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Abstract  
Measurements for protein half-lives in yeast Saccharomyces cerevisiae reported large discrepancies, with 
median values between minutes to several hours. We present a unifying analysis that provides a consistent 
half-life estimate, based on our re-analysis of three published and one new dataset of cells grown under 
similar conditions. We found that degradation of many proteins can be approximated by exponential decay. 
Protein disappearance was primarily driven by dilution due to cell division, with cell doubling times ranging 
from ~2 to 3.5 hours across the four experiments. After adjusting for doubling time, protein half-lives 
increased to median values between ~7.5 to ~40 hours. Half-lives correlated with cell doubling time even 
after adjustment, implying that slow growth also slows protein degradation. All estimates were validated by 
multiple means and were robust to different analysis methods. Overall, protein stability correlated with 
abundance and showed weak enrichment for degradation signals such as degrons and disordered regions. 
Long-lived proteins often functioned in oxidation-reduction and amino acid synthesis. Short-lived proteins 
often functioned in ribosome biogenesis. Despite some overall differences in behavior, all methods were 
able to resolve subtle difference in half-lives of ribosomal proteins, e.g. the short lifespan of RPL10. Finally, 
our results help the design of future experiments: time series measurements need to cover at least two to 
three cell doubling times for accurate estimates, exponential decay provides a reasonable proxy for protein 
stability, and it can be sufficiently estimated with four measurement points.  
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Introduction  
Protein degradation is, next to transcription, translation, and RNA stability, a major route to fine-regulate the 
abundance of proteins. Ubiquitination and subsequent proteasomal degradation are the major pathway 
regulating protein breakdown (Lee and Goldberg, 1998), in addition to lysosomal degradation. However, 
attempts to identify sequence motifs that indicate ubiquitination have so far failed (Kim et al., 2011) and 
other degrons, such as the PEST motif or the N-terminal amino acid also have very small predictive power 
of protein half-life (Bachmair et al., 1986; Gsponer et al., 2008; Kristensen et al., 2013; Rechsteiner and 
Rogers, 1996).  

Therefore, experimental approaches that measure protein stability, e.g. in form of protein half-life, are 
essential to further our understanding of this mode of regulation. For the budding yeast Saccharomyces 
cerevisiae, several large-scale studies have examined protein half-lives of wild-types strains growing in log-
phase and rich medium. Earlier work used cycloheximide and western blotting and identified a median half-
life of ~45min across >3,000 proteins (Belle et al., 2006). Later studies used less invasive approaches and 
monitored the disappearance of isotopically labeled proteins by mass spectrometry (Ong et al., 2002).  

Surprisingly, while these studies used almost identical methods (Suppl. Table S2), they provided vastly 
different half-life estimates. For example, Christiano et al. monitored protein stabilities over three hours (180 
min) and found median half-lives of approximately nine hours (Christiano et al., 2014). In contrast, Martin-
Perez et al. conducted a six-hour experiment in both auxotroph and prototroph yeast and found protein half-
lives close to the cell doubling time of ~two hours (108 min)(Martin-Perez and Villen, 2015).  

To resolve these discrepancies, we set out to analyze the data with identical methods to derive a consistent 
estimate of protein half-lives in yeast and to maximize cross-study comparability. To do so, we processed 
the Christiano, Martin-Perez, and our own data in the same way. We identified challenges in cross-
comparison of the dataset due to the impact of cell doubling time, sparse sampling over short time periods, 
and the inherent measurement noise. However, we were able to resolve the different findings and show that 
the four datasets - Christiano, Martin-Perez Prototroph and AuxoTroph, Silva -  agree in major trends and 
characteristics, such as a positive correlation of stability with protein abundance and function biases. 
Dilution due to cell division explains most of protein disappearance from the cell. Once one corrects for cell 
doubling time, protein half-lives average to many hours. Therefore, future experiments need to monitor the 
proteome for at least two to three cell doublings.  

 

Results 
Many proteins can be well-modeled by first-order decay 
To derive consistent protein half-life estimates, we analyzed four datasets describing a total of >3,300 
proteins from wild-type yeast Saccharomyces cerevisiae grown under similar conditions in rich medium 
(Suppl. Data 1). All studies used pulsed SILAC proteomics to measure proteins with different isotopic labels 
over the course of the experiment. To increase comparability even further, we selected four time points from 
each time series measurement that covered a similar range of values, i.e. approximately 4 hours (240 min, 
Table 1). We named the datasets after the first author of the study, i.e. Christiano (Christiano et al., 2014), 
Martin-Perez (Martin-Perez and Villen, 2015), and Silva (this study), respectively. Remaining differences are 
listed in Suppl. Table S2 and are discussed in a later section. The Martin-Perez datasets are present in 
duplicate and contain data for up to 8 hours (480 min) which we also discuss below.  
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To ensure comparability between datasets and account for variability within the time series measurements, 
we processed all data identically and applied the same cutoffs. Briefly, we scaled the data using ratios of 
abundance of newly synthesized protein to abundance of proteins synthesized prior to the start of the time 
series (Methods). All results are robust even if we scaled based on highly abundant and stable proteins or 
no scaling was used (Suppl. Notes and Figure S1).  

