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Abstract

Background: Dispersed biomedical databases limit
user exploration to generate structured knowledge.
Linked Data unifies data structures and makes the
dispersed data easy to search across resources, but
it lacks supporting human cognition to achieve
insights. In addition, potential errors in the data
are difficult to detect in their free formats.
Devising a visualization that synthesizes multiple
sources in such a way that links between data
sources are transparent, and uncertainties, such as
data conflicts, are salient is challenging.

Results: To investigate the requirements and
challenges of uncertainty-aware visualizations of
linked data, we developed MediSyn, a system that
synthesizes medical datasets to support drug
treatment selection. It uses a matrix-based layout
to visually link drugs, targets (e.g., mutations),
and tumor types. Data uncertainties are salient in
MediSyn; for example, (i) missing data are exposed
in the matrix view of drug-target relations; (ii)
inconsistencies between datasets are shown via
overlaid layers; and (iii) data credibility is conveyed
through links to data provenance.

Conclusions: Through the synthesis of two
manually curated datasets, cancer treatment
biomarkers and drug-target bioactivities, a use case
shows how MediSyn effectively supports the
discovery of drug-repurposing opportunities. A
study with six domain experts indicated that
MediSyn benefited the drug selection and data
inconsistency discovery. Though linked publication
sources supported user exploration for further
information, the causes of inconsistencies were not
easy to find. Additionally, MediSyn could embrace
more patient data to increase its informativeness.
We derive design implications from the findings.

Keywords: Interactive Visualization; Uncertainty
Visualization; Multiple Datasets

Background
In biomedicine, the fruits of numerous biological as-
says and clinical studies are buried in various sources,
such as publications and clinical reports, waiting to be
translated into better treatments for patients [1, 2]. To
accelerate such clinical practice and medical research,
literature mining as well as crowdsourcing-based data-
curation techniques are used to extract and collect use-
ful biomedical information from the dispersed sources.
Encouragingly, many curated databases provide open
access, e.g., DrugBank [3] and clinicaltrials.gov [4],
which inevitably benefits biomedical advances [5].

However, the isolated nature of biomedical databases
still hinders the sharing and discovery of knowledge. To
answer a biomedical question, scientists need to labo-
riously explore available sources via multiple and het-
erogeneous search services and then struggle to com-
bine the selected information into a structured solution
[6]. Due to the tediousness of the search process and
the high cost of the cognitive load in matching sources
[7], the abundant information sources available are of-
ten underexplored [6]. The ineffectiveness of translat-
ing datasets into useful insights calls attention to the
essential issue of data integration.

Linked Data, as an effort to use the Semantic Web
to interrelate data, encourages people to publish uni-
formly structured data, such as using the Resource De-
scription Framework (RDF), so as to lower the barriers
to connect data from different sources [8]. Some signifi-
cant linked biomedical data projects include Bio2RDF
[9] and Open PHACTS [10]. Nonetheless, the data
published in Uniform Resource Identifiers (URIs) and
RDF structures benefit the computer to interpret and
correlate relevant information, but they do not facili-
tate human cognition to achieve insight. Hence, an in-
teractive visualization tool that effectively synthesizes
multiple biomedical datasets is required [1].

On the other hand, missing data and data errors in
mined or curated biomedical datasets are difficult to
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detect in their free formats. Still, few efforts have been
devoted to visualizing such data uncertainty to help
biologists better understand the data [11]. Apart from
that, the integration of multiple biomedical datasets
brings another dimension of uncertainty: data consis-
tency. Consistent information from different sources
reinforces itself, giving people more confidence in the
knowledge they acquire [12, 13], whereas conflicting
data can motivate researchers to further explore the
data sources to understand the causality. Visualiza-
tion that conveys such uncertainty information among
biomedical datasets [14] allows the user to make a more
informed decision, such as treatment selection.

The purpose of this research was to visually synthe-
size multiple biomedical datasets, while exposing the
uncertainties of the datasets to arouse user awareness
of uncertain information and to facilitate drug treat-
ment selection. In this paper, we present MediSyn (Fig.
1). It uses a matrix-based layout to correlate multiple
drugs, targets, and tumor types. Target in this paper
refers to mutations and wild-type genes. Sorting func-
tions bring more relevant drugs to the front of the view
to assist visual comparison of drug effects on multiple
targets. The transparent representation and user ex-
ploration of drug-target relations enable the discovery
of drug-repurposing opportunities, which is one con-
tribution of this system.

