues at closely spaced intervals from 10.5 days post 

conception (E10.5) until birth, which is roughly equivalent to gestational week 3 of human development 

through the end of the first trimester of pregnancy. At each stage, we dissected a diverse panel of 

tissues from multiple litters of C57BL/6N embryos and performed 2 replicates of ChIP-seq for each of 8 

histone modifications (H3K4me1, H3K4me2, H3Kme3, H3K27ac, H3K27me3, H3K9ac, H3K9me3, 

H3K36me3) (Figure 1a-b; Extended data figure 1). These include all six “core” histone modifications 

required by the International Human Epigenome Consortium (IHEC) to generate a reference 

epigenome16,17. At the earliest stage sampled (E10.5) it was not feasible to harvest enough tissue for 

standard ChIP-seq, so we used a modified micro-ChIP-seq procedure designed to work on much 

smaller numbers of cells and restricted our scope to only these 6 histone modifications. The complete 

data series includes more than 66 billion sequencing reads from 564 ChIP-seq experiments, each 

consisting of two biological replicates derived from different embryo pools (N=1,128 replicates total). All 

datasets were generated according to ENCODE standards and processed with a standardized pipeline 

that only outputs peaks passing strict reproducibility criteria18 (see Methods; Extended data figure 2a). 

In total, we identified more than 45 million peaks covering roughly one-third of the mouse genome 

(Extended data figure 2b-d).  

 We observed several high-level features of the data series that warrant comment here. First, as 

expected, the landscape of histone modifications is highly variable between tissues, particularly for 

marks of activity such H3K27ac and H3K9ac (Figures 1c, 2a; Extended data figure 3d). We observe 

that tissues with closer developmental origins tend to have similar histone modification profiles. For 

example, tissues of the Central Nervous System (CNS) can be easily distinguished from other tissues 

by hierarchical or k-means clustering (Figures 2a-b), as well as by principle component analysis 

(Extended data figure 2e). In addition to differences between tissues, histone modification profiles 

change progressively within each tissue during development (Figures 1d, 2c-d, Extended data figure 3). 

These developmental dynamics likely reflect at least two underlying biological processes: 1) changes in 

the epigenetic landscape of individual cells within a tissue as they undergo differentiation, and 2) shifts 

in the relative abundance of different cell types that compose a tissue. Although we cannot separate the 

contributions of these two factors, many of the epigenetic changes we observe reflect known hallmarks 
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of cellular differentiation. For example, we observe a dramatic shift in activity from Myh7 to Myh6 in 

heart at P0, which is known to occur in cardiomyocytes just prior to birth19 (Figure 1d). In the developing 

forebrain, we observe that markers of mature neurons such as NeuroD2 and Gad1 acquire active 

histone modifications during development, and concomitantly lose repressive modifications20,21 (Figure 

1d; Extended data figure 3a). We observe the opposite trend at genes encoding key cell cycle factors 

such as Ccnb1 and Cdk2, where active histone modifications decrease during forebrain development 

as neurons mature and exit the cell cycle (Extended data figure 3b-c). As a general trend, we observe 

that regions of histone modification restricted in developmental time or space are more likely to be 

distal to Transcriptional Start Sites (TSS; Extended data figure 3d). This is consistent with the model 

that TSS-distal regulatory elements play a key role in determining cellular identity22,23. 

 

An integrated 15-state model characterizes the developmental chromatin landscape 

 

 To leverage the information captured by combinatorial patterns of histone modifications (i.e. 

chromatin states) we applied ChromHMM13 to the data series, excluding E10.5 because this stage did 

not have the full complement of histone modification profiles. We first determined the optimal number of 

chromatin states to describe the data (Figure 3a, Extended data figure 4a-c, and Methods). Multiple 

approaches converged on a 15-state model, which shows near-perfect consistency between biological 

replicates, and is in general agreement with previously published models developed from partially 

overlapping sets of histone modifications13,16,24 (Extended data figure 4d-g). Although our chromatin 

state designations were made without considering gene locations, the distribution of each state relative 

to genes matches expectations25 (Figure 3b). We grouped the resulting chromatin states into 4 broad 

functional classes: promoter states, enhancer states, transcriptional states, and heterochromatic states. 

It is important to note that these chromatin state annotations are specific to this study, and are distinct 

from the ENCODE Consortium’s candidate regulatory element registry and Encyclopedia (ENCODE 

Consortium, in preparation). In total, we find that ~33.4% of the genome shows a chromatin signature 

characteristic of one of these four functional classes (i.e. excluding state 15 “no signal”, and state 11 

“permissive”) in at least one tissue or developmental stage. This does not necessarily mean that 33.4% 

of the genome sequence is functional, but rather that 33.4% of the genome sequence is packaged in 

chromatin that shows a reproducible signature in at least one of the tissues or stages profiled here. 

These chromatin signatures reflect transcriptional and/or regulatory activity, but the sequences they 

mark may not be functional by strict definition. For example, the transcriptional elongation state (state 

#10) covers the introns of many highly transcribed genes, but much of the sequence in these introns 

may not contribute to the fitness of the organism.  

 The chromatin state maps provide powerful tools for genome annotation, as a broad range of 

inferred functional information can be visualized across multiple tissues and stages in a single genome 
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browser view (Figure 3c-e; Extended data figure 5a-b). For example, we see that active chromatin 

states robustly and specifically mark master regulators of tissue development including Gata4 and 

Nkx2-5 in heart26, Nkx2-1 in lung27, Cdx2 in intestine28, Barx1 in stomach29, and Wt1 in kidney30. While 

examining chromatin state maps at these genes that code for tissue-restricted transcription factors 

(TFs), we noted that they are frequently marked by a heterochromatic state characteristic of Polycomb-

mediated repression (state 13, Hc - Polycomb associated) outside of their tissues of activity. Polycomb-

mediated repression is known to be essential for embryogenesis31-33, but the genomic distribution of 

repressive chromatin during mammalian development has not been thoroughly examined. To further 

investigate the role of Polycomb-mediated repression in development, we used GREAT34 to examine 

Gene Ontology (GO) terms associated with regions of Polycomb repressive chromatin. We found that 

Polycomb repressive chromatin is highly enriched near TF genes in every tissue and stage surveyed 

here (Figure 4a). Moreover, TF genes that are underlie human Mendelian diseases35 are particularly 

likely to be marked by repressive chromatin (Figure 4b), suggesting that these genes are tightly 

regulated by a combination of repression and activation. We also examined a small but well-

characterized set of genes (Sox9, Pax3, Shh, Ihh, and Wnt6) that are known to cause human 

congenital phenotypes when ectopically expressed during development36-38. Notably, every one of 

these genes is widely marked by repressive chromatin in tissues where they are not active (Figure 4b; 

Extended data figure 5c). These data support an essential and pervasive role for Polycomb-mediated 

repression in silencing key developmental regulators outside of their normal expression domains, which 

may function in turn to control broader programs of gene expression39. We note that the 

heterochromatic state characterized by H3K9me3 (state #14, Hc - H3K9me3) and likely representative 

of facultative heterochromatin shows a very different distribution, as previously described40-44 (Extended 

data figure 6). 

 The breadth of data collected here allowed us to globally characterize both the spatial and 

temporal dynamics of chromatin states. On average, ~1.2% of the genome differs in chromatin state 

between tissues at the same stage (mean 1.2%, 31.3Mb; range 1.0%-4.0%, 26.8Mb-109.1Mb), but that 

percentage jumps to 17.2% if we discard the portion of the genome that shows no chromatin signal 

across all tissue-stages (i.e. constitutive state 15). Enhancer states show the highest degree of 

variability between tissues, reinforcing the role of enhancers in defining tissue and cell identity 

(Extended data figure 7a). Indeed, hierarchical clustering of our samples based on strong enhancer 

predictions alone (i.e. state 5) leads to clear separation by tissue, and captures relationships between 

tissues with similar developmental origin (Extended data figure 7b-d). Interestingly, this analysis 

revealed a strong relationship between limb and facial tissue, which was also observed in clustering 

results based on single histone modifications (Figure 2a-b). These findings are suggestive of a deep 

similarity in gene regulatory programs between these two tissues, and provide further support for the 

hypothesis of a common developmental origin for facial structures and limbs45,46. Within a given tissue, 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 3, 2017. ; https://doi.org/10.1101/166652doi: bioRxiv preprint 

https://doi.org/10.1101/166652
http://creativecommons.org/licenses/by-nc/4.0/


we find that on average ~1.3% of the genome differs in chromatin state between adjacent 

developmental stages (mean 1.3%, 36.6Mb; range 0.03%-3.01%, 9.4MB-82.1Mb). While the fraction of 

the genome that differs in state between adjacent stages is roughly the same as the fraction that differs 

between tissues at the same stage, differences between stages are more subtle, as they are less likely 

to affect states characteristic of strong enhancers, promoters, or heterochromatin (States 5, 1, and 13, 

respectively; Extended data figure 7e). Nonetheless, these temporal changes capture important 

developmental processes like the maturation of Alveolar Type I cells (marked by Aqp527) just prior to 

the onset of pulmonary gas exchange at birth (Figure 3e), and the transition of predominant liver 

function from hematopoiesis in the early embryo to metabolism in the later stages of development47 

(Extended data figure 7f). A global summary of temporal changes in chromatin state reveals the 

tendencies of certain states to transition to others, including shifts from poised to active enhancers, 

bivalent to active promoters, and permissive to repressed chromatin (Figure 4c, Extended data figure 

7g).  