To further increase consistency in our comparison of the four datasets, we focus on proteins whose 
degradation followed a first-order decay function, implementing exactly the same method described in 
Schwanhaeusser and Christiano (Christiano et al., 2014; Schwanhausser et al., 2011), using the same 
cutoffs. As discussed below and in recent literature, protein degradation likely follows a function more 
complex than first-order decay (McShane et al., 2016). However, such functions can only be monitored by 
dense temporal sampling with more than four or even six or eight time points as used in the present studies. 
Therefore, for the purpose of this analysis, i.e. to consolidate the very different half-life estimates across 
different studies, we focus on the subset of proteins whose degradation is well-approximated by exponential 
decay, i.e. ~60 to 90% of the proteins in the datasets (Table 1). Fewer proteins followed exponential decay 
when we used more time points, confirming that the ‘real’ decay function is not exponential: only 35% and 
24% of proteins were well-modeled in the extended Martin-Perez dataset with six or eight time points, 
respectively (Table 1). Exponential decay offers a reasonable approximation of protein stability useful for 
many purposes, but it does not appear to be the primary underlying function.  

Yeast proteins are very stable 
We calculated two half-lives for each protein, T1/2* and T1/2, which were either not adjusted or adjusted for 
the contribution of cell division to the disappearance of the protein in the cell, using identical methods. All 
calculations and datasets produced a wide range of values, from ~45min to several hours (Figure 1). 
Therefore, we first compared median values from each datasets. Median T1/2*, which is not adjusted for 
doubling, ranged from 2 to 4 hours (120 to 256 min, Figure 1, Table 1). Indeed, the values for the individual 
datasets were very close to the cellular doubling time in the respective datasets which ranged from 122 to 
208 min. For example, cells used by Silva divided much less frequently than the other yeast strains and the 
proteins lived much longer than proteins in the Martin-Perez or Christiano datasets. These results indicate 
that many proteins were very stable and mostly disappeared from the cell due to cell division. Indeed, once 
we adjusted for the contribution of cell doubling (TCC), the median half-lives were much longer, ranging from 
7.5 to 40 hours (Table 1). Intriguingly, half-lives still correlated with doubling times even after adjusting for 
cell division, suggesting that the cell’s growth rate affects stability in addition to the effects of dilution 
(Figure 1). In other words, in the slow-growing Silva strain, proteins were particularly resistant to 
proteasomal degradation compared to other strains. The relationship held true even for shorter 
measurement ranges (Suppl. Figure S2). 

These results highlight the biggest challenge in studying protein half-lives: since many proteins are very 
stable, it takes several hours for a measurable fraction to be degraded. If the measurement ends too soon, 
degradation of long-lived proteins cannot be assessed. Even measurements over 3 to 4 hours (i.e. 180 to 
240 min as performed by Christiano and Silva), were too short: stable proteins would not ‘disappear’ 
enough during this time to be reliably measured, and therefore often result in ‘infinite’ half-lives. These 
infinite half-lifes do not mean that the proteins are immortal, but that the experimental design could not 
assess their stability. Indeed, up to 50% of the proteins degraded so slowly that their half-life could not be 
estimated (Table 1).  

For these reasons, we also calculated half-lives in the only dataset that covered up to 6 hours (360 min, 
Martin-Perez). Note that Martin-Perez et al. also collected an 8 hour (480 min) time point, but that did not 
deliver a large number of proteins following exponential decay. A substantial fraction of the proteins in the 
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360 min time course was well-modeled by exponential decay, and properties of these proteins were 
consistent with those from the main estimates covering 240 min time courses (Suppl. Table S1, Figure S9) 
- increasing our confidence in the generalizability of our results.  

However, comparing half-life estimates for the same protein in the same study using the 240 versus a 360 
min time series data showed another challenge: the 240 min time course overestimated half-lives for long-
lived proteins, i.e. those with half-lives longer than ~500 min (Suppl. Figure S9). Therefore, we suggest that 
pulsed SILAC time series experiments should cover a minimum of two and ideally at least three cell 
doubling times to accurately measure degradation of long-lived proteins.  

