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 7 

ABSTRACT 8 

Chromatin immunoprecipitation followed by sequencing (ChIP-seq) can detect read-enriched 9 

DNA loci for point-source (e.g., transcription factor binding) and broad-source factors (e.g., 10 

several histone modifications). Although numerous quality metrics for ChIP-seq data have 11 

been developed, the ‘peaks’ thus obtained are still difficult to assess with respect to signal-12 

to-noise ratio (S/N) especially for broad-source factors, and peak reliability. Here we 13 

introduce SSP (strand-shift profile), a tool to assess the quality of ChIP-seq data without 14 

peak calling. SSP provides metrics to quantify the S/N for both point- and broad-source 15 

factors, and to estimate peak reliability based on the mapped-read distribution throughout a 16 

genome. We carried out an in-depth validation of our method using over 1,000 publicly 17 

available ChIP-seq datasets, along with virtual data, to demonstrate that SSP is more 18 

sensitive than existing tools for both point- and broad-source factors because of the larger 19 

dynamic range of the S/N score, and robust for various cell types and sequencing depth. We 20 

also found that SSP can identify low-quality samples that cannot be identified by quality 21 

metrics currently available. Finally, SSP provides an additional metric to avoid “hidden-22 

duplicate reads” that cause aberrantly high S/Ns in the strand-shift profile. This metric can 23 

also contribute to estimation of peak mode (point- or broad-source) of each sample. Our 24 
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approach provides a useful way to obtain information about sample quality and traits for 25 

ChIP-seq analyses. 26 

 27 

Introduction 28 

Chromatin immunoprecipitation followed by sequencing (ChIP-seq) analysis identifies DNA 29 

loci of transcriptional factors (TFs) binding (i.e., point-source) as well as broadly distributed 30 

histone modifications (i.e., broad-source) [1, 2]. In a ChIP experiment, immunoprecipitated 31 

DNA fragments are sequenced to reads, which are mapped to a reference genome, and 32 

statistically significant read enrichments (as compared with a corresponding input sample) 33 

are detected as peaks. Large consortia such as ENCODE [3], NIH ROADMAP [4] and IHEC 34 

[5] enable us to utilize thousands of ChIP-seq data for diverse cell lines and tissues. To 35 

handle such large-scale data, objective quality metrics for quantitative assessment are 36 

essential to automatically find samples which should be rejected or require a specific 37 

consideration to be included in the analysis. Numerous computational measures for ChIP-38 

seq analysis have been developed, which include read quality, library complexity, and GC 39 

content [6, 7]. Despite great effort, however, the current approach for assessing peaks is 40 

insufficient. 41 

To assess the success of the immunoprecipitation step, signal-to-noise ratio (S/N) is 42 

assessed, and the value should be high for ChIP samples and low for input samples. A 43 

straightforward way to evaluate the S/N is to count the number of obtained peaks and/or 44 

calculate the fraction of reads falling within peak regions (called FRiP), but these ways 45 

depend on sequencing depth and peak-calling parameters. In contrast, cross-correlation 46 

analysis [6] evaluates the S/N without the need for a peak-calling procedure. It estimates the 47 

Pearson correlation coefficient between the read densities mapped on the forward and 48 

reverse DNA strands upon shifting from one strand to the other (see Supplemental Fig. S1 49 

for an example). Such a “strand-shift profile” typically peaks at the shift corresponding to the 50 

DNA fragment length, which increases as the S/N of the sample increases. This tendency 51 
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has also been used to estimate fragment length from single-end reads. There is also a spike 52 

at the read-length shift that arises from repetitive sequences [8]. Based on this observation, 53 

cross-correlation analysis calculates two metrics, namely the normalized strand coefficient 54 

(NSC) and the relative strand correlation (RSC), which quantify the fragment length peak 55 

relative to background level and relative to the read length peak, respectively (see Results, 56 

“Method overview”, for details). These metrics have been used in the ENCODE, ROADMAP 57 

and IHEC consortia. A strand-shift profile strategy based on the Hamming distance was also 58 

proposed for rapid computation (Hansen et al. 2015). Whereas these tools are useful for 59 

point-source factors, broad-source factors (e.g., H3K9me3) often have marginal or truly low 60 

scores compared with input samples, even when the samples are of high quality [6]. 61 

Moreover, these S/N indicators do not evaluate the reliability of obtained peaks, that is, 62 

amount of false positives which are derived from read distribution bias (e.g., GC bias) [9]. 63 

Visual inspection at a limited number of sites is effective but not sufficient to explain the 64 

properties of read distribution in a whole genome. Consequently, genome-wide assessment 65 

of ChIP-seq peak quality still presents challenges that current protocols cannot circumvent. 66 

In this work, we present a new method, SSP, which is based on a strand-shift profile using 67 

the Jaccard index to assess S/N, peak reliability and properties of read enrichment in ChIP-68 

seq data. We evaluated the performance of SSP using an extensive dataset of ChIP-seq 69 

samples for various cell types obtained from the ENCODE, ROADMAP, and other projects, 70 

along with simulated experiments. We demonstrate that SSP provides a more sensitive S/N 71 

indicator than current methods both for point- and broad-source marks and is robust for 72 

various cell types and sequencing depth. We also found that “hidden-duplicate reads” in a 73 

sample confound the strand-shift profile because they cause unexpected enrichment, 74 

resulting in calculation of aberrantly high S/Ns. Therefore we additionally developed metrics 75 

to overcome this problem, which can also be used to estimate peak mode (point or broad 76 

source) of each sample. SSP provides a useful way to assess and obtain additional 77 

information about sample quality and traits for ChIP-seq analyses. 78 
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 79 