 To gain further insight into the dynamic processes occurring in each tissue, we focused 

specifically on the subset of enhancers that show dynamic activity across stages (referred to as 

“dynamic enhancers” below). To identify dynamic enhancers, we began by compiling lists of putative 

enhancers in each tissue (i.e. chromatin state 5). Next, we calculated a stage-specific activity score for 

each enhancer based on its level of H3K27ac enrichment, and used these activity scores to identify 

enhancers that change activity from stage-to-stage48 (see methods). Within each tissue, clustering of 

these dynamic enhancers revealed several predominant temporal patterns of activity (Extended Data 

figure 8). Considering forebrain as an example, we found four predominant patterns of temporal activity, 

which reflect underlying developmental processes (Figure 4d-g). Enhancers that peak in activity early in 

development are associated with GO terms related to general CNS and brain development (Figure 4d, 

cluster A), while enhancers that peak in middle stages are associated more specifically with 

neurogenesis and gliogenesis (Figure 4d, clusters B-C), and enhancers peaking latest in the 

developmental series are associated with synaptic function (Figure 4d, cluster D). By comparing the TF 

binding motifs enriched in each cluster to the expression levels of TF genes that target these motifs, we 

identified specific TFs that likely regulate the biological processes revealed by GO analysis. Consistent 

with published reports, these data suggest key roles for Sox2 in early brain development49,50, NeuroD6 

in neurogenesis during mid-late gestration51, and Mef2c in synapse formation52. Notably, the human 

orthologs of Mef2c and Sox2 are Mendelian disease genes linked to congenital defects of the CNS 

(MIM # 613443 and #206900, respectively). Similar catalogs for each tissue are available in Extended 

data figure 8 and Table S1, including dynamic enhancer clusters, corresponding GO terms, and 

enriched TFs.  

 

Linking Enhancers to Target Genes and Phenotypes 
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 Predicting the target genes of enhancers remains a major challenge in the field, in part because 

enhancers can be located hundreds of kilobases away from the genes they regulate22,23. To address 

this challenge, we developed a map of predicted enhancer target genes based on the correlation 

between gene expression (as measured by RNA-seq) and H3K27ac enrichment at TSS-distal 

enhancers within the same Topologically-Associating Domain (TAD) (Figure 5a; Extended data figure 

9a-b; Table S2). TADs have been shown to constrain the activity of enhancers to the genes in the same 

domain36,37,53. We assigned enhancers to target genes within the same TAD based on Spearman's rank 

Correlation Coefficient (SCC) between H3K27ac enrichment and mRNA expression across all 66 

tissue-stages (Extended data figure 9a) (p-value <= 0.05  and SCC >= 0.25; see methods). We took 

advantage of biological replicates for both the chromatin and RNA-seq data to derive independent 

target gene maps for each replicate. These maps include 31,965 and 32,735 enhancer-gene 

assignments, respectively, with an overlap 21,142 (Extended data figure 9c-e). Overall, these target 

gene maps are highly reproducible (SCC = 0.71 between replicates, evaluated as the number of 

enhancers per gene). Interestingly, we found that genes with 5 or more assigned enhancers are 

associated with biological processes related to development and differentiation, whereas genes with 

only a single assigned enhancer tend to be involved in cellular and metabolic processes more 

consistent with “housekeeping” functions (Extended data figure 9f). This result further highlights the 

importance of enhancers in directing the expression of developmental genes. 

 To further evaluate the accuracy of our enhancer target gene maps, we made use of published 

data from chromatin conformation capture technologies54-56, which assay physical interactions between 

promoters and enhancers. We found that our correlation-based map predicts experimentally 

determined enhancer-gene interactions with higher accuracy than assigning an enhancer to the nearest 

adjacent gene (Figure 5b; Extended data figure 9g). We also sought to determine whether our map of 

enhancer target genes in mouse could be useful for predicting human enhancer-gene interactions. To 

this end, we identified human orthologs of the enhancers and genes in our mouse map, and used data 

from the GTEx project to assess whether the enhancer-gene relationships inferred in mouse are likely 

to be conserved in human. The GTEx project has identified a large collection of human expression 

quantitative trait loci (eQTLs)57, which are known to be enriched in enhancers and other regulatory 

elements58. Importantly, each eQTL is connected to a target gene by genetic association. Thus, we 

hypothesized that if the enhancer target genes we predict in mouse are applicable to human, we should 

see an enrichment for eQTLs that link the human orthologs of these enhancers to the same target 

genes by genetic association. Indeed, across a variety of human tissues we see a significant 

enrichment of eQTLs that support our enhancer target gene predictions (Figure 5c).  

 With this set of enhancer target gene predictions in hand, we again focused on the subset of 

genes known to cause Mendelian disease when mutated (“OMIM genes”)35. Mendelian diseases are 
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predominantly caused by highly penetrant mutations that often effect coding sequence59. In contrast, 

SNPs associated with lower-penetrance non-Mendelian phenotypes by Genome-Wide Association 

Studies (GWAS) are highly enriched in putative regulatory sequences60. This suggests that 

dysregulation of gene expression is a common mechanism contributing to non-Mendelian phenotypes, 

which include diseases with enormous human health burden like coronary heart disease61 and Type 2 

diabetes62. We hypothesized that if enhancers which regulate Mendelian disease genes are disrupted 

by common sequence variants (i.e. SNPs), it might lead to less penetrant non-Mendelian phenotypes. 

To explore this hypothesis, we examined the frequency of GWAS SNPs (i.e. SNPs associated with a 

human phenotype by GWAS) in enhancers linked to OMIM genes by our correlative map, and 

compared this with the frequency of GWAS SNPs in enhancers linked to non-OMIM genes. Indeed, we 

find a highly significant enrichment for GWAS SNPs in enhancers linked to OMIM genes (p=4.3e-8, chi-

squared test). We also compared enhancers linked to OMIM genes with enhancers in the same TADs 

that are not linked to OMIM genes. Again, we see a significant enrichment for GWAS SNPs in the 

enhancers linked to OMIM genes (p=7.29e-4, chi-squared test; Extended data figure 9h; 

Supplementary Table S4). These results points to a systematic relationship between highly penetrant 

mutations that lead to Mendelian disease, and lower penetrance enhancer variants that may impact the 

regulation of those same genes and lead to more common phenotypes. For example, in Figure 5d we 

highlight Bcl11a. Coding mutations in the human ortholog (BCL11A) cause Dias-Logan syndrome 

(MIM# 617101) – also known as “Intellectual developmental disorder with hereditary persistence of fetal 

hemoglobin.” The Bcl11a locus contains two large clusters of putative enhancers that are active in the 

CNS and embryonic liver (a site of erythropoiesis), respectively. Indeed, the human ortholog of the liver 

enhancer cluster has been extensively characterized in human blood lineages63,64, and a human 

sequence orthologous to the CNS enhancer cluster has been validated in vivo65. Interestingly, the 

human liver enhancer ortholog contains nine total GWAS associations, eight of which are related to 

hemoglobin levels (the 9th association is to schizophrenia). In contrast, the CNS enhancer orthologs 

contains three GWAS associations, all with phenotypes related to neurodevelopment or cognitive 

function (Attention deficit hyperactivity disorder, Educational attainment). These observations suggest 

that while Bcl11a coding mutations lead to a pleiotropic syndrome with manifestations in both the CNS 

and hematopoietic systems, non-coding regulatory variants at the same locus may lead to non-

syndromic phenotypes that predominantly effect one system or the other, depending on which 

enhancer is affected. 

 

Relationship between H3K27ac enrichment and enhancer validation rate.  

