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A parametric texture model based on deep convolutional features closely
matches texture appearance for humans
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Our visual environment is full of texture—“stuff” like cloth, bark or gravel as distinct
from “things” like dresses, trees or paths—and humans are adept at perceiving subtle
variations in material properties. To investigate image features important for texture
perception, we psychophysically compare a recent parameteric model of texture ap-
pearance (CNN model) that uses the features encoded by a deep convolutional neural
network (VGG-19) with two other models: the venerable Portilla and Simoncelli
model (PS) and an extension of the CNN model in which the power spectrum is ad-
ditionally matched. Observers discriminated model-generated textures from original
natural textures in a spatial three-alternative oddity paradigm under two viewing con-
ditions: when test patches were briefly presented to the near-periphery (“parafoveal”)
and when observers were able to make eye movements to all three patches (“inspec-
tion”). Under parafoveal viewing, observers were unable to discriminate 10 of 12
original images from CNN model images, and remarkably, the simpler PS model per-
formed slightly better than the CNN model (11 textures). Under foveal inspection,
matching CNN features captured appearance substantially better than the PS model
(9 compared to 4 textures), and including the power spectrum improved appearance
matching for two of the three remaining textures. None of the models we test here
could produce indiscriminable images for one of the 12 textures under the inspec-
tion condition. While deep CNN (VGG-19) features can often be used to synthesise
textures that humans cannot discriminate from natural textures, there is currently no
uniformly best model for all textures and viewing conditions.
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Introduction

Textures are characterised by the repetition of
smaller elements, sometimes with variation, to make
up a pattern. Significant portions of the visual envi-
ronment can be thought of as textures (“stuff” as dis-
tinct from “things”; Adelson & Bergen, 1991): your
neighbour’s pink floral wallpaper, the internal struc-
ture of dark German bread, the weave of a wicker bas-
ket, the gnarled bark of an old tree trunk, a bowl full
of prawns ready for the barbie. Texture is an impor-
tant material property whose perception is of adaptive
value (Adelson, 2001; Fleming, 2014). For example,
we can readily discriminate wet from dry stones (e.g.
Ho, Landy, & Maloney, 2008), separating the under-
lying spatial texture from potentially temporary charac-
teristics like glossiness. Where surfaces of different tex-
tures form occlusion boundaries, texture can provide a
powerful segmentation cue; conversely, occlusion bor-
ders of similarly-textured surfaces can camoflage the
occlusion (hiding a tiger among the leaves). Given the
importance and ubiquity of visual textures, it is little
wonder that they have received much scientific atten-
tion, not only from within vision science but also in
computer vision, graphics and art (see Dakin, 2014;
Landy, 2013; Pappas, 2013; Rosenholtz, 2014, for com-
prehensive recent reviews of this field).

Studying texture perception with parametric texture
models

Seminal early work on visual texture perception in-
cludes that by Gibson (Beck & Gibson, 1955; Gib-
son, 1950) and by Julesz (Julesz, 1962, 1981; Julesz,
Gilbert, & Victor, 1978). Julesz’ thinking remains an
important influence on approaches to texture percep-
tion, in particular the idea that there exists some set
of statistics (parameters in a parametric model) that are
both necessary and sufficient for matching the appear-
ance of textures (see also Portilla & Simoncelli, 2000).
For computer vision applications, where a goal might
be to match the appearance of some region of texture
to facilitate image compression, the most effective ap-
proaches can be nonparametric—for example, by quilt-
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ing repetitions of a base level crop over the area of the
texture (e.g. Efros & Freeman, 2001). However, non-
parametric approaches have little to teach us about the
human visual system because they make no explicit hy-
potheses about what features are represented. In this pa-
per we will therefore focus on parametric texture mod-
els.

Parameteric models that aim to match the appearance
of natural textures are typically assessed by examining
artificial textures synthesised by the model (Heeger &
Bergen, 1995; Portilla & Simoncelli, 2000; Safranek
& Johnston, 1989; Safranek, Johnston, & Rosenholtz,
1990; Zhu, Wu, & Mumford, 1998). The statistics of a
model are first computed on a target image, then a new
image is synthesised to approximately match the statis-
tics of the target image (often via gradient descent).
This approach carries forward Julesz’ “necessary and
sufficient statistics” idea by assuming that texture ap-
pearance can be captured by the coefficients of some
specified set of image statistics. Note that this focus
on naturalistic appearance is distinct from a comple-
mentary approach which starts from local analysis of
luminance distributions to posit an “alphabet” of inde-
pendent microtexture dimensions (Victor, Thengone, &
Conte, 2013), but does not seek to match the appearance
of natural textures.

A number of parametric texture models operate by
assuming a plausible image representation for the early
primate visual system, decomposing the target image
into some number of frequency and orientation bands
(Cano & Minh, 1988; Heeger & Bergen, 1995; Ma-
lik & Perona, 1990; Porat & Zeevi, 1989; Portilla &
Simoncelli, 2000; Simoncelli & Portilla, 1998; Zhu et
al., 1998). The spatially-averaged responses in some
combination of these bands form the parameters of the
model, whose values are then matched by the synthe-
sis procedure. The parametric texture model of Por-
tilla and Simoncelli (Portilla & Simoncelli, 2000; Si-
moncelli & Portilla, 1998) extended this approach by
additionally matching the correlations between chan-
nels and other statistics, producing more realistic ap-
pearance matches to textures. This model has since
had broad impact on the field of human perception
and neuroscience: the texture statistic representation
may provide a fruitful way to understand the pro-
cessing in mid-ventral visual areas (Freeman & Si-
moncelli, 2011; Freeman, Ziemba, Heeger, Simon-
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celli, & Movshon, 2013; Freeman, Ziemba, Simon-
celli, & Movshon, 2013; Movshon & Simoncelli, 2014;
Okazawa, Tajima, & Komatsu, 2015; Ziemba, Freeman,
Movshon, & Simoncelli, 2016), and it has been argued
to provide a good approximation of the type of informa-
tion encoded in the periphery, and thus a model for tasks
such as crowding and visual search (Balas, Nakano, &
Rosenholtz, 2009; Freeman & Simoncelli, 2011; Kesh-
vari & Rosenholtz, 2016; Rosenholtz, 2011; Rosen-
holtz, Huang, & Ehinger, 2012; Rosenholtz, Huang,
Raj, Balas, & Ilie, 2012)—though other evidence ques-
tions the more general adequacy of this representa-
tion for explaining crowding and peripheral appearance
(Agaoglu & Chung, 2016; Clarke, Herzog, & Francis,
2014; Herzog, Sayim, Chicherov, & Manassi, 2015;
Wallis, Bethge, & Wichmann, 2016).

How, though, does it perform as a model of texture
appearance in humans? Balas and colleagues (Balas,
2006, 2008, 2012; Balas & Conlin, 2015) have reported
a number of psychophysical investigations using the
Portilla and Simoncelli (hereafter, PS) texture model
that are relevant to this question. Balas (2006) quan-
tified the relative importance of subsets of the PS statis-
tics compared to the full set for matching the appear-
ance of different classes of texture (periodic, structured
or asymmetric). He used a task in which human ob-
servers chose the “oddball” image from a set of three (a
three-alternative oddity task) that were presented briefly
to the near-periphery. Two of the images were drawn
from original textures whereas the oddball was drawn
from a model synthesis matched to the original texture
(or vice versa; the oddball could be either original or
synthetic). Importantly, all three images were physi-
cally different from each other (consisting of subcrops
of larger images). The oddity judgment therefore con-
cerns the subjective dissimilarity of the images—which
image is “produced by a different process”—rather than
exact appearance matching. In this study, the impor-
tance of different parameter subsets depended on the
class of texture, and including the full set of statistics
brought average discrimination performance quite close
to chance (around 40% correct on average), showing
that the PS statistics do a reasonably good job in cap-
turing texture appearance under brief peripheral view-
ing conditions.

Balas (2012) used a four-alternative oddity task to in-
vestigate the discriminability of real and synthetic tex-

tures. Observers were allowed to view each stimulus ar-
ray for unlimited time and to foveate the images. Under
these viewing conditions, observers could easily dis-
criminate original natural textures and PS-synthesised
images from each other, whether the oddball was real
or synthetic (average performance 85–90%). How-
ever, when the original images were sourced from ab-
stract artworks rather than photographs of fruits and
vegetables, performance for discriminating real from
PS-synthesised images was worse and depended on
whether the oddball was real or synthesised (with per-
formance around 55% for the former and 65% for the
latter). Together with the results of Balas (2006), these
results suggest that the PS model better captures texture
appearance in the periphery than in the fovea, and that
the perceptual fidelity of the matching depends on the
image or texture type.

Finally, Balas and Conlin (2015) assessed whether
the influence of illumination change on human texture
perception could be captured by PS synthesis. Ob-
servers performed a match-to-sample task, in which
they decided which of two match images depicted the
same texture as a previously-presented sample. Per-
formance was quite high (above 90%) when the illu-
mination between the sample and correct match im-
age was constant (in this case, the match image was
physically identical to the sample), whether the images
were real or synthesised. When the correct match image
was presented with different illumination to the sample,
performance declined to around 70% correct for syn-
thetic images but remained high for real images. That
is, observers could easily ignore illumination changes
when matching real textures, but their judgments were
impaired by illumination change when discriminating
synthesised images. Note that the foil images (the non-
target match image) were selected to be “approximately
visually-matched” by the experimenters; it is likely that
the results (but perhaps not conclusions) will depend on
this choice. Similar results were obtained after equalis-
ing the luminance and power spectra of the images, and
when match and sample images were physically differ-
ent (cropped from different areas of the same texture).
These results show that the PS feature space does not
perfectly preserve the necessary statistics to match tex-
ture appearance across changes in illumination.