Common trends emerge 
The rigorous consistency and filtering resulted in protein half-life estimates that show consistent 
characteristics, suggesting that the estimates might reflect true values. First, while different at an absolute 
scale, half-life estimates correlate between datasets (Figure 2). While the trend is most visible for binned 
data, it is statistically significant also when individual values are compared (p-value < 0.01).  

Second, we observe consistent function enrichments across the datasets (Table 2). As seen previously 
(Martin-Perez and Villen, 2015), long-lived proteins were enriched for the oxidation-reduction, Tri-Carboxylic 
Acid cycle and amino acid synthesis. Short-lived proteins were enriched for RNA processing and ribosome 
biogenesis.  

Third, the estimated half-lives agreed with literature-derived values that originate from targeted validation 
experiments (Figure 3, Suppl. Table S1, as taken from ref. (Christiano et al., 2014). The Christiano and 
Silva datasets also correlated weakly, but significantly with an orthogonal dataset on protein half-lives 
estimated by western blotting (Belle et al., 2006)(Suppl. Figure S5, p-value<0.01). This correlation is 
remarkable given that the western blot data was obtained with an invasive method using translation 
inhibition, a very short 45 min time course and only three measurement points.  

Fourth, as expected, protein half-lives correlate positively with abundance, both for binned and unbinned 
data (Figure 4). The correlation was weaker but still present for measures of codon adaptation which 
usually approximates abundances well, but not so for length which is known to inversely correlate with 
protein concentration (Suppl. Figure S5). Protein half-life estimates from the Christiano study showed a 
weak anti-correlation with both the presence of sequence degrons and intrinsically disordered regions: the 
more degrons or disordered regions a protein had, the less stable it appeared to be (Suppl. Figure S5).  No 
searchable motif existed for ubiquitination (Kim et al., 2011)(not shown). We observed some correlations 
with amino acid frequencies (Suppl. Figure S6).  

Highly abundant proteins show inconsistent behavior 
All four Martin-Perez datasets (duplicates for two experiments) displayed a set of short-lived proteins with 
varying abundance that were distinct from general trends in the data (Figure 4). This outlier set was 
surprising given the high quality of the data and its high reproducibility across replicates (Martin-Perez and 
Villen, 2015). Since this outlier set was enriched in highly abundant proteins (Suppl. Figure S7), and 
specifically ribosomal proteins, we examined half-lives of ribosomal proteins in the data in more detail.  

In general, ribosomal proteins are of high-abundance and would therefore be expected to be long-lived 
compared to other proteins (Suppl. Table S2). Indeed, this expectation is met in the Christiano and Silva 
datasets on S. cerevisiae in this study, for S. cerevisiae and Schizzosaccharomyces pombe (Belle et al., 
2006) (Christiano et al., 2014), for Escherichia coli (Schleif, 1967) and for mammalian cells (Schwanhausser 
et al., 2011). Surprisingly, the Martin-Perez data and for baker’s yeast examined in time series experiment 
using labeled nitrogen sources by Helbig et al. (Helbig et al., 2011) show a different picture: ribosomal 
proteins have comparatively short half-lives. To understand the reason behind this difference, we carefully 
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compared the experimental setup for the Martin-Perez and Helbig studies to the other yeast experiments 
(Suppl. Table S2). There was no apparent reason for the differential behavior based on the amino acid 
dependence (proto- vs. auxotrophy), the culture type (batch vs. continuous culture), the prior labeling time, 
the type of label switch (heavy to light or vice versa), or the length of the overall time series experiment 
(Suppl. Table S2). The only weak difference that we detected lied in the exact method by which the 
medium was switched, i.e. via pelleting or inocculation.  

However, we were able to demonstrate consistency of the stabilities of ribosomal proteins amongst each 
other (Figure 5). When we compared half-lives that were rank-ordered amongst ribosomal proteins, we 
found substantial agreement amongst the datasets (Figure 5). For example, the stalk proteins RPP0, 
RPP1A and RPP2A are particularly long-lived. Conversely, RPL10, RPL3, RPS7B, and the paralogs RPL7A 
and B are particularly short-lived compared to other proteins (Figure 5). The short half-live of these 
ribosome subunits might also link to their roles in late stages of ribosome biogenesis, consistent with the 
function enrichment that we observe (Table 2). Notably, the difference between the least and most stable 
ribosomal proteins in Figure 5 was as small as eight minutes in unadjusted half-life (in the Martin-Perez 
datasets).  