Results 80 

Method overview 81 

Fig. 1 presents an overview of SSP (see Methods for details). Using mapped reads as input, 82 

SSP generates the strand-specific vectors for forward and reverse strands (step 1). Because 83 

sequenced reads that are mapped to the same genomic position are removed as duplicate 84 

reads [6], each element of a strand-specific vector is binary, that is, either zero (unmapped) 85 

or one (mapped). This binary vector can be handled by computationally fast bit operations in 86 

C++ [10]. SSP calculates the Jaccard index between binary vectors of forward and reverse 87 

strands for each strand shift d, which is then normalized by total read number and 88 

chromosome length (step 2). The magnitude of the Jaccard score reflects the co-occurrence 89 

of reads mapped on the forward and reverse strands with distance d. Whereas the Pearson 90 

correlation and Hamming distance confer equal weight to pairs of mapped bases (1,1) and 91 

unmapped bases (0,0), the Jaccard index focuses on the mapped bases because 92 

unmapped bases can often coincide owing to the lack of sequencing depth and low-93 

mappable regions. 94 

A strand-shift profile is generated within –500 bp < d < 1 Mbp (step 3). NSC and RSC are 95 

then calculated in the same manner as a cross-correlation analysis. Whereas existing 96 

methods use ~1,000–1,500 bp as background, SSP takes the average over a range of 500 97 

kbp to 1 Mbp because we observed that the Jaccard score still decreases up to 1 Mbp (Fig. 98 

1, step 3). Along with NSC and RSC, SSP also calculates “background uniformity” (Bu), 99 

which evaluates the uniformity of mapped read distribution in background regions (step 4). 100 

Finally, SSP calculates a “fragment cluster score” (FCS), which estimates the cluster level of 101 

forward-reverse read pairs with each distance d (step 5). FCS is the maximum difference in 102 

the parameter cPNF (the cumulative proportion of neighboring fragments) at distance d 103 
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compared at background length. The outputs of SSP are displayed in PDF format and also 104 

written to text files. 105 

 106 

Comparison with current methods 107 

To assess the performance of SSP for estimating S/N, we implemented three existing tools: 108 

1) phantompeakqualtools (PPQT, https://github.com/kundajelab/phantompeakqualtools), 109 

which internally implements spp version 1.14 [11] for cross-correlation analysis and then 110 

outputs NSC and RSC; 2) Q version 1.2.0 [10], which adopts a strand-shift profile based on 111 

the Hamming distance and calculates RSC; and 3) DeepTools version 2.5.0 [12], which 112 

computes the synthetic Jensen-Shannon distance (JSD) that evaluates differences in the 113 

cumulative fraction of mapped reads between ChIP by assuming a Poisson distribution as a 114 

background model for windows of fixed length. We applied DeepTools with the “–115 

ignoreDuplicates” option according to the instructions given in the manual. We used default 116 

parameters for each of the other tools. 117 

 118 

Estimating fragment length  119 

We first evaluated the performance of fragment-length estimation with SSP, PPQT and Q 120 

using 65 paired-end ChIP-seq datasets for human, mouse, chicken, and fly (Fig. 2A and 121 

Supplemental Table S1). We found that SSP could provide comparable and relatively more 122 

accurate fragment-length data than PPQT and Q for all four species investigated. PPQT and 123 

Q were nearly as accurate as SSP but could not provide a fragment-length estimate for 124 

several of the samples (e.g., samples 37 and 45). On the other hand, none of the programs 125 

could estimate an accurate fragment-length for certain samples (e.g., sample 16) for which 126 

there was no clear peak in the strand-shift profile (Fig. 2B). Because it has been reported 127 

that a high score for read-length shift can be mitigated by removing reads mapped on 128 
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“blacklist regions” in the genome [8], we re-analyzed 45 human samples (no. 1–45) after 129 

removing reads mapped on blacklist regions [3] to validate the possibility that they affect the 130 

accuracy of fragment-length estimation. However, such filtering had little effect 131 

(Supplemental Fig. S2 and Supplemental Table S1). In fact, because the failure of fragment-132 

length estimation is mainly due to a lack of enrichment at the fragment-length shift, mitigating 133 

the enrichment at read-length alone is insufficient. In this case, fragment length should be 134 

supplied by the users. In subsequent analyses, we did not remove blacklist regions because 135 

doing so could affect the RSC, and in fact detailed blacklist regions are available only for 136 

human genome build hg19. 137 

 138 

Calculating the S/N for point and broad histone marks 139 

Required features for good S/N metrics are the quantifiability and sensitivity of different S/Ns 140 

for both point- and broad-source factors, as well as the applicability to various cell types.  To 141 

comprehensively evaluate the performance of SSP relative to other tools, we first used a 142 

compendium of 860 ChIP-seq samples of histone modifications for 127 cell types, which 143 

were obtained from the ROADMAP project [4]. These data contain information for six core 144 

histone modifications, consisting of both point-source (H3K27ac, H3K4me1, H3K4me3) and 145 

broad-source factors (H3K27me3, H3K36me3, H3K9me3) along with input samples. In the 146 

consolidated dataset, reads of each sample were truncated to 36 bp, mapped onto genome 147 

build hg19, filtered using a 36-bp mappability track, and then uniformly down-sampled to a 148 

maximum depth of 30 million reads, which is appropriate for avoiding the effect derived from 149 

different sequencing depths, parameters for mapping, and mappability. 150 

A comparison is shown in Fig. 2C (see Supplemental Table S2 for detailed information and 151 

scores for each sample). The results revealed that SSP-NSC and JSD could achieve 152 

sufficient sensitivity both for point- and broad-source marks. The smaller difference between 153 

point- and broad-source marks for JSD compared with SSP-NSC is perhaps a consequence 154 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 18, 2017. ; https://doi.org/10.1101/165050doi: bioRxiv preprint 

https://doi.org/10.1101/165050
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 