Together, the experiments show that while aspects of
human texture perception are not captured by or fall
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outside the scope of the PS feature space, it does suc-
ceed in capturing key aspects of texture appearance for
many classes of natural texture. The PS feature space
is based on the idea—amply supported by psychophys-
ical and neurophysiological evidence—that the human
visual system decomposes an image into a number of
spatial and orientation subbands. To what extent will a
more complex feature space improve on the PS model?

A new parametric texture model based on deep fea-
tures

Gatys et al. (2015) have recently introduced a new
parametric texture model that produces subjectively
high-quality matches to texture appearance, and whose
features can be used to separate the “style” of an image
from its content (Gatys, Ecker, & Bethge, 2016). This
texture synthesis procedure (see “CNN texture model”,
below) is based on the pre-trained features of a deep
convolutional neural network (the VGG-19; Simonyan
& Zisserman, 2015, Figure 1) that achieves near state-
of-the-art performance on the Imagenet Large Scale
Visual Recognition Challenge (ILSVRC; Russakovsky
et al., 2015): basically, returning labels for the likely
objects present in an image. Due to their success on
benchmarks like the ILSVRC, CNNs have become the
dominant approach to many visual inference problems
in the field of computer vision, with some networks
showing impressive transfer learning performance (do-
ing well on new tasks with only minimal changes to the
network, e.g. Donahue, Jia, & Vinyals, 2013).

Briefly, a single-layer convolutional neural network
(CNN) learns (via supervised training) the weights of
filters that are convolved with input images, creating
a spatial feature map of activations, similar to a tra-
ditional bank of Gabor filters familiar to vision scien-
tists. Using convolutional filters allows the detection
of spatial patterns at any position in the image (transla-
tion equivariance), and also facilitates learning through
weight sharing—the intuition here is that features use-
ful to know about at one spatial location are likely to
be useful for all spatial locations. All convolutional
layer activations are then passed through a pointwise
nonlinearity, typically a rectified linear (“relu”) func-
tion f (x) = max(0, x). These feature maps can then be
pooled (in VGG by taking the maximum of activations
in a small area), creating local spatial invariance, and
combined with downsampling to reduce the spatial di-

mensions of the feature maps (see Figure 1). Stacking
such operations repeatedly (passing the outputs of one
convolutional or max-pool layer as the input to another,
creating a “deep” CNN with at least one hidden layer)
has several effects. The spatial area of the input image
to which features respond are larger for higher layers
(analogous to the increase in receptive field size from
V1 to IT cortex), and the features to which higher con-
volutional layers respond becoming increasingly non-
linear functions of the input pixels (analogous to the
feature selectivity from V1 to IT cortex). It is this
accumulating nonlinear behaviour that allows complex
properties such as object identity (and many other prop-
erties; Hong, Yamins, Majaj, & DiCarlo, 2016) to be
linearly decoded from the higher network layers. For
more comprehensive recent reviews, see Kietzmann,
McClure, and Kriegeskorte (2017); LeCun, Bengio, and
Hinton (2015) and Yamins and DiCarlo (2016).

CNNs are interesting for the study of human vi-
sion first and foremost because they perform interest-
ing tasks. Until recently, there was only one known
class of system (“biological brains”) that could detect
and recognise objects in photographic images with high
accuracy; now there are two. The second reason that
human vision researchers might be curious about CNNs
is that there is growing evidence that the way in which
CNNs perform these tasks has intriguing similarities to
some biological visual systems. For example, there is
now quantitative evidence that performance-optimized
CNN features predict ventral stream brain signals in
monkeys and humans using the stimulus input better
than existing models built explicitly for that purpose
(Cadieu et al., 2014; Cichy, Khosla, Pantazis, & Oliva,
2016; Cichy, Khosla, Pantazis, Torralba, & Oliva, 2016;
Guclu & van Gerven, 2015; Hong et al., 2016; Khaligh-
Razavi & Kriegeskorte, 2014; Yamins, Hong, Cadieu,
& DiCarlo, 2013; Yamins et al., 2014). CNN mod-
els also show similarities to human psychophysical ob-
ject recognition performance under brief presentation
conditions (Hong et al., 2016; Yamins et al., 2014).
A recent paper reported that CNNs trained on Ima-
geNet (natural photos) can still partially recognize ob-
jects from silhouette information only, and show other
human-similar shape biases (Kubilius, Bracci, & Op
de Beeck, 2016). There are of course important ways
that current CNNs are unlike primate visual systems.
For example, a subtle modification of an image that

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 31, 2017. ; https://doi.org/10.1101/165761doi: bioRxiv preprint 

https://doi.org/10.1101/165761
http://creativecommons.org/licenses/by/4.0/


4 WALLIS, FUNKE, ECKER, GATYS, WICHMANN & BETHGE

pool pool pool pool

conv1_1

conv2_1
conv3_1

conv4_1 conv5_1

Input

k = 64

k = 128

k = 256

k = 512
k = 512

Figure 1. The architecture of the VGG-19 convolutional neural network (Simonyan & Zisserman, 2015), whose
pretrained features are used by the Gatys, Ecker, and Bethge (2015) texture model. The network consists of stacks
of convolutional stages followed by max-pooling. In higher network layers, the feature map sizes decrease (depicted
as the increasingly small panels), the corresponding “receptive field” sizes of the units increase, and the number of
feature maps (k) increase. In this paper we synthesise textures using the first convolutional layer from each stack
after the max pooling.

is nearly imperceptible to a human can cause a deep
network to misclassify an object with high confidence
(Szegedy et al., 2013, see Yamins and DiCarlo (2016)
for additional discussion). Furthermore, human object
recognition remains remarkably robust in images de-
graded by white noise, whereas the original VGG net-
work is strongly impaired (Geirhos et al., 2017). Bear-
ing these caveats in mind, an exciting possibility is that
the study of CNNs may help to elucidate some funda-
mental mechanisms of human perception.

In this paper we pursue a less lofty goal: to measure
how well humans can discriminate textures synthesised
by the Gatys et al. (2015) model from natural textures.
How well do CNN texture features match the appear-
ance of the original textures? To address this question
we compare the model of Gatys et al. (2015) to the
PS model (Portilla & Simoncelli, 2000) and to a recent
modification of the Gatys model (Liu, Goussau, & Xia,
2016). Experimentally, we closely follow the approach
of Balas (2006), described above1. Using images that
are all physically different measures the extent to which
model syntheses are categorically or structurally loss-
less (in that they could both be considered samples from
original images; Pappas, 2013), as opposed to being

perceptually lossless (unable to be told apart) compared
either to each other (Freeman & Simoncelli, 2011) or
the original source images (Wallis et al., 2016). Percep-
tual losslessness could be important for understanding
visual encoding in general but categorical losslessness
is arguably more useful for understanding the percep-
tual representation of texture.

In addition to assessing the discriminability of brief,
peripherally-presented textures (as in Balas, 2006), we
are also interested in how this changes when longer
foveal comparison is possible (as in Balas, 2012).
We therefore include two presentation conditions: a
“parafoveal” condition and an “inspection” condition2.
Note that depending on the spatial scale of the most in-

1As Balas (2006) writes, “the 3AFC task presented here
represents a modest contribution towards the formulation of
texture discrimination tasks that make explicit the impor-
tance of local texture analysis in the human visual system.”
We agree.

2 These are analogous to Balas’ “preattentive” and “atten-
tive” conditions, but we consider these terms somewhat of a
historical misnomer: because there is no spatial or tempo-
ral uncertainty, observers can presumably accurately deploy
spatial attention to the stimuli in both cases.
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formative differences, sensitivity to some aspects of tex-
ture can be better in the parafovea than in the fovea un-
der some conditions (Gurnsey, Pearson, & Day, 1996;
Kehrer, 1987, 1989). Therefore, differences in psy-
chophysical performance between these conditions are
informative about the extent to which the texture mod-
els under consideration capture, or fail to capture,
features that are important for both foveal and near-
peripheral texture perception.

General methods

All stimuli, data and code to reproduce the fig-
ures and statistics reported in this paper are pro-
vided online (Raw data and code at http://doi
.org/10.5281/zenodo.836726, stimuli at http://
doi.org/10.5281/zenodo.438031). This document
was prepared using the knitr package (Xie, 2013,
2015) in the R statistical environment (Arnold, 2016;
Auguie, 2016; {R Core Development Team}, 2016;
Wickham, 2009, 2011; Wickham & Francois, 2016) to
improve its reproducibility.