 

Conclusion 
We consolidated very different half-life estimates for yeast proteins from identical conditions. We showed 
that, using consistent data post-processing and cutoffs, the datasets behave very similarly (Suppl. Figure 
S3) and common principles emerge. Degradation of many yeast proteins can be approximated by first-order 
decay, but true degradation functions might require more complex models (McShane et al., 2016). Most 
proteins are removed from the cell via dilution by cell division. After accounting for this dilution effect, i.e. 
differential doubling times, the median half-lives across the datasets were large, from 7.5 to 40 hours. 
Within a dataset, protein half-lives varied by an order of magnitude.  

With these estimates, proteins are much more stable than mRNAs (Munchel et al., 2011; Neymotin et al., 
2014; Sun et al., 2012). This high stability had been reported by Christiano et al. (Christiano et al., 2014), 
but not by earlier work suggested that used translation inhibitors (Belle et al., 2006) or recent work 
comparing prototroph and auxotroph strains (Martin-Perez and Villen, 2015). It implies that most of the 
decrease in pre-existing proteins arises from dilution by cell division and proteasomal degradation is slow. 
Interestingly though, even after accounting for cell doubling times, protein half-lives correlated with growth, 
suggesting that proteasomal degradation partially adjusted to growth rate (Figure 1D).  

We observed consistent protein half-life characteristics across the datasets, correlation with literature-
confirmed values, function enrichment, correlation with protein concentrations and some other sequence 
characteristics. The correlation with abundance and codon usage suggested that the cell efficiently 
produced higher steady-state concentrations of protein by an increase in both translation and protein 
stability. We observed an inverse relationship of half-life with the presence of destabilizing disordered 
regions and degrons (Suppl. Figure S5) – this relationship had been hidden in many previous studies.  

We showed that these results are independent of the post-processing method, i.e. the method by which one 
accounts for sampling depth or technical variation between measured time points, and scaling of the data. 
Due to the remaining noise (Suppl. Figure S8), values for individual protein stabilities need to be 
considered with care. However, the methods were still able to discern relative differences in ribosomal half-
lives as small as a few minutes.  

These differences matched known observations and roles of ribosome subunits (Mathis et al., 2017). For 
example, the short half-life of RPL10 had first been reported in the 1970s, is conserved in mammals 
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(Lastick and McConkey, 1976, and might be regulated by extensive ubiquitination {Bengsch, 2015 #8275; 
Mathis et al., 2017)(Figure 5). Ubiquitination was also observed for the short-lived RPS7 in Figure 5 
(Bengsch et al., 2015). Further, RPL10’s short half-life was consistent with its function: RPL10 controls the 
switch between the non-rotated and rotated state of the ribosome during elongation, and the protein has to 
be rapidly available and removed. In contrast, subunits of the stalk (RPP0, RPP1A, RPP2A, Figure 5) are 
not easily interchangeable and therefore expectedly long-lived. Finally, the two paralogs RPL33A and B 
display an interesting half-life difference: RPL33B is short-lived, while RPL33A is consistently long-lived 
across the four datasets. The rpl33a null mutant exhibits slow growth, the rpl33b mutant grows normally, 
rpl33a rpl33b double null mutant is inviable (Cherry et al., 1998; Hellerstedt et al., 2017; Wong, 2017), 
suggesting that the proteins might have overlapping, but slightly differing functions regulated by differential 
turnover. 

In sum, several studies have examined protein half-lives in yeast and our meta-analysis has revealed 
common trends. The knowledge from these studies should be used to refine our view of protein stability, for 
example with respect subtle differences between protein half-lives. It should also be used to design future 
experiments that avoid discrepancies observed previously. Most importantly, half-life estimates need to 
distinguish clearly between estimates with or without the contribution of cell division. While accounting for 
cell doubling time does not change the ranking of half-lives across proteins, it has a non-linear and 
substantial effect on the half-life value (Table 1). Further, experiments need to cover two or more cell 
cycles, to avoid overestimation of values for stable proteins. Sampling four time points is sufficient for 
approximations of first-order decay which in turn provides good working estimates of half-lives. When 
monitoring half-lives over many hours, the non-exponential nature of the decay confounds analysis, and 
experiments will need denser sampling to model the true decay function. In other words, simple 
experiments can provide good working models of protein stability, but estimating exact half-lives, in 
particular of long-lived proteins, remains challenging and requires complex approaches.  