 

 In several of the analyses described above, we have used chromatin state to study putative 

enhancers. Chromatin states (and even H3K27ac alone) have proven to be effective tools for 
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identifying enhancers14,48,66,67, but the accuracy of these methods remains under investigation. The 

putative enhancers identified in this study are supported by multiple lines of evidence including the GO 

and motif enrichments discussed above (Figure 4f) as well as tissue-specific enrichments for in vivo 

validated enhancers from the VISTA database65 (Extended data figure 10a). Anecdotally, we have 

noted that putative enhancers with stronger H3K27ac enrichment are more likely to validate in 

transgenic mouse reporter assays, which is an important consideration because the level of H3K27ac 

enrichment at putative enhancers can vary by orders of magnitude within a single tissue or cell type. To 

more systematically examine this relationship between H3K27ac enrichment level and validation rate, 

we used transgenic mouse assays68 in E12.5 embryos to test 150 enhancers predicted from E12.5 

forebrain, heart, or limb tissue that fell into one of three H3K27ac enrichment rank categories: high 

(selected from ranks 1-85), medium (ranks 1500-1550), or low (ranks 3000-3050) (Figure 6, Extended 

data figure 10b, Supplementary Table S5). We found that ~60% of the high-ranking enhancers 

displayed reproducible reporter gene expression in the expected tissue. However, <30% of predicted 

enhancers from the two lower-rank groups validated (Figure 5a, p-values < 0.01, Fisher’s exact test). 

These results are consistent with a similar validation of enhancers predicted from e11.5 tissues 

(ENCODE Consortium, in preparation). In addition, high-ranking enhancers that validated in the 

expected tissue were also more likely to have enhancer activity in additional tissues (Figure 6b, p-

values < 0.05, Mann-Whitney U Test). Importantly, no significant differences were observed in 

reproducibility rates (i.e. the percentage of embryos with reproducible activity) between rank classes 

(Extended data figure 10c).  Overall, these results demonstrate that loci with stronger H3K27ac 

enrichment are more likely to direct reporter expression in the expected tissue, and tend to direct 

reporter expression in a wider variety of tissues.  

 The results of these transgenic reporter assays provide an intriguing perspective on one of the 

most important questions in the field: what portion of sequences marked by an enhancer chromatin 

signature truly function as enhancers in vivo? Surveys of chromatin state and chromatin accessibility in 

a single tissue or cell type often predict enhancers numbering in the tens or even hundreds of 

thousands. In the past this has led us and others to estimate the total number of enhancers in the 

genome at several hundred thousand or more66,69. In contrast, the results of our transgenic assays 

suggest that outside of the top enhancers in a given tissue (as ranked by H3K27ac enrichment), the 

validation rate in this assay drops to roughly one-third. In light of these results, we think it is important to 

approach estimates of enhancer abundance with a healthy degree of caution, but we do not think these 

estimates should be abandoned entirely as they likely provide a reasonable upper bound estimate for 

the number enhancers in the genome. Although our data clearly suggests that the true positive rate of 

chromatin-based enhancer predictions decreases as function of H3K27ac level, it is difficult to 

determine exactly what this true positive rate is. Definitive proof of an enhancer’s function (or lack 

thereof) requires genetic manipulation of that enhancer in its native context, followed by extensive 
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measurements of the resulting impact on gene expression70-72. Even such rigorous genetic experiments 

can be difficult to interpret, because an enhancer’s function might be limited to a very specific set of 

conditions that are difficult to identify and/or reproduce in an experimental setting. In addition, one 

enhancer may compensate for the loss of another, achieving a redundancy that could serve to make 

regulatory programs more robust to perturbations. Ultimately, we think our results highlight the 

importance of continued investigation into the molecular basis of enhancer function, and encourage the 

continual assessment of global enhancer estimates as new data points like those reported here 

become available. 

 

 In summary, we present a survey of the chromatin landscape in the developing mouse embryo 

that is unprecedented in is breadth. Our results describe a multi-tiered compendium of functional 

annotations for the developmental mouse genome, yielding valuable insight into key developmental 

processes and regulatory factors. The resources generated here include chromatin state maps for each 

tissue and stage, catalogs of enhancers that show dynamic activity during development, a genome-

wide map of predicted enhancer target genes, and a collection of transgenic reporter assays that 

demonstrates a strong relationship between H3K27ac signal and likelihood of validation. We further 

reveal an important role for Polycomb-mediated repression in regulating TF genes during development, 

and a systematic connection between Mendelian diseases and complex common diseases likely 

caused by perturbation of the same genes. Due to the uniquely critical role of the mouse in biomedical 

research, we believe that the tools and insights developed here will prove to be a valuable resource to 

the biomedical research community. 
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MAIN FIGURE LEGENDS 

 

Figure 1: Profiling histone modifications during mouse embryonic development. (a) Overview of 

the experimental design. (b) Characteristic patterns of histone modifications at different types of gene 

loci: Neurod2 (chr11:98,318,134-98,336,928; mm10), Rpl5 (chr5:107,895,370-107,914,164; mm10), 

Hoxa (chr6:52,199,870-52,218,665; mm10). Data shown are from forebrain at E15.5. (c) Tissue-

restricted H3K27ac enrichment at tissue-restricted regulators Neurod2 and Nkx2-5 (chr17:26,832,795-

26,855,694; mm10). Data shown from 12 tissues at stage E15.5. (d) Stage-restricted histone 

modification patterns at developmentally regulated loci Neurod2 and Myh6/Myh7 (chr14:54,927,121-

55,010,762; mm10). Note the switch in activity from Myh7 to Myh6 at P0. 

 

Figure 2: The histone modification landscape changes progressively during development and 

reflects developmental relationships between tissues. (a) k-means clustering of H3K27ac peaks 

based on normalized H3K27ac enrichment (see methods for details of normalization; k=8). Total 

number of H3K27ac peaks = 333,097. Numbers of elements in each cluster from top to bottom: 20497, 

50790, 31043, 36849, 38670, 31168, 36822, 87258. Tissue abbreviations same as figure 1. (b) 

Dendrograms from hierarchical clustering based on signal for each histone modification, as indicated. 

Note the consistent relationships between tissues of similar developmental origin. (c) Progressive 

changes in histone modifications shown by pearson correlations of peak strength between replicates 

that are either from the same stage (i.e. developmental stages separating datasets = 0), or from 

different stages (separated by 1 - 6 intervening stages, as indicated). (d) Pearson correlation 

coefficients between all Heart H3K27ac datasets from E11.5 to P0. 

 

Figure 3: A 15 state model characterizes the mouse developmental chromatin landscape. (a) 

Overview of 15-state chromHMM model. A description is provided for each one of the 15 states. The 

states are grouped into four main categories: promoter, enhancer, transcription, heterochromatin. (b) 

Enrichment of chromatin states relative to annotated genes. The locations of these features were not 

considered when building the chromatin state model. (c) Chromatin state landscape at Gata4, a TF 

involved in heart development (chr14:63,181,234-63,288,624; mm10). (d) Chromatin state landscape at 
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Nkx2-1, a TF involved in lung development (chr12:56,507,647-56,560,509; mm10). (e) Chromatin state 

landscape at Aqp5, a marker of mature Alveolar Type 1 cells in the lung, which is expressed just prior 

to birth (chr15:99,589,794-99,596,121; mm10). P0 lung stage indicated by black arrowhead. 

 

Figure 4: Repression and activation of cis-regulatory elements during development. (a) 

Enrichment of “molecular function” GO terms in genes near repressed regions (state 13). GO terms on 

the y-axis are ordered by average enrichment p-value across all tissues and stages (most significant on 

top to least significant on the bottom). The top 20 GO terms are listed on the right, and are all related to 

TF function. (b) The relative frequency of repressive chromatin (state 13) at four different sets of TSS: 

1) all GENCODE protein coding TSS (N=90,384), 2) the subset of (1) that belong to transcripts of TF 

genes (N=1,019), 3) the subset of (2) that are also known to cause to Mendelian phenotypes when 

mutated (i.e. “OMIM” genes; N=227), 4) the remaining OMIM gene TSS that do not encode TFs 

(N=3,497). The individual gene symbols indicate genes that are known to cause congenital defects 

when abnormally expressed. Not shown: TSS repressed in none of the 66 tissue-stages (77%, 62%, 

51%, and 74%, respectively), and TSS repressed in all 66 tissue stages (<1%, 2%, 3%, and <1%, 

respectively). (c) Sankey diagram showing the origin and fate of all genomic intervals classified as TSS-

distal strong enhancers (state #5) in E14.5 forebrain. The chromatin state classification of these regions 

was tracked across the available developmental stages, and the relative genomic coverage of each 

chromatin state at each transition is plotted. The thickness of each color (i.e. y axis) indicates the 

coverage of each state. (d) K-means clustering of dynamic enhancers based on H3K27ac signal at 

stages: E11.5, E12.5, e13.4, E14.5, E15.5, E16.5, P0. (e) Top 4 Biological Processes GO terms 

enriched in each cluster of dynamic enhancers in (d) as determined by GREAT. (f) Top 4 sequence 

motifs enriched in each cluster of dynamic enhancers in (d). Some motifs are abbreviated with “…” to fit 

in the panel. The full motifs are (top to bottom): POU domain factors TATGCAAAT; Nuclear Factor 1 

TTGGCTATATGCCAA; POU domain factors TAATTAATTA; MEF-related factors CTAAAAATAG; 

TALE-type home domain AGCTGTCAA. (g) Gene expression shown for TFs in the structural 

subfamilies that match motifs in (f) indicated by closed black circles.  