Apparatus

Stimuli were displayed on a VIEWPixx 3D LCD
(VPIXX Technologies; spatial resolution 1920 × 1080
pixels, temporal resolution 120 Hz, operating with the
scanning backlight turned off in high-bitdepth greyscale
mode). Outside the stimulus image the monitor was
set to mean grey. Observers viewed the display from
60 cm (maintained via a chinrest) in a darkened cham-
ber. At this distance, pixels subtended approximately
0.024 degrees on average (41 pixels per degree of vi-
sual angle). The monitor was linearised (maximum
luminance 260 cd/m2) using a Konica-Minolta LS-
100 photometer. Stimulus presentation and data col-
lection was controlled via a desktop computer (In-
tel Core i5-4460 CPU, AMD Radeon R9 380 GPU)
running Ubuntu Linux (16.04 LTS), using the Psych-
toolbox Library (Brainard, 1997; Kleiner, Brainard, &
Pelli, 2007; Pelli, 1997, version 3.0.12) and our in-
ternal iShow library (http://dx.doi.org/10.5281/
zenodo.34217) under MATLAB (The Mathworks,
Inc., R2015b).

Source images

Twelve unique texture images3 (see Figure 2) were
selected to provide a variety of texture-like structure
(including some with obvious periodicity and others
that were asymmetric) but were also chosen to ex-
hibit some non-texture naturalistic structure (such as the
size gradient visible in the flowerbed image). Images
were converted to greyscale using scikit-image’s
io.imread function (van der Walt et al., 2014), then
cropped to the largest possible square from the centre
of the image. The original images all had at least one
dimension of 1024 pixels. We then downsampled all
images to 256 × 256 pixels using the cubic interpolation
of skimage.transform.resize. To preserve the nat-
uralistic appearance of the images we did not standard-
ise the mean or variance of intensities. Since all texture
models considered here also match the low-level im-
age statistics this will not impact our results. For each
image model (conv1–conv5 and PS for Experiment 1,
conv5, PS and powerspec in Experiment 2; see below)
we generated ten unique synthesised images of size 256
from each original image, resulting in a final stimulus
set of 732 images for Experiment 1 and 372 images for
Experiment 2. All images were stored as 16-bit .png
files.

CNN texture model

The CNN texture model (Gatys et al., 2015) uses
the pre-trained features of the VGG-19 network (Si-
monyan & Zisserman, 2015), which shows near state-
of-the-art performance on the object recognition Im-
ageNet challenge (Russakovsky et al., 2015). While
there are now CNN models that outperform the VGG
network on object recognition, the VGG network re-
mains appealing because of its relatively simple archi-
tecture (Figure 1), and because it produces more in-
trospectively appealing textures and style transfer than
those networks that currently performing better on Im-
ageNet. It consists of two operations, stacked many
times: convolutions with k 3 × 3 filters (where k is
the number of input feature maps) followed by a 2 × 2
max-pooling in non-overlapping regions. The model

3 These images are copyrighted by www.textures.com
(used with permission). Copies of the texture images used
in the experiments are available with the online materials of
this article (redistributed with permission).
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Figure 2. The twelve original texture images used in the experiments. Arranged to correspond to Figure 7. These
images are copyrighted by www.textures.com (used with permission).

uses five pooling and 16 convolutional layers (plus
three fully-connected layers which we do not use here).
The layers are typically labelled with the stack (e.g.
“conv1” or “pool1”) with an underscore denoting the
sub-layer. For example, “conv1_1” refers to the first
convolutional layer of the network, whereas “conv3_2”
would be the second convolutional layer of the third
stack (Figure 1). We use a subset of these feature
maps for texture synthesis (see below). The code was
implemented in Theano using the Lasagne framework,
and may be downloaded from https://github.com/

leongatys/DeepTextures. The weights of the VGG-
19 network are scaled such that the mean activation of
each filter over images and positions is equal to 1.

The first step of the texture synthesis algorithm is to
pass the original image through the network, generat-
ing responses in all network layers. For the feature
responses of a subset of layers (described below) the
Gram matrices are computed (the Gram matrix is the
dot product of the vectorised feature maps; each entry in
the resulting matrix is the correlation between two fea-
tures in response to a particular input image). The basic
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Figure 3. Example experimental stimuli used in Experiment 1 (PS, conv1–conv5) and Experiment 2 (PS, conv5
and powerspec).
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Figure 4. Example experimental display (not to scale).
Distance bar not shown in actual experiment.

idea of the texture synthesis is to create an image with
the same Gram matrix representation via gradient de-
scent (the same synthesis principle as in Portilla and Si-
moncelli (2000) using different features). We start with
a white noise image and minimize the mean-squared
distance between the entries of the Gram matrices of the
original image and the Gram matrix of the image being
generated. For the optimization we use the L-BFGS
method from the the SciPy package (Jones, Oliphant,
& Peterson, 2001) using 1000 iterations, which was
sufficient to bring the loss to an acceptable (but usu-
ally nonzero) value. Note that this procedure (using a
unique random initialisation and converging on nonzero
loss) can therefore generate an effectively infinite num-
ber of physically unique synthesised images. We dis-
cuss the gradient descent further in the Appendix. After
gradient descent, the intensity histogram of the result-
ing image was matched to the intensity histogram of the
original image (ensuring that the images have the same
global luminance, contrast, skew and kurtosis).

The network was trained on RGB images and expects
three-channel input. We duplicated the greyscale orig-
inal images into three channels, and to ensure that the
outputs of the synthesis remained greyscale we aver-
aged the gradients of each colour channel during op-
timization. The layers conv1_1, conv2_1, conv3_1,
conv4_1 and conv5_1 were used for texture synthesis
by taking the activations after rectification. For sim-
plicity, we label the texture models used below with
the name of the highest convolutional stack used. We
match all the Gram matrices cumulatively up to the
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Figure 5. Approximate number of parameters matched
by each texture model assessed in the present paper.
The dashed line shows the number of pixels in a 256-
pixel-square image. Models above the line are over-
complete.

named layer (e.g. the model we label “conv3” below
matches Gram matrices for layers conv1_1, conv2_1
and conv3_1). For each layer l with nl feature maps,
nl

nl+1
2 parameters are matched (division by two is be-

cause the Gram matrices are symmetrical). The approx-
imate number of parameters in each CNN texture model
are shown in Figure 5. Outputs were saved as 16-bit
.png images. Example syntheses can be seen in Figure
3.

CNN plus power spectrum model

To capture long-range correlations (such as contours
that extend over large sections of the image) the model
can be extended by additionally matching the power
spectrum of the original image when performing the
gradient descent to find texture syntheses (Liu et al.,
2016). The new loss function is L = LCNN + βLspe and
the new gradient is ∆ = ∆CNN + β∆spe, where LCNN
is the loss function and ∆CNN is the gradient from the
pure CNN texture model, Lspe and ∆spe are related to
the distance between the current image and the target
Fourier spectrum, and β = 105. That is, the additional
constraints are simply added into the loss function and
gradient (see Liu et al., 2016, for further details).
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HUMAN EVALUATION OF CNN TEXTURES 9

To synthesise these stimuli we used code provided by
Liu et al. (2016). There are a number of differences be-
tween the implementation of the power spectrum model
and the base CNN model described above. First, the
code is written using Matconvnet instead of Lasagne.
The network and the images are normalised to [0, 1]
and the stopping criterion of the optimisation process
is different. In the powerspectrum model we used up
to 2000 iterations (as distinct to 1000 iterations for the
base model). The powerspectrum model matches dif-
ferent layers of the VGG compared to our CNN model:
Conv1_1, Pooling1, Pooling2, Pooling3 and Pooling4.
The power spectrum constraint adds 32,768 parameters
(half the size of the image because phase is discarded),
yielding a total of 209,408 parameters (Figure 5). While
we have not run extensive experiments, we argue that
the most consequential change between the models for
the results we report is the inclusion of the powerspec-
trum matching constraint rather than other implementa-
tion differences.

PS texture model

Portilla and Simoncelli (PS Portilla & Simon-
celli, 2000) texture images were generated using the
publically-available MATLAB toolbox (http://www
.cns.nyu.edu/lcv/texture/). The texture synth
representation we used consisted of four spatial scales
and orientations, and a spatial neighbourhood of 11 pix-
els (these are the most common settings used in the lit-
erature where reported (e.g. Balas et al., 2009; Freeman
& Simoncelli, 2011)). The gradient descent procedure
was based on 50 iterations. The PS model matches ap-
proximately 1,000 parameters (Figure 5). Outputs were
saved as 16-bit .png images.

Procedure and design

On each trial observers were presented with three
physically different image patches. Two were from
the original image and one from a model synthesis im-
age matched to that original image (or vice versa—two
patches could come from the same model synthesis and
one patch from the original image). That is, the odd-
ball image could be either original or synthesised with
equal probability, so a “pick the natural-looking image”
strategy would not succeed. The three image patches
(size 128-pixels-square) were cropped from a larger im-

age (size 256). To obtain two non-overlapping crops
from the same physical image (for the nontarget inter-
vals) one could simply use the image quadrants. To in-
crease the physical variation in the images across trials
we instead chose two adjacent crops drawn from non-
overlapping but otherwise jittered image sections. On
half of the trials the crops were from adjacent “rows”
with the vertical dimension randomly sampled, whereas
on the other half the crops were from adjacent columns
with horizontal dimension randomised. This strategy
eliminated the possibility that observers could match
specific features of the images within a trial (as in Balas,
2006).

The oddball image could appear at any one of
three locations with equal probability (see Figure 4).
The observers’ task was to report which of three
simultaneously-presented images was different to the
other two, in that it was “generated by a different pro-
cess” (rather than being physically the same). Ob-
servers fixated a spot (best for steady fixation from
Thaler, Schütz, Goodale, and Gegenfurtner (2013)) in
the centre of the screen, and the images were arranged
around the fixation in a downward-pointing equilateral
triangle configuration. The images were windowed by a
circular cosine, ramping the contrast to zero in the space
of 6 pixels. The distance between the fixation point and
the nearest edge of the image was 3 degrees of visual
angle (dva), and the image patches subtended 3.1 dva.