Another contribution is that such a system visualizes
data uncertainty to increase user awareness of data
trustworthiness. First, the holistic relation representa-
tion among drugs, targets, and tumor types exposes
missing data. Second, depicting datasets in overlaid
layers enables the user to identify data consistency
states from different sources. Third, visual encodings
of different levels of clinical evidence expose data cred-
ibility. Data provenance, such as publications, can be
interactively retrieved to convey the credibility of in-
formation sources.

MediSyn is implemented with two manually curated
datasets, cancer treatment biomarkers from Cancer
Genome Interpreter (CGI) and drug-target bioactiv-
ities from Drug Target Commons (DTC). A prelimi-
nary study with six domain experts showed that the
synthesis of two datasets can increase user satisfac-
tion and efficiency and lower choice difficulty in drug
selection compared to user exploration with currently
unlinked datasets. Subjective results showed positive
feedback on MediSyn, such as simplicity and ease of
use. Among others, the links to data sources, such as
publications, appear to be an important and useful
feature for the user to verify or acquire additional in-
formation about the data. The study results also indi-
cated MediSyn effectively supported the discovery of
data inconsistencies, but the causes of inconsistencies

were not easy to find. Additionally, more patient data
sources can be integrated to increase the informative-
ness of MediSyn.

Based on the results of the user study, we derive a
set of design implications of MediSyn to inform two
design problems: how to depict the correlated biomed-
ical datasets; how to effectively expose and visually
communicate data uncertainties.

Related Work
To facilitate knowledge discovery from dispersed and
heterogeneous biomedical datasets, some projects,
such as Linked TCGA (The Cancer Genome Atlas
Database) [15] and Open PHACTS [10], brought to-
gether pharmacological data resources and built data
infrastructures to allow for the integration and in-
teroperation of biomedical data. Several visualization
tools have been built on top of the linked biomedical
data platforms to support knowledge exploration, e.g.,
GenomeSnip [16] and PharmaTrek [17]. GenomeS-
nip [16], consisting of Genomic Wheel and Genomic
Tracks, integrates knowledge of the human genome
from multiple sources to support the exploration and
cognition of the relationships between different ge-
nomic features. Genomic Wheel visualizes the hierar-
chical information of chromosomes, ideograms, genes,
and cancer point mutations in circular layers, whereas
Genomic Tracks visualizes gene information retrieved
from Linked TCGA in tabular panels.

PharmaTrek [17] is based on Open PHACTS but in-
tegrates information on molecule-protein interactions
and ligand structures to support multitarget drug dis-
covery. It uses a heatmap to depict molecule and target
activity values. The user can filter related molecules
by setting the range for the activity values to each
target, and he or she can retrieve additional targets
related to the displayed molecules. In a similar two-
dimensional layout, Campbell et al. [18] brought to-
gether biological, chemical, and clinical resources and
built a confidence-based drug-target landscape along
two evidence dimensions on a scatter plot. The x-
axis of the scatter plot indicates ordered categories
that provide evidence connecting proteins to disease,
whereas the y-axis denotes ordered categories of evi-
dence supporting small-molecule druggability for pro-
teins.

These visualizations do not explicitly separate differ-
ent datasets but rather take the linked data as a whole
to facilitate user exploration across data sources. Sim-
ilarly, some visual search platforms have been built in
this manner to aid biomedical search across resources.

TripleMap [19] allows user exploration of biomedi-
cal entities, such as compounds, diseases, and assays
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Figure 1 Overview of MediSyn. MediSyn synthesizes two biomedical datasets: cancer treatment biomarkers from Cancer Genome
Interpreter (CGI) and drug-target bioactivities from Drug Target Commons (DTC). The left list contains the controllers, such as
selection and sorting, whereas the middle view represents drug-target relations. Retrieved details of the clicked drug-target relation
are shown on the right side. Here the user clicked on the potency bar of the drug bosutinib and mutation ABL1(E255K) so that the
details, including the dataset, bioactivity state, and publication source, are shown on the right side.

[1]. It uses a node-link diagram to automatically con-
nect user-selected entities based on the semantic tags
retrieved from RDF datasets. ReVeaLD [20] has a vi-
sual query builder to help the user formulate a query
in an intuitive way, and it displays results in a faceted
results browser through a federated search.

Because trust in information requires an awareness
of its provenance [21], we argue that users should be
aware of information sources and have control of the
sources, which can be based on their confidence in the
datasets.