 

Figure 5: Maps of enhancer target gene prediction in mouse and human. (a) Genome browser 

view showing chromatin states at the Ascl1 locus (chr10:87,301,848-87,515,210; mm10). Color scheme 

is the same is in Figure 4. Black bars on top represent enhancers predicted to target Ascl1. Two of 

these enhancers have human orthologs (below main panel) that have been previously validates using 

in vivo transgenic reporter assays in mouse. Tissues with reproducible enhancer activity are indicated 

with arrow heads. (b) Enhancer-gene interactions identified by this correlative approach are generally 

more likely to be supported by chromatin interaction data than associations derived by a nearest gene 

approach. Chromatin interaction data from (Andrey et al., 2017) (upper box), (DeMare et al., 2013) 
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(middle box) and (Schoenfelder et al., 2015) (lower box). Note that the Liver capture Hi-C dataset 

contains ~600,000 interactions (or roughly 30 per TSS considering ~22K TSS in the genome). This is 

far more interactions than that Capture C or ChIA-PET datasets, which we expect may explain why the 

nearest gene assumption outperforms our predictions in this dataset alone. (c) The correlative 

enhancer-gene interactions are significantly enriched for human eQTL-gene associations (see 

Methods). *** p <= 0.001; ** 0.001 < p <= 0.01;* 0.01 < p <= 0.05; (Fisher’s Exact Test). (d) Genome 

browser view showing chromatin states at the Bcl11a locus (chr11:24,044,043-24,197,927; mm10). 

Boxes outline enhancer clusters active in the CNS (left) and liver (right). The subpanels below show 

regions of the human genome corresponding to the CNS enhancer cluster (chr2:60,752,530-

60,767,198; hg19) and liver enhancer cluster (chr2:60,711,940-60,741,118; hg19), respectively. The 

black bars on top represent the predicted Bcl11a enhancers from mouse, and green bars below 

represent GWAS SNPs for the EMBL-EBI GWAS catalog. SNP IDs lower left subpanel, from left to 

right: (rs2556378, rs2457660, rs356992). SNP IDs lower right panel, left to right: (rs4671393, 

rs11886868, rs766432, rs7599488, rs1427407). The black bar labeled hs967 shows a sequence 

previously tested in vivo. Reporter activity in E11.5 mouse embryo shown to the right. 

 

Figure 6: In vivo validation of predicted E12.5 enhancers.  We tested 150 total enhancers predicted 

from E12.5 forebrain, limb, or heart tissue using in vivo mouse transgenic assays. Predicted enhancers 

from each tissue were ranked, from strongest to weakest H3K27ac signal, and we selected elements 

for validation from three different rank categories (roughly ranks 1-85, 1500-1550, and 3000-3050). (a) 

Bars indicate the proportion of enhancers in each category that showed reproducible reporter staining 

in the expected tissue (blue) or any tissue (white). High ranking predicted enhancers had a higher 

validation rate in the correct tissue than lower ranking enhancers (p-values by 1-tailed Fisher’s exact 

test). (b) For those enhancers that validated in the expected tissue, the distribution of tissues with 

reproducible reporter gene expression for each enhancer by rank class is shown with violin plots.  High 

ranking enhancers showed reproducible activity in more tissues than those with lower ranks (p-values 

by one-tailed Mann-Whitney U Test). (c) Examples of enhancers from each tissue type and rank class 

that validated in the expected tissue.  Representative transgenic E12.5 embryos showing reporter 

expression (blue staining) are shown, along with the unique VISTA Enhancer Browser (PMID: 

17130149) identifier (mm number) and the enhancer’s reproducibility.  Images on the far right show a 

magnified image of the heart (RA, right atrium; LA, left atrium; RV, right ventricle; LV, left ventricle).  

Red arrowheads indicate the enhancer activity pattern in the forebrain, limb, or heart. 

 

METHODS 

 

Tissue Collection. All animal work was reviewed and approved by the Lawrence Berkeley National 
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Laboratory Animal Welfare and Research Committee. Tissue collection for all developmental stages 

was performed using C57BL/6N strain Mus musculus animals. For E14.5 and P0, breeding animals 

were purchased from both Charles River Laboratories (C57BL/6NCrl strain) and Taconic Biosciences 

(C57BL/6NTac strain). For all remaining developmental stages, breeding animals were purchased 

exclusively from Charles River Laboratories (C57BL/6NCrl strain). Wild-type male and female mice 

were mated using a standard timed breeding strategy. Embryos and P0 pups were collected for 

dissection using approved institutional protocols. Embryos were excluded if they were not the expected 

developmental stage. To avoid sample degradation, only one embryonic litter or P0 pup was processed 

at a time, and tissue was kept ice cold during dissection. Collection tubes for each tissue type were 

placed in a dry ice ethanol bath so that tissue samples could be flash frozen immediately upon 

dissection. Tissue from multiple embryos was pooled together in the same collection tube, and at least 

two separate collection tubes were collected for each tissue-stage for biological replication. Tissue was 

stored in a -80oC freezer or on dry ice until further processing. A step-by-step protocol for tissue 

collection, including detailed information about how embryonic stage was determined, can be found on 

the ENCODE Project website at https://www.encodeproject.org/documents/631aa21c-8e48-467e-8cac-

d40c875b3913/@@download/attachment/StandardTissueExcisionProtocol_02132017.pdf.     

 

ChIP-seq data generation. ChIP-seq experiments for all marks and tissues from E11.5 – P0 were 

performed as previously described66. The ChIP-seq protocol was modified slightly for all E10.5 

experiments due to the low amount of input (“micro” ChIP-seq). Detailed protocols for both standard 

and micro ChIP-seq including antibodies used and antibodies validations performed are available at 

www.encodedcc.org associated with each experiment described here. They can also be found at the 

links below. Standard ChIP-seq, Tissue fixation & sonication: 

https://www.encodeproject.org/documents/3125496b-c833-4414-bf5f-

84dd633eb30d/@@download/attachment/Ren_Tissue_Fixation_and_Sonication_v060614.pdf, 

Immunoprecipitation: https://www.encodeproject.org/documents/89795b31-e65a-42ca-9d7b-

d75196f6f4b3/@@download/attachment/Ren%20Lab%20ENCODE%20Chromatin%20Immunoprecipit

ation%20Protocol_V2.pdf, Library preparation: https://www.encodeproject.org/documents/4f73fbc3-

956e-47ae-aa2d-

41a7df552c81/@@download/attachment/Ren_ChIP_Library_Preparation_v060614.pdf. Micro-ChIP-

seq (E10.5), Tissue fixation & sonication: https://www.encodeproject.org/documents/1fcaab50-6ca0-

4778-88cb-

5f6b85170d21/@@download/attachment/Ren%20Lab%20ENCODE%20Tissue%20Fixation%20and%

20Sonication%20Protocol%20MicroChIP.pdf, Immunoprecipitation & Library preparation:  

https://www.encodeproject.org/documents/18580e80-0907-4258-a412-

46bcc37bd040/@@download/attachment/Ren%20Lab%20ENCODE%20Chromatin%20Immunoprecipi
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tation%20Protocol%20MicroChIP.pdf.  

 

ChIP-seq data processing. Histone ChIP-seq data were analyzed using a software pipeline 

implemented by the ENCODE Data Coordinating Center (DCC) for the ENCODE Consortium. A 

schematic representation of the pipeline is shown in Extended figure 10. Each step of the pipeline 

corresponds to a script written in the Python programming language that assembles the input files, runs 

external programs (such as the MACS2 peak caller), and calculates quality-control metrics. The 

methodology is similar to that previously described for ENCODE73 with the following modifications: The 

mapping step used bwa version 0.7.10 and samtools version 1.0, and MACS2 version 2.1.0 was used 

for signal track generation and peak calling. In order to ensure an adequate sampling of noise for 

subsequent replicate comparisons, peaks were initially called at a relaxed p-value threshold of 1 x 10-2.  

Such relaxed peak sets were generated for each biological replicate, for the replicates pooled, and for 

pooled pseudoreplicates of each true replicate (each pseudoreplicate consists of half the reads 

sampled without replacement). Peaks from the pooled replicate set were retained in the replicated peak 

set if they overlapped by at least half their length (in bases) peaks from both biological replicates.  

Additionally, peaks that overlapped both pooled pseudoreplicates were added to the replicated peak 

set.  In this way very strong biological replicates could “rescue” peaks that were only marginal in a 

second replicate. The pipeline is available to be run on the DNAnexus (https://www.dnanexus.com/) 

web platform, backed by cloud computing from Amazon Web Services (AWS), and is the same pipeline 

used for the analysis of all ENCODE histone ChIP-seq experiments. The platform provides both an API 

for programmatic execution of the pipeline and a web-based interface for interactive execution of the 

same workflows. ENCODE DCC uses this approach to ensure that primary data from different labs 

within the Consortium are processed uniformly, and thus minimizing factors that could confound 

subsequent comparisons74. The ENCODE DCC analyzed the experiments in parallel and accessioned 

the results to the ENCODE Portal73 (https://www.encodeproject.org/).  