The stimulus display was presented for either
200 ms, with observers instructed to maintain fixation
(the parafoveal condition) or for 2000 ms with ob-
servers allowed to make eye movements freely (the in-
spection condition). Observers then had 1200 ms to re-
spond (responses could also be made while the stim-
ulus remained on the screen). The inter-trial interval
was 400 ms. To reduce the possibility that observers
could learn specific strategies for different images based
on familiarity, no trial-to-trial feedback was provided.
Instead, a break screen was presented every 72 trials
telling the observer their mean performance on the pre-
vious trials.

Within a block of trials observers saw five repeti-
tions of the 72 combinations of image model (six lev-
els) and source image (12 levels), for a total of 360 tri-
als per block. Trials were pseudo-randomly interleaved
throughout a block, with the constraint that trials using
the same source image were required to be separated by
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10 WALLIS, FUNKE, ECKER, GATYS, WICHMANN & BETHGE

at least two intervening trials. Presentation condition
was blocked to allow observers to anticipate the trial
timing and adjust their strategy accordingly.

At the beginning of the experiment, naïve observers
performed 30 trials with a 2 second presentation time
to allow them to become familiar with the task. All ob-
servers then performed a practice session of 30 trials at
the relevant presentation time for the upcoming block.

Data analysis

We analysed the data using a logistic Gener-
alised Linear Mixed Model (GLMM), estimated using
Bayesian inference. Experimentally-manipulated fixed
effects of presentation condition and image model were
estimated along with random effects for observer and
image. The model parameters were given conservative,
weakly-informative prior distributions such that we as-
sumed no effects of our experimental manipulations (by
using priors for regression parameters centred on zero)
but with high uncertainty. This biases the model against
finding spuriously large effects. Bayesian model esti-
mation offers two practical advantages here: first, pos-
terior credible intervals over model parameters have an
intuitively-appealing meaning (they represent our belief
that the “true” parameter lies within some interval with
a given probability, conditioned on the priors, model
and data). Second, the priors act to sensibly regularise
the model estimates to ensure all parameters are iden-
tifiable. More details and analysis are provided in the
Appendix.

Experiment 1: Original texture model

This experiment compares textures produced by the
CNN texture model to the PS model under two obser-
vation conditions. This experiment was conducted on
two groups of observers. The first (Experiment 1a) con-
sisted of two of the authors, who were familiar with the
stimuli, experienced with the psychophysical task, and
optically corrected as appropriate. The authors com-
pleted five experiment sessions (each consisting of one
parafoveal and one inspection block), for a total of 3600
trials each. The order of presentation conditions was
pseudorandomly determined for each author in each ex-
periment session. The dataset consisted of 7200 trials.

The second group (Experiment 1b) consisted of ten4

naïve observers (median age 25 years, min 21, max 36),

who completed only one experimental session each (i.e.
one block of each presentation time)5. They were paid
10 EUR for the one hour session. Half the observers
saw the parafoveal condition first, whereas the other
half performed the inspection condition first. All proto-
cols conformed to Standard 8 of the American Psycho-
logical Associations Ethical Principles of Psychologists
and Code of Conduct (2010) and to the Declaration of
Helsinki (with the exception of article 35 concerning
pre-registration in a public database). The final dataset
consisted of 7200 trials.

Results

Performance as a function of image model and pre-
sentation time, averaging over images, is shown in Fig-
ure 6. More complex CNN models (matching more pa-
rameters) tend to produce poorer psychophysical per-
formance (i.e. better matches to natural appearance),
and the performance in the parafoveal condition is
poorer than the inspection condition. The PS model
produces better psychophysical performance (i.e. is not
as good at matching appearance) than the higher-layer
CNN models under the inspection condition but not un-
der the parafoveal condition. The average pattern of re-
sults for the ten naïve observers is qualitatively similar
to the data shown by the two authors, with the excep-
tion that performance is slightly lower. The figure addi-
tionally demonstrates what might be believed about the
“population of texture images” from our results. Es-
timates and credible intervals from the mixed-effects
model are shown as lines and shaded areas in Figure
6 (further details and quantification are provided in the
appendix).

We observe distinctly different effects of image
model and presentation time at the level of individual
images (Figure 7). Five images (Beans, Bricks, Flow-
ers, Grass and Scrap) show a similar pattern of results as
in the average data. Unlike the first five images, the PS
model also succeeds in matching appearance for Carpet,
Cracks, Gravel and Paper under the inspection condi-
tion. In addition, for these images there is less evidence

4Ten was chosen a priori based on pilot testing.
5 Observer S9 completed 144 trials of the "Inspection"

condition before this data was lost due to computer malfunc-
tion. The observer repeated the full testing session; thus this
observer had more practice and exposure to the images than
the other observers.
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Figure 6. Performance as a function of image model in Experiment 1, averaging over images. For the authors (CF
and TW), points show the mean proportion correct and error bars show 95% bootstrapped confidence intervals.
Each data point represents 300 trials. Solid lines show mixed-effects model predictions for this observer (mean of
posterior regression line), ignoring random effects of image. For naive observers (right panel, N = 10), points show
grand mean and 95% bootstrapped confidence intervals based on individual observer means; lines represent mixed-
effects model predictions and uncertainty for the population fixed effects, ignoring random effects of observer and
image. The dashed horizontal lines in all panels show chance performance. Shaded regions in all panels show 95%
credible intervals for the given model. Note these are independent, and so overestimate the uncertainty for making
any pairwise comparison between conditions (see appendix for details).

of a difference between the parafoveal and inspection
conditions after the conv1 model. These results suggest
these four images are easier for all models to synthe-
sise than the first five images. Conversely, all models
fail to match the appearance of Metal and Candy under
the inspection condition (psychophysical performance
well above chance), whereas the parafoveal condition
has a marked effect such that performance drops nearly
to chance for the higher convolutional and PS models.
Finally, the Tiles image is interesting because here the
PS model produces better matches to appearance than
the CNN models (the syntheses are more difficult to dis-
criminate).

Experiment 2: Power spectrum constraint

In Experiment 1, the CNN texture model failed
to match textures that could be considered “quasi-
periodic”, in that they contain global regularities spaced
across the whole texture image (for example, the roof
tiles or the metal floor textures). Liu et al. (2016) re-
cently showed that such textures can be more closely
modelled by adding a power spectrum constraint to the
synthesis procedure in CNN texture models. That is, the

gradient descent procedure now aims to match both the
CNN features and the global Fourier power spectrum of
the original image. In an image like the Tiles, the pe-
riodic regularity shows up as a strong orientation-and-
frequency component in the power spectrum. Matching
this improves the perceptual quality of such textures
(see Figure 8). In this experiment we seek to quan-
tify this improvement with respect to the unconstrained
conv5 model and the PS model for our 12 texture im-
ages, using the same procedure as in Experiment 1.

Five observers participated in this experiment, con-
sisting of two authors (CF and TW) and three naïve ob-
servers, one of whom had participated in the first ex-
periment. All observers completed two experiment ses-
sions (each consisting of one parafoveal and one inspec-
tion block) for a total of 1440 trials, with the exception
of S1, who did not return for a second session of testing
and so completed only 720 trials.

Results

For average performance over images (Figure 9) and
at the individual image level (Figure 10), the results
of Experiment 2 are similar to those of Experiment 1
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Figure 7. Performance for each image in Experiment 1. Points show the grand mean of all observer means (based
on 25 trials for authors and 5 trials for naives). Error bars on points show ±1 SEM. Lines show mixed-effects model
estimates (posterior mean, including random effects of image but excluding random effects of subject) and shaded
regions show 95% credible intervals. That is, the model predicts mean performance to lie in the shaded area with
95% probability, if the image was shown to an average, unknown subject. Images have been arranged according to
consistent patterns of results (reading left-to-right). The original images can be seen in Figure 2.

for the conv5 and PS models. The powerspec model
produces similar performance to the conv5 model for
most images, with the possible exceptions of Beans,
Bricks, Flowers and Grass, in which human perfor-
mance is slightly higher than for conv5 (i.e. the power-
spec model is less effective at matching appearance than
conv5). For images with significant long-range regular-
ities (Metal and Tiles) whose appearance failed to be
matched by conv5, the powerspec model drastically re-
duced psychophysical performance. That is, the model
syntheses are now approximately matched to the visual
appearance of these original images even under foveal
inspection (see Appendix). Note however that one ob-
server (author TW) still achieves high accuracy for the
powerspec model of Metal, showing that the model fails
to capture some important features that at least one ob-

server can see. Finally, all models fail to capture the
appearance of the Candy image under inspection.

Control analysis: cross-correlation of image crops

The experiments reported above show that the CNN
texture model (specifically the powerspectrum match-
ing variant) can match the appearance of a range of tex-
tures even under foveal viewing. One concern with this
result is that the model may be overfitting on the target
texture image. Consider a “copy machine” model that
would exactly copy the image up to a phase shift. Sam-
ples generated by this model would likely be indistin-
guishable from the original image, because our experi-
mental design (taking non-overlapping crops) enforces
the samples to be physically different. Consequently, if
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HUMAN EVALUATION OF CNN TEXTURES 13

Figure 8. Example experimental stimuli, Experi-
ment 2. Original texture images are copyrighted by
www.textures.com (used with permission).

a model was acting like a copy machine, this could not
show up in our existing results. If this were the case,
one could argue that the model has not learned anything
about the structure of textures per se but rather how to
copy pixels.