 

of score saturation, i.e., given that the maximum value of JSD is 1.0. PPQT-NSC showed 155 

little difference among three broad marks compared with input samples (~1.1 fold), indicative 156 

of insensitivity for broad marks. 157 

As previously reported, RSCs obtained with all three tools were comparable or lower for 158 

H3K9me3 than input samples. The discrepancy between NSC and RSC is possibly because 159 

H3K9me3 is more highly enriched at the read-length shift compared with other histone 160 

modifications derived from repetitive regions, such as centromeres [13]. Because RSC 161 

amalgamates the magnitude of true peak enrichment and repeat effects, when the read-shift 162 

enrichment is high, the RSC may be small even when the S/N is sufficiently high. 163 

Furthermore, the relatively wider distribution of RSC for input samples indicates that a low 164 

S/N increases the variability of it owing to the small value of the denominator (difference 165 

between read-length value and background). 166 

To further validate the ability of S/N indicators, we generated virtual data for histone 167 

modifications with various S/Ns by adding a fixed number of input reads to each ChIP 168 

sample in a stepwise manner. The S/N then decreased with increasing numbers of input 169 

reads. Fig. 2D shows the comparison for E072 (Brain inferior temporal lobe) and 170 

Supplemental Fig. S3 shows results for two other cell types. In most cases, the values of the 171 

indicators decreased with increasing numbers of input reads. RSC was relatively higher for 172 

H3K9me3 because, for this mark, the scores were often lower than those of the input (Fig. 173 

2C). SSP-NSC had the superior or comparable sensitivity to changes in S/N, while PPQT-174 

NSC lacked sensitivity for evaluating broad marks. 175 

 176 

Evaluating the validity of the S/N for TFs for 20 cell types 177 

The S/N estimation could be affected by multiple factors, such as sequencing depth, read 178 

length and copy number variations in cancer cell lines [14]. To validate the robustness of the 179 
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S/N indicators against these factors, we next investigated 399 ChIP-seq samples of TFs 180 

(point source) for 20 cell types obtained from the ENCODE project [15]. This dataset 181 

contains various read lengths (25, 36, and 50) and sequencing depths. Fig. 3A and 182 

Supplemental Fig. S4 depict the distribution of SSP-NSC and the other scores, respectively, 183 

for ChIP and input samples of 20 cell types (see Supplemental Table S3 for detailed 184 

information). Whereas the number of samples varied among those cell types, we found that 185 

SSP-NSC could reveal distinct differences between ChIP and input samples for all cell types. 186 

To compare the various tools in this respect, we displayed the median scores for each cell 187 

type for all indicators (Fig. 3B). For SSP-NSC and PPQT-NSC, median values for ChIP and 188 

input samples were consistently different among all cell types, indicating that a cell type–189 

independent threshold value could be defined for these indicators. For example, SSP-NSC ≥ 190 

3.0 may be a good candidate threshold for TF ChIP samples, whereas the averaged S/N 191 

varied among the TFs and antibodies used (Supplemental Fig. S4). Meanwhile, RSC and 192 

JSD could not sufficiently distinguish ChIP and input samples. Although ChIP samples had 193 

larger values than input samples for each cell type (Supplemental Fig. S5), the separation 194 

between the data for ChIP and input samples depended on cell type, and therefore it was 195 

difficult to determine a uniform threshold value. Consequently, SSP-NSC is a sensitive and 196 

robust estimator that can be standardized across diverse cell types. 197 

 198 

Correlation with FRiP score 199 

To further evaluate the performance of S/N indicators, we calculated the Spearman's 200 

correlation coefficient between the FRiP score and each S/N indicator across the ENCODE 201 

and ROADMAP datasets (Table 1). Because FRiP score depends on sequencing depth, we 202 

computed each FRiP score with and without total read normalization (see Methods for 203 

details). First, RSC yielded a low correlation, suggesting that RSC cannot be used for 204 

quantitative estimation of the S/N. In contrast, the output of each of SSP-NSC, PPQT-NSC, 205 
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and JSD was highly correlated with FRiP scores. Although SSP-NSC and PPQT-NSC each 206 

correlated well with normalized FRiP scores, JSD correlated better with FRiP score without 207 

normalization, which clearly shows the dependency of JSD on sequencing depth. This 208 

conclusion is valid for the ROADMAP dataset with both point-source marks (H3K4me1, 209 

H3K4me3, H3K27ac) and broad-source marks (H3K27me3, H3K36me3, H3K9me3) (Table 210 

1). The lesser correlation of PPQT-NSC with broad-source marks compared with point-211 

source marks implies its lower sensitivity for broad-source marks.  212 

To further investigate this tendency, we implemented a down-sampling analysis. We 213 

selected six samples (four ChIP and two input samples) that contained an abundant number 214 

of reads (>50 million) after removing duplicate reads. For each sample, we subsampled the 215 

reads to a fixed number (from 5 million to 50 million) and calculated the ratio of the score at 216 

each depth relative to the score for the 50 million reads (Fig. 3C and Supplemental Fig. S6A). 217 