 

Code availability. The ENCODE histone ChIP-seq pipeline is among the collection of ENCODE 

Uniform Processing Pipelines that can be found here: https://platform.dnanexus.com/projects/featured. 

The code is open-source, and available here: https://github.com/ENCODE-DCC/chip-seq-pipeline. 

 

Analysis of individual histone ChIP-seq data. K means clustering. To facilitate clustering across all 

tissues and stages, one master H3K27ac peak list was generated by merging peaks across tissue-

stages. Each peak was then scored for H3K27ac ChIP-seq fold enrichment over input in each tissue-

stage using bigWigAverageOverBed, and these values were quantile normalized across tissue-stages 

to eliminate potential confounding effects of systematic biases in the distribution of signal between 

tissues and/or stages. These normalized values are represented by the blue-black-yellow color scale in 
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Figure 2a. One additional data processing step was performed prior to clustering: across each row, the 

values were converted to a unit vector in R (x / sqrt(sum(x^2)), to prevent enrichment level within 

tissue-stages from dominating the clusters, rather than enrichment level between tissue-stages. Note 

that these unit vector values were only used for clustering; the values plotted are the normalized 

H3K27ac enrichment values. K means clustering was performed in R with k = 8 and default 

parameters. Rows were ordered within each cluster based on mean normalized enrichment. 

Hierarchical clustering of tissue-stages. Normalized ChIP-seq fold enrichment values were 

calculated for each mark as described for H3K27ac in the preceding subsection (not including unit 

vector conversion). Hierarchical clustering was performed in R with default parameters. The resulting 

dendrograms are plotted in Figure 2b. Calculation of distance between stages. For each mark, we 

used Pearson correlation to compare the similarity between all datasets from the same tissue. We then 

categorized these correlations values based on how many stages separate the datasets being 

compared: 0 for true biological replicates from the same stage up to 7 for comparisons of E11.5 

datasets to P0 datasets. These correlations are plotted in Figure 2c. Principle Component Analysis 

(PCA). The whole genome was split into 1kb tiling bins. Average fold enrichment signals were 

calculated for each bin using the bigwigoverbed.sh script from the UCSC website. Bins that overlapped 

a merged peak by a minimal 20% (reciprocal) was denoted as peak-bin. The average fold enrichment 

signals from each peak-bin were quantile normalized within the tissue (not across the tissue). The 

signal strength for each peak was calculated as the sum of the signals of all bins overlapping that peak. 

Principal component analysis was performed on the peak signals for each histone mark with the R 

function “prcomp”. PC1, PC2 and PC3 values were plotted for each sample. Metagene profiles. To 

illustrate the characteristic enrichment patterns at active and silent genes, we used very conservative 

definitions to define these gene sets here. Active genes are defined as RPKM > 10 in every tissue-

stage evaluated here (see Table S6 for list of public RNA-seq datasets). Silent genes were defined as 

RPKM < 2 in all tissue-stages. Metagene profiles were plotted with deeptools plotProfile75, using data 

from E15.5 Heart. Correlation between replicates. To facilitate comparisons of peak strength 

between replicates, we began with a single list of peaks called for each tissue-stage using data pooled 

from both replicates. Then, we scored these peaks for ChIP-seq fold enrichment over input for each 

replicate separately using bigWigAvgOverBed, and performed quantile normalization to eliminate 

confounding effect of systematic biases in the distribution of signal between replicates. We then used 

Pearson Correlation to compare the replicated of each experiment. “Narrow” marks (H3K4me3, 

H3K4me2, H3K27ac, H3K9ac) for tighter peaks of enrichment and tend to correlate more strongly than 

“broad” marks (H3K27me3, H3K4me1, H3K9me3, H3K36me3). 

 

ChromHMM. Generating the model. Chromatin datasets (bam files) were downloaded from the 

ENCODE DCC on October 15, 2016. De-duplicated bam files for each sample, along with their 
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respective input controls, were binarized using the binarizeBam function of ChromHMM, with default 

parameters. Models considering 2 to 24 states were learned separately on the two replicates using the 

LearnModel function, with default parameters. For the rest of the analyses, we leveraged the availability 

of two, distinct time series; namely, we applied the same strategy separately and compared the results 

a posteriori. The conclusions obtained were invariably consistent, suggesting that the inferences on a 

single time series (at least in terms of global genomic patterns) are highly reproducible. Identifying the 

optimal number of chromatin states. We devised two different strategies to identify the minimal 

number of states that capture the combinations of histone modifications present in the data, both of 

which converged on a 15 state model. First, the ChromHMM CompareModels function was run 

separately on the two series. This function compares the emission parameters of a selected model to a 

set of models (in terms of Pearson’s correlation), and outputs the maximum correlation of each state in 

the selected model with its best matching state in each other model. We used this function to compare 

the “full” model (namely the one that consider 24 states) to the states in the simpler models. We then 

calculated the median correlation of all the 24 states against the simpler models, plotted these numbers 

against the number of states in the model and look at what number of states both series reached a 

plateau. As a complementary strategy, the emission probabilities from all the 23 models (considering 2 

to 24 states) from both replicates were clustered together. The rationale behind this strategy is that very 

similar states across models will tend to cluster together, so there must be an optimal number of 

clusters corresponding to the optimal number of states in the model. To this end, we applied k-means 

clustering with k between 2 and 24, and evaluated the goodness of the separation for each k as the 

ratio between the “Between sum of squares” (referred to as Between SS) and the “Total sum of 

squares” (Total SS). Very cohesive, well-separated clusters tend to approach a ratio of 1. Given a value 

of k, the ratio was averaged over one hundred realizations of the clustering. The ratio observed for k = 

24 was used as maximum, and the optimal number of states was then defined by the smallest value of 

k showing a ratio equal or higher than 95% of the maximum. Genome segmentation and chromatin 

state tracking across genomic positions. The segmentation was run separately for each sample, 

using the MakeSegmentation function of ChromHMM (default parameters) and the model derived from 

the first replicate. For the final set of replicated state calls we required that a region was assigned to the 

same state in both biological replicates (within a given tissue & stage). Regions that were not assigned 

to the same state in both replicates were re classified as “No Reproducible Signal” (distinct from state 

15 – no signal in both replicates). The unionbedg functionality of BEDTools76 v2.17.0 was exploited to 

keep track of the chromatin state of genomic intervals across a defined set of samples. Chromatin 

state trajectories along developmental time. Given a replicate for a defined tissue, all those genomic 

intervals classified in a specified state (e.g. #5, strong enhancers) in one or more time points were 

tracked using the approach described above. Considering each pair of adjacent developmental time 

points, the genomic coverage of each transition between each pair of states was then calculated. The 
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resulting numbers were then normalized on the coverage of the largest transition in the time series 

under investigation (e.g. liver, replicate #2) and shown as a directed graph. Clustering on enhancer 

states. After tracking the changes in chromatin state of each genomic base pair in the genome across 

multiple stages and tissues, the resulting matrix was binarized according to each segment being 

classified in a specified state (1) or any other state (0). The binary distances between all the pairs of 

samples considered in each specific analysis were then calculated. These were used either for 

comparisons or hierarchical clustering (Ward’s method). GO analysis. Functional enrichments through 

GREAT34 were obtained through the greatBatchQuery.py script. The resulting lists were first filtered for 

the relevant ontologies. After that, only the terms showing a binomial FDR <= 0.05 and a regional 

enrichment equal or higher than 2-fold were considered. WebGestalt77 was run with default parameters, 

specifically restricting the enrichment analysis to the GO Biological Process Ontology. VISTA validated 

elements were downloaded from https://enhancer.lbl.gov on June 17, 2016. Mm9 and hg19 coordinates 

were converted to mm10 using liftOver (setting -minMatch to 0.95 and 0.1, respectively). VISTA 

positive elements with any of the following annotations: "forebrain", "midbrain", "hindbrain", 

"neuraltube", "limb", "facialmesenchyme" or "heart" were considered for the following analysis. Liver 

was not considered in this enrichment analysis since there are currently <10 validated elements in 

VISTA showing reproducible staining in the liver. coverageBed from BEDTools v2.17.0 was used to 

calculate the coverage of the regions in each state in the E11.5 predictions with each tissue-specific 

group of VISTA elements. The fraction of bases covered was then normalized to the expected overlap, 

based on the overall genome-wide coverage of each state. The enrichment for repetitive elements was 

calculated using the OverlapEnrichment function of ChromHMM. Classification of TSS as active, 

repressed, OMIM, and/or TF. A 2kb window was defined around the TSS coordinates of all protein 

coding transcripts in GENCODE78 vM12. These 2kb windows (one per TSS) we overlapped with 

replicated chromHMM calls to determine their chromatin state in each tissue and stage. A TSS was 

classified as “active” in a given tissue-stage if this 2kb window overlapped the active promoter state 

(#1), and did not overlap any repressive states (#3, #13, #14). A TSS was classified as “repressed” in a 

given tissue-stage if this 2kb window overlapped a state characteristic of polycomb-mediated 

repression state (#3, #13), and did not overlap any active states (#1, #3, #4, #5, #6, #7, #10, #12). TSS 

that did not meet the criteria for either active or repressed in a given tissue-stage were left unclassified. 