To investigate this issue, we computed the nor-
malised maximum cross-correlation between different
texture samples and the corresponding original texture.
If the algorithm simply copies and phase-shifts the im-
age, the maximum cross-correlation with the original
will be one. Specifically, for each of the ten unique
texture samples of size 256 × 256 synthesised by each
model in Experiment 2, we took one N × N crop of
the centre plus ten additional random crops of edge N
pixels, for each of N = {32, 64, 128}. Each crop is then
normalised to have zero mean and unit variance, before
computing the cross-correlation function between crop
and original and taking the maximum. Finally, we take
the average of this maximum across the eleven crops.

For certain textures however, it may be the case that
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Figure 9. Performance as a function of image model
in Experiment 2, averaging over images. Points show
mean and 95% confidence intervals on performance
(each based on 240 trials for all observers except S2).
Lines show mixed-effects model predictions for each
observer (mean of posterior regression line) and shaded
regions show model 95% credible intervals, ignoring
random effects of image.

a synthesis algorithm needs to act like a copy machine
(up to a spatial shift) to match the appearance of the
texture. For example, textures with strong periodici-
ties and little variation between individual texture el-
ements (e.g. Metal or Tiles) might require copying
for appearance to be matched, whereas the appearance
of less regular structure (Grass, Beans) might be suffi-
ciently captured by far less. To account for this image-
specific variation, we additionally computed the maxi-
mum cross-correlation between an N × N centre crop
from the original texture, and the full 2562 pixel image
itself (after excluding shifts of +/- 16 pixels around the
centre, which would trivially return one). This value
can be seen as a measure of self-similarity.

The maximum cross-correlation values for the im-
ages used in this paper are shown in Figure 11. This
result shows that crops of synthesized textures are not
more similar to the best matching crop in the corre-
sponding original image than are any two crops taken
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Figure 10. Performance for each image in Experiment 2. Points show means and ±1S EM over observer means.
Faint lines link individual observer mean performance (based on 20 trials for all observers except S2). Solid lines
show mixed-effects model estimates (posterior mean) and shaded regions show 95% credible intervals.

from the original image. Thus, none of the models are
simply copying the original images at any of the spa-
tial scales we tested. The Metal and Tiles images are
the most self-similar (grey bars) at all scales, and these
were also the images for which adding the powerspec-
trum constraint to the CNN Texture model helped most
(compare conv5 and powerspec cross-correlation val-
ues).

General discussion

We have shown that the CNN texture model of Gatys
et al. (2015) can produce artificial images that are in-
disciminable from a range of source textures even un-
der foveal viewing. That is, images synthesised from
the Gatys model could pass as natural materials, at least
for 9 of the 12 images we test here and for similar view-
ing conditions. A model that matches both a selection
of deep CNN features and the power spectrum of the

original image (Liu et al., 2016) greatly improves the
perceptual fidelity of two of the remaining three images
not captured by the Gatys model (Experiment 2). These
results were not attributable to simply copying the tar-
get images (Figure 11). The most popular existing para-
metric texture model (PS; Portilla & Simoncelli, 2000)
can capture texture appearance for many images briefly
presented to the parafovea, but is less successful un-
der foveal inspection (matching appearance for 4 of
the images—see Figure 7). These results regarding the
PS model corroborate the findings of Balas (2006) and
Balas (2012) respectively. Taken together, our results
show that the natural image statistics represented by
the CNN model (and the powerspectrum variant) can
capture important aspects of material perception in hu-
mans, but are not sufficient to capture the appearance of
all textures.

The patterns of performance in Figures 7 and 10
suggest that for the purposes of assessing parameteric
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Figure 11. Controlling for texture model overfit. Points show the average maximum cross-correlations between
crops of model syntheses (colours) and the original images, for three different crop sizes (32, 64 and 128 pixels;
panels). If the model simply copied and phase-shifted the original, these values would be approximately one. Bars
show the baseline of a crop from the original image correlated to itself. Some images are more self-similar, and
thus require some degree of copying to match appearance.

texture models, natural textures may be parsed into at
least four clusters6. First, one cluster of images (Beans,
Bricks, Flowers, Grass and Scrap) can be matched by
the CNN texture model’s higher layers even for foveal
inspection, but only for parafoveal viewing by the PS
model. These images feature readily-discernable tex-
ture elements that do not follow a regular periodic ar-
rangement. The second cluster (Carpet, Cracks, Gravel
and Paper) can be matched by all but the simplest CNN
texture model under both parafoveal and inspection
conditions. For these images, it is possible that individ-
ual textons (single texture elements; Julesz, 1981) were
difficult to resolve even foveally, allowing models that
failed to capture individual textons to nevertheless suf-
ficiently match appearance. Third, the Metal and Tiles
images include regular structure that can only be ef-
fectively matched by the CNN+powerspectrum model.
These are both strongly periodic textures with easily re-
solvable textons. Finally, the Candy image cannot be
matched by any of the models tested here for foveal in-
spection. It contains large textons with interesting ma-
terial properties (glossiness7) as well as occlusions and

shading suggesting depth. These clusters may provide
useful test cases for parameteric texture models in the
future. In particular, a single image from each class may
be sufficient to provide a generalisable test of a texture
model. More generally, psychophysics may offer an ap-
proach to find equivalence classes of textures that are
useful for discriminating between texture models8. The

6 Since we have only used 12 texture images in the
present study, it is likely that a number of additional clusters
exist that were not represented in the set of images we used.

7 While the structure of the Candy image is never suc-
cessfully captured by the CNN model, one intruiging feature
of the syntheses is that they appear glossy as for the original
image (compare for example the conv3 and conv4 syntheses
in Figure 3). This glossy appearance is not captured by the
PS model.

8 Balas (2006) subjectively delineated three texture cat-
egories: pseudoperiodic (containing strongly periodic struc-
ture), structured (repeated structural elements with no pe-
riodicity) and asymmetric (containing asymmetric lighting
giving the impression of depth). Our cluster containing
Metal and Tiles is equivalent to Balas’ pseudoperiodic tex-
tures, but our other three data-determined clusters do not triv-
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failure of all models we test here to capture the Candy
image shows that the CNN features we test here are still
not sufficient to capture the appearance of all textures.

An additional noteworthy feature of the data is that
for many images, the conv5 model is slightly worse at
matching appearance (psychophysical performance is
better) than the conv4 model (e.g. Figure 12). This
is particularly evident for example for the Candy and
Tiles images under inspection (Figure 7, though note
these datapoints are also affected by large oddball type
biases—see Figure 16). Assuming this effect is robust,
it could be related to the observation that the conv5
model results in higher final total loss values after opti-
mization than the conv4 model (Figure 18).

Model complexity vs feature complexity

Why do the features used in the CNN texture model
often succeed in capturing texture appearance? One
possibility is that training to recognise objects in im-
ages causes deep CNNs to abstract a set of statistics
from images that support quite general visual inferences
(transfer learning; Donahue et al., 2013). An alterna-
tive possibility is suggested by Ustyuzhaninov, Brendel,
Gatys, and Bethge (2016), who found that single-layer
CNNs using many filters with random weights could
produce textures of surprisingly good perceptual qual-
ity (assessed via introspection). That is, high-quality
texture synthesis from CNNs may require neither a hi-
erarchical (deep) representation nor filters learned on
any particular task—many random filters could instead
be sufficient (the Random-Multiscale model from that
paper uses about 2 million random parameters, which is
significantly more than all models in this paper—Figure
5). If the latter is the case, this would suggest that the
improved appearance matching as more convolutional
layers are included is because there are simply more
features, not that they are “better”.

However, we do not believe the improved appear-
ance matching is only due to the number of param-
eters matched. Gatys et al. (2015) showed that the
number of parameters in the CNN model could be re-
duced by computing Gram matrices on only the first
k principle components of each network layer. Tex-
tures synthesised using approximately 10,000 param-
eters from VGG layers conv1_1, conv2_1, conv3_1,
conv4_1 and conv5_1 produced (introspectively) much
higher-quality textures than only using all parameters

from conv1_1 and conv2_1 (about 12,000). A second
piece of evidence that speaks to this point is that hav-
ing more parameters—even having more parameters
than pixels (i.e. being overcomplete)—does not nec-
essarily result in introspectively high-quality textures
(Ustyuzhaninov et al., 2016). Thus, features from the
higher network layers seem to improve texture synthe-
sis because they are “better” features, not simply be-
cause they add more parameters.

Why are higher layer network features (with the pos-
sible exception of conv5_1; see above) better? Re-
call that deep convolutional networks stack nonlinear-
ities (Figure 1), allowing increasingly complex func-
tions of the input image to be explicitly (linearly) de-
coded. Higher layers might therefore be better for tex-
ture synthesis because they learn to represent complex
information. Alternatively, it could just be that higher
layers have larger receptive fields than lower layers,
and a model that includes both high and low layer in-
formation improves because of its multiscale structure.
Ustyuzhaninov et al. (2016) showed that having fea-
tures at multiple scales improves texture synthesis. On
one hand, the fact that trained features produce (intro-
spectively) better textures than the random multiscale
network using fewer parameters implies that our tex-
ture models including higher VGG layers are not bet-
ter exclusively because they model information at more
spatial scales. Another possibility is that it is easier to
optimise trained features than random features, which
leads to better texture synthesis but does not mean deep
features are “better” for parametric texture modelling in
general.