While all indicators except for JSD did not fluctuate with sequencing depth, JSD decreased 218 

at lower sequencing depth. For input samples, each ratio fluctuated slightly (~1.1 fold) 219 

because of smaller values for the 50 million reads. The analysis of histone modification data 220 

also reached the same conclusion (Supplemental Fig. S6B). Consequently, SSP-NSC is the 221 

best predictor of S/N for both point-source and broad-source marks, independent of 222 

sequencing depth and cell types. 223 

 224 

Background uniformity 225 

NSC is defined as relative enrichment of the Jaccard score at each fragment-length shift 226 

compared with the background level (Fig. 1, step 3). The next question was thus “why does 227 

background level vary among samples?” By definition, the Jaccard score at background 228 

reflects the co-occurrence probability of forward and reverse reads. Ideally, the background 229 

reads should be uniformly distributed; in reality, however, the read distribution is often more 230 

congregated, or biased, owing to various potential technical or biological issues [16], 231 
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resulting in a higher Jaccard score at background. Although the library complexity evaluates 232 

the percentage of duplicate reads, it does not directly reflect any potential bias in the read 233 

distribution. In fact, we observed that the background score increased ~2-fold when the 234 

mapped reads were removed in every other 10-Mbp window, whereas library complexity and 235 

NSC score remained essentially unchanged (Fig. 4A).  236 

Based on this observation, we defined Bu, which evaluates the magnitude of the observed 237 

background score compared with the uniform distribution (see Methods). A high value of Bu 238 

indicates that the background reads are uniformly distributed even if library complexity is low. 239 

In contrast, a low Bu score indicates sparse (or biased) read distribution, which decreases 240 

the reliability of the peaks obtained. 241 

We computed Bu scores for 860 histone modification samples from ROADMAP (Fig. 4B and 242 

Supplemental Table S2). Although most of these consolidated data had library complexity = 243 

1.0, we noted that a small amount of data for each histone modification and input sample 244 

had a low Bu score (<0.8). A low Bu score was still observed even after filtering out samples 245 

of low sequencing depth (<20 million reads). To further investigate the various aspects of Bu, 246 

we chose 12 H3K36me3 samples as representatives, and the results are shown in Fig. 4C–247 

E. We grouped these samples into four types: (1) low NSC and high Bu, (2) high NSC and 248 

high Bu, (3) high NSC and low Bu; this type was further classified as 3-1 (GC-rich) and 3-2 249 

(not GC-rich). Fig. 4C illustrates the relative scores as a heatmap (see Supplemental Table 250 

S4 for details concerning scores). Fig. 4D presents data for the read distribution proximal to 251 

the housekeeping gene IREB2 [17]. Groups 2 and 3 had high S/Ns, reflecting read 252 

enrichment at the IREB2 locus. Samples in group 3-1, however, had an unexpectedly sparse 253 

read distribution, which is not reasonable considering that H3K36me3 is broadly distributed 254 

within genic regions. Considering the GC-rich read distribution, this read distribution may be 255 

a consequence of GC bias [18]. In contrast, group 3-2 had low Bu values without GC bias, 256 

and read distribution was reasonable compared with group 3-1. However, this group also 257 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 18, 2017. ; https://doi.org/10.1101/165050doi: bioRxiv preprint 

https://doi.org/10.1101/165050
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 

 

had lower genome coverage in background region (Fig. 4E and Supplemental Fig. S7). A 258 

possible reason for this is that the DNA fragmentation of tightly packed regions, e.g., 259 

heterochromatin, did not work well, resulting in a much lower number of reads on the regions. 260 

These samples might confound the read normalization for comparative analyses that 261 

assumes comparable read depth among samples over the entire genome [19]. These results 262 

suggest that Bu is an effective criterion with which to judge whether a specific consideration 263 

is required for comparative analysis. 264 

Interestingly, GC-biased samples (group 3-1) had a striking peak for fragment length in the 265 

strand-shift profile (Fig. 4F). This phenomenon might also facilitate the identification of read 266 

bias. 267 

 268 

Relevance of Bu to other metrics 269 

To ascertain whether Bu varies among other mapping statistics and cell types, we next 270 

investigated 399 ENCODE TF samples (Supplemental Table S3). We first found relatively 271 

lower Bu values for MCF-7 cells (~0.8, Supplemental Fig. S8A), possibly owing to extensive 272 

copy number variations [20]. The low-Bu samples also were more common when the S/N 273 

was extremely high (e.g., RNA pol2, Supplemental Fig. S8B). Thus, it is desirable to use a 274 

relaxed threshold value for Bu for these samples. 275 

We next found that Bu did not correlate strongly with library complexity (Fig. 4G) or with the 276 

mapping ratio of uniquely and multiply mapped reads (Supplemental Fig. S9). This result 277 

suggests that the low values of these mapping statistics do not necessarily indicate biased 278 

read distribution. For example, sample GM12892_PAX5-C20_v041610.1 had relatively low 279 

library complexity (0.726) but a high Bu value (1.060) and no GC bias (peak = 45). The 280 

strand-shift profile of this sample clearly revealed a maximum at fragment length 281 

(Supplemental Fig. S10), indicative of sufficient quality. 282 
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On the other hand, Bu showed a moderately negative correlation with GC content (Fig. 4H), 283 

consistent with the H3K36me3 results (Fig. 4C-E), whereas several samples had a high Bu 284 

despite a highly GC-rich distribution (GC peak > 55); for instance, Rad21 sample for K562 285 

(K562_Rad21_v041610.2) has GC peak = 56 but has an acceptable Bu (0.997). Although 286 

Rad21 binding is closely correlated with CTCF [21], CTCF sample for K562 287 

(K562_CTCF_SC-5916_PCR1x) is not GC-rich (GC peak = 48) and had a similar Bu (0.980). 288 