Several research efforts visualize datasets in separate
views and then use linking and brushing techniques
or explicit links to show data relations. ConTour [22]
provides a relationship view of datasets, such as genes,
compounds, and pathways, in columns at the bottom
with a detailed view of the selected items above. The
user selection of items in one column can highlight
relevant items in other columns. Sorting and filtering
functions can be flexibly combined to drill down into
the data space. Similarly, StratomeX [23], based on
VisBricks [24], employs a column-based layout to rep-
resent datasets, with bricks in those columns encod-
ing potential subtypes or stratifications (partitionings
into homogeneous subsets) of the data. Ribbons con-
nect bricks of neighboring columns, with their width

encoding the amount of data they share. Such explicit
links are adopted in Domino [25] as well, which inter-
relates items between separate views of datasets using
line connections. It enables the user to freely arrange
and combine the blocks to tailor to the task at hand.
For example, assembling Sankey diagrams [26] to rec-
ognize the flow in the datasets.

Different from the previous work, MediSyn uses over-
laid layers to represent datasets not only to link but
also to allow for comparison between datasets. Addi-
tionally, a matrix-based layout is adopted due to its
scalability in visualizing data items as well as its sup-
port for the comparison of rows and columns. For in-
stance, Bertifier [27] adopts a matrix-layout to link two
data items, but cells visually encode a single data at-
tribute associated with the item in that row and col-
umn. Lamy et al. proposed a matrix-based set visu-
alization (rainbow boxes) with drugs in columns and
their contraindications in rows to allow for the com-
parison of relevant drugs [28], but no indication of data
sources is involved in the visualization.

Apart from that, MediSyn exploits the crucial but
underexplored problem in biomedical data, that is,
data uncertainty, to support a more-informed treat-
ment selection.
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Figure 2 The upper part is a cancer treatment biomarker
dataset from the CGI, whereas the lower part is a bioactivity
dataset from DTC. We used the two webpages as the baseline
interface in the user study.

MediSyn
MediSyn (Fig. 1) is a matrix-based interactive visual-
ization that supports drug treatment selection under
uncertainty. It consists of three parts (Fig. 1). The left
list contains the controllers, including dataset and mu-
tation selection and sorting functions. The middle part
is the matrix-based view with overlaid layers synthe-
sizing datasets. The right part displays the detailed
descriptions and the sources of user-clicked data.

Datasets
Two manually curated datasets of drug-target rela-
tions are synthesized (Fig. 2). One is cancer treat-
ment biomarkers from the Cancer Genome Interpreter
(CGI) [29], and the other is drug-target bioactivities
from Drug Target Commons (DTC) [30]. The CGI con-
tains drug responses such as responsiveness and resis-
tance to various mutations in different tumor types.
Five evidence levels, i.e., pre-clinical, case report, early
trials, late trials, and guidelines, such as Food and
Drug Administration (FDA) guidelines – from the low-
est to the highest – indicate the approval status of
a drug. DTC contains bioactivities between different
drugs and targets, which can be considered pre-clinical
evidence. Due to the fact that the data from the CGI
have a generally higher evidence level than those from
DTC, we place higher priority on the data from the
CGI in visual encodings.

Each bioactivity in DTC is described by a measure-
ment type, such as Kd, Ki, and IC50, and the bioactiv-
ity value. We further categorize the bioactivity values
to potency levels to make them easier for the user to
understand. An activity value between 0 and 10 nM
is classified as highly potent; a value between 10 and
1,000 nM denotes potency; a value between 1,000 and

Figure 3 The matrix-based layout of MediSyn represents the
relations among multiple drugs, targets, and tumor types. The
overlaid layers depict the data from two datasets respectively
with efficient visual encodings for prioritized data parameters.

Parameters Data	types Visual	variables
Drug Nominal	 Position	
Target Nominal	 Position	

• Tumor	type Nominal	 Position	
Drug-target relation	from	CGI
Drug-target	effect Nominal	 Hue	

• Evidence	 level Ordinal	 Position, length,	saturation
Drug-target relation	from	DTC
Bioactivity	potency	level Ordinal	 Position,	length

Table 1 Visual variables encoding different parameters of our
datasets based on their priority and importance in supporting drug
treatment selection.

10,000 nM indicates the drug is weakly potent; and
a value over 10,000 nM indicates the drug is inactive
[29]. If multiple bioactivities exist for the drug and tar-
get pair, we take the median as the activity value to
avoid the disturbance of outliers.

Visualization Design
The visualization supports a one-to-one representation
of the relations between drugs, targets, and tumor
types. It uses a matrix-based layout where each col-
umn represents a user-selected target. The rows above
the targets represent tumor types, and the rows be-
low depict related drugs (Fig. 3). Two overlaid layers
representing the two datasets respectively visualize the
relations between drugs and targets.