Mouse orthologs of OMIM genes were taken directly from the “genemap.txt” available from 

www.omim.org, and filtered for genes with a “Disorder” type value of 3 – “the molecular basis of the 

disorder is known”. The full list of mouse TFs was downloaded from TFClass79. Ensembl Gene IDs 

were used to match GENCODE TSS to corresponding OMIM and TF genes. Characterization of 

dynamic enhancer elements. The temporal dynamic analysis was performed for each tissue 

separately. First, 1kb genomic bins that overlapped with regions defined as ChromHMM strong 

enhancer states in at least one stage were identified. Then we selected dynamic elements (bins) from 
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these strong enhancer bins using the bioconductor LIMMA package80. LIMMA is a package developed 

for calling differentially expressed genes for microarray but was also adapted for sequencing data with 

the LOOM functionality. LIMMA package was used to call differential binding between each adjacent 

stage comparisons (e.g. E11.5 vs E12.5, E12.5 vs E13.5, etc). P-values were calculated with the 

eBayes function within LIMMA with trend parameter disabled, and were adjusted using Benjamini-

Hochberg method. A bin was called overall dynamic if its adjusted p-value is less than 0.05 in any 

adjacent stage comparisons; otherwise it is called a non-dynamic bin. Non-dynamic bins were not 

included in the following analysis to reduce noise. We performed K-means clustering on dynamic bins 

across stages. The rows (bins) are normalized by dividing a common value so that the squares of the 

values sum up to 1. The optimal K was determined using the  “elbow method” to cut off at the K value 

where percentage of withinness values transition from increasing quickly to increasing steadily with 

larger K. The resulting heatmap of the K-means clusters were shown in Figure 4d and Extended data 

figure 8. For each of the identified clusters, we performed enrichment testing of “GO Biological 

Processes” using GREAT. Over-represented motifs for each dynamic cluster was identified with the 

following method: First, all vertebrate Motif position weight matrices (PWMs) were downloaded from 

JASPAR TF database and used to scan the peak-bins for motif occurrences with FIMO, MEME suite81. 

For each motif, we computed the odds ratio and the significance of enrichment in each cluster, 

comparing to non-dynamic bin pool using Fisher’s exact test. The non-dynamic bin pool were sampled 

with replacement to match the distribution of average signal strength from the dynamic bins. Following 

that, significant TF PWMs were grouped in subfamilies using the structural information from TFClass79 

because they share similar if not identical binding motifs. The top significantly over-represented TFs 

and their associated subfamilies were reported.  

 

A TAD-constrained map of enhancer-promoter associations. The reproducible strong enhancer calls 

(state #5) were merged using the mergeBed utility from BEDTools v2.17.0. After that, those regions or 

sub-regions overlapping the intervals +/- 2.5 kb from the TSS of genes in Gencode were excluded from 

the merged regions using subtractBed from BEDTools v2.17.0. Regions smaller than 2 kb were enlarged 

to 2 kb from their central coordinate (to allow for more robust signal estimation). This resulted in 66,556 

putative enhancers. H3K27ac signals at these regions were then quantified using uniquely aligned, de-

duplicated reads. These measurements were carried out by the coverageBed utility from BEDTools 

v2.17.0, then normalized to RPKM according to the sequencing depth of each sample, and log2-

transformed (zeros were replaced by the smallest detectable value larger than zero). The mRNA 

expression of protein-coding genes was tracked across the 66 samples. Small and non-coding RNAs 

were excluded from any subsequent step by considering only those genes with a Gencode biotype 

supporting protein-coding functionality. FPKM were log2-transformed (zeros were replaced by the 

smallest detectable value larger than zero). For each TAD defined in the genome of mouse ES-cells53, 
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the putative enhancers and genes were retrieved. All the enhancer-gene pairs within the TAD were then 

evaluated in terms of Spearman's rank correlation coefficient (SCC) between the H3K27ac pattern of 

enrichment and the mRNA expression across the samples. Each gene was assigned to the putative 

enhancer showing the highest value of SCC. In order to attach p-values to these correlations, a null 

distribution was estimated empirically, by calculating the SCC of the enhancer with all the genes on the 

chromosome. Two different strategies were employed to estimate a p-value: 1) a z-score was calculated 

by subtracting the mean and dividing by the standard deviation of the null. The corresponding p-value 

was then calculated using the pnorm function in R; 2) an empirical p-value was defined as the number of 

times an equal or better than the observed SCC was found in the null. Only those putative enhancers 

showing a p-value <= 0.05 (for both strategies) and a SCC >= 0.25 were retained. Two maps were 

independently derived from the two biological replicates. These respectively encompassed 31,965 and 

32,735 associations, with an overlap 21,142. Only these overlapping associations were used for further 

evaluation and analyses. Validation of the enhancer-gene map using published chromatin 

conformation data. Capture-C interaction data from the developing limb and brain54 were retrieved from 

the GEO (GSE84792). ChIA-PET interactions at sites bound by the cohesion subunit Smc1a in the 

developing limb55 were retrieved from the Supp. Table 2 of the original publication. Enhancer-gene 

contacts in fetal liver cells as inferred from Capture HiC56 were downloaded from ArrayExpress (E-MTAB-

2414). In all cases, mm9 coordinates were mapped to mm10 using liftOver. For each published dataset, 

only those regions in the enhancer-gene map overlapping any experimentally validated interaction were 

retained. The fraction of interactions showing experimental support was then calculated for both the gene 

assigned by correlation and the nearest RefSeq gene. Mapping of murine enhancer-gene map to 

human. The putative enhancer regions were mapped to the human genome (hg19) using liftOver, with 

a strategy similar to previous reports67. Each region was required to both uniquely map to hg19, and to 

uniquely map back to the original region in mm10, with the requirement that >=50% of the bases in each 

region were mapped back to mouse after being mapped to human. For each enhancer-gene pair, the 

orthologous human gene was inferred using BioMart82. The orthologous pairs were also required to share 

the same TAD in human (TADs derived from human ES-cells53). Validation of the enhancer-gene map 

using published eQTL-gene associations. Single-tissue eQTL-gene associations generated by the 

GTEx consortium83 were downloaded from the GTEx portal (http://gtexportal.org, release v6p). Only 

those tissues with more than 750k annotated eQTLs were considered. A control set of enhancer-gene 

associations matching the size and the TSS-distance distributions of the real enhancer-gene map was 

generated. Briefly, for each enhancer-gene pair, the distance between the TSS of the gene and the 

central coordinate of the enhancer was calculated; after that, a region of the same size of the enhancer 

centered at the same distance to the TSS of the gene but on the opposite side of the enhancer was 

picked as a control set. 
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Transgenic reporter assays. Names for functionally validated enhancers used throughout this work 

(mm numbers) are the unique identifiers from the VISTA Enhancer Browser (www.enhancer.lbl.gov)65. 

Enhancers were selected for testing as follows: The H3K27ac peak calls for three tissues (E12.5 heart, 

forebrain, and limb) were taken from the TSS-distal H3K27ac peaks called using the uniform 

processing pipeline (mm10-minimal) by the ENCODE Data Coordinating Center (narrow peaks from 

combined replicates).  Peaks for each tissue were ranked by enrichment score (most to least 

significant).  We then selected predicted enhancers from three different bins within each tissue’s ranked 

list for testing (bins were approximately ranks 1-85, 1500-1550, and 3000-3050).  Loci that were 

already included in the VISTA Enhancer Browser or that appeared to overlap unannotated promoters 

were excluded from testing.  In total, 150 predicted enhancers were tested, including 60 top ranked 

candidates (20 per tissue), 45 middle ranked (15 per tissue), and 45 lower ranked candidates (15 per 

tissue). Transgenic mouse assays were performed in FVB/NCrl strain Mus musculus animals (Charles 

River) as previously described68,84.  Briefly, predicted enhancers were PCR amplified and cloned into a 

plasmid upstream of a minimal Hsp68 promoter and a lacZ reporter gene.  Transgenic embryos were 

generated by pronuclear injection of the resulting plasmids into fertilized mouse eggs.  Embryos were 

implanted into surrogate mothers, collected at E12.5, and stained for β-galactosidase activity.  