In fact, this Rad21 sample had an unexpected bimodal GC distribution (Fig. 4I). Considering 289 

the remarkable peak overlap between these two samples (98.6%, Supplemental Fig. S11), 290 

the peaks of this Rad21 sample could be considered usable. This result implies that GC 291 

content alone is not always appropriate to reject a putative low-quality sample. In this 292 

respect, the Bu metric along with GC content provides a more reliable indicator of sample 293 

quality with respect to biased read distribution. 294 

 295 

FCS can identify peak intensity and peak mode 296 

While having verified the effectiveness of SSP-NSC for calculating the S/N, we also found 297 

that strand-shift profiles of a small number of input samples had peaks at fragment length 298 

despite having a low FRiP score (e.g., input of E024 and E058 cells, Fig. 5A). These two 299 

samples in particular had extremely high SSP-RSC (6.656 and 5.347), a phenomenon that is 300 

commonly observed in PPQT and Q (Supplemental Fig. S12). We presumed that this is due 301 

to “hidden duplicate reads”. That is, at most two reads (forward and reverse pair) that are 302 

derived from the same amplified DNA fragment can remain after PCR-bias filtering because 303 

forward and reverse strands are scanned separately for single-end reads (Fig. 5B). Such 304 

reads may often appear in low-library complexity samples and introduce a spike at the 305 

fragment length, resulting in aberrant NSC and RSC values. To examine this hypothesis, we 306 

generated strand-shift profiles for a paired-end sample in which both forward and reverse 307 

reads were mapped as ‘single-end’. As expected, the resulting profile showed a remarkable 308 
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peak at the fragment length shift (Fig. 5C). While NSC increased less drastically (1.53 to 309 

2.54), RSC increased more than three times (0.61 to 2.29). This result suggested the 310 

presence of the artifactual S/N enrichment without real peaks in a strand-shift profile, which 311 

could especially influence the calculation of RSC. 312 

To overcome this problem, we defined FCS, which directly evaluates the cluster level of 313 

forward-reverse read pairs at each strand shift d (see Methods for details). The FCS value is 314 

high when read pairs with distance d are highly clustered as peaks (Fig. 1, step 5). Therefore, 315 

samples that contain hidden duplicate reads which are not clustered in a genome should 316 

have a low FCS score. As expected, FCS could identify read clustering in samples and was 317 

little affected by hidden duplicate reads (Fig. 5D). FCS correlated better with peak intensity 318 

(height) than did FRiP, which represents a composite of peak number and intensity 319 

(Supplemental Fig. S13). 320 

Fig. 5E illustrates the example of five input samples from ROADMAP (see Supplemental 321 

Table S5 for details concerning scores). The E097 input sample had strong peaks and the 322 

highest FCS score among these samples (0.240). E024 and E058 (shown in Fig. 5A) had 323 

high NSC and RSC values without many peaks, resulting in a low FCS score (0.041 and 324 

0.038, respectively). In contrast, E100 had more peaks (33,476) than E097, but the FCS 325 

score was low (0.044), indicating that the mapped reads were not highly clustered. The read 326 

distribution and relatively lower FRiP score for E100 suggested that this sample had only 327 

small peaks. Therefore, at a sufficiently high peak-calling threshold, most of the small peaks 328 

(i.e., as in E100) would be expected to disappear, in contrast to the expectation for E097. 329 

JSD was only minimally affected by hidden duplicate reads because it is not based on a 330 

strand-shift profile, while it provided E100 with the highest score, suggesting that it 331 

correlated better with peak number than did peak intensity and FRiP. 332 

Interestingly, the FCS profile reflects the peak mode (point or broad source) for histone 333 

modifications (Fig. 5F). H3K4me3 had the highest FCS at d = fragment length and 334 
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decreased steeply at d > 10 kbp. The broad-source marks H3K27me3, H3K36me3, and 335 

H3K9me3 each had a moderate score at fragment length, and the value was retained even 336 

at d > 10 kbp, resulting in a higher score than for H3K4me3 at d = 10 kbp. H3K27ac had a 337 

high score at fragment length and also the highest score at 10 kbp. This is not surprising 338 

because H3K27ac had high peaks for point-source marks, some of which clustered in broad 339 

genomic regions called super-enhancers [22]. This result suggested that FCS has the 340 

potential to identify peak mode without the need for peak calling. 341 

 342 

Discussion 343 

The quality of ChIP-seq data depend on various experimental factors such as antibody 344 

quality, crosslinking, DNA fragmentation, and PCR amplification. Although normalization 345 

using a corresponding input sample mitigates biases in a ChIP sample, input data alone 346 

cannot explain all the variability in read bias in the background [23]. It is important to assess 347 

the genome-wide properties of samples in an objective manner to validate whether each 348 

sample in the dataset requires special normalization or should be rejected for comparative 349 

ChIP-seq analysis. 350 

In this work, we present SSP, a peak calling–free quality assessment tool for read 351 

enrichment in ChIP-seq data. We compared SSP against the existing methods PPQT, Q, 352 

and DeepTools with more than 1,000 ChIP samples in public databases and demonstrated 353 

that SSP has advantages over these methods with respect to sensitivity for both point-354 

source and broad-source factors, correlation with normalized FRiP, and robustness for 355 

various sequencing depth and cell types. Although JSD, as utilized in DeepTools, is also 356 

sensitive and can estimate the S/N for broad marks, it has less classification power between 357 