We prioritize the data parameters, abstract them to
different data types, e.g., nominal and quantitative,
and then map them to visual variables considering
Mackinlay’s ranking [31], a ranking of visual variables
regarding how accurately humans perform the corre-
sponding perceptual task for different types of data.
As depicted in Table 1, drugs and targets are nominal
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data with the highest priority. Thus, we encode them
by position, which helps with forming the rows and
columns of the matrix. Tumor types are nominal data
and are related to targets only. We encode them by
position as well, forming the rows at the top of the
matrix (Fig. 3). If the mutation has been described in
the tumor type, a horizontal line will appear in the
corresponding table cell, which is inspired by linear
diagrams representing relations of sets [32].

As we have fixed the positions of drug-target effects
from the CGI in the corresponding cells, these nominal
data then adopt the second-best visual variable, which
is hue. Responsive effects are shown in green, whereas
resistant effects are displayed in red (Fig. 3). The evi-
dence levels of the biomarkers are ordinal data, which
use a combination of position, length, and saturation
encodings. As a result, the encodings of drug-target
effects and their evidence levels translate the data into
colored bars, i.e., each column of the matrix contains
a vertically aligned bar chart. Finally, bioactivity po-
tency levels from DTC are ordinal data residing in the
corresponding cells as well, which constitute another
layer of data on top of the CGI. We encode them by
position and length. As illustrated in Fig. 3, the black
bars on top of the colored bars with decreased width
depict the potency levels of drug-target bioactivities,
whereas slashes denote inactive bioactivities.

Interaction Design
The interactions enable user exploration of the rela-
tions between multiple drugs and targets. The sorting
functionalities based on different criteria support the
user in identifying effective drugs Detailed descriptions
as well as data provenance of the drug-target relations
can be retrieved on demand.

Dataset and target selection
Based on the information from multiple sources,
MediSyn allows the user to explore the relations of
interested mutations to relevant drugs, tumor types,
and the wild-type gene.

The user can choose to display the data from only
interested or trusted data sources through controlling
the checkboxes on the left top of Fig. 1.

Once a mutation is selected from the left list (Fig.
1), it is added as a new column in the matrix. All
drugs related to the selected mutation are added as
rows automatically. In addition, tumor types related
to the selected mutation are retrieved and displayed
above the matrix.

The wild-type gene of the selected mutation, if it
exists in the datasets, is also added as a column. The
wild type can be used to predict possible side effects
of the drug. If the drug shows greater potency toward

the wild type than the mutated gene, then possible
side effects can be anticipated from this drug. A cross
icon attached to the header of each column allows the
user to remove the target.

Sorting
Sorting allows the user to rank the drugs based on
different criteria to explore their relations to multiple
targets. MediSyn allows the user to sort the drugs in
three ways. If the user clicks the column header of a
target, all drugs related to this target come to the top.
The drugs containing data from both datasets come
first; the drugs with data only from the CGI come
second, whereas the ones described only in DTC come
third, in descending order of the potency values, as the
CGI data have a higher evidence level than the DTC
data. Using the sort control on the left, the user can
either sort the drugs by the sum of the potency values
of all selected mutations to each drug based on DTC
data or by the number of responsive mutations of each
drug based on the CGI data. Both methods sort the
drugs in descending order.

Highlighting
Highlighting provides visual cues to interrelate drugs,
targets, and tumor types to the current focused data.
Hovering over the drug name, i.e., row header, high-
lights all of its related targets as well as its related tu-
mor types. Hovering over a bar highlights its mutation
and drug as well as the column of its wild-type gene,
if it exists. Hovering over the tumor name highlights
all its related mutations.

Details on demand
Following Shneiderman’s information-seeking mantra
[33], details regarding the drug-target relation as well
as the data provenance are provided on demand. As
the mouse hovers over the DTC bars, the detailed
bioactivity values are shown as a tooltip. If the user
clicks on any of the CGI or DTC bars, related infor-
mation is shown on the right, including the dataset
to which it belongs, a description of the drug-target
relation, and the sources of the curated data, such as
the title, abstract, and digital object identifier (DOI)
of the publication. Clicking on the DOI of the publi-
cation will bring the user to the publication page.

Visualizing Data Uncertainties
MediSyn uses a matrix-based layout coupled with
overlaid layers to relate data items and synthesize
datasets. Three types of data uncertainties are exposed
in MediSyn to increase user awareness of data trust-
worthiness: missing data, data consistency, and data
credibility. The matrix-based layout interrelates drugs,
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Mutation	 Wild-type	gene	 Drug	 Drug-target	relation	 Tumor	type	
CGI	 350	 0	 166	 546	 52	
DTC	 217	 16	 116	 1,859	(665	wild-type	targets)	 0	
Both	 31	 0	 24	 42	 0	
Total	 536	 16	 258	 2,363	 52	

Table 2 Statistics of the data from the CGI and DTC.

targets, and tumor types to facilitate user’s cognition
of missing data.