Elements were scored as positive enhancers if at least three embryos had identical β-galactosidase 

staining in the same tissue.  Elements were scored as negative if no reproducible staining was 

observed and at least five embryos harboring a transgene insertion were obtained.  Genomic 

coordinates and results for each element are provided in Supplementary Table 5, through the ENCODE 

project data portal (www.encodeproject.org), and at the VISTA Enhancer Browser website 

(www.enhancer.lbl.gov). 

 

Mapping to repeat element families. Since ENCODE analysis pipeline were focusing on the uniquely 

mapped reads, a lot of information provided by the reads that are not uniquely mapped will be missed. 

This is especially undesirable for repetitive element analysis as there is a higher chance for read 

coming from a repetitive region of DNA will map un-uniquely to the reference genome. Hence, we use a 

new pipeline with two rounds of mapping steps to re-process all the fastq files. The pipeline utilizes all 

the reads for the purpose of gaining enough sensitivity to uncover the enrichment of any repetitive 

element subfamilies that were previously undiscovered because of low coverage. In the first round of 

mapping, sample reads were aligned to the reference genome mm10 using Bowtie1 with: bowtie hg19 -

p 16 -t -m 1 -S --chunkmbs 512 --max multimap.fastq input.fastq output.sam85. --max is used to 

separate reads mapping to multiple locations of the genome from uniquely mapped reads. 

In the second round of mapping, a customized assemblies file are constructed by concatenating 

genomic instances of each repetitive element subfamily, their 15 bp flanking genomic sequences and a 

200bp spacer sequence in FASTA format86. The annotation file for repetitive elements used in this step 
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was downloaded from Repeatmasker.org. A python script used with parameters are as following: 

python RepEnrich.py /data/mm10_repeatmasker.txt /data/sample_A sample_A 

/data/mm10_setup_folder sampleA_multimap.fastq sampleA_unique.bam --cpus 1687. The number of 

reads mapping to repetitive element subfamilies, repetitive element families, or repetitive element 

classes are determined using information from both uniquely mapped reads that overlap with repetitive 

element and un-uniquely mapped reads. Since some of the repetitive element subfamilies are very 

similar to each other, a fractional counts method was used to classify the reads that map to multiple 

repetitive element subfamilies. It sums reads mapping uniquely to a repetitive element subfamily once 

and counts reads mapping to multiple subfamilies using a fraction 1/Ns, where Ns = number of 

repetitive element subfamilies the read aligns with. A table of counts that estimate enrichment signal for 

the repeats classes across different tissues is built as the final output for plotting the figures. 

 

Data processing in R. Most of the described data processing steps (plotting, statistical tests, calculating 

correlations and hierarchical clustering) were performed in the statistical computing environment R 

v.3.3.1 (www.r-project.org). 

 

DATA ACCESS 

 

 Raw and processed ChIP-seq data reported here can be accessed via the ENCODE Data 

Collection and Coordiantion (DCC) website www.encodedcc.org. More specifically, a full list of the 

ChIP-seq experiments can be found here:  

https://www.encodeproject.org/search/?type=Experiment&assay_slims=DNA+binding&assay_title=ChI

P-seq&award.rfa=ENCODE3&lab.title=Bing+Ren%2C+UCSD&limit=all. ChromHMM data can be
found here: http://enhancer.sdsc.edu/enhancer_export/ENCODE/.  

EXTENDED DATA FIGURE LEGENDS 

 

Extended data figure 1. Summary of primary ChIP-seq data. (a) Table summarizing the 

characteristic enrichment patterns for each histone modification surveyed here. Note that modifications 

are generally categorized as “narrow” or “broad” depending on the typical breadth of enrichment. 

H3K9me3 is further distinguished from other broad marks because it shows very few regions of 

enrichment in non-repetitive sequence in primary tissues and cells42. (b) Metagene profiles illustrating 

the typical patterns of histone modification enrichment at active genes (defined as RPKM > 10 in all 

tissue-stages surveyed here). ChIP-seq data plotted is from embryonic Heart at E13.5. (c) Sequencing 

depth is plotted for every library reported (N=1,128 ChIP + 168 input). ENCODE “usable” read depth 

standards (mapq>30, and after PCR duplicate removal) are indicated to the right. Note that read depth 

standards changed part way through our study: increasing from 10M to 20M for narrow marks, 20M to 
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45M for broad marks, and 10M to 30M for input. All narrow mark libraries exceed the 10M minimal 

depth. Broad mark libraries exceed the 20M minimal depth with only 4 exceptions, all of which exceed 

19M. Input libraries exceed the 10M minimal depth with only 1 exception, which exceed 9.7M. The read 

depth standard for H3K9me3 >45M mapped reads of any mapq (because most H3k9me3 is repetitive 

sequence, see Extended Figure 6); all H3K9me3 libraries exceed this threshold. (d) Mapping quality is 

plotted for every library, measured as the fraction of reads with mapping quality scores (mapq) > 30. 

Reads with lower mapq scores (i.e. non-uniquely mapping reads) were eliminated from downstream 

analysis. (e) Three metrics of library complexity are plotted (NRF, PBC1, PBC2). See ENCODE data 

standards88 for detailed descriptions and formulas. Tables below each plot show the percent of libraries 

that exceed the thresholds indicated. (f) Two measures of signal-to-noise ration are plotted (NSC, 

RSC). Again, detailed descriptions are available in the ENCODE data standards descriptions.  

 

Extended data figure 2. ChIP-seq peak calling. (a) Schematic representation of ChIP-seq peak 

calling pipeline. More information can be found here: https://www.encodeproject.org/chip-seq/. (b) Four 

different peak summary statistics are plotted for every tissue-stage. From top to bottom: 1) Number of 

peaks called (passing IDR threshold); 2) Total coverage of those peaks; 3) Peak coverage as in (2), but 

separated according to tissue; 4) Peak coverage as in (2), but separated by stage. Note that E10.5 

ChIP-seq experiments were performed with a modified protocol, and in some cases a different more 

sensitive antibody (H3K27ac, H3K4me1). We suspect that is why E10.5 sometimes appears as an 

outlier in terms of coverage. (c) Peak reproducibility as measured by the percentage of peaks called 

form the pooled data that were called independently in both individual replicates. (d) Peak 

reproducibility as measured by correlation of peak strengths (average bigwig signal within each peak) 

between independent replicates. (e) Principle Component Analysis of all tissue-stages based on the 

distribution of ChIP-seq signal across the genome.  

 

Extended data figure 3. Dynamic ChIP-seq signal across developmental space and time. (a) 

Genome browser view of Gad1 (chr2:70,547,104-70,615,401; mm10), a marker of GABAergic neurons, 

showing the gain of active chromatin signatures during forebrain development. (b-c) Genome browser 

views of Ccnb1 (chr13:100,776,802-100,788,423; mm10) and Cdk2 (chr10:128,693,493-128,709,497; 

mm10), key cell cycle regulators, showing the loss of active chromatin signatures during forebrain 

development. (d) multi-tiered plot showing the relationship between tissue-specificity, stage-specificity, 

and location relative to TSS. For each mark, peaks were merged across all tissue-stages. These 

merged peaks were then overlapped with each tissue-stage individually to determine how many 

individual tissues and stages that peak was called in. The x-axis at the top indicates how many tissues 

a given peak was called in (1 - 12). The top line graph shows the tissue-specificity of peaks, as the 

percentage of total peaks for a given mark that were called in 1 - 12 tissues. The middle heatmap 
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shows stage specificity, as the fraction of stages within a given tissue that a peak is called in. In other 

words, if a peak is called in 3 tissues, what fraction of the available stages within those 3 tissues was 

the peak called in. Note that peaks which are more restricted to specific tissues, are also more 

restricted to specific stages within those tissues. The bottom heatmap shows the location of peaks 

relative to TSS, as the fraction of peaks that overlap an annotated GENCODE TSS. Note that peaks 

which are more consistent across tissues and across stages are much more likely to overlap a TSS. (e) 

Heapmap showing the H3K27ac ChIP-seq signal at H3K27ac ChIP-seq peaks called in forebrain 

(merged across stages). Peaks are clustered based on how many stages within forebrain they were 

called in (y axis, left). The number of peaks in each cluster is indicated to the right. 