ChIP and input samples owing to a lack of dynamic range. Moreover, because JSD depends 358 

on sequencing depth, it requires subsampling for comparison across samples, which is 359 

burdensome for a large-scale analysis. 360 
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Bu evaluates the reliability of the obtained peaks by quantifying the distribution of mapped 361 

reads in background regions. Although GC content correlates with the bias level in ChIP 362 

samples, it alone cannot be used for filtering because samples that have many GC-rich 363 

peaks (e.g., CpG islands) also have a high GC content. Bu is beneficial in this regard, 364 

especially for consolidated data, for which the mapping ratio and library complexity metrics 365 

are not generally available. While the “X-intercept” metric in DeepTools evaluates genome 366 

coverage, it also depends on sequencing depth and less robust than Bu. Finally, SSP 367 

provides FCS, which avoids the effect of hidden duplicate reads. The potential of FCS to 368 

evaluate peak mode may facilitate capturing dynamic changes of genome-wide binding 369 

patterns among samples, such as during the cell development [24]. 370 

Owing to the difficulty of assessing broad marks and peak reliability, a previous study 371 

involving large-scale sample evaluation for S/N was limited to input and negative-control 372 

samples [25]. The use of SSP enables in-depth validation using >1,000 ChIP-seq data that 373 

are publicly available, including point-source and broad-source marks, along with virtual data, 374 

and SSP provides multiple key insights for ChIP-seq analysis.  375 

Based on our results, we recommend using NSC rather than RSC when calculating the S/N 376 

in the strand-shift profile for several reasons. First, RSC is based on the value at read length, 377 

which depends on blacklist region filtering. Second, RSC has high variance in the evaluation 378 

of low-S/N samples due to the small values at both read-length and fragment-length. Third, 379 

RSC combines the magnitude of peak enrichment and repeat effects. A strong repeat effect 380 

cancels out strong peak intensity. Finally, we observed that, compared with NSC, RSC is 381 

strongly affected by hidden duplicate reads. 382 

One challenge that remains is to identify false-positive peaks caused by non-specific binding, 383 

such as “hyper-ChIPable regions” [26]. SSP and all existing tools cannot distinguish whether 384 

or not DNA-binding is derived from true binding, and thus a comparison with mock ChIP-seq 385 
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data (e.g., IgG) is needed to avoid such false positives. Finally, the challenge remains to 386 

accurately estimate fragment length from single-end data. 387 

 388 

Methods 389 

Strand-shift profile using the Jaccard index 390 

Let v�
��� � ���

����	
��� … �


����
�
and v�

�
� � ���
����	

��� … �

����� be strand-specific binary 391 

vectors for forward and reverse strands for chromosome c of length n, respectively. x�
���  392 

(k � �1, n�, str � �fwd, rev�) is the number of reads whose 5’ ends map to position k of strand 393 

str, and x�
��� �  �0,1� after removing duplicate reads. The Jaccard index between v�

��� and  394 

v�
�
� at strand shift d is defined as follows: 395 

 J�v���, v�
�, d�� � | ��
������

������|

| ��
������

�������|
, 396 

where v�
�
��d� is �����

��� ���	
��� … �


�����. Therefore, 0 �  J�v���, v�
�, d��  � 1. This formula can 397 

be transformed as follows: 398 

 J�v���, v�
� , d�� � N�
����/�N���  N�
� ! N�

�����, 399 

where N���  � ∑ x�
���� � 

� , and N�
����  � ∑ f�x�

���, x���
�
� � !�

� , where f�a, b� � %1 �& � ' � 1�
0 �otherwise�(. This 400 

score is calculated using the bitset operator in C++. The strand shift d ranges from –500 bp 401 

to 1,500 bp at single–base pair resolution. To standardize the value for various species 402 

having different genome lengths, this Jaccard score is then normalized per fixed number of 403 

reads (N�� ��, 10M default) for a fixed length of bases (L�� ��, 100M default): 404 

Jnorm�v���, v�
�, d�� � J�v���, v�
�, d�� , "��	
�

"�
, #��	
�

#�
, 405 
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where N� and L� are the number of mapped reads and the number of mappable positions (at 406 

which the reads starting at those positions are uniquely mapped on the genome), 407 

respectively, on chromosome c. We estimated L� for 36-mer and 50-mer reads based on the 408 

code from Peakseq [27]. 409 

Finally, SSP assembles the Jaccard index profiles obtained from all autosomes: 410 

Jnorm�v���, v�
�, d�$
 �%
 � ∑ "�

"��	�
�
Jnorm�v���, v�
� , d���&' , 411 

where C is the set of all autosomes, and N$
 �%
 � ∑ N�
�&' . SSP excludes sex 412 

chromosomes to ignore gender-specific differences. We use this Jnorm�v��� , v�
�, d�$
 �%
 413 

as the Jaccard score J�d� for each sample in SSP. Then the fragment length d()
  can be 414 

estimated as d()
 � argmax��������*�.	,�,�-.. .�/�. To ignore a peak at the read-length shift 415 

(d�
��)
 ), SSP uses d 0 d�
��)
 , 1.2. Then NSC and RSC can be calculated as: 416 

NSC � J�d()
 �/J�d�$� and RSC � 6J�d()
 � ! J�d�$�7 / 6J�d�
��)
 � ! J�d�$�7, 417 

where J�d�$� is the Jaccard score for the background, which is the average from 500 kbp to 418 

1 Mbp at steps of 5 kbp (default). 419 

 420 

Background uniformity 421 

Background uniformity Bu is defined as follows: 422 

Bu � J�d�$�/ 0���%/J�d�$����
��

, 423 

where J�d�$�/ 0���%
 is the normalized Jaccard score for the background for a sample that 424 

has a completely uniform read distribution. That is, by denoting E�x� � 1�12�3
�  as the 425 

probability of a mapped read occurring at genomic position k, 426 
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J�d�$�/ 0���% � �E�x� � 1���� , E�x� � 1���� , L��
6"��	
�

	
 "��	
�

	
! E�x� � 1���� , E�x� � 1���� , L�� ��7

 

� N�� ��/�4L�� �� ! N�� ���, 427 

because E�x� � 1���� � E�x� � 1���� � "��	
�

	#��	
�
. Therefore, J�d�$�/ 0���% � 1 39⁄  for N�� �� = 428 

10M and L�� �� = 100M. A high Bu score indicates that the sample has a relatively uniform 429 

read distribution in the background region. Bu should range from 0 to 1, but practically, the 430 

maximum score of Bu slightly exceeds 1.0 because the estimated mappable chromosomal 431 

length L� is a bit larger than the actual mappable chromosomal length. 432 

 433 

FCS 434 

Similar to the Jaccard score, FCS is calculated for each strand shift d. Let rp�/� represent a 435 

forward- and reverse-read pair with distance d. Denote all read-pair sets as 436 

@rp��/�, rp	�/�, … , rp
"�
�����/�A, which is sorted by genomic position. That is, this set consists 437 

of all �x�
���, x���

�
� � pairs such that f�x�
���, x���

�
� � � 1. 438 

Let NF�d, s� represent the number of rp��/� (k � C1, N�
���� ! 1D) that have neighboring read 439 

pairs rp����/� within distance s. Then the cPNF is:  440 

cPNF�d, s� � NF�d, s�/NF�d, L�� 

� NF�d, s�/N�
����. 441 

This cPNF is calculated up to s%�4 (5 kbp, default). Supplemental Fig. 14A shows the typical 442 

pattern of cPNF for ChIP and input samples. If a sample has peaks, the cPNF score 443 

becomes higher at short distance d (Supplemental Fig. 14A left). If a sample does not have 444 
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peaks, the cPNF score at short distance shows little difference from that at long distance 445 

(background) (Supplemental Fig. 14A right).  446 

Then, we define FCS[d] as the maximum difference of cPNF[d] from background against s: 447 

FCS�d� � arg max.5�,�
��
�cPNF�d, s� ! cPNFCd�$, sD�. 448 

Because FCS[d] depends on sequencing depth, SSP down-samples the reads to a fixed 449 

number (10M reads, default). The maximum difference strategy used here can provide more 450 

robust values for different values of parameter s%�4 and d�$ than a relative entropy method 451 

such as the Kullback–Leibler divergence. The resulting FCS profile (Supplemental Fig. 14B) 452 

reflects the cluster level of rp�/� in the sample, whereas the Jaccard score J�d� reflects 453 

N�
����, the number of rp�/�. Therefore, for point-source factors, the average peak width is ~1 454 

kbp, and FCS�d��d � 1 kbp� is high, whereas broad marks have relatively higher scores for 455 

the broad width (e.g., H3K4me3 and H3K36me3 in Fig. 5F). 456 

 457 

Read mapping 458 

We used bowtie 1 version 1.1.2 [28] for mapping single-end reads and extracted uniquely 459 

mapped reads. For mapping paired-end reads, we used bowtie 2 version 2.2.9 [29], which is 460 

more sensitive for longer reads than bowtie 1. 461 

 462 

FRiP score 463 

We used MACS2 version 2.1.1 [30] for peak calling with --nomodel option, and we also 464 

supplied --broad option for broad marks (H3K27me3, H3K36me3, H3K9me3). Because 465 

MACS2 does not have an option for read-depth normalization, we also used DROMPA3 466 

version 3.2.6 [31] with “–n GR” option for peak calling normalized by the number of 467 
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nonredundant reads. FRiP scores with and without total read normalization were calculated 468 

by peaks of MACS2 and DROMPA3, respectively. The FRiP score, peak height, library 469 

complexity for 10M reads, and GC content were also calculated with DROMPA3. 470 

 471 

Data access 472 

For histone modification data, we acquired the consolidated data for 117 cell types (tagAlign 473 

format, build hg19) from the ROADMAP project [32], available at 474 

http://egg2.wustl.edu/roadmap/web_portal/. For the analysis of Q and DeepTools, we 475 

converted tagAlign format to BAM format using bedtools (http://bedtools.readthedocs.io). For 476 

TF data for the 20 cell types, we acquired fastq files from the Sequence Read Archive (SRA) 477 

under accession number SRP008797, which is part of the ENCODE project [15]. 478 

Supplemental Methods describes the method for generating virtual data (Fig. 2D, Fig 3C and 479 

Fig 4A). 480 

 481 

Software availability 482 

SSP is open-source software that is freely available for nonprofit use. It is implemented as a 483 

C++ package with a boost library (http://www.boost.org/), and internally uses R to visualize 484 

the strand-shift profile and FCS profiles in PDF format. The user manual and examples are 485 

available at https://github.com/rnakato/SSP. The mappability tables generated for several 486 

species are also provided on the SSP website. 487 
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 586 

Figure 1. Workflow of SSP. Step 1: convert mapped reads to strand-specific binary vectors 587 

(n: chromosome length), in which ‘1’ indicates that the 5’ end of a read is mapped at the 588 

genomic position. Duplicate reads are discarded. Step 2: calculate the similarity between 589 

forward and reverse strand-specific binary vectors for each strand shift d based on the 590 