A superimposed view facilitates direct comparison
of data from multiple sources and exposes data con-
sistency states. In our case, both datasets indicate
drug-target relations, which allows them to share the
same spatial mapping [34]. At the same time, direct
comparison of data consistency is crucial in this case.
Based on these two conditions, we adopted a superim-
posed view [34], i.e., overlaid data layers.

Overlaid layers of comparable data elements allow
the user to easily perceive data consistency between
datasets. Fig. 3 contains some inconsistent drug-target
relations, where for the same drug and mutation pair
the CGI value indicates resistance between them,
whereas the DTC dataset shows the drug is potent
toward the mutation, i.e., red bars overlaid with black
potent bars. On the other hand, cases exist where the
two datasets provide consistent results. For example,
the cells where highly potent bars lie on top of the fully
saturated green bars in Fig. 3.
Data credibility can be assessed in two ways. First,

visual encodings of the evidence levels consisting of
position, length, and saturation inform the credibility
level of the drug-target relations from the CGI. Sec-
ond, links to data sources, such as publications, can
be retrieved on demand to expose data credibility.

Implementation
MediSyn is implemented using D3.js [35]. It contains
536 different point mutations, among which 350 come
from the CGI, 217 are from DTC, and 31 exist in both
datasets (Table 2). Sixteen wild-type genes all come
from DTC. There are in total 258 different kinds of
drugs or drug combinations, 166 of which are from
CGI, 116 are from DTC, and 24 exist in both datasets.
A total of 2,405 different pairs of drug-target relations
exist, 546 of which are cancer treatment biomarkers.
The rest are from DTC, among which 665 pairs are
wild-type drug interactions. Forty-two drug-mutation
pairs contain data from both datasets. Finally, 52 tu-
mor types are all retrieved from the CGI. MediSyn is
available at http://medisyn.hiit.fi.

Use Case
Studies have shown that even oncologists at a leading
cancer center express low confidence in their knowledge

Figure 4 A case of the discovery of a drug-repurposing
opportunity. Axitinib is promising to treat otherwise highly
drug resistant mutation ABL1(T315I)-driven chronic myeloid
leukemia based on pre-clinical evidence from both datasets.

of genomics [36]. MediSyn makes the knowledge of ge-
nomically informed therapy accessible and evaluable to
clinicians. Such personalized cancer medicine involving
the patient’s molecular profile, i.e., patient mutations,
can be more advantageous than current standard ther-
apies across tumor types [36].

As a use case, Fig. 4 shows the T315I mutation con-
fers resistance to the majority of approved ABL1 in-
hibitors [37], such as the drug bosutinib, except for
ponatinib, which has toxicity limitations. However,
MediSyn exposes that axitinib could be a promising
treatment for patients with the otherwise highly drug-
resistant mutation BCR-ABL1(T315I)-driven chronic
myeloid leukemia, based on pre-clinical evidence from
both datasets (highlighted drug in Fig. 4), which is
also in agreement with the findings of Pemovska et al.
[37]. This demonstrates how comprehensive represen-
tation of drug-target data can lead to unexpected and
novel drug-repurposing opportunities.

In facilitating the identification of data uncertainty,
the highlighted cell in Fig. 3, for instance, shows that
according to the CGI, ABL1(E255K) is resistant to
nilotinib, whereas DTC data show the drug is potent
for this mutation. The user can find the same infor-
mation from the original CGI and DTC webpages in
Fig. 2, but such data conflicts are difficult to detect
when the datasets are unlinked. In the user study, we
inquired of a number of bioinformaticians about the
possible cause of such inconsistencies. They provided
some hypotheses but did not have an explicit answer
(see the next section).

User Study
To investigate the benefits of MediSyn as well as other
possible insights and future design challenges resulting
from data integration and uncertainty visualization,
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Mean	 SD	
Familiarity	with	
Cancer	treatment	biomarkers	 3.33	 1.51	
Drug-target	bioactivities	 2.83	 1.83	
Cancer	drivers	 2.83	 1.94	
Different	kinds	of	anti-cancer	drugs	 3.17	 1.72	
Tabular	visualization	 4.83	 2.14	

Knowing	the	provenance	of	the	displayed	data	is	important.	 6.33	 1.03	

Table 3 Statistics on the prior knowledge of participants on a
seven-point Likert scale.

we did a within-participant study with six domain ex-
perts. To concretize the investigation, we raised the fol-
lowing two research questions. In addition, we assessed
the user experience with the synthesized interface to
select effective drugs.
• RQ1: What features of MediSyn are useful? What

features need to be further developed?
• RQ2: Can MediSyn convey data inconsistencies

to the user? How will user awareness of incon-
sistencies among datasets affect user trust in the
curated data and in MediSyn?