 

Extended data figure 4. 15-state chromHMM model. (a) Schematic representation of the chromatin 

states identification strategy applied in this study. (b) Heat maps showing the maximum correlation of 

each state in the “full” model (y-axis) with its best matching state in each simpler model (x-axis). The 

median correlation of all the 24 state is shown in the plots on top of the heat maps. (c) Plot showing the 

classification of the k-means clustering of the emission probabilities from all the models. The optimal 

number of states was defined by the smallest value of k showing a ratio equal or higher than 95% 

(orange line) of the maximum clusters’ separation (red line). SS = Sum of Squares. (d) Heat maps 

showing the emission probabilities for each chromatin mark in each state, as defined by ChromHMM, 

for both replicates. (e) Box plots showing the similarity between replicates, among samples from the 

same tissue and among all samples, considering either active TSS (state #1, red) or strong enhancers 

(state #5, orange). P-values from Mann-Whitney tests. Similarity measured as pairwise binary distance 

(see Methods). (f) Bar plot showing the enrichment of each mark in state 11 (permissive) relative to 

state 15 (no signal, genomic background). Note that the chromHMM emission probability for 

H3K36me3 in state 11 is >30-fold higher than genomic background. (g) Comparison of the ChromHMM 

model reported here with previously published chromHMM models. Grey vertical bars indicate histone 

modifications profiled here that were not included in those previous studies. Horizontal bars indicate 

chromatin states identified in our study that do not have a clear counterpart in those studies.  

 

Extended data figure 5. Chromatin states at developmental genes. (a) Genome browser views 

showing tissue-restricted activity patterns at Nkx2-5 (chr17:26,818,483-26,870,007), Cdx2 

(chr5:147,294,550-147,313,599), Barx1 (chr13:48,649,148-48,680,395), Wt1 (chr2:105,097,427-

105,200,306), and Foxg1 (chr12:49,362,757-49,416,342). Myc as shown in the far right as an example 

of a gene that is not tissue restricted across our developmental series (chr15:61,972,107-62,003,584). 

All coordinates are mm10. (b) Genome browser views showing stage-restricted activity patterns at 

NeuroD2 (chr11:98,308,801-98,345,075) and Gad1 (chr2:70,547,104-70,615,401). (c) This plot is a 

counterpart to Figure 4b. The relative frequency of active chromatin (State 1) at four different sets of 
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TSS: 1) all GENCODE protein coding TSS (N=90,384), 2) the subset of (1) that belong to transcripts of 

TF genes (N=1,019), 3) the subset of (2) that are also known to cause to Mendelian phenotypes when 

mutated (i.e. “OMIM” genes; N=227), 4) the remaining OMIM gene TSS that do not encode TFs 

(N=3,497). The individual gene symbols indicate genes that are known to cause congenital defects 

when abnormally expressed. Not shown: TSS active in none of the 66 tissue-stages (43%, 32 %, 33%, 

and 39%, respectively), and TSS active in all 66 tissue stages (14%, 19%, 15%, and 13 %, 

respectively). 

 

Extended data figure 6. H3K9me3 marked heterochromatin. (a) Genome browser view showing a 

large region of chromosome 15 (chr15:87,165,311-104,043,685; mm10). Signal tracks (fold enrichment 

over input) are shown for all marks. Note that H3K9me3 looks relatively flat, unlike the other marks. 

Note also that this signal does not include reads that map non-uniquely to the genome (i.e. map to 

repetitive elements, mapq<30). We find very few regions of strong H3K9me3 enrichment outside of 

repetitive elemetns, consistent with previous reports of H3K9me3 distribution in primary tissues42. (b) 

Bar chart showing the fraction of total sequencing reads that mapped to the reference genome (light 

green), and that mapped uniquely to the reference genome (mapq >= 30; dark green). Bar height 

represents the mean for all ChIP- libraries reported here separated by mark, and error bars represent 

standard deviation. Control bars represent ChIP input libraries (no IP step). Note that all marks and 

input have a high mapping rate (mean >90%).  However, H3K9me3 has a markedly low rate of unique 

mapping, suggesting that this modification is specifically enriched in non-unique (i.e. repetitive) 

genomic regions. (c) Stacked bar plots show the type of repetitive elements that the non-uniquely 

mapping reads from (b) correspond to (see methods). Note that H3K9me3 reads are highly enriched in 

satellite repeats relative to the input control samples. (d) Genome browser view of chromatin states 

showing that some Pchd (chr18:36,720,767-38,058,585; mm10) and Zfp (chr11:50,774,724-

50,939,391; mm10) genes do show significant H3K9me3 enrichment (state 14) during development. 3’ 

UTRs of Zfp genes marked by H3K9me3 (noted previously44) are indicated by pink arrow heads. (e) 

Similar to (d), but showing raw ChIP-seq fold enrichment tracks for each mark across these regions.  

 

Extended data figure 7. Dynamic chromatin states. (a) Heatmap shows the fraction of bases for 

each state in forebrain that are in a different state in other tissues at the same stage. The bar plot on 

the right shows the median value (fraction of variable bases) considering all tissues. Enhancer states, 

which are highlighted by a vertical bar, are the most variable between tissues. (b) Dendrogram showing 

the hierarchical relationships among strong enhancers (state #5) in different tissues during 

development (clustering according to binary distance, Ward’s method). (c) Same as (b) but considering 

only limb and face samples. (d) Heat map showing the statistical significance of the enriched functional 

terms (GO Biological Process, as assessed by GREAT, x axis) for the sets of strong enhancers (state 
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#5) across each tissue-stage (y axis). The terms were hierarchically clustered (average linkage) 

according to Pearson’s correlation. A subset of the terms highly enriched in both Limb and Face are 

listed below the main heatmap. (e) Heatmap shows the fraction of bases for each state in forebrain 

e11.5 that are in a different state at other time points. The bar plot on the right shows the median value 

(fraction of variable bases) considering all tissues. (f) Heat map showing the most enriched biological 

processes (GO terms) for the genes in the vicinity of liver enhancers. For each one of the indicated 

sets, the significantly enriched terms were identified and divided into deciles (based on statistical 

significance). The ten most enriched terms for each set were then grouped together and hierarchically 

clustered. Genes involved in either hematopoiesis or metabolic processes are color-coded as indicated. 

(g) Sankey diagram showing the tendencies of each chromatin state at a given stage (left, Stage N) to 

transition to other chromatin states at the following developmental stage (right, Stage N+1).  

 

Extended data figure 8. Dynamic enhancer patterns for 12 tissues. K-means clustering of dynamic 

enhancers in each tissue based on H3K27ac signal at available stage from E11.5 to P0. The number of 

clusters within each tissue, and the number of dynamic enhancers within each cluster, are indicated to 

the left of each heat map. Corresponding GO enrichment and motifs are provided in Table S1.  

 

Extended data figure 9. Predicting enhancer target genes. (a) Schematic of the approach to assign 

enhancers to target genes. Correlation between H3K27ac signal at putative enhancers (green bars) 

and mRNA expression of genes (black bars) in the same TAD across tissues and developmental time 

was used to infer the most likely enhancer-gene interactions. (b) Genome browser view showing 

chromatin states at the Ascl1 locus, as in Figure 5a, but showing ChIP-seq fold enrichment tracks 

instead of chromatin states. (c) (Upper panel) Plot showing the fraction of enhancer-gene associations 

common to the two replicates (Reproducibility) as a function of the stringency applied to the 

Spearman’s Correlation Coefficient (SCC). The two curves correspond to developmental time series. 

(Lower panel) Scatterplots showing the relation between the number of putative enhancers per gene at 

the default cutoff (SCC = 0.25, x-axis) vs a more stringent cutoff (SCC = 0.45 or 0.75, respectively, y-

axis). (d) Scatterplot showing a comparison of the number of putative enhancers per gene in the two 

replicates. (e) Histogram showing the distribution of the number of enhancers per gene. (f) The most 

significantly enriched GO terms are listed for genes that have one predicted enhancer (top) and genes 

with >= 5 predicted enhancer (bottom). (g) As in Figure 5b, this plot shows that enhancer-gene 

interactions identified by this correlative approach are generally more likely to be supported by 

chromatin interaction data than associations derived by a nearest gene approach. To ensure that this 

was not due to an artifact of the chromatin capture technologies being unable to detect very short range 

interactions, we used different distance cutoffs (10Kb, 100Kb) to define the “nearest” non-target gene. 

(h) Bar plot show the frequency of GWAS hits (EMBL-EBI catalog) in three different types of enhancers: 
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enhancers predicted to target OMIM genes (top); enhancers predicted to target genes other than OMIM 

genes (middle); enhancers in the same TADs as OMIM genes, but not predicted to target those OMIM 

genes (bottom).  

 

Extended data figure 10. Transgenic validation results for predicted enhancers. (a) Heat map 

showing the tissue-specific enrichments of VISTA enhancers for the different chromatin states in E11.5 

heart, limb and forebrain. (b) Representative e12.5 transgenic embryos for each of the 61 enhancers 

that validated in the expected tissue (forebrain, limb, or heart). Reporter gene expression is indicated 

by blue staining, and enhancer names (mm numbers) are the unique identifiers from the VISTA 

Enhancer Browser65. Red arrows indicate the position of the forebrain, limbs, or heart.  See also 

Supplementary Table 5 for results. (c) Violin plots showing transgenic enhancer assay reproducibility 

for different rank classes of tested elements.  Only those enhancers that validated in the correct 

expected tissue are shown. Reproducibility differences between rank classes were not statistically 

significant (Mann-Whitney U Test). 
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