 

Methods 
Proteomics experiments     
Quantitative pulsed Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) experiments were 
performed in cells grown at 30 C in synthetic dextrose medium containing amino acid dropout depleted in 
arginine and lysine (Sunrise Science). SILAC media were supplemented with light or heavy isotopes of 
arginine and lysine (L-Arg6 13C; L-Lys8 13C, 15N – Cambridge Isotopes). Yeast cells (GMS413) were grown 
in light medium for at least ten generations prior to transferring to heavy medium. Cells were then collected 
by centrifugation after 30, 60, 150 and 240 min. Cell disruption was performed by glass-bead agitation at 4 
C in Urea buffer: 8 M Urea, 50 mM Tris-HCl pH 7.5, 150 mM NaCl, and 1x EMD Millipore protease inhibitor 
cocktail set I. The extract was cleared by centrifugation and protein concentration was determined by 
Bradford assay (BioRad). Protein preparation for proteomics analysis was performed as previously 
described (Silva et al., 2015). Next, 200 µg of tryptically digested proteins were fractionated at high pH (20 
mM ammonium formate buffer, pH 10) reverse phase chromatography in a Kinetex 5µm EVO C18 100 Å 
column. Eluted peptides were non-linearly combined in 12 fractions and loaded for LC-MS/MS analysis. For 
each time point, 12 fractions were separated on an Agilent Zorbax 300 Stablebond-C18 column (3.5 µm, 
0.075 x 150 mm) by reverse-phase chromatography for 160 min with a gradient of 5 to 60 % acetonitrile 
performed with an Eksigent NanoLC 2DPlus liquid chromatography system. The eluted peptides were in-
line injected into an LTQ-Orbitrap Velos mass spectrometer (Thermo Scientific). Data-dependent analysis 
was performed at a resolution of 60,000 on the top 20 most intense ions from each MS full scan with 
dynamic exclusion set to 90 s if m/z acquisition was repeated within a 45 s interval. Mass Spectrometry 
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(MS) MS1 data was acquired at the FTMS orbitrap mass analyzer with target ion value of 1e6 and 
maximum injection time of 500 ms. MS2 data was acquired at the ion trap mass analyzer with target ion 
value of 1e4, maximum injection time of 100 ms, isolation window of 2 m/z, and CID normalized collision 
energy of 35. 

Primary data analysis 
The output RAW data was processed using MaxQuant suite (v. 1.3.0.5) to identify and quantify protein 
abundance (Tyanova et al., 2016). The spectra were matched against the yeast Saccharomyces cerevisiae 
database (Boutet et al., 2016; Consortium, 2015). Protein identification was performed using 20 ppm 
tolerance at the MS level (FT-mass analyzer) and 0.5 Da at the MS/MS level (Ion Trap analyzer), with a 
posterior global false discovery rate at 1% based on the reverse sequence of the yeast FASTA file. Up to 
two-missed trypsin cleavages were allowed, oxidation of methionine and N-terminal acetylation were 
searched as variable post-translational modification, and cysteine carbamidomethylation as fixed. The 
minimum number of SILAC peptide pairs used to quantify the protein abundance was set to two.  

The dataset is labeled ‘Silva’ throughout this study. All raw and primary analysis files are freely available 
from the PRIDE database, identifier PXD005956. (For reviewing purposes: Username: 
reviewer83889@ebi.ac.uk Password: Q9cTf30N) 

Acquisition of published data 
We obtained primary proteomics datasets, i.e. the MaxQuant output, from two published studies, labeled 
‘Christiano’ and ‘Martin-Perez’ for the first authors, respectively (Christiano et al., 2014; Martin-Perez and 
Villen, 2015). Each study had conducted a SILAC proteomics experiment similar to those described above 
measuring time points as listed in Table 1. Martin-Perez et al. measured additional time points considered 
here as described in the Results section.  

Estimating cell doubling time 
Cell doubling times TCC for the Christiano and Martin-Perez studies were taken from the respective 
publications (Table 1)(Christiano et al., 2014; Martin-Perez and Villen, 2015). For the Silva dataset, we 
measured doubling times by monitoring the OD over time. As the TCC varied slightly between time points, 
we scaled each time point to the measured TCC between this time point and the previous time point.  

Secondary data processing  
To enable fair comparisons across the datasets, we selected equal number of time points (four) and 
measurement periods (~240min) across the studies (Table 1). To evaluate the robustness of the results, the 
calculations were repeated for extended studies. We obtained similar results for the MPP data after both 
truncating the time series at 120 min and extending the time series to 360 min (Suppl. Figure S2, Suppl. 
Table S3). We tested three post-processing methods to account for variation in mass spectrometry 
measurements across time points. All calculations were performed on an x86-64 GNU/Linux desktop using 
R version 3.3.2. 