Jaccard index. An example calculation is shown (n = 10, d = 0, 1, 2). Step 3: plot a strand-591 

shift profile based on the Jaccard index and calculate NSC and RSC. Fragment length is 592 

estimated as the distance d at which the Jaccard score is maximal except for read-length 593 

shift. Step 4: calculate background uniformity based on the background level. Step 5: 594 

calculate the fragment cluster score to evaluate the cluster level of all forward-reverse read 595 

pairs with each distance d (orange rectangles). These read pairs are the same as the red 596 

bars in step 2. The variable s indicates the distance to the nearest downstream read pair. 597 
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cPNF is the cumulative proportion of neighboring downstream fragments (see Methods). 598 

FCS increases as read pairs become more clustered. 599 

 600 
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 602 

Figure 2. (A) Radar plot of the comparison between the fragment-length estimated by each 603 

tool and that from paired-end data for 65 paired-end ChIP-seq data for human (1–45, 604 

mapped to build hg38), mouse (46–54, mm10), chicken (55–61, galGal4), and fly (62–65, 605 

dm6). The y axis indicates the difference between the fragment size estimated from the 606 
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single-end (F3) reads by these tools and that derived from the paired-end reads. See 607 

Supplemental Table S1 for names and scores for each sample. (B) Examples of strand-shift 608 

profiles by SSP for original data (blue) and after removing blacklist regions (purple), with 609 

fragment length distribution inferred by paired-end data (black). Samples that have a clear 610 

peak (left) for fragment length can be estimated accurately. The estimation is less accurate if 611 

there is no peak and much repetitive enrichment in the sample (right). (C) The distribution of 612 

scores by SSP (NSC and RSC), PPQT (NSC and RSC), Q (RSC), and DeepTools (JSD). 613 

Note that the y axis is a log-scale for SSP-NSC and PPQT-NSC but a linear scale for the 614 

others. (D) Relative ratio at each different S/N (adding input reads from 5 million to 30 615 

million) against original data. Data were obtained from cell type E072 (Brain inferior temporal 616 

lobe) of ROADMAP. 617 
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 619 

Figure 3. (A) SSP-NSC distribution of ChIP (red) and input (blue) for 20 cell types. (B) 620 

Median values of S/N indicators for 20 cell types. (C) Relative S/Ns at each sequencing 621 

depth (5–50 million) against 50 million reads. Duplicate reads were removed in advance. 622 
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 624 

Figure 4. (A) Strand-shift profile for PU.1 data for GM12878 cells from ENCODE. Blue, 625 

original data. Red, data after removing mapped reads in every other 10-Mbp window. The 626 

horizontal dashed line indicates the expected background level. (B) Distribution of 627 

background uniformity for histone modifications. (C–F) Analysis of H3K36me3 data for 12 628 

cell types from ROADMAP. (C) Heatmap of S/N scores alongside Bu and GC peak. Darker 629 

colors indicate higher values. See Supplemental Table S4 for the description and detailed 630 

scores of each sample. (D) The read distribution around the IREB2 locus (chromosome 15, 631 

78.72–78.80 Mbp). Read number was normalized by the total number of nonredundant 632 
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reads. The peak regions identified by MACS2 are highlighted in red. (E) Histogram of 633 

mapped read number for each 100-kbp bin of the whole genome except chromosome Y. (F) 634 

Strand-shift profiles for the relative Jaccard score against background for groups 1 and 2 635 

(left) and group 3 (right). (G, H) Correlation plot between Bu and library complexity (G) and 636 

GC peak (H). (I) Distribution of GC content over the entire genome (black), 637 

Rad21_v041610.2 (blue), and CTCF_SC-5916_PCR1x (yellow) for K562 cells. 638 

 639 
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 641 

Figure 5. (A) Strand-shift profiles (0 < d < 500) for two input samples (E024, E058), which 642 

have apparent peaks at fragment length but actually have low FRiP score (< 0.01). The y-643 

axis indicates the relative Jaccard score against the background level. A typical profile for 644 

input (E096) that has a similar FRiP score is also shown. (B) Schematic illustration of hidden 645 

duplicate reads. (C) Strand-shift profile for sample SRR4420235 (no. 25 in Fig. 2A) using F3 646 

read only (red) and both F3 and F5 reads as single-end (blue). (D) FCS distribution for each 647 

strand shift for each of samples SRR4420235 and SRR4420248 (no. 31 in Fig. 2A) (left). 648 

The value at fragment length shown as a dashed vertical line is used as the FCS score 649 
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(right). (E) Heatmap for each S/N value and number of peaks identified by MACS2 of five 650 

input samples, and their read distribution (chromosome 1, 45.16–45.32 Mbp). The peak 651 

regions are highlighted in red. (F) FCS profile for all ROADMAP data. Lines and shaded 652 

regions indicate the mean value and 95% confidence interval, respectively, at the each 653 

strand shift (x-axis). 654 

 655 
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Table 1. Spearman’s correlation between each S/N and FRiP score without read 657 

normalization (top) and with normalization (bottom). *p-value for correlation coefficient < 0.01. 658 

 SSP-

NSC 

SSP-

RSC 

PPQT-

NSC 

PPQT-

RSC 

Q-RSC JSD FCS 

ENCODE *0.84 

*0.90 

0.10 

*0.28 

*0.83 

*0.88 

*0.15 

*0.31 

*0.16 

*0.32 

*0.93 

*0.81 

*0.79 

*0.80 

ROADMAP 

(point 

source) 

*0.77 

*0.94 

*0.20 

*0.28 

*0.70 

*0.89 

*0.33 

*0.34 

*0.29 

*0.30 

*0.97 

*0.90 

*0.44 

*0.73 

ROADMAP 

(broad 

source) 

*0.72 

*0.89 

*0.40 

*0.31 

*0.43 

*0.64 

*0.37 

*0.32 

*0.37 

*0.31 

*0.90 

*0.79 

*0.55 

*0.88 
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