Ultimately we think the models in this paper perform
well due to a mixture of both more and more com-
plex features, and that this is not simply a function of
including information at multiple scales. Future psy-
chophysical comparisons could be used to add quan-
titative rigour to this discussion. For example, com-
paring the perceptual quality of the random-filter and
trained CNN model textures (with and without com-
pression) would quantify the importance of learned fea-
tures. Similarly, comparing hierarchical (cumulative)
and non-hierarchical models could be used to quantify
the importance of scale information.

ially map onto Balas’ other categories (e.g. Bricks and Grass
are structured, whereas Flowers, Beans and Scrap contain
asymmetric lighting and other depth cues).
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Finally, we would like to emphasise that for those
textures the CNN model can mimick, the model fea-
tures likely represent a superset of the necessary statis-
tics. One important challenge now is to compress these
representations into a minimal set of features, in order
to develop a parsimonious and intuitive description of
the critical aspects of the feature space. As noted above,
Gatys et al. (2015) showed that qualitatively-reasonable
results could be obtained for a PCA-reduced feature
space with 10,000 parameters, compared to the 175,000
of the conv4 or 306,000 of the conv5 models used here.
Of course, the PS model matches substantially fewer
(about 1,000) parameters than even this, and so its per-
formance for parafoveal images is impressive. The dif-
ference between the two models, more substantively
quantified, could yield insights into the differences in
foveal and peripheral encoding of texture.

Categorical losslessness

Our experiments show that humans cannot tell which
of three physically-different images were “generated by
a different process” (for all but one of the images we
test). This condition could be termed “categorical” or
“structural” losslessness (Pappas, 2013): under our ex-
perimental conditions, the model syntheses can pass as
natural textures (they are perceived as the same cate-
gory). Images that are perceptually equivalent along
some dimension can also be called “eidolons” (Koen-
derink, Valsecchi, van Doorn, Wagemans, & Gegen-
furtner, 2017). Achieving categorical losslessness in an
image-computable model is an important step towards
understanding human material perception, because the
model encodes sufficient statistics for capturing the ap-
pearance of these textures. Categorical losslessness
must however be distinguished from perceptual loss-
lessness: humans are likely able to tell that the three
images in our experiments are different from each other
(and thus we avoid using the term metamer here, which
refers to physically different images that cannot be told
apart). The latter criterion may be important for un-
derstanding information loss in the visual system more
generally (Freeman & Simoncelli, 2011; Koenderink &
van Doorn, 1996; Wallis et al., 2016; Wandell, 1995).

Caveats

Three caveats should be borne in mind when inter-
preting our results. First, we have considered only one
relationship between input image size and CNN feature
scaling (specifically, we used input images of 256 pix-
els square, which is close to the 224 pixel square im-
ages on which the VGG features were learned). Be-
cause the network layers have a fixed receptive field size
(the pixels of the original image associated with a given
unit), downsampling or upsampling the input images
will cause the same network layers to respond to dif-
ferent image structure. For example, it is possible that
there is a relationship between the degree to which tex-
ture appearance is successfully captured by the model
and the size of the texture elements in the image. One
possible reason that the Candy image (Figure 2) fails to
be matched for foveal viewing is that the textons (in-
dividual candies) and their overlap are too large to be
captured by single filters at some critical layer within
the network, even though features in the highest layers
are large enough to cover groups of candies. We have
tried rescaling the images but this did not seem to im-
prove the syntheses, indicating that this relationship is
perhaps not trivial.

A second caveat is that the fidelity of the resulting
textures could depend on the number of iterations of
the gradient descent used to minimise the loss between
the original and the new image (see Appendix, Figure
18). Because this loss is never exactly zero for the more
complex models, more iterations could only improve
synthesis fidelity—though in our experience, the coarse
structure of the images is largely fixed within 200 iter-
ations, and further iterations mostly reduce high-spatial
frequency noise. In theory, as long as all features are
perfectly matched (i.e. if the loss is exactly zero), more
features can only lead to more similar patterns. How-
ever, given that the optimization of texture synthesis al-
gorithms typically yields a residual loss, more features
do not necessarily improve perceptual quality, and the
design of good features is not straightforward and may
depend on various factors including the type of tex-
tures to be synthesized. As it stands, different mod-
els are ideal for different purposes. For peripheral tex-
ture perception the PS model achieves best performance
with relatively small number of parameters, for random
fields with pairwise interactions the scattering network
provides a very compact representation for texture syn-
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thesis (Joan Bruna, personal communication) and for
foveal inspection of textures the VGG features seem
particularly useful.

Finally, in our experiments we closely followed the
oddity method used by Balas (2006). We believe this
paradigm has many desirable properties as a measure
of categorical losslessness, but our results also point
to a caveat. By cropping from inhomogenous images
(e.g. the Flowers image, which contains a size gradi-
ent) we introduce greater perceptual variability in the
stimuli shown to subjects. Depending on the relative
(in)homogeneity of original and synthesised images,
this may lead to differences in performance depending
on the class of the oddball and potentially to below-
chance performance (e.g. in the Flowers image). We
discuss these issues and present further analysis in the
Appendix. While we believe this property will have lit-
tle effect on our overall conclusions, it is nevertheless
useful to consider for future studies.

Conclusion

We have shown that the texture model of Gatys et
al. (2015), which uses the features learned by a con-
volutional neural network trained to recognise objects
in images, provides a high-fidelity model of texture ap-
pearance for many textures even in the fovea. Overall
however, our results do not identify a uniformly best
parametric model for matching texture appearance. In-
stead, different models may be appropriate for different
use cases. The PS model is the best (and the most sim-
ple) model to use if textures are intended to be viewed
briefly in the parafovea. For textures intended to be
foveated, incorporating the powerspectrum constraint
will be critical for textures with strong periodicities (Liu
et al., 2016), whereas the CNN model (conv4) performs
best for most other textures we test here. It would obvi-
ously be desirable to identify a uniformly best model in
future work, and the single failure case we identify here
(the “Candy” image) may provide a useful benchmark
for testing such models.
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Appendix

Bayesian multilevel modelling

To analyse the data, we first made the (standard) as-
sumptions that the observers’ responses on each trial
(correct / incorrect) reflected a Bernoulli process, and
that the response on a given trial was not dependent on
previous responses. We estimate the success probabil-
ity of this Bernoulli process using a generalised linear
mixed-effects model (GLMM) with a logistic link func-
tion whose parameters were estimated in a Bayesian
framework9. A mixed-effects model (a type of hier-
archical or multilevel model) includes some number of
“fixed” effect parameters that quantify how the response
depends on the predictor variables at a population level,
and some “random” (also called “group-level”) effects
that allow the fixed effect coefficients to vary over dis-
crete levels that are assumed to be non-exhaustive sam-
ples from a larger population. Our model contains two
fixed-effect factors: the image model (with six levels,
entered into the model design matrix using successive
difference coding using contr.sdif from the MASS
package for R; Venables and Ripley (2002)) and the
presentation condition (with two levels, parafoveal and
inspection, coded with sum contrasts [1, -1]). We in-
cluded the interaction terms between these factors such
that the model consisted of 12 fixed effect coefficients.
The variation caused by observers and images are mod-
elled as random effects, which are coded as offsets
added to the fixed effect coefficients whose variance is
estimated. Note that we make an additional simplifying
assumption by ignoring other sources of variance, such
as the synthesised image used on a trial and the ran-
dom crop location (see Methods). We assume that each
fixed effect coefficient can vary by observer and / or by
image, and that the variance could be correlated. The
specification of the model in R formula syntax (lme4 /
brms) was

model_formula <- correct ~
image_model * presentation_cond +
(image_model * presentation_cond | subj) +
(image_model * presentation_cond | image_code)

We used conservative, weakly-informative prior dis-
tributions in the sense that they bias estimates towards
the middle of the range of possible values and away
from indicating large effects. Consider that the model

coefficients are defined on the linear predictor scale,
whose effective range runs from approximately -5 (re-
turning an expected success probability of 0.007) to 5
(returning 0.993; a linear predictor value of zero gives
0.5). We therefore expect that no standardised fixed-
effect coefficient to be larger than ±5 (i.e. the difference
between two factor levels runs from the lowest to the
highest observable success probabilities, other effects
being equal), and they will very likely be smaller than
this. We therefore place Gaussian priors over all fixed-
effect coefficients for factors with mean zero (i.e. our a
priori expectation is for no effect), standard deviation 2
(indicating a weak implausibility of large coefficients).
These are therefore weak, but not flat (uniform) prior
distributions. We also place priors over the variation in
random effects; following the logic for effective range
of the linear predictor we expect that the effect sizes of
our fixed effects are unlikely to vary by more than 2 on
average (i.e. the standard deviation is very unlikely to
be larger than 2). We use half-Cauchy priors (i.e. with
a lower-bound of zero, as recommended by Gelman &
Hill, 2007) over the standard deviation parameters for
each random effect, with a mode of zero (i.e. our maxi-
mum a priori assumption is that subjects and images are
no different) and a standard deviation of 1, reflecting
large uncertainty. Finally, we set a prior over the cor-
relation matrix for observer and image-level offsets in
the fixed effects that assumes that smaller correlations
are slightly more likely than larger ones (an “lkj(2)”
prior, see Lewandowski, Kurowicka, and Joe (2009);
Stan Development Team (2015) for details). While the
priors we use here are informed by the scale of the
model and by common practice for Bayesian regression
models (see for example Gelman, 2006; Gelman & Hill,

9 A three-alternative forced-choice procedure as we use
here has a chance performance rate of 1/3. If we were in-
terested in estimating some “threshold” of a psychometric
function, the standard logistic link function might be consid-
ered inappropriate for these data: it could predict that perfor-
mance falls below 0.33, which if it occurs in observed data
can only be due to measurement error or to observers incor-
rectly switching responses (and is therefore not a desirable
prediction to make in general; though see our third caveat in
the Discussion). However, we are not estimating thresholds
here, but rather we wish to quantify performance differences
between discrete levels and also the extent to which perfor-
mance is different to chance performance. The standard lo-
gistic link function is therefore more desirable.
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2007; Kruschke, 2011), the specific choices we make
are somewhat arbitrary. As we see above, the model
provides a good fit to the data, but the reader should
bear in mind that as always, our inferences depend on
the model we assume.