Unscaled data. For each protein, we performed a linear regression on ln(1+Pnew/Pold) at each time point. 
This transformation corresponds to an exponential decay function. 

Ratio scaling. To control for batch effects in which unexpectedly large or small intensities are observed for 
all proteins at one experimental time point, we scaled all protein intensities at each time point to the sum of 
all intensities at that time point. Because we expect a small number of highly abundant proteins to 
disproportionately contribute to the intensity sums, we compute scaling factors using only sums of the 
bottom 95% quantile. Additionally, we fit the intensity sums to an exponential decay function. For a SILAC 
protein degradation experiment, the total MS intensity is expected to stay constant, but the fraction of old 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 19, 2017. ; https://doi.org/10.1101/165290doi: bioRxiv preprint 

https://doi.org/10.1101/165290


9 

proteins, Pold , should decrease from 1 to 0 and the fraction of new proteins, Pnew , should increase from 0 to 
1 over time, respectively. Thus instead of scaling intensities to a constant expected value, we scaled 
intensities to a linear model for ln(1+Pnew/Pold).  

Metagene scaling. In another scaling method, we constructed a metagene using the most stable 5% of 
proteins in each dataset. We then calculated the average Pold and Pnew at each time point for these genes, 
then scaled all protein intensities in the dataset to the metagene values. 

Ratio scaling returned the most significant genes for all datasets, and we used this method for all 
downstream analysis. The method used did not systematically affect the experimental outcome (Suppl. 
Figure S1). 
Modeling of protein half-lives  
Pulsed SILAC is a proteomic technique which typically consists of growing auxotrophic cells in medium 
containing isotopically labeled amino acids, then switching cells to a medium containing amino acids with a 
new isotopic label at time (T0). Note that prototrophic cells were used in the Martin-Perez dataset (Martin-
Perez and Villen, 2015). Since the use of heavy and light isotopes changed across the three studies, we 
chose to refer to peak intensities Pold and Pnew when discussing the initial (‘old’) and pulsed (‘new’) isotope. 
Proteins containing the old label are assumed to have been synthesized before (T0), and proteins containing 
the new label are assumed to have been synthesized after (T0). Protein degradation can in theory be 
monitored simply as the disappearance of Pold without considering the SILAC ratios of Pold/Pnew. However, 
the estimates using Pold alone are far less precise than those based on the ratio (not shown).  

Protein half-life is commonly assumed to follow exponential decay. To establish which proteins can be well-
modeled by exponential decay, we followed a procedure developed by Schwanhaeusser et al. and 
Christiano et al. (Christiano et al., 2014; Schwanhausser et al., 2011). The procedure is explained in the 
Suppl. Notes.  

Error estimates. As established by Christiano et al. (Christiano et al., 2014), each protein’s fit to exponential 
decay can be modeled by the leave-one-out cross-validation (LOOCV) error and a general R2. LOOCV 
consists of recalculating the linear model of the half-life model with one data point left out. The generated 
model predicts a value for the omitted time point, then calculates the error between the predicted and actual 
value. This procedure iterates over each time point for the protein. The algorithm reports the  mean error of 
iteration over all time points. The LOOCV was implemented using the cv.glm() function from the boot R 
package. R2 values were calculated from the linear regression using the summary.lm() function. 

All data including error estimates are provided in Supp. Dataset 1. Both LOOCV and R2 depend on the 
number of data points considered which is the reason for us to choose four time points and similar 
measurement periods for each dataset to enable comparisons. Suppl. Figure S3 shows the distributions of 
the errors after these corrections. Based on these distributions, we chose an LOOCV < 0.01 and R2 > 0.9 as 
common thresholds for all three datasets to consider a protein well-modeled by an exponential decay 
function.  

Combining replicates. MPP and MPA both included two technical replicates. To obtain a consensus dataset 
for each, we filtered both replicates for significant proteins. For proteins that were significant in both 
replicates, T1/2 and T1/2* were obtained by taking the average value of both replicates. 