We conducted the evaluation in a lab setting using
the Chrome browser on a 13.3-inch MacBook Pro with
a 2.8-GHz Intel Core i5 processor, 16 GB of RAM, and
a built-in trackpad and keyboard. The display resolu-
tion was 2,560 * 1,600 pixels.

Baseline
We used the original CGI and DTC webpages as
the baseline system (Fig. 2) to assess the impact of
MediSyn as a synthesized interface. The CGI can-
cer treatment biomarker page describes the mutations,
drugs, evidence levels, data sources, and tumor types
of the biomarkers in a table, as shown in the upper
part of Fig. 2. The user can reorder the rows by click-
ing on the header of the column and can filter the rows
using the filtering box at the top of each column. The
DTC Web application allows the user to search bioac-
tivities by a point mutation. It displays the relations of
mutations, drugs, activity types, and values in a table
as well. Similar to the CGI, the user can sort and fil-
ter the bioactivities using the control, as shown in the
lower part of Fig. 2. For both datasets, clicking on the
data source will open a new window that shows the
source page of the curated data, such as a publication
page.

Participants
Among the six participants (three females; age mean:
28.6, SD: 5.32, N: 6), five were bioinformaticians, and
one was a computer scientist. Participants were asked
to complete a pre-questionnaire using a seven-point
Likert scale so that their background and prior knowl-
edge could be established (Table 3). Among the six

participants, one participant claimed to use DTC oc-
casionally but had never used the CGI. This partici-
pant was not quite familiar with the features of DTC
(five on a seven-point Likert scale). Another partici-
pant stated that he had used the CGI before but not
DTC and was not quite familiar with the features of
the CGI (four on a seven-point Likert scale). The re-
maining four participants had never used either of the
systems. The participants had little familiarity with
cancer biomarkers (mean: 3.33, SD: 1.51, N: 6), drug-
target bioactivities (mean: 2.83, SD: 1.83, N: 6), cancer
drivers (mean: 2.83, SD: 1.94, N: 6), and anti-cancer
drugs (mean: 3.17, SD: 1.72, N: 6). Also, they had
no particular familiarity with tabular visualizations
(mean: 4.83, SD: 2.14, N: 6). The participants thought
that knowing the provenance of the displayed data was
important (mean: 6.33, SD: 1.03, N: 6).

Tasks
Task 1 (T1) - Drug selection
Each participant used both the baseline system (Fig.
2) and MediSyn (Fig. 1) to find the most effective
drug for a pair of mutations. The order was counter-
balanced. For each system, the participants used a dif-
ferent pair of mutations. We assigned two pairs of mu-
tations. All four mutations had data in both datasets
and had similar drug responsiveness data in the two
datasets.

Task 2 (T2) - Inconsistency discovery
Each participant used MediSyn to find the inconsis-
tency in the data between two datasets for a pair of
mutations. We assigned a pair of mutations that con-
tained inconsistency information from the datasets for
both mutations.

Procedure
Before T1 with each system, the participants were first
trained on how to use the system. Training was ac-
tive, as participants were asked to complete some basic
tasks using the system through a printed introductory
document. The experimenter ensured the participants
understood how to complete these tasks before the ac-
tual experiment commenced. The whole training ses-
sion took around 10 to 15 minutes for each system.
During the actual tasks, participants were allowed to
use pen and paper.

The participants then completed a questionnaire for
each system in T1. The questionnaire adopted the de-
sign of ResQue [38] and Knijnenburg et al. [39]. For T2,
participants were encouraged to think aloud while ex-
ploring the datasets. Afterward, the participants com-
pleted another questionnaire on the trustworthiness of
the system as well as the curated data. Finally, we
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Figure 5 The time participants spent on drug selection and
inconsistency discovery tasks. The x-axis indicates different
participants and the aggregated mean, and the y-axis denotes
the time in the format of mm:ss.

asked some interview questions to gather general feed-
back. The whole experiment took around an hour for
each participant. Each participant was given a movie
ticket as compensation. For each task, the screen was
recorded and used for subsequent analysis.