We estimate the posterior distribution over model pa-
rameters using a Markov Chain Monte Carlo (MCMC)
procedure implemented in the Stan language (version
2.15.1; Hoffman & Gelman, 2014; Stan Development
Team, 2017), using the model wrapper package brms
(version 1.7.0; Bürkner, in press) in the R statisti-
cal environment. The brms package allows the spec-
ification of flexible mixed-effects Stan models using
formula syntax similar to the popular lme4 package
(Bates, Mächler, Bolker, & Walker, 2015). Samples
were drawn using the NUTS sampling algorithm (Hoff-
man & Gelman, 2014) with 6 independent chains, each
sampled with 30000 samples of which 10000 were used
to adaptively tune the sampler (warmup). To reduce the
final file size we saved every 6th sample. This pro-
cedure resulted in a final total of 20000 post-warmup
samples. Chain convergence was assessed using the R̂
statistic (Gelman & Rubin, 1992) and visual inspection
of traceplots. Readers are encouraged to consult the on-
line code for further details.

The resulting posterior distribution is summarised
as Bayesian credible intervals on marginal parameter
values and predictions. Unlike frequentist confidence
intervals in general, credible intervals have the desir-
able property that they represent a coherent statement
of belief about the parameters’ likely values, given the
model, priors and data. A 95% credible interval means
that the “true” parameter value (conditioned on model,
prior and data) has a 95% probability of lying within the
interval (see Miller & Ulrich, 2015; Morey, Hoekstra,
Rouder, Lee, & Wagenmakers, 2015; Morey, Hoek-
stra, Rouder, & Wagenmakers, 2015, for recent dis-
cussion on this issue), which many readers will find
intuitively appealing. We report 95% credible inter-
vals (rather than 67% or 82% or any other interval)
merely as convention. The model’s belief about the
data is represented by the full posterior distribution,
which can be summarised into arbitrary intervals (see
McElreath, 2016, p.58 for related discussion). Readers
should avoid mental hypothesis testing (rejecting null
values that lie outside the interval). Using Bayesian
credible intervals to reject null values in this way suf-

fers two of the same problems as null hypothesis signifi-
cance testing using p-values: it can only reject but never
accept a null value, and if used with optional stopping
of data collection it will always reject null values even
if they are true (Kruschke & Liddell, 2017). Instead,
the credible intervals serve to give information about
the magnitude and precision of likely effects.

Another advantage of a Bayesian approach in this
context is that the weakly-informed priors we use act
as a regulariser for the model, ensuring that parameters
are identifiable (indeed, in our hands the lme4 pack-
age had troubles fitting this model). Using zero-centred
prior distributions on regression parameters biases the
parameters against finding spuriously large effects. One
caveat is that credible intervals in general, unlike con-
fidence intervals, are not guaranteed to result in a pre-
specified error rate for binary inferences (e.g. effect / no
effect) in the long run. Given that some decisions about
our analyses were made after seeing the data (making
this exploratory research), frequentist p-values would
not have their nominal false-alarm rates in any case.
For these reasons we report a Bayesian analysis here;
readers wishing to apply other analyses are encouraged
to do so using the raw data provided online.

Where it makes sense to compare discrete mod-
els, we do so using an approximation to the out-of-
sample (leave-one-out) prediction error provided by the
R package loo (v 1.1.0; Vehtari, Gelman, & Gabry,
2016). Loosely, this value estimates the ability of the
model to predict new data (smaller values are better).
We report differences between models and their stan-
dard errors on the deviance scale (−2× the expected log
pointwise predictive density estimated by the loo pack-
age, called LOOIC).

Experiment 1. Figure 6 shows model predictions
for both individual observers (authors CF and TW) and
for the average of the naïve observers. For the in-
dividual observer model estimates (CF and TW) we
show the model prediction conditioned on observer.
The observer’s mean performance is 95% likely to lie
within the shaded area for an average, unknown image
(Baayen, Davidson, & Bates, 2008). The “naïve” panel
shows the average performance for the naïve observers.
The model predictions here exclude both observer and
image random effects: mean performance has a 95%
probability to lie within the shaded area for an aver-
age, unknown image and an average, unknown subject.
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Note that the model uncertainties shown in Figure 6 de-
pict the expected spread of population averages across
images, but are not appropriate for comparing between
presentation conditions because they do not take into
account the paired nature of these data (the design was
within-subjects and within-images).

To quantify the differences between conditions more
appropriately we examine the mixed-effects model co-
efficients. First, we quantify the performance differ-
ence between the inspection and parafoveal conditions,
marginalising over image models and all random ef-
fects variance. The posterior median of the difference
between these conditions on the linear predictor scale
is 1.23. Considering the exponent of this value as log
odds, this means that correct trials are exp(1.23) = 3.41
times more likely under the inspection condition than
the parafoveal condition, if all other effects are held at
zero. In other words, for every 10 correct responses
in the parafoveal condition we expect about 34 correct
responses in the inspection condition, on average. The
95% credible interval tells us to believe that the differ-
ence has a 95% probability (conditioned on the data,
model and prior) of lying between 0.65 and 1.82. To in-
dicate the likely sign of an effect we report the posterior
probability that the coefficient is negative (if this value
is small, the coefficient is likely positive; if the value is
0.5 then the coefficient is equally likely to be positive
or negative). The inspection condition is very likely
to elicit higher performance than the parafoveal condi-
tion, because the coefficient coding their difference has
only a small probability of being negative (p(β < 0) =
9.998e-05). To make future quantifications more con-
cise, for the remainder of this section we report them as
(β = 1.23, 95% CI = [0.65, 1.82], p(β < 0) < 0.001).

Next, we examine whether the differences between
image models depended on the presentation condition.
An interaction is clearly evident in Figure 6. This sub-
jective impression was supported by a model compari-
son between a linear and an interaction model using a
measure of each model’s ability to generalise to new
data (the LOOIC; the interaction model had a lower
LOOIC by 294 (SE = 33)). We therefore further con-
sider the differences between image models conditioned
on the presentation condition.

For the parafoveal condition, image models above
conv2 and also the PS model produced performance
at approximately chance level (see below). Our model

quantifies the sequential differences between the mod-
els, with the coefficients coding the difference between
two models on the linear predictor scale. Performance
in conv2 was worse than conv1 (β = -1.35, 95% CI
= [-1.94, -0.78], p(β < 0) > 0.999), and conv3 was
worse than conv2 (β = -0.26, 95% CI = [-0.58, 0.06],
p(β < 0) = 0.947). However, because performance was
now approximately at chance, there was no evidence
that conv4 was different to conv3 (β = 0, 95% CI =
[-0.26, 0.29], p(β < 0) = 0.487) or that conv5 was
different to conv4 (β = -0.02, 95% CI = [-0.25, 0.21],
p(β < 0) = 0.561). Similarly, the PS model was also not
different to conv5 (β = -0.01, 95% CI = [-0.51, 0.52],
p(β < 0) = 0.508).

The inspection condition showed similar results as
the parafoveal condition with two exceptions: first,
performance remained approximately above chance,
and psychophysical performance was better for the PS
model than the conv5 model (i.e. synthesised and nat-
ural textures were easier to discriminate). The conv2
model produced worse performance than conv1 (β = -
3.08, 95% CI = [-3.87, -2.32], p(β < 0) > 0.999) and
conv3 produced worse performance than conv2 (β =
-0.62, 95% CI = [-0.98, -0.26], p(β < 0) = 0.999).
Conv4 produced worse performance than conv3 in that
the coefficient coding their difference was likely to be
negative (β = -0.38, 95% CI = [-0.68, -0.09], p(β < 0) =
0.995). Performance for the conv5 model was approx-
imately equal to conv4 (β = 0.19, 95% CI = [-0.05,
0.43], p(β < 0) = 0.056). Finally, there was weak
evidence that PS model produced better psychophysi-
cal performance than the conv5 model when observers
could inspect the images (β = 0.82, 95% CI = [0.09,
1.54], p(β < 0) = 0.014).

To summarise, the two most important characteris-
tics of these data are first, that psychophysical perfor-
mance is effectively at chance for the parafoveal condi-
tion for the conv4, conv5 and PS models. Second, un-
der inspection the PS model produces poorer matches to
appearance (better psychophysical performance) than
the conv5 and conv4 CNN texture models. Taken to-
gether, the data show that the PS model features are
sufficient to capture the appearance of natural textures
under brief, parafoveal viewing conditions, but that
the increased complexity of the CNN model features
improves appearance-matching performance under in-
spection.
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The attentive reader may wonder why the model’s
uncertainty estimates in Figure 6 are so large rela-
tive to the confidence intervals on the data (particu-
larly in the author plots, which are quite precisely mea-
sured). We believe this highlights a particular strength
of mixed modelling for psychophysical data (Cheung,
Kallie, Legge, & Cheong, 2008; Knoblauch & Mal-
oney, 2012; Moscatelli, Mezzetti, & Lacquaniti, 2012):
multiple sources of variability can be accounted for and
incorporated into predictions at various levels (e.g. the
observer and image level, or the subject level ignoring
images, or the population level). In this case, averaging
over the images and displaying credible intervals that
ignore the pairwise experimental design (as in Figure 6)
disguises the fact that different images show distinctly
different effects of image model and presentation time.
For example, for each fixed effect coefficient we can ask
whether more variance in the data is caused by variation
over observers or images. On average, the variance as-
sociated with images is 2.1 times greater than that as-
sociated with observers. The linear predictor difference
between PS and conv5 averaged over presentation con-
dition is associated with about 3.3 times more variance
from images than from observers. That is, this differ-
ence tends to depend strongly on the image (Figure 7).
The model uncertainties in Figure 6 are large because
the “average” or population-level behaviour is uncertain
in light of this; indeed, it may make little sense to talk
about a “population-level” over images from these data.
In contrast, Figure 7 shows model estimates that are far
more constrained relative to Figure 6, because the un-
certainty in the estimates now reflects between-subject
variability rather than between-image variability.

Chance performance in the oddity task indicates the
original and synthesised images are not discriminable
from each other. To what degree do our data suggest
observers perform above chance for each image and
viewing condition? One way to quantify this is to com-
pute the proportion of posterior probability density ly-
ing above chance performance. This estimates, for ev-
ery condition, the probability of observers being sensi-
tive to the difference between original and synthesised
textures. Conditions that lie above the dashed horizon-
tal line are those for which we can be more than 95%
certain (conditional on model and priors) that observers
are sensitive to the difference between original and syn-
thesised images. These dashed lines are provided as

a guide rather than to encourage dichotomous decision
making about “different or not”. The posterior proba-
bilities confirm, in general, our qualitative statements
made in the manuscript (Figure 12).

Experiment 2. The results of Experiment 2 for the
conv5 and PS models replicate the results of Exper-
iment 1. When stimuli are presented briefly to the
parafovea, observers are effectively at chance to dis-
criminate both conv5 and PS from the original textures,
and there was evidence that the models did not dif-
fer (β = 0.15, 95% CI = [-0.4, 0.71], p(β < 0) =
0.275), whereas under inspection the PS model was eas-
ier to discriminate from the original images than the
conv5 model (β = 1.45, 95% CI = [0.48, 2.41], p(β <
0) = 0.003). Additionally matching the powerspectrum
(“powerspec” model) produced similarly indistinguish-
able performance from the PS model in the parafovea
(β = -0.13, 95% CI = [-0.63, 0.36], p(β < 0) = 0.712),
but better performance than the PS model under inspec-
tion (β = -1.64, 95% CI = [-2.35, -0.95], p(β < 0) >
0.999).

Posterior probabilities that performance lies above
chance for each image and viewing condition are shown
in Figure 13. As for Experiment 1, these values gen-
erally support our qualitative statements made in the
manuscript.

Performance as a function of oddball type

Consider that some data points appear to be reliably
below chance performance (see for example the conv3
model in the Flowers image). Below-chance perfor-
mance in a forced-choice task generally only occurs
in observed data due to measurement error or to ob-
servers incorrectly switching responses. However, in
our experiments, it is also possible that below-chance
performance could be caused in part by cropping from
inhomogenous images. For example, the original Flow-
ers image (Figure 2) contains a size gradient such that
flowers on the bottom are larger and more sparse than
flowers on the top of the image, and this size gradient
may result in greater inhomogeneity in the synthesised
textures. More generally it may be the case that perfor-
mance will depend on the relative (in)homogeneity of
the original or synthesised images.

To investigate this further we computed performance
for trials where the oddball image was an original com-
pared to a model synthesis. When averaging over ob-
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Figure 12. Posterior probability that performance for discriminating each image and image model in Experiment 1
lies above chance. Conditions falling above the dashed horizontal line at 0.95 have a greater than 95% probability
of being discriminable, conditions falling below the dashed horizontal line at 0.05 are more than 95% likely to be
below-chance. Conditions for which the model predicts exactly chance performance would fall at 0.5.

servers and images (Figure 14), performance is gener-
ally slightly higher if the oddball image is a model syn-
thesis rather than an original image. The size of this
effect depends on the particular image. For example,
in the parafoveal viewing condition (Figure 15) the ad-
vantage for synthetic oddballs is quite strong for Metal
and Tiles. Similarly, under inspection (Figure 16) ob-
servers remain highly sensitive to oddball Candy and
Tile syntheses, whereas their performance is relatively
poor when the oddball is an original image. This seems
particularly strong for the conv4 model, explaining the
lower average performance under this model condition.

These differences according to oddball type are gen-
erally consistent with the perceptual variability account
above. If crops from the synthesised images appear
different to each other and to the original, but crops
from the original are quite self-similar, then on tri-
als with an original oddball each of the three images

looks different to the others. One of the synthesised
images may appear “most different” (Figure 17a), and
the observer incorrectly chooses that. Conversely, on
trials where the synthesised image is the oddball, the
two intervals containing the original images look simi-
lar to each other but different to the synthesised image
(Figure 17b), making the task easier. This perceptual
variability explanation is particularly appealing for im-
ages where the model fails to match appearance, such
as for Candy, Metal and Tiles, and is also consistent
with the larger self-similarity of those images (Figure
11). Other, not mutually-exclusive, possibilities include
that observers are influenced by non-perceptual factors,
such as the use of a sub-optimal decision strategy (“pick
the unnatural-looking image”) on some trials, or of ex-
ogenous orienting of spatial attention to unnatural im-
ages. Whatever the cause(s) of the oddball differences
we observe, note that traditional observer models for
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Figure 13. Posterior probability that performance for each image in Experiment 2 lies above chance. Plot elements
as in Figure 12.

the oddity paradigm assume both unbiased respond-
ing and that the stimulus classes have equal variance
(Macmillan & Creelman, 2005, p. 235); thus, com-
puting d′ from our data with the intention of compar-
ing sensitivity to other paradigms should be performed
cautiously or with a model explicitly including bias /
variance terms for each trial type.

Loss

For the stimuli used in this study, the CNN texture
models conv4, conv5 and powerspec are overcomplete
(have more parameters than pixels in the image). Thus
the loss of the gradient descent for those models does
not converge to zero, but ends in a local minimum. Fig-
ure 18A shows a typical convergence function, where
the gradient descent for conv1 terminates early (after
reaching convergence within tolerance) but for more
complex models (conv3–conv5) loss appears to find a
local minimum, remaining relatively stable after 750 it-

erations. The final loss after 1000 iterations is super-
linear (Figure 18B): for example, conv5 has a little less
than double the number of parmameters as conv4, but
about 23 times higher final loss.

Given that we interleaved ten unique syntheses for
each original image within our experiment, it would
be interesting to assess whether a correlation exists be-
tween the final loss of each synthesis and psychophys-
ical performance. A positive correlation between loss
and performance would mean that images that show
greater difference to the original under the model would
also be easier for humans to discriminate. Unfortu-
nately however, we did not save the final loss of the
images after gradient descent but prior to histogram
matching. Because histogram matching substantially
alters the loss values under the model, including chang-
ing the order of syntheses, we are unable to assess a
correlation between performance and final loss in this
dataset.
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Figure 14. Performance in Experiment 1 according to whether the oddball image was an original or a model
synthesis (“synth”), averaging over images. Points show grand mean across observer means, error bars show SEM.
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Figure 15. Parafoveal performance in Experiment 1 according to whether the oddball image was an original or a
model synthesis (“synth”), for each image. Points show grand mean across observer means, error bars show SEM.
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Figure 16. Inspection performance in Experiment 1 according to whether the oddball image was an original or a
model synthesis (“synth”), for each image. Points show grand mean across observer means, error bars show SEM.

a b

Figure 17. A depiction of an oddball “original” trial (a) and an oddball “synth” trial (b). In both cases the oddball
is the top image. All images are physically different. When model syntheses look different to the original and each
other, and the original images are very self-similar, then the perceptual variability of all stimulus intervals is larger
on oddball original than oddball synth trials.
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Figure 18. a: Decrease of the loss over iterations on a logarithmic scale for ten syntheses (lines) of one example
image (Bricks). Loss for simple models (e.g. conv1) converges to zero whereas for more complex models (conv3,
conv4 and conv5) it stabilises in a local minimum. b: Final loss (logarithmic scale) for the synthesised images in
(a) as a function of number of parameters in the model. Points show individual syntheses, lines link means within
a model. Final loss is superlinear in the number of parameters.
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