Analysis of protein properties 
We performed Gene Set Enrichment Analysis (GSEA) on each dataset (Subramanian et al., 2005). GSEA 
determines whether a given gene set is overrepresented at the top of an ordered list of genes. To enrich for 
long-lived proteins, we order the proteins in a dataset by T1/2* with T1/2* decreasing. To enrich for short-lived 
proteins, we ordered the proteins in a dataset with T1/2* increasing. Estimates of absolute protein 
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concentrations were taken from a publication by Csardi et al. (Csardi et al., 2015). Amino acid frequencies 
and codon adaptation indices were taken from the protein_properties file from SGD (Cherry et al., 1998; 
Hellerstedt et al., 2017; Wong, 2017). Scores for PEST sequences and intrinsically disordered regions were 
calculated using the EPESTFIND and DiEMBL tools, respectively, which are part of the EMBOSS package.  
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Supplementary Dataset 1.  
Protein half-lives for all datasets. Missing values indicate proteins that were absent from a dataset. 
t.half.star is T1/2* for the dataset. t.half.adjusted is T1/2 adjusted for TCC for the dataset. is.significant is a 
logical value indicating whether the half-life calculation meets our significance cutoff of LOOCV error < 0.01 
and R2 > 0.9. pearson.p.value is the p value given by the Pearson correlation of protein time points. FDR is 
pearson.p.value adjusted for false discovery rate.  

Supplementary Dataset 2.  
GSEA output for enriched GO Biological Process for each dataset.  

 

Supplementary Dataset 3.  
R scripts for calculations 
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Figures 
Figure 1. Protein stability correlates with yeast cell division time  
A., B. Frequency distribution of protein half-lives not adjusted and adjusted for doubling time (T1/2* and T1/2, 
respectively). The rightmost column includes all proteins with half-life greater than the maximum value 
shown on the graph. Extended results are shown in Suppl. Figures S1 and S2. C., D. The doubling time 
TCC for the three datasets is plotted against the median protein half-life which is unadjusted (T1/2*) or 
adjusted (T1/2) for cell division time. MPP – Martin-Perez Prototroph; MPA – Martin-Perez Auxotroph 
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Figure 2. The datasets agree with respect to general trends 
The scatter plots show the the relationship between unadjusted protein half-lives (T1/2*) from the four 
datasets.  Data were rank-ordered and then split into ten equal size bins. Black stars indicate the median 
values in each bin. Boxes indicate the second and third quartiles within the bins; stars indicate the median 
values. The total range of the data are shown in Suppl. Figure S4. Correlations were calculated for all data 
points representing Pearson’s r and Spearman’s ρ. A. Christiano T1/2* vs. Silva T1/2*;  r = 0.33 (p < 0.01) and  
ρ = 0.29 (p < 0.01). B. Christiano T1/2* vs. Martin-Perez prototrophic T1/2*;  r = 0.49 (p < 0.01) and ρ = 0.12 
(p = 0.01). C. Christiano T1/2* vs. Martin-Perez autotrophic T1/2*; r = 0.68 (p < 0.01) and ρ = 0.12 (p < 0.01). 
D. The Martin-Perez Prototroph (MPP) and Martin-Perez Auxotroph (MPA) data strongly correlate, 
indicating that prototrophs and auxotrophs are similar in protein half-lives. r = 0.70 (p < 0.01) and ρ = 0.90 
(p < 0.01).  
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Figure 3. Validation of proteins with literature values 
We compared the doubling time adjusted T1/2 to ten protein half-lives found in the 20 literature (Suppl. 
Table S1). The adjusted T1/2 values agree with the literature values, but cover a small range of values. Due 
to strict filtering, neither Martin-Perez dataset had data points amongst the literature confirmed values.  
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Figure 4. Protein half-lives correlate positively with abundance 
The scatter plots show the the relationship between unadjusted protein half-lives (T1/2*) from the four 
datasets and protein abundance.  Protein concentration data was obtained from ref. Csardi et al. (2015) and 
represents the corrected average over many datasets. Data were rank-ordered and then split into ten equal 
size bins. Black stars indicate the median values in each bin. Boxes indicate the second and third quartiles 
within the bins; stars indicate the median values. Correlations were calculated for all data points for 
Pearson’s r and Spearman’s ρ. Binned median values correlated significantly in all datasets with a p-
value<0.01. Correlation coefficients for all values are: A. Christiano T1/2* vs. protein abundance; r = 0.21 (p 
< 0.01) and ρ = 0.33 (p < 0.01). B. Silva T1/2* vs. abundance; r = 0.39 (p < 0.01) and ρ = 0.39 (p < 0.01). C. 
Martin-Perez Prototroph (MPP) T1/2* vs. abundance; r = -0.03 (p = 0.56) and ρ =  -0.22 (p < 0.01). D. Martin-
Perez Auxotroph (MPA) T1/2* vs. abundance; r = 0.02 (p = 0.68) and ρ = -0.12 (p < 0.01). For the Martin-
Perez datasets, a set of short-lived proteins (dotted oval) is enriched in ribosomal proteins. Extended 
results, e.g. on Codon Adaptation Index, are shown in Suppl. Figure S5 and Suppl. Dataset 1.  
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Figure 5. All experiments resolve differences in half-lives across ribosomal proteins 
Ribosomal proteins are relatively rapidly turned over in the Martin-Perez datasets compared to non-
ribosomal proteins (Figure 4). However, within ribosomal proteins the measurements of stabilities are 
consistent with other estimates. The figure shows only those ribosomal proteins with estimates in all four 
datasets. All protein half-lives are ranked within the shown set. The coloring denotes stability relative to 
other ribosomal proteins in the same set, it does not reflect absolute values. MPP – Martin-Perez 
Prototroph; MPA – Martin-Perez Auxotroph 
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Tables 
Table 1. Most proteins are well-modeled by exponential degradation. 
Protein half-life varies across genes and across experiments. Unadjusted T1/2* is the half-life calculated by 
the exponential model prior to adjusting for cell division time TCC. Adjusted T1/2 is the half-life calculated by 
the model after accounting for TCC (see Methods). Proteins for which T1/2* < TCC were considered outside 
the appropriate measurement range, as adjusting these half-lives for doubling time results in nonsensical 
values.  