Overview of Results
Task performance
Fig. 5 shows the time spent with each system for T1
and the time spend on T2. For T1, using the base-
line, the longest time spent was 12m20s (participant
5), and the shortest was 03m30s (participant 4). With
MediSyn, the longest time was 03m50s (participant
5), and the shortest time was 01m10s (participant 6).
On average, the six participants spent 6m22s with the
baseline system (SD: 03m09s), and 1m57s when us-
ing MediSyn (SD: 01m00s). The participants required
more than three times the time with the baseline than
with MediSyn.

All participants eventually got the right answer for
both systems during T1. The right answer was the
drug that was responsive to both mutations based on
CGI evidence and that had the lowest bioactivity value
in DTC. Due to the small intersections of the two
datasets, we could not set up a more complex task,
such as drug selection for a group of four mutations.

For T2, the longest time spent was 05m30s (partic-
ipant 2), whereas the shortest time was 02m15s (par-
ticipant 5). On average, the participants spent 03m29s
(SD: 01m14s). All participants found all the correct
answers.

Questionnaire results
Fig. 6 shows user experience feedback for both sys-
tems. Participants were more satisfied with the se-
lected drug using MediSyn (median: 5.5, N: 6) than
with the baseline (median: 4, N: 6). They experienced
less choice difficulty (MediSyn median: 2, baseline me-
dian: 3, N: 6). They also perceived MediSyn as eas-
ier to use (MediSyn median: 7, baseline median: 6,
N: 6), which could also be observed in the improved

task efficiency with MediSyn, and as requiring less ef-
fort (MediSyn median: 2, baseline median: 3, N: 6).
These results can also be explained by the observation
that the participants only needed the draft paper when
working with the baseline. Participants tended to be
more satisfied with and trusting in MediSyn (median:
6, N: 6) compared with the baseline (median: 5.5, N:
6). Similarly, they tended to use MediSyn again for
drug selection tasks (MediSyn median: 6.5, baseline
median: 6, N: 6). They tended to think that informa-
tion provided in MediSyn (median: 5.5, N: 6) was more
sufficient than the baseline (median: 5, N: 6).

The results for interface adequacy (median: 6, N:
6) and choice confidence (median: 5, N: 6) were the
same for both systems, whereas MediSyn (median: 5,
N: 6) was perceived as less useful compared with the
baseline (median: 5.5, N: 6). A possible explanation
could be that MediSyn extracted only some impor-
tant data columns from DTC to display. Therefore,
the users could find more abundant data properties
for the bioactivities using the original DTC webpage.

Fig. 7 shows user trust feedback on MediSyn as well
as on curated data. In general, the participants tended
to think that manual data curation was error prone
(the left most boxplot of Fig. 7, median: 3, N: 6). How-
ever, for these two manually curated datasets, they
were unsure about the reliability of the data no mat-
ter whether they realized there existed inconsistencies
in the datasets (median: 4, N: 6). On the other hand,
before user perception of data inconsistency, i.e., dur-
ing T1, the participants believed MediSyn was reli-
able (median: 6, N: 6). However, user trust in MediSyn
tended to drop after participants found inconsistencies
in the datasets during T2 (median: 5, N: 6).

Discussion and Design Implications
We discuss the results of the user study and derive a
set of design implications to inform the design of fu-
ture uncertainty-aware visual synthesizers for biomed-
ical data.

The synthesis of datasets can increase choice
satisfaction, lower choice difficulty, and improve task
efficiency.
Compared to unlinked datasets, the results of T1
showed the synthesized interface could improve effi-
ciency and choice satisfaction and lower choice diffi-
culty in drug selection. Two participants stated that
MediSyn was simple and user friendly. Three partici-
pants suggested the visualization should have a better
layout design; specifically, two participants said the in-
formation on the left was too dense, and one partici-
pant suggested stretching the bars because sometimes
she could not tell if she was clicking on the CGI or
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Figure 6 Results of the user experience with MediSyn and the baseline.

Figure 7 The results of general user trust in data curation as
well as the user trust in the system and the curated data
before / after the perception of data inconsistencies.

DTC values. Two participants had difficulty matching
the evidence levels to the legend. One participant could
not understand the usage of different sorting functions.

The matrix view supports drug comparison and
exposes missing data.
The matrix-based view provides a scalable layout
[40, 41] to support the perception of drug effects on
multiple targets and tumor types, which enables the
user to compare and select promising drugs for certain
targets. Such a holistic view of drug-target relations
also facilitates user cognition of missing data.

Depiction of datasets in overlaid layers facilitates
direct comparison of data from multiple sources and
effectively supports user perception of data
consistency states.
For T2, all participants found all conflicts for the desig-
nated mutations in a reasonable time frame. One par-
ticipant expressed it was useful to have two datasets

together, particularly for the second task. Otherwise,
she could not realize there were inconsistencies in the
datasets.

Exposed data inconsistencies tend to lower user trust
in MediSyn but do not have observable effects of user
trust in curated data.
Most participants used the two datasets for the first
time during the evaluation. They were unsure about
the reliability of the datasets throughout the study.
However, their trust in MediSyn tended to drop along
with the cognitive transition from unawareness of the
existence of data inconsistencies during T1 to the re-
alization of their existence in T2.

No explicit answer was acquired on the rationale for
conflicts in drug effects.
Three participants stated that the inconsistency could
be caused by patient complexity. For example, the pa-
tient could have acquired resistance due to a history of
drug treatments. One participant declared the incon-
sistency could be due to the different measurements in
experiments. For instance, in one case, the data from
the CGI used the IC50 measurement type, whereas the
DTC data used the Kd value. The rationale behind the
data conflicts remains an open question, inviting the
user to further investigate.

User accessibility to data sources of the curated data
is an important and useful feature.
Three participants expressed it was useful to have the
link to publications easily accessible, which is in ac-
cordance with the pre-questionnaire result that shows
knowing the provenance of the displayed data is impor-
tant to the user. Two participants stated they would
still need to read the paper before making the decision
in T1. The tight coupling of data and the provenance
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allows the user to verify the credibility of the infor-
mation and acquire additional information about the
data.

More patient data need to be embraced to expand user
knowledge.
For T1, one participant asserted he would not decide
on the treatment based only on patient mutations and
needed to look for other information. Two participants
claimed that patient data such as age and treatment
history were also important to consider. One partici-
pant suggested taking a patient cell sample to exper-
iment with the selected drug. How to embrace more
information sources in an intuitive manner to further
broaden the user’s knowledge of decision-making while
avoiding the information overload problem remains a
future research challenge.

Overview and details on demand support the
scalability of the number of datasets.
MediSyn displays datasets in overlaid layers. Based on
the user study, such a superimposed view can effec-
tively convey the states of data consistency. However,
it can also cause visual clutter with the increase of the
number of datasets [34]. In practice, if we have more
than two datasets, we propose using MediSyn to pro-
vide an overview of the data from available sources.
For instance, each data cell in MediSyn can depict the
possibility of resistance between the drug and target
as well as that of responsiveness based on the calcula-
tion across all sources. The user can have control over
the weight of the data sources in the calculation. With
this informative overview, the user can then further
explore the details of the data cells.

Conclusions
In this paper, we presented MediSyn, an uncertainty-
aware interactive visualization that synthesizes biomed-
ical datasets to support drug treatment selection. The
matrix view coupled with overlaid layers presents a
comprehensive relation among drugs, targets, and tu-
mor types from multiple sources, supporting the com-
parison of drug effects on multiple targets. A use
case with the implementation of MediSyn synthesizing
two datasets, cancer treatment biomarkers from the
CGI and drug-target bioactivities from DTC, showed
its effectiveness in supporting the discovery of drug-
repurposing opportunities.

From a visualization research perspective, MediSyn
visualizes the uncertainty of the datasets to support
more informed decision making. The matrix-based lay-
out exposes missing data. Overlaid layers ease the per-
ception of data consistency. Visual encodings of evi-
dence levels as well as links to data provenance convey
data credibility.

A preliminary study with six domain experts showed
that such a synthesized interface can increase choice
satisfaction and efficiency and lower choice difficulty
compared to currently unlinked datasets in support-
ing drug selection. Subjective results showed generally
positive feedback. User accessibility to data sources,
among other factors, appears to be a crucial and useful
feature. Additionally, MediSyn facilitates user percep-
tion of data inconsistencies, but the cause of conflicts
remains an open question.

MediSyn is still in its early stage and has great po-
tential to be improved. First, the layout and readabil-
ity of the visual design can be improved to ease the
perception of the links between the datasets and data
properties. Second, the drugs can be linked to diseases
to further benefit the discovery of drug-repurposing
opportunities. Third, enabling the user to sort the
columns based on the activities of mutations can fur-
ther refine the user selection of drug treatment. Be-
cause not all driver genes are equally important in the
course of tumorigenesis [42]. Tumors may be more ad-
dicted to mutations in certain drivers, which provide
basic capabilities to cancer cells [42]. Fourth, we plan
to incorporate more information sources, one of which
is the clinicaltrials.gov dataset containing basic patient
information of drug clinical tests, to further enhance
user knowledge. Fifth, design implications of MediSyn
can be generalized to serve other types of data collec-
tions.
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