 

 Christiano Silva Martin-Perez 
Prototroph 

Martin-Perez 
Auxotroph 

Doubling time TCC (min) 150 208 122 108 

Measurement time points (min) 30, 60, 120, 
180 

30, 90, 150, 
240 

30, 60, 90, 240 30, 60, 90, 
240 

Total number of proteins measured 3,518 2,214 1,029 1,194 

Number of proteins modeled by first-
order (exponential) decay 
(LOOCV<0.01 and R2>0.9) 

3,067 
 (87%) 

1,374 
 (62%) 

475 
 (46%) 

579 
 (48%) 

Median T1/2* of exponentially degrading 
proteins (min) 

120 256 112 104 

Range T1/2* (min) 42 - 561 118 - 449 61 – 1,938 56 – 2,551 

Median T1/2 of exponentially degrading 
proteins, adjusted for cell doubling 
(min) 

609 2,357 454 657 

Number of proteins modeled by first-
order decay, but with half-lives outside 
measurement range  

24 

 (0.01%) 

1,124 

 (51%) 

150 

 (15%) 

192 

 (16%) 
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Table 2. Long- and short-lived proteins share functional enrichment between datasets 
The table illustrates enriched functions in 50% longest- and shortest-lived proteins (A., B., respectively) with 
the average false discovery rate <0.05 in the Christiano and Silva and <0.1 the Martin-Perez datasets 
(Suppl. Dataset 2).  

 
Significantly enriched function Example genes 

 
A.Long-lived proteins 
 

 
 

Oxidation / reduction (‘De novo' purine 
biosynthesis, Pyruvate metabolism, GTP 
biosynthesis) 

ADE16 ADH1 ADH6 AIM17 ALD3 ALO1 ARI1 CBR1 CCP1 
CIR2 DLD1 DLD3 GLC7 GRE3 HOM6 HYR1 IDP1 IFA38 IMD2 
IMD3 IMD4 LYS9 MCR1 PAN5 PDB1 PDX3 PET9 PGA3 
PGM2 PRO2 QCR2 RNR2 SFA1 SOD2 TDH1 TDH2 TPA1  
YCP4 

Amino acid biosynthesis ALD3 ARO2 ARO3 ARO4 ARO7 ARO8 ASN2 BAT1 BAT2  
CAR2 CYS4 FPR1 HOM3 HOM6 IDP1 ILV1 ILV2 LYS21 LYS9 
MET17 MRI1 PRO2 SER1 SHM1 THR4 TRP2 TRP3 

 
B. Short-lived proteins 
 

 
 

Ribosome biogenesis (rRNA processing, 
ribosome subunit) 

CDC73 CRM1 EMG1 FUN12 GCD11 GLC7 GSP1 MEX67 
NSA1 NSP1 PAT1 PUB1 RNA1 RPB5 RPG1 RPL10 RPL25 
RPL3 RPL30 RPL5 RPL6A RPL6B RPL7A  RPL7B RPL8A 
RPL8B RPO26 RPP0 RPS13 RPS15 RPS1A RPS1B RPS2 
RPS20 RPS21A RPS3  RPS5 RPS7A RPS7B RPS9B RRP9 
RSP5 RVB1 RVB2 SPT5 SRM1 SSB1 SSZ1 SUI1 SUI2 SUI3  
TIF11 TIF3 TIF34 TIF5 TMA20 YTM1 ZUO